Properties

Label 171.6.a.k.1.6
Level $171$
Weight $6$
Character 171.1
Self dual yes
Analytic conductor $27.426$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [171,6,Mod(1,171)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(171, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("171.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 171 = 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 171.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.4256331880\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 117x^{4} + 2916x^{2} - 1216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(9.01831\) of defining polynomial
Character \(\chi\) \(=\) 171.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.01831 q^{2} +49.3298 q^{4} -69.9349 q^{5} -24.9809 q^{7} +156.286 q^{8} -630.694 q^{10} +15.2536 q^{11} -878.013 q^{13} -225.286 q^{14} -169.122 q^{16} +39.2385 q^{17} -361.000 q^{19} -3449.88 q^{20} +137.562 q^{22} -1235.03 q^{23} +1765.89 q^{25} -7918.19 q^{26} -1232.31 q^{28} -3698.42 q^{29} -3303.45 q^{31} -6526.34 q^{32} +353.865 q^{34} +1747.04 q^{35} +845.412 q^{37} -3255.61 q^{38} -10929.8 q^{40} +18819.0 q^{41} +7092.14 q^{43} +752.457 q^{44} -11137.9 q^{46} +8219.10 q^{47} -16183.0 q^{49} +15925.3 q^{50} -43312.3 q^{52} -4978.22 q^{53} -1066.76 q^{55} -3904.16 q^{56} -33353.5 q^{58} +36585.9 q^{59} +18413.6 q^{61} -29791.5 q^{62} -53444.6 q^{64} +61403.7 q^{65} -56841.1 q^{67} +1935.63 q^{68} +15755.3 q^{70} -31417.8 q^{71} +62822.4 q^{73} +7624.19 q^{74} -17808.1 q^{76} -381.049 q^{77} -44851.7 q^{79} +11827.5 q^{80} +169715. q^{82} +41714.2 q^{83} -2744.14 q^{85} +63959.0 q^{86} +2383.92 q^{88} +54448.5 q^{89} +21933.6 q^{91} -60923.9 q^{92} +74122.4 q^{94} +25246.5 q^{95} -43487.7 q^{97} -145943. q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 42 q^{4} - 10 q^{7} - 788 q^{10} - 1256 q^{13} - 606 q^{16} - 2166 q^{19} - 2524 q^{22} - 3944 q^{25} - 9632 q^{28} - 18136 q^{31} - 14072 q^{34} - 23764 q^{37} - 34284 q^{40} - 24606 q^{43} - 45640 q^{46}+ \cdots - 16492 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.01831 1.59423 0.797113 0.603830i \(-0.206359\pi\)
0.797113 + 0.603830i \(0.206359\pi\)
\(3\) 0 0
\(4\) 49.3298 1.54156
\(5\) −69.9349 −1.25103 −0.625516 0.780211i \(-0.715112\pi\)
−0.625516 + 0.780211i \(0.715112\pi\)
\(6\) 0 0
\(7\) −24.9809 −0.192692 −0.0963460 0.995348i \(-0.530716\pi\)
−0.0963460 + 0.995348i \(0.530716\pi\)
\(8\) 156.286 0.863365
\(9\) 0 0
\(10\) −630.694 −1.99443
\(11\) 15.2536 0.0380093 0.0190047 0.999819i \(-0.493950\pi\)
0.0190047 + 0.999819i \(0.493950\pi\)
\(12\) 0 0
\(13\) −878.013 −1.44093 −0.720465 0.693492i \(-0.756071\pi\)
−0.720465 + 0.693492i \(0.756071\pi\)
\(14\) −225.286 −0.307195
\(15\) 0 0
\(16\) −169.122 −0.165158
\(17\) 39.2385 0.0329299 0.0164649 0.999864i \(-0.494759\pi\)
0.0164649 + 0.999864i \(0.494759\pi\)
\(18\) 0 0
\(19\) −361.000 −0.229416
\(20\) −3449.88 −1.92854
\(21\) 0 0
\(22\) 137.562 0.0605955
\(23\) −1235.03 −0.486809 −0.243404 0.969925i \(-0.578264\pi\)
−0.243404 + 0.969925i \(0.578264\pi\)
\(24\) 0 0
\(25\) 1765.89 0.565083
\(26\) −7918.19 −2.29717
\(27\) 0 0
\(28\) −1232.31 −0.297046
\(29\) −3698.42 −0.816622 −0.408311 0.912843i \(-0.633882\pi\)
−0.408311 + 0.912843i \(0.633882\pi\)
\(30\) 0 0
\(31\) −3303.45 −0.617396 −0.308698 0.951160i \(-0.599893\pi\)
−0.308698 + 0.951160i \(0.599893\pi\)
\(32\) −6526.34 −1.12666
\(33\) 0 0
\(34\) 353.865 0.0524977
\(35\) 1747.04 0.241064
\(36\) 0 0
\(37\) 845.412 0.101523 0.0507615 0.998711i \(-0.483835\pi\)
0.0507615 + 0.998711i \(0.483835\pi\)
\(38\) −3255.61 −0.365741
\(39\) 0 0
\(40\) −10929.8 −1.08010
\(41\) 18819.0 1.74838 0.874192 0.485581i \(-0.161392\pi\)
0.874192 + 0.485581i \(0.161392\pi\)
\(42\) 0 0
\(43\) 7092.14 0.584933 0.292466 0.956276i \(-0.405524\pi\)
0.292466 + 0.956276i \(0.405524\pi\)
\(44\) 752.457 0.0585936
\(45\) 0 0
\(46\) −11137.9 −0.776084
\(47\) 8219.10 0.542725 0.271362 0.962477i \(-0.412526\pi\)
0.271362 + 0.962477i \(0.412526\pi\)
\(48\) 0 0
\(49\) −16183.0 −0.962870
\(50\) 15925.3 0.900871
\(51\) 0 0
\(52\) −43312.3 −2.22128
\(53\) −4978.22 −0.243436 −0.121718 0.992565i \(-0.538840\pi\)
−0.121718 + 0.992565i \(0.538840\pi\)
\(54\) 0 0
\(55\) −1066.76 −0.0475509
\(56\) −3904.16 −0.166363
\(57\) 0 0
\(58\) −33353.5 −1.30188
\(59\) 36585.9 1.36831 0.684153 0.729338i \(-0.260172\pi\)
0.684153 + 0.729338i \(0.260172\pi\)
\(60\) 0 0
\(61\) 18413.6 0.633599 0.316799 0.948493i \(-0.397392\pi\)
0.316799 + 0.948493i \(0.397392\pi\)
\(62\) −29791.5 −0.984269
\(63\) 0 0
\(64\) −53444.6 −1.63100
\(65\) 61403.7 1.80265
\(66\) 0 0
\(67\) −56841.1 −1.54695 −0.773474 0.633828i \(-0.781483\pi\)
−0.773474 + 0.633828i \(0.781483\pi\)
\(68\) 1935.63 0.0507633
\(69\) 0 0
\(70\) 15755.3 0.384310
\(71\) −31417.8 −0.739657 −0.369829 0.929100i \(-0.620584\pi\)
−0.369829 + 0.929100i \(0.620584\pi\)
\(72\) 0 0
\(73\) 62822.4 1.37977 0.689886 0.723918i \(-0.257661\pi\)
0.689886 + 0.723918i \(0.257661\pi\)
\(74\) 7624.19 0.161851
\(75\) 0 0
\(76\) −17808.1 −0.353658
\(77\) −381.049 −0.00732409
\(78\) 0 0
\(79\) −44851.7 −0.808558 −0.404279 0.914636i \(-0.632477\pi\)
−0.404279 + 0.914636i \(0.632477\pi\)
\(80\) 11827.5 0.206618
\(81\) 0 0
\(82\) 169715. 2.78732
\(83\) 41714.2 0.664643 0.332322 0.943166i \(-0.392168\pi\)
0.332322 + 0.943166i \(0.392168\pi\)
\(84\) 0 0
\(85\) −2744.14 −0.0411964
\(86\) 63959.0 0.932515
\(87\) 0 0
\(88\) 2383.92 0.0328159
\(89\) 54448.5 0.728636 0.364318 0.931275i \(-0.381302\pi\)
0.364318 + 0.931275i \(0.381302\pi\)
\(90\) 0 0
\(91\) 21933.6 0.277655
\(92\) −60923.9 −0.750444
\(93\) 0 0
\(94\) 74122.4 0.865226
\(95\) 25246.5 0.287007
\(96\) 0 0
\(97\) −43487.7 −0.469285 −0.234642 0.972082i \(-0.575392\pi\)
−0.234642 + 0.972082i \(0.575392\pi\)
\(98\) −145943. −1.53503
\(99\) 0 0
\(100\) 87110.8 0.871108
\(101\) −10927.3 −0.106588 −0.0532940 0.998579i \(-0.516972\pi\)
−0.0532940 + 0.998579i \(0.516972\pi\)
\(102\) 0 0
\(103\) −76020.3 −0.706052 −0.353026 0.935614i \(-0.614847\pi\)
−0.353026 + 0.935614i \(0.614847\pi\)
\(104\) −137221. −1.24405
\(105\) 0 0
\(106\) −44895.1 −0.388092
\(107\) −123618. −1.04381 −0.521906 0.853003i \(-0.674779\pi\)
−0.521906 + 0.853003i \(0.674779\pi\)
\(108\) 0 0
\(109\) −145642. −1.17414 −0.587070 0.809536i \(-0.699719\pi\)
−0.587070 + 0.809536i \(0.699719\pi\)
\(110\) −9620.35 −0.0758070
\(111\) 0 0
\(112\) 4224.82 0.0318246
\(113\) −4514.38 −0.0332584 −0.0166292 0.999862i \(-0.505293\pi\)
−0.0166292 + 0.999862i \(0.505293\pi\)
\(114\) 0 0
\(115\) 86371.8 0.609014
\(116\) −182442. −1.25887
\(117\) 0 0
\(118\) 329943. 2.18139
\(119\) −980.214 −0.00634532
\(120\) 0 0
\(121\) −160818. −0.998555
\(122\) 166060. 1.01010
\(123\) 0 0
\(124\) −162959. −0.951751
\(125\) 95049.5 0.544095
\(126\) 0 0
\(127\) 71367.3 0.392636 0.196318 0.980540i \(-0.437102\pi\)
0.196318 + 0.980540i \(0.437102\pi\)
\(128\) −273137. −1.47352
\(129\) 0 0
\(130\) 553758. 2.87383
\(131\) −244939. −1.24704 −0.623519 0.781808i \(-0.714298\pi\)
−0.623519 + 0.781808i \(0.714298\pi\)
\(132\) 0 0
\(133\) 9018.12 0.0442066
\(134\) −512610. −2.46618
\(135\) 0 0
\(136\) 6132.42 0.0284305
\(137\) 357466. 1.62717 0.813585 0.581446i \(-0.197513\pi\)
0.813585 + 0.581446i \(0.197513\pi\)
\(138\) 0 0
\(139\) 116186. 0.510056 0.255028 0.966934i \(-0.417915\pi\)
0.255028 + 0.966934i \(0.417915\pi\)
\(140\) 86181.1 0.371614
\(141\) 0 0
\(142\) −283336. −1.17918
\(143\) −13392.9 −0.0547688
\(144\) 0 0
\(145\) 258648. 1.02162
\(146\) 566552. 2.19967
\(147\) 0 0
\(148\) 41704.1 0.156503
\(149\) 237480. 0.876318 0.438159 0.898897i \(-0.355631\pi\)
0.438159 + 0.898897i \(0.355631\pi\)
\(150\) 0 0
\(151\) 67124.3 0.239573 0.119786 0.992800i \(-0.461779\pi\)
0.119786 + 0.992800i \(0.461779\pi\)
\(152\) −56419.2 −0.198070
\(153\) 0 0
\(154\) −3436.42 −0.0116763
\(155\) 231026. 0.772382
\(156\) 0 0
\(157\) −381859. −1.23639 −0.618193 0.786026i \(-0.712135\pi\)
−0.618193 + 0.786026i \(0.712135\pi\)
\(158\) −404486. −1.28902
\(159\) 0 0
\(160\) 456419. 1.40949
\(161\) 30852.2 0.0938042
\(162\) 0 0
\(163\) −30881.4 −0.0910391 −0.0455195 0.998963i \(-0.514494\pi\)
−0.0455195 + 0.998963i \(0.514494\pi\)
\(164\) 928338. 2.69523
\(165\) 0 0
\(166\) 376191. 1.05959
\(167\) −44367.3 −0.123104 −0.0615519 0.998104i \(-0.519605\pi\)
−0.0615519 + 0.998104i \(0.519605\pi\)
\(168\) 0 0
\(169\) 399614. 1.07628
\(170\) −24747.5 −0.0656763
\(171\) 0 0
\(172\) 349854. 0.901707
\(173\) 498738. 1.26694 0.633471 0.773766i \(-0.281629\pi\)
0.633471 + 0.773766i \(0.281629\pi\)
\(174\) 0 0
\(175\) −44113.5 −0.108887
\(176\) −2579.72 −0.00627755
\(177\) 0 0
\(178\) 491033. 1.16161
\(179\) 632626. 1.47576 0.737878 0.674934i \(-0.235828\pi\)
0.737878 + 0.674934i \(0.235828\pi\)
\(180\) 0 0
\(181\) −810854. −1.83970 −0.919849 0.392274i \(-0.871689\pi\)
−0.919849 + 0.392274i \(0.871689\pi\)
\(182\) 197804. 0.442646
\(183\) 0 0
\(184\) −193018. −0.420294
\(185\) −59123.8 −0.127009
\(186\) 0 0
\(187\) 598.528 0.00125164
\(188\) 405447. 0.836641
\(189\) 0 0
\(190\) 227681. 0.457554
\(191\) −299878. −0.594786 −0.297393 0.954755i \(-0.596117\pi\)
−0.297393 + 0.954755i \(0.596117\pi\)
\(192\) 0 0
\(193\) −616954. −1.19223 −0.596114 0.802900i \(-0.703289\pi\)
−0.596114 + 0.802900i \(0.703289\pi\)
\(194\) −392185. −0.748146
\(195\) 0 0
\(196\) −798302. −1.48432
\(197\) −687623. −1.26237 −0.631183 0.775634i \(-0.717430\pi\)
−0.631183 + 0.775634i \(0.717430\pi\)
\(198\) 0 0
\(199\) −800129. −1.43228 −0.716139 0.697957i \(-0.754092\pi\)
−0.716139 + 0.697957i \(0.754092\pi\)
\(200\) 275983. 0.487873
\(201\) 0 0
\(202\) −98545.6 −0.169926
\(203\) 92389.9 0.157356
\(204\) 0 0
\(205\) −1.31610e6 −2.18729
\(206\) −685574. −1.12561
\(207\) 0 0
\(208\) 148491. 0.237981
\(209\) −5506.55 −0.00871994
\(210\) 0 0
\(211\) −1.26274e6 −1.95258 −0.976291 0.216460i \(-0.930549\pi\)
−0.976291 + 0.216460i \(0.930549\pi\)
\(212\) −245575. −0.375270
\(213\) 0 0
\(214\) −1.11482e6 −1.66407
\(215\) −495988. −0.731770
\(216\) 0 0
\(217\) 82523.3 0.118967
\(218\) −1.31344e6 −1.87184
\(219\) 0 0
\(220\) −52623.0 −0.0733025
\(221\) −34451.9 −0.0474496
\(222\) 0 0
\(223\) 1.38236e6 1.86148 0.930741 0.365679i \(-0.119163\pi\)
0.930741 + 0.365679i \(0.119163\pi\)
\(224\) 163034. 0.217099
\(225\) 0 0
\(226\) −40712.0 −0.0530214
\(227\) −1.45586e6 −1.87523 −0.937615 0.347674i \(-0.886972\pi\)
−0.937615 + 0.347674i \(0.886972\pi\)
\(228\) 0 0
\(229\) 1.05680e6 1.33169 0.665845 0.746090i \(-0.268071\pi\)
0.665845 + 0.746090i \(0.268071\pi\)
\(230\) 778927. 0.970906
\(231\) 0 0
\(232\) −578010. −0.705043
\(233\) 125063. 0.150917 0.0754586 0.997149i \(-0.475958\pi\)
0.0754586 + 0.997149i \(0.475958\pi\)
\(234\) 0 0
\(235\) −574802. −0.678966
\(236\) 1.80477e6 2.10932
\(237\) 0 0
\(238\) −8839.87 −0.0101159
\(239\) −1.01600e6 −1.15054 −0.575268 0.817965i \(-0.695102\pi\)
−0.575268 + 0.817965i \(0.695102\pi\)
\(240\) 0 0
\(241\) 735229. 0.815417 0.407709 0.913112i \(-0.366328\pi\)
0.407709 + 0.913112i \(0.366328\pi\)
\(242\) −1.45031e6 −1.59192
\(243\) 0 0
\(244\) 908340. 0.976729
\(245\) 1.13175e6 1.20458
\(246\) 0 0
\(247\) 316963. 0.330572
\(248\) −516282. −0.533038
\(249\) 0 0
\(250\) 857185. 0.867411
\(251\) −1.38044e6 −1.38303 −0.691517 0.722360i \(-0.743057\pi\)
−0.691517 + 0.722360i \(0.743057\pi\)
\(252\) 0 0
\(253\) −18838.7 −0.0185033
\(254\) 643612. 0.625950
\(255\) 0 0
\(256\) −753005. −0.718122
\(257\) −753987. −0.712084 −0.356042 0.934470i \(-0.615874\pi\)
−0.356042 + 0.934470i \(0.615874\pi\)
\(258\) 0 0
\(259\) −21119.2 −0.0195627
\(260\) 3.02904e6 2.77889
\(261\) 0 0
\(262\) −2.20894e6 −1.98806
\(263\) −329348. −0.293607 −0.146803 0.989166i \(-0.546898\pi\)
−0.146803 + 0.989166i \(0.546898\pi\)
\(264\) 0 0
\(265\) 348151. 0.304546
\(266\) 81328.1 0.0704753
\(267\) 0 0
\(268\) −2.80396e6 −2.38471
\(269\) −2.00722e6 −1.69128 −0.845638 0.533756i \(-0.820780\pi\)
−0.845638 + 0.533756i \(0.820780\pi\)
\(270\) 0 0
\(271\) −969156. −0.801623 −0.400812 0.916160i \(-0.631272\pi\)
−0.400812 + 0.916160i \(0.631272\pi\)
\(272\) −6636.09 −0.00543864
\(273\) 0 0
\(274\) 3.22374e6 2.59408
\(275\) 26936.1 0.0214785
\(276\) 0 0
\(277\) 78953.9 0.0618264 0.0309132 0.999522i \(-0.490158\pi\)
0.0309132 + 0.999522i \(0.490158\pi\)
\(278\) 1.04780e6 0.813145
\(279\) 0 0
\(280\) 273037. 0.208126
\(281\) 581164. 0.439069 0.219535 0.975605i \(-0.429546\pi\)
0.219535 + 0.975605i \(0.429546\pi\)
\(282\) 0 0
\(283\) 1.88724e6 1.40075 0.700375 0.713775i \(-0.253016\pi\)
0.700375 + 0.713775i \(0.253016\pi\)
\(284\) −1.54984e6 −1.14022
\(285\) 0 0
\(286\) −120781. −0.0873138
\(287\) −470116. −0.336899
\(288\) 0 0
\(289\) −1.41832e6 −0.998916
\(290\) 2.33257e6 1.62870
\(291\) 0 0
\(292\) 3.09902e6 2.12700
\(293\) −2.13183e6 −1.45072 −0.725360 0.688370i \(-0.758326\pi\)
−0.725360 + 0.688370i \(0.758326\pi\)
\(294\) 0 0
\(295\) −2.55863e6 −1.71180
\(296\) 132126. 0.0876514
\(297\) 0 0
\(298\) 2.14167e6 1.39705
\(299\) 1.08437e6 0.701457
\(300\) 0 0
\(301\) −177168. −0.112712
\(302\) 605347. 0.381933
\(303\) 0 0
\(304\) 61053.0 0.0378899
\(305\) −1.28775e6 −0.792653
\(306\) 0 0
\(307\) −1.32016e6 −0.799428 −0.399714 0.916640i \(-0.630891\pi\)
−0.399714 + 0.916640i \(0.630891\pi\)
\(308\) −18797.1 −0.0112905
\(309\) 0 0
\(310\) 2.08347e6 1.23135
\(311\) 1.81117e6 1.06184 0.530918 0.847423i \(-0.321847\pi\)
0.530918 + 0.847423i \(0.321847\pi\)
\(312\) 0 0
\(313\) 297903. 0.171876 0.0859378 0.996301i \(-0.472611\pi\)
0.0859378 + 0.996301i \(0.472611\pi\)
\(314\) −3.44372e6 −1.97108
\(315\) 0 0
\(316\) −2.21253e6 −1.24644
\(317\) 2.85867e6 1.59777 0.798887 0.601481i \(-0.205422\pi\)
0.798887 + 0.601481i \(0.205422\pi\)
\(318\) 0 0
\(319\) −56414.2 −0.0310393
\(320\) 3.73764e6 2.04043
\(321\) 0 0
\(322\) 278235. 0.149545
\(323\) −14165.1 −0.00755463
\(324\) 0 0
\(325\) −1.55047e6 −0.814245
\(326\) −278498. −0.145137
\(327\) 0 0
\(328\) 2.94114e6 1.50949
\(329\) −205321. −0.104579
\(330\) 0 0
\(331\) −1.63518e6 −0.820342 −0.410171 0.912009i \(-0.634531\pi\)
−0.410171 + 0.912009i \(0.634531\pi\)
\(332\) 2.05775e6 1.02459
\(333\) 0 0
\(334\) −400118. −0.196255
\(335\) 3.97518e6 1.93528
\(336\) 0 0
\(337\) 741151. 0.355494 0.177747 0.984076i \(-0.443119\pi\)
0.177747 + 0.984076i \(0.443119\pi\)
\(338\) 3.60385e6 1.71583
\(339\) 0 0
\(340\) −135368. −0.0635066
\(341\) −50389.5 −0.0234668
\(342\) 0 0
\(343\) 824120. 0.378229
\(344\) 1.10840e6 0.505010
\(345\) 0 0
\(346\) 4.49777e6 2.01979
\(347\) −404168. −0.180193 −0.0900966 0.995933i \(-0.528718\pi\)
−0.0900966 + 0.995933i \(0.528718\pi\)
\(348\) 0 0
\(349\) −2.94995e6 −1.29644 −0.648219 0.761454i \(-0.724486\pi\)
−0.648219 + 0.761454i \(0.724486\pi\)
\(350\) −397829. −0.173591
\(351\) 0 0
\(352\) −99550.1 −0.0428238
\(353\) 244773. 0.104551 0.0522754 0.998633i \(-0.483353\pi\)
0.0522754 + 0.998633i \(0.483353\pi\)
\(354\) 0 0
\(355\) 2.19720e6 0.925335
\(356\) 2.68594e6 1.12323
\(357\) 0 0
\(358\) 5.70522e6 2.35269
\(359\) −1.10852e6 −0.453948 −0.226974 0.973901i \(-0.572883\pi\)
−0.226974 + 0.973901i \(0.572883\pi\)
\(360\) 0 0
\(361\) 130321. 0.0526316
\(362\) −7.31253e6 −2.93289
\(363\) 0 0
\(364\) 1.08198e6 0.428022
\(365\) −4.39348e6 −1.72614
\(366\) 0 0
\(367\) 2.98676e6 1.15754 0.578768 0.815492i \(-0.303534\pi\)
0.578768 + 0.815492i \(0.303534\pi\)
\(368\) 208871. 0.0804005
\(369\) 0 0
\(370\) −533197. −0.202480
\(371\) 124361. 0.0469081
\(372\) 0 0
\(373\) 3.57172e6 1.32925 0.664623 0.747179i \(-0.268592\pi\)
0.664623 + 0.747179i \(0.268592\pi\)
\(374\) 5397.71 0.00199540
\(375\) 0 0
\(376\) 1.28453e6 0.468570
\(377\) 3.24726e6 1.17669
\(378\) 0 0
\(379\) 5.41131e6 1.93510 0.967551 0.252675i \(-0.0813102\pi\)
0.967551 + 0.252675i \(0.0813102\pi\)
\(380\) 1.24541e6 0.442437
\(381\) 0 0
\(382\) −2.70439e6 −0.948223
\(383\) 54664.9 0.0190419 0.00952097 0.999955i \(-0.496969\pi\)
0.00952097 + 0.999955i \(0.496969\pi\)
\(384\) 0 0
\(385\) 26648.6 0.00916268
\(386\) −5.56388e6 −1.90068
\(387\) 0 0
\(388\) −2.14524e6 −0.723430
\(389\) −2.24796e6 −0.753208 −0.376604 0.926374i \(-0.622908\pi\)
−0.376604 + 0.926374i \(0.622908\pi\)
\(390\) 0 0
\(391\) −48460.8 −0.0160306
\(392\) −2.52917e6 −0.831308
\(393\) 0 0
\(394\) −6.20120e6 −2.01250
\(395\) 3.13670e6 1.01153
\(396\) 0 0
\(397\) 1.76879e6 0.563249 0.281624 0.959525i \(-0.409127\pi\)
0.281624 + 0.959525i \(0.409127\pi\)
\(398\) −7.21581e6 −2.28338
\(399\) 0 0
\(400\) −298650. −0.0933281
\(401\) 4.31762e6 1.34086 0.670431 0.741972i \(-0.266109\pi\)
0.670431 + 0.741972i \(0.266109\pi\)
\(402\) 0 0
\(403\) 2.90047e6 0.889624
\(404\) −539041. −0.164312
\(405\) 0 0
\(406\) 833201. 0.250862
\(407\) 12895.6 0.00385882
\(408\) 0 0
\(409\) −1.56828e6 −0.463569 −0.231784 0.972767i \(-0.574456\pi\)
−0.231784 + 0.972767i \(0.574456\pi\)
\(410\) −1.18690e7 −3.48703
\(411\) 0 0
\(412\) −3.75007e6 −1.08842
\(413\) −913949. −0.263662
\(414\) 0 0
\(415\) −2.91728e6 −0.831491
\(416\) 5.73021e6 1.62344
\(417\) 0 0
\(418\) −49659.7 −0.0139016
\(419\) −92273.8 −0.0256769 −0.0128385 0.999918i \(-0.504087\pi\)
−0.0128385 + 0.999918i \(0.504087\pi\)
\(420\) 0 0
\(421\) −6.80057e6 −1.86999 −0.934997 0.354655i \(-0.884598\pi\)
−0.934997 + 0.354655i \(0.884598\pi\)
\(422\) −1.13878e7 −3.11286
\(423\) 0 0
\(424\) −778025. −0.210174
\(425\) 69290.7 0.0186081
\(426\) 0 0
\(427\) −459989. −0.122089
\(428\) −6.09805e6 −1.60910
\(429\) 0 0
\(430\) −4.47297e6 −1.16661
\(431\) 4.66801e6 1.21043 0.605214 0.796063i \(-0.293088\pi\)
0.605214 + 0.796063i \(0.293088\pi\)
\(432\) 0 0
\(433\) 3.00139e6 0.769312 0.384656 0.923060i \(-0.374320\pi\)
0.384656 + 0.923060i \(0.374320\pi\)
\(434\) 744220. 0.189661
\(435\) 0 0
\(436\) −7.18449e6 −1.81000
\(437\) 445847. 0.111682
\(438\) 0 0
\(439\) 6.91030e6 1.71134 0.855669 0.517524i \(-0.173146\pi\)
0.855669 + 0.517524i \(0.173146\pi\)
\(440\) −166719. −0.0410538
\(441\) 0 0
\(442\) −310698. −0.0756455
\(443\) 6.81040e6 1.64878 0.824391 0.566021i \(-0.191518\pi\)
0.824391 + 0.566021i \(0.191518\pi\)
\(444\) 0 0
\(445\) −3.80785e6 −0.911548
\(446\) 1.24665e7 2.96762
\(447\) 0 0
\(448\) 1.33510e6 0.314281
\(449\) −1.64802e6 −0.385787 −0.192893 0.981220i \(-0.561787\pi\)
−0.192893 + 0.981220i \(0.561787\pi\)
\(450\) 0 0
\(451\) 287057. 0.0664549
\(452\) −222693. −0.0512698
\(453\) 0 0
\(454\) −1.31294e7 −2.98954
\(455\) −1.53392e6 −0.347356
\(456\) 0 0
\(457\) −3.88919e6 −0.871101 −0.435551 0.900164i \(-0.643446\pi\)
−0.435551 + 0.900164i \(0.643446\pi\)
\(458\) 9.53052e6 2.12301
\(459\) 0 0
\(460\) 4.26071e6 0.938830
\(461\) −2.50854e6 −0.549753 −0.274877 0.961479i \(-0.588637\pi\)
−0.274877 + 0.961479i \(0.588637\pi\)
\(462\) 0 0
\(463\) −212544. −0.0460782 −0.0230391 0.999735i \(-0.507334\pi\)
−0.0230391 + 0.999735i \(0.507334\pi\)
\(464\) 625484. 0.134872
\(465\) 0 0
\(466\) 1.12786e6 0.240596
\(467\) −8.46883e6 −1.79693 −0.898465 0.439046i \(-0.855317\pi\)
−0.898465 + 0.439046i \(0.855317\pi\)
\(468\) 0 0
\(469\) 1.41994e6 0.298084
\(470\) −5.18374e6 −1.08243
\(471\) 0 0
\(472\) 5.71785e6 1.18135
\(473\) 108181. 0.0222329
\(474\) 0 0
\(475\) −637485. −0.129639
\(476\) −48353.8 −0.00978168
\(477\) 0 0
\(478\) −9.16263e6 −1.83422
\(479\) −2.49078e6 −0.496016 −0.248008 0.968758i \(-0.579776\pi\)
−0.248008 + 0.968758i \(0.579776\pi\)
\(480\) 0 0
\(481\) −742283. −0.146287
\(482\) 6.63052e6 1.29996
\(483\) 0 0
\(484\) −7.93314e6 −1.53933
\(485\) 3.04130e6 0.587091
\(486\) 0 0
\(487\) 4.86094e6 0.928748 0.464374 0.885639i \(-0.346279\pi\)
0.464374 + 0.885639i \(0.346279\pi\)
\(488\) 2.87778e6 0.547027
\(489\) 0 0
\(490\) 1.02065e7 1.92038
\(491\) 8.88281e6 1.66283 0.831413 0.555655i \(-0.187533\pi\)
0.831413 + 0.555655i \(0.187533\pi\)
\(492\) 0 0
\(493\) −145120. −0.0268913
\(494\) 2.85847e6 0.527006
\(495\) 0 0
\(496\) 558686. 0.101968
\(497\) 784847. 0.142526
\(498\) 0 0
\(499\) 1.33020e6 0.239148 0.119574 0.992825i \(-0.461847\pi\)
0.119574 + 0.992825i \(0.461847\pi\)
\(500\) 4.68878e6 0.838754
\(501\) 0 0
\(502\) −1.24492e7 −2.20487
\(503\) 4.82565e6 0.850425 0.425212 0.905094i \(-0.360199\pi\)
0.425212 + 0.905094i \(0.360199\pi\)
\(504\) 0 0
\(505\) 764198. 0.133345
\(506\) −169893. −0.0294984
\(507\) 0 0
\(508\) 3.52054e6 0.605271
\(509\) 3.34728e6 0.572662 0.286331 0.958131i \(-0.407564\pi\)
0.286331 + 0.958131i \(0.407564\pi\)
\(510\) 0 0
\(511\) −1.56936e6 −0.265871
\(512\) 1.94955e6 0.328670
\(513\) 0 0
\(514\) −6.79969e6 −1.13522
\(515\) 5.31647e6 0.883294
\(516\) 0 0
\(517\) 125371. 0.0206286
\(518\) −190459. −0.0311873
\(519\) 0 0
\(520\) 9.59653e6 1.55635
\(521\) 7.67213e6 1.23829 0.619144 0.785277i \(-0.287480\pi\)
0.619144 + 0.785277i \(0.287480\pi\)
\(522\) 0 0
\(523\) 8.45117e6 1.35102 0.675511 0.737349i \(-0.263923\pi\)
0.675511 + 0.737349i \(0.263923\pi\)
\(524\) −1.20828e7 −1.92238
\(525\) 0 0
\(526\) −2.97016e6 −0.468076
\(527\) −129622. −0.0203308
\(528\) 0 0
\(529\) −4.91104e6 −0.763017
\(530\) 3.13974e6 0.485516
\(531\) 0 0
\(532\) 444862. 0.0681469
\(533\) −1.65233e7 −2.51930
\(534\) 0 0
\(535\) 8.64520e6 1.30584
\(536\) −8.88346e6 −1.33558
\(537\) 0 0
\(538\) −1.81017e7 −2.69628
\(539\) −246848. −0.0365981
\(540\) 0 0
\(541\) 9.89761e6 1.45391 0.726954 0.686686i \(-0.240935\pi\)
0.726954 + 0.686686i \(0.240935\pi\)
\(542\) −8.74014e6 −1.27797
\(543\) 0 0
\(544\) −256084. −0.0371009
\(545\) 1.01854e7 1.46889
\(546\) 0 0
\(547\) −86566.6 −0.0123703 −0.00618517 0.999981i \(-0.501969\pi\)
−0.00618517 + 0.999981i \(0.501969\pi\)
\(548\) 1.76337e7 2.50838
\(549\) 0 0
\(550\) 242918. 0.0342415
\(551\) 1.33513e6 0.187346
\(552\) 0 0
\(553\) 1.12044e6 0.155803
\(554\) 712030. 0.0985653
\(555\) 0 0
\(556\) 5.73145e6 0.786281
\(557\) −5.91849e6 −0.808300 −0.404150 0.914693i \(-0.632433\pi\)
−0.404150 + 0.914693i \(0.632433\pi\)
\(558\) 0 0
\(559\) −6.22699e6 −0.842847
\(560\) −295462. −0.0398137
\(561\) 0 0
\(562\) 5.24112e6 0.699976
\(563\) −801516. −0.106571 −0.0532857 0.998579i \(-0.516969\pi\)
−0.0532857 + 0.998579i \(0.516969\pi\)
\(564\) 0 0
\(565\) 315712. 0.0416074
\(566\) 1.70197e7 2.23311
\(567\) 0 0
\(568\) −4.91016e6 −0.638594
\(569\) −1.10482e7 −1.43058 −0.715289 0.698829i \(-0.753705\pi\)
−0.715289 + 0.698829i \(0.753705\pi\)
\(570\) 0 0
\(571\) 2.87709e6 0.369286 0.184643 0.982806i \(-0.440887\pi\)
0.184643 + 0.982806i \(0.440887\pi\)
\(572\) −660667. −0.0844292
\(573\) 0 0
\(574\) −4.23965e6 −0.537094
\(575\) −2.18092e6 −0.275088
\(576\) 0 0
\(577\) 3.25493e6 0.407007 0.203503 0.979074i \(-0.434767\pi\)
0.203503 + 0.979074i \(0.434767\pi\)
\(578\) −1.27908e7 −1.59250
\(579\) 0 0
\(580\) 1.27591e7 1.57489
\(581\) −1.04206e6 −0.128071
\(582\) 0 0
\(583\) −75935.8 −0.00925284
\(584\) 9.81825e6 1.19125
\(585\) 0 0
\(586\) −1.92255e7 −2.31277
\(587\) −9.44870e6 −1.13182 −0.565910 0.824467i \(-0.691475\pi\)
−0.565910 + 0.824467i \(0.691475\pi\)
\(588\) 0 0
\(589\) 1.19255e6 0.141640
\(590\) −2.30745e7 −2.72899
\(591\) 0 0
\(592\) −142978. −0.0167673
\(593\) −1.20293e6 −0.140477 −0.0702383 0.997530i \(-0.522376\pi\)
−0.0702383 + 0.997530i \(0.522376\pi\)
\(594\) 0 0
\(595\) 68551.2 0.00793821
\(596\) 1.17149e7 1.35089
\(597\) 0 0
\(598\) 9.77922e6 1.11828
\(599\) −9.23082e6 −1.05117 −0.525585 0.850741i \(-0.676154\pi\)
−0.525585 + 0.850741i \(0.676154\pi\)
\(600\) 0 0
\(601\) −9.23923e6 −1.04340 −0.521699 0.853130i \(-0.674701\pi\)
−0.521699 + 0.853130i \(0.674701\pi\)
\(602\) −1.59776e6 −0.179688
\(603\) 0 0
\(604\) 3.31123e6 0.369315
\(605\) 1.12468e7 1.24923
\(606\) 0 0
\(607\) −384978. −0.0424096 −0.0212048 0.999775i \(-0.506750\pi\)
−0.0212048 + 0.999775i \(0.506750\pi\)
\(608\) 2.35601e6 0.258475
\(609\) 0 0
\(610\) −1.16133e7 −1.26367
\(611\) −7.21648e6 −0.782028
\(612\) 0 0
\(613\) −3.47518e6 −0.373530 −0.186765 0.982405i \(-0.559800\pi\)
−0.186765 + 0.982405i \(0.559800\pi\)
\(614\) −1.19056e7 −1.27447
\(615\) 0 0
\(616\) −59552.5 −0.00632337
\(617\) 3.15989e6 0.334164 0.167082 0.985943i \(-0.446566\pi\)
0.167082 + 0.985943i \(0.446566\pi\)
\(618\) 0 0
\(619\) 1.82717e7 1.91670 0.958348 0.285604i \(-0.0921943\pi\)
0.958348 + 0.285604i \(0.0921943\pi\)
\(620\) 1.13965e7 1.19067
\(621\) 0 0
\(622\) 1.63337e7 1.69281
\(623\) −1.36017e6 −0.140402
\(624\) 0 0
\(625\) −1.21657e7 −1.24576
\(626\) 2.68658e6 0.274009
\(627\) 0 0
\(628\) −1.88370e7 −1.90596
\(629\) 33172.7 0.00334314
\(630\) 0 0
\(631\) −1.44229e6 −0.144204 −0.0721021 0.997397i \(-0.522971\pi\)
−0.0721021 + 0.997397i \(0.522971\pi\)
\(632\) −7.00968e6 −0.698080
\(633\) 0 0
\(634\) 2.57803e7 2.54721
\(635\) −4.99106e6 −0.491200
\(636\) 0 0
\(637\) 1.42088e7 1.38743
\(638\) −508760. −0.0494836
\(639\) 0 0
\(640\) 1.91018e7 1.84342
\(641\) 7.73894e6 0.743937 0.371969 0.928245i \(-0.378683\pi\)
0.371969 + 0.928245i \(0.378683\pi\)
\(642\) 0 0
\(643\) −1.43398e7 −1.36778 −0.683888 0.729587i \(-0.739712\pi\)
−0.683888 + 0.729587i \(0.739712\pi\)
\(644\) 1.52194e6 0.144604
\(645\) 0 0
\(646\) −127745. −0.0120438
\(647\) −4.01534e6 −0.377105 −0.188552 0.982063i \(-0.560380\pi\)
−0.188552 + 0.982063i \(0.560380\pi\)
\(648\) 0 0
\(649\) 558066. 0.0520084
\(650\) −1.39826e7 −1.29809
\(651\) 0 0
\(652\) −1.52337e6 −0.140342
\(653\) −2.59212e6 −0.237888 −0.118944 0.992901i \(-0.537951\pi\)
−0.118944 + 0.992901i \(0.537951\pi\)
\(654\) 0 0
\(655\) 1.71298e7 1.56009
\(656\) −3.18271e6 −0.288760
\(657\) 0 0
\(658\) −1.85165e6 −0.166722
\(659\) 1.02865e7 0.922686 0.461343 0.887222i \(-0.347368\pi\)
0.461343 + 0.887222i \(0.347368\pi\)
\(660\) 0 0
\(661\) 1.39262e7 1.23974 0.619868 0.784706i \(-0.287186\pi\)
0.619868 + 0.784706i \(0.287186\pi\)
\(662\) −1.47465e7 −1.30781
\(663\) 0 0
\(664\) 6.51934e6 0.573830
\(665\) −630681. −0.0553039
\(666\) 0 0
\(667\) 4.56767e6 0.397539
\(668\) −2.18863e6 −0.189772
\(669\) 0 0
\(670\) 3.58493e7 3.08528
\(671\) 280874. 0.0240827
\(672\) 0 0
\(673\) −582222. −0.0495508 −0.0247754 0.999693i \(-0.507887\pi\)
−0.0247754 + 0.999693i \(0.507887\pi\)
\(674\) 6.68393e6 0.566738
\(675\) 0 0
\(676\) 1.97129e7 1.65914
\(677\) −1.14185e7 −0.957500 −0.478750 0.877951i \(-0.658910\pi\)
−0.478750 + 0.877951i \(0.658910\pi\)
\(678\) 0 0
\(679\) 1.08636e6 0.0904274
\(680\) −428870. −0.0355675
\(681\) 0 0
\(682\) −454428. −0.0374114
\(683\) −1.84937e7 −1.51695 −0.758477 0.651700i \(-0.774056\pi\)
−0.758477 + 0.651700i \(0.774056\pi\)
\(684\) 0 0
\(685\) −2.49993e7 −2.03564
\(686\) 7.43216e6 0.602983
\(687\) 0 0
\(688\) −1.19944e6 −0.0966064
\(689\) 4.37095e6 0.350774
\(690\) 0 0
\(691\) 1.36336e7 1.08621 0.543107 0.839663i \(-0.317248\pi\)
0.543107 + 0.839663i \(0.317248\pi\)
\(692\) 2.46027e7 1.95306
\(693\) 0 0
\(694\) −3.64491e6 −0.287269
\(695\) −8.12548e6 −0.638097
\(696\) 0 0
\(697\) 738429. 0.0575741
\(698\) −2.66036e7 −2.06681
\(699\) 0 0
\(700\) −2.17611e6 −0.167856
\(701\) −1.97549e6 −0.151838 −0.0759190 0.997114i \(-0.524189\pi\)
−0.0759190 + 0.997114i \(0.524189\pi\)
\(702\) 0 0
\(703\) −305194. −0.0232910
\(704\) −815222. −0.0619932
\(705\) 0 0
\(706\) 2.20744e6 0.166678
\(707\) 272974. 0.0205387
\(708\) 0 0
\(709\) −1.56906e7 −1.17226 −0.586128 0.810218i \(-0.699349\pi\)
−0.586128 + 0.810218i \(0.699349\pi\)
\(710\) 1.98150e7 1.47519
\(711\) 0 0
\(712\) 8.50953e6 0.629079
\(713\) 4.07987e6 0.300554
\(714\) 0 0
\(715\) 936628. 0.0685176
\(716\) 3.12074e7 2.27496
\(717\) 0 0
\(718\) −9.99695e6 −0.723696
\(719\) −1.50922e6 −0.108875 −0.0544377 0.998517i \(-0.517337\pi\)
−0.0544377 + 0.998517i \(0.517337\pi\)
\(720\) 0 0
\(721\) 1.89906e6 0.136050
\(722\) 1.17527e6 0.0839066
\(723\) 0 0
\(724\) −3.99993e7 −2.83600
\(725\) −6.53098e6 −0.461460
\(726\) 0 0
\(727\) 2.42082e6 0.169874 0.0849369 0.996386i \(-0.472931\pi\)
0.0849369 + 0.996386i \(0.472931\pi\)
\(728\) 3.42791e6 0.239718
\(729\) 0 0
\(730\) −3.96217e7 −2.75186
\(731\) 278285. 0.0192618
\(732\) 0 0
\(733\) −2.40820e7 −1.65552 −0.827758 0.561086i \(-0.810384\pi\)
−0.827758 + 0.561086i \(0.810384\pi\)
\(734\) 2.69355e7 1.84537
\(735\) 0 0
\(736\) 8.06024e6 0.548470
\(737\) −867031. −0.0587985
\(738\) 0 0
\(739\) −9.91699e6 −0.667988 −0.333994 0.942575i \(-0.608397\pi\)
−0.333994 + 0.942575i \(0.608397\pi\)
\(740\) −2.91657e6 −0.195791
\(741\) 0 0
\(742\) 1.12152e6 0.0747822
\(743\) 2.39963e7 1.59468 0.797338 0.603533i \(-0.206241\pi\)
0.797338 + 0.603533i \(0.206241\pi\)
\(744\) 0 0
\(745\) −1.66081e7 −1.09630
\(746\) 3.22109e7 2.11912
\(747\) 0 0
\(748\) 29525.3 0.00192948
\(749\) 3.08809e6 0.201134
\(750\) 0 0
\(751\) 1.75635e7 1.13634 0.568172 0.822909i \(-0.307651\pi\)
0.568172 + 0.822909i \(0.307651\pi\)
\(752\) −1.39003e6 −0.0896354
\(753\) 0 0
\(754\) 2.92848e7 1.87592
\(755\) −4.69433e6 −0.299713
\(756\) 0 0
\(757\) 3.44163e6 0.218285 0.109143 0.994026i \(-0.465189\pi\)
0.109143 + 0.994026i \(0.465189\pi\)
\(758\) 4.88008e7 3.08499
\(759\) 0 0
\(760\) 3.94567e6 0.247791
\(761\) 2.71265e7 1.69798 0.848990 0.528409i \(-0.177211\pi\)
0.848990 + 0.528409i \(0.177211\pi\)
\(762\) 0 0
\(763\) 3.63827e6 0.226247
\(764\) −1.47929e7 −0.916896
\(765\) 0 0
\(766\) 492985. 0.0303572
\(767\) −3.21229e7 −1.97163
\(768\) 0 0
\(769\) −9.55287e6 −0.582530 −0.291265 0.956642i \(-0.594076\pi\)
−0.291265 + 0.956642i \(0.594076\pi\)
\(770\) 240325. 0.0146074
\(771\) 0 0
\(772\) −3.04342e7 −1.83789
\(773\) 3.86711e6 0.232776 0.116388 0.993204i \(-0.462868\pi\)
0.116388 + 0.993204i \(0.462868\pi\)
\(774\) 0 0
\(775\) −5.83352e6 −0.348880
\(776\) −6.79650e6 −0.405164
\(777\) 0 0
\(778\) −2.02728e7 −1.20078
\(779\) −6.79366e6 −0.401107
\(780\) 0 0
\(781\) −479235. −0.0281139
\(782\) −437034. −0.0255563
\(783\) 0 0
\(784\) 2.73689e6 0.159026
\(785\) 2.67053e7 1.54676
\(786\) 0 0
\(787\) 1.47900e7 0.851197 0.425598 0.904912i \(-0.360064\pi\)
0.425598 + 0.904912i \(0.360064\pi\)
\(788\) −3.39204e7 −1.94601
\(789\) 0 0
\(790\) 2.82877e7 1.61261
\(791\) 112773. 0.00640863
\(792\) 0 0
\(793\) −1.61674e7 −0.912971
\(794\) 1.59515e7 0.897946
\(795\) 0 0
\(796\) −3.94702e7 −2.20794
\(797\) −1.59707e7 −0.890589 −0.445294 0.895384i \(-0.646901\pi\)
−0.445294 + 0.895384i \(0.646901\pi\)
\(798\) 0 0
\(799\) 322505. 0.0178719
\(800\) −1.15248e7 −0.636659
\(801\) 0 0
\(802\) 3.89376e7 2.13764
\(803\) 958267. 0.0524442
\(804\) 0 0
\(805\) −2.15765e6 −0.117352
\(806\) 2.61574e7 1.41826
\(807\) 0 0
\(808\) −1.70778e6 −0.0920244
\(809\) 711077. 0.0381984 0.0190992 0.999818i \(-0.493920\pi\)
0.0190992 + 0.999818i \(0.493920\pi\)
\(810\) 0 0
\(811\) −1.71319e7 −0.914648 −0.457324 0.889300i \(-0.651192\pi\)
−0.457324 + 0.889300i \(0.651192\pi\)
\(812\) 4.55758e6 0.242574
\(813\) 0 0
\(814\) 116296. 0.00615184
\(815\) 2.15969e6 0.113893
\(816\) 0 0
\(817\) −2.56026e6 −0.134193
\(818\) −1.41432e7 −0.739033
\(819\) 0 0
\(820\) −6.49232e7 −3.37183
\(821\) −9.14797e6 −0.473660 −0.236830 0.971551i \(-0.576108\pi\)
−0.236830 + 0.971551i \(0.576108\pi\)
\(822\) 0 0
\(823\) 1.37403e7 0.707128 0.353564 0.935410i \(-0.384970\pi\)
0.353564 + 0.935410i \(0.384970\pi\)
\(824\) −1.18809e7 −0.609581
\(825\) 0 0
\(826\) −8.24227e6 −0.420336
\(827\) −5.10837e6 −0.259728 −0.129864 0.991532i \(-0.541454\pi\)
−0.129864 + 0.991532i \(0.541454\pi\)
\(828\) 0 0
\(829\) −1.36897e7 −0.691844 −0.345922 0.938263i \(-0.612434\pi\)
−0.345922 + 0.938263i \(0.612434\pi\)
\(830\) −2.63089e7 −1.32558
\(831\) 0 0
\(832\) 4.69251e7 2.35016
\(833\) −634995. −0.0317072
\(834\) 0 0
\(835\) 3.10282e6 0.154007
\(836\) −271637. −0.0134423
\(837\) 0 0
\(838\) −832153. −0.0409348
\(839\) −7.59127e6 −0.372314 −0.186157 0.982520i \(-0.559603\pi\)
−0.186157 + 0.982520i \(0.559603\pi\)
\(840\) 0 0
\(841\) −6.83285e6 −0.333128
\(842\) −6.13296e7 −2.98119
\(843\) 0 0
\(844\) −6.22910e7 −3.01002
\(845\) −2.79470e7 −1.34646
\(846\) 0 0
\(847\) 4.01739e6 0.192414
\(848\) 841927. 0.0402054
\(849\) 0 0
\(850\) 624885. 0.0296656
\(851\) −1.04411e6 −0.0494223
\(852\) 0 0
\(853\) 1.52482e6 0.0717542 0.0358771 0.999356i \(-0.488578\pi\)
0.0358771 + 0.999356i \(0.488578\pi\)
\(854\) −4.14832e6 −0.194638
\(855\) 0 0
\(856\) −1.93197e7 −0.901190
\(857\) −7.90135e6 −0.367493 −0.183747 0.982974i \(-0.558823\pi\)
−0.183747 + 0.982974i \(0.558823\pi\)
\(858\) 0 0
\(859\) 4.18519e7 1.93523 0.967615 0.252432i \(-0.0812302\pi\)
0.967615 + 0.252432i \(0.0812302\pi\)
\(860\) −2.44670e7 −1.12807
\(861\) 0 0
\(862\) 4.20976e7 1.92970
\(863\) −3.23045e7 −1.47651 −0.738254 0.674523i \(-0.764350\pi\)
−0.738254 + 0.674523i \(0.764350\pi\)
\(864\) 0 0
\(865\) −3.48792e7 −1.58499
\(866\) 2.70674e7 1.22646
\(867\) 0 0
\(868\) 4.07086e6 0.183395
\(869\) −684149. −0.0307327
\(870\) 0 0
\(871\) 4.99073e7 2.22904
\(872\) −2.27617e7 −1.01371
\(873\) 0 0
\(874\) 4.02078e6 0.178046
\(875\) −2.37442e6 −0.104843
\(876\) 0 0
\(877\) −8.40521e6 −0.369020 −0.184510 0.982831i \(-0.559070\pi\)
−0.184510 + 0.982831i \(0.559070\pi\)
\(878\) 6.23192e7 2.72826
\(879\) 0 0
\(880\) 180412. 0.00785343
\(881\) −2.14767e7 −0.932238 −0.466119 0.884722i \(-0.654348\pi\)
−0.466119 + 0.884722i \(0.654348\pi\)
\(882\) 0 0
\(883\) −4.00787e7 −1.72986 −0.864931 0.501890i \(-0.832638\pi\)
−0.864931 + 0.501890i \(0.832638\pi\)
\(884\) −1.69951e6 −0.0731463
\(885\) 0 0
\(886\) 6.14183e7 2.62853
\(887\) 2.81155e7 1.19988 0.599938 0.800046i \(-0.295192\pi\)
0.599938 + 0.800046i \(0.295192\pi\)
\(888\) 0 0
\(889\) −1.78282e6 −0.0756577
\(890\) −3.43403e7 −1.45321
\(891\) 0 0
\(892\) 6.81916e7 2.86958
\(893\) −2.96709e6 −0.124510
\(894\) 0 0
\(895\) −4.42426e7 −1.84622
\(896\) 6.82322e6 0.283935
\(897\) 0 0
\(898\) −1.48624e7 −0.615031
\(899\) 1.22175e7 0.504179
\(900\) 0 0
\(901\) −195338. −0.00801632
\(902\) 2.58877e6 0.105944
\(903\) 0 0
\(904\) −705533. −0.0287142
\(905\) 5.67070e7 2.30152
\(906\) 0 0
\(907\) −1.84010e7 −0.742717 −0.371358 0.928490i \(-0.621108\pi\)
−0.371358 + 0.928490i \(0.621108\pi\)
\(908\) −7.18173e7 −2.89078
\(909\) 0 0
\(910\) −1.38334e7 −0.553764
\(911\) 4.13921e7 1.65242 0.826211 0.563361i \(-0.190492\pi\)
0.826211 + 0.563361i \(0.190492\pi\)
\(912\) 0 0
\(913\) 636291. 0.0252627
\(914\) −3.50739e7 −1.38873
\(915\) 0 0
\(916\) 5.21316e7 2.05288
\(917\) 6.11881e6 0.240294
\(918\) 0 0
\(919\) 7.77910e6 0.303837 0.151918 0.988393i \(-0.451455\pi\)
0.151918 + 0.988393i \(0.451455\pi\)
\(920\) 1.34987e7 0.525801
\(921\) 0 0
\(922\) −2.26227e7 −0.876431
\(923\) 2.75853e7 1.06579
\(924\) 0 0
\(925\) 1.49290e6 0.0573689
\(926\) −1.91678e6 −0.0734591
\(927\) 0 0
\(928\) 2.41371e7 0.920059
\(929\) −3.18869e7 −1.21220 −0.606098 0.795390i \(-0.707266\pi\)
−0.606098 + 0.795390i \(0.707266\pi\)
\(930\) 0 0
\(931\) 5.84205e6 0.220897
\(932\) 6.16934e6 0.232648
\(933\) 0 0
\(934\) −7.63745e7 −2.86471
\(935\) −41858.0 −0.00156585
\(936\) 0 0
\(937\) −1.23641e7 −0.460061 −0.230030 0.973183i \(-0.573883\pi\)
−0.230030 + 0.973183i \(0.573883\pi\)
\(938\) 1.28055e7 0.475214
\(939\) 0 0
\(940\) −2.83549e7 −1.04667
\(941\) 7.79985e6 0.287152 0.143576 0.989639i \(-0.454140\pi\)
0.143576 + 0.989639i \(0.454140\pi\)
\(942\) 0 0
\(943\) −2.32421e7 −0.851129
\(944\) −6.18747e6 −0.225987
\(945\) 0 0
\(946\) 975605. 0.0354443
\(947\) 3.53833e7 1.28211 0.641053 0.767497i \(-0.278498\pi\)
0.641053 + 0.767497i \(0.278498\pi\)
\(948\) 0 0
\(949\) −5.51589e7 −1.98815
\(950\) −5.74903e6 −0.206674
\(951\) 0 0
\(952\) −153194. −0.00547833
\(953\) −1.37685e6 −0.0491084 −0.0245542 0.999699i \(-0.507817\pi\)
−0.0245542 + 0.999699i \(0.507817\pi\)
\(954\) 0 0
\(955\) 2.09719e7 0.744097
\(956\) −5.01193e7 −1.77362
\(957\) 0 0
\(958\) −2.24626e7 −0.790762
\(959\) −8.92983e6 −0.313543
\(960\) 0 0
\(961\) −1.77164e7 −0.618822
\(962\) −6.69414e6 −0.233215
\(963\) 0 0
\(964\) 3.62687e7 1.25701
\(965\) 4.31466e7 1.49152
\(966\) 0 0
\(967\) −1.49803e7 −0.515175 −0.257588 0.966255i \(-0.582928\pi\)
−0.257588 + 0.966255i \(0.582928\pi\)
\(968\) −2.51336e7 −0.862118
\(969\) 0 0
\(970\) 2.74274e7 0.935956
\(971\) −1.07440e7 −0.365695 −0.182847 0.983141i \(-0.558531\pi\)
−0.182847 + 0.983141i \(0.558531\pi\)
\(972\) 0 0
\(973\) −2.90244e6 −0.0982837
\(974\) 4.38374e7 1.48063
\(975\) 0 0
\(976\) −3.11414e6 −0.104644
\(977\) −1.81622e7 −0.608741 −0.304371 0.952554i \(-0.598446\pi\)
−0.304371 + 0.952554i \(0.598446\pi\)
\(978\) 0 0
\(979\) 830535. 0.0276950
\(980\) 5.58292e7 1.85693
\(981\) 0 0
\(982\) 8.01079e7 2.65092
\(983\) 2.71045e7 0.894660 0.447330 0.894369i \(-0.352375\pi\)
0.447330 + 0.894369i \(0.352375\pi\)
\(984\) 0 0
\(985\) 4.80889e7 1.57926
\(986\) −1.30874e6 −0.0428708
\(987\) 0 0
\(988\) 1.56357e7 0.509596
\(989\) −8.75901e6 −0.284750
\(990\) 0 0
\(991\) 6.68184e6 0.216128 0.108064 0.994144i \(-0.465535\pi\)
0.108064 + 0.994144i \(0.465535\pi\)
\(992\) 2.15594e7 0.695598
\(993\) 0 0
\(994\) 7.07799e6 0.227219
\(995\) 5.59569e7 1.79183
\(996\) 0 0
\(997\) −2.45982e7 −0.783729 −0.391864 0.920023i \(-0.628170\pi\)
−0.391864 + 0.920023i \(0.628170\pi\)
\(998\) 1.19962e7 0.381256
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 171.6.a.k.1.6 yes 6
3.2 odd 2 inner 171.6.a.k.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
171.6.a.k.1.1 6 3.2 odd 2 inner
171.6.a.k.1.6 yes 6 1.1 even 1 trivial