Properties

Label 1710.2.n.f.647.2
Level $1710$
Weight $2$
Character 1710.647
Analytic conductor $13.654$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.110166016.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 10x^{6} + 19x^{4} + 10x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.2
Root \(-0.360409i\) of defining polynomial
Character \(\chi\) \(=\) 1710.647
Dual form 1710.2.n.f.1673.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} -1.00000i q^{4} +(-0.292893 + 2.21680i) q^{5} +(-2.41421 - 2.41421i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-1.36041 - 1.77462i) q^{10} -5.41421i q^{11} +(-4.43361 + 4.43361i) q^{13} +3.41421 q^{14} -1.00000 q^{16} +(-3.03955 + 3.03955i) q^{17} -1.00000i q^{19} +(2.21680 + 0.292893i) q^{20} +(3.82843 + 3.82843i) q^{22} +(5.33812 + 5.33812i) q^{23} +(-4.82843 - 1.29857i) q^{25} -6.27006i q^{26} +(-2.41421 + 2.41421i) q^{28} +8.86721 q^{29} +1.80904 q^{31} +(0.707107 - 0.707107i) q^{32} -4.29857i q^{34} +(6.05894 - 4.64473i) q^{35} +(1.41421 + 1.41421i) q^{37} +(0.707107 + 0.707107i) q^{38} +(-1.77462 + 1.36041i) q^{40} -9.84782i q^{41} +(6.84782 - 6.84782i) q^{43} -5.41421 q^{44} -7.54925 q^{46} +(7.52909 - 7.52909i) q^{47} +4.65685i q^{49} +(4.33244 - 2.49598i) q^{50} +(4.43361 + 4.43361i) q^{52} +(4.24264 + 4.24264i) q^{53} +(12.0022 + 1.58579i) q^{55} -3.41421i q^{56} +(-6.27006 + 6.27006i) q^{58} -0.980608 q^{59} -3.44164 q^{61} +(-1.27918 + 1.27918i) q^{62} +1.00000i q^{64} +(-8.52985 - 11.1270i) q^{65} +(3.01939 + 3.01939i) q^{67} +(3.03955 + 3.03955i) q^{68} +(-1.00000 + 7.56864i) q^{70} -2.55836i q^{71} +(3.82843 - 3.82843i) q^{73} -2.00000 q^{74} -1.00000 q^{76} +(-13.0711 + 13.0711i) q^{77} +12.1179i q^{79} +(0.292893 - 2.21680i) q^{80} +(6.96346 + 6.96346i) q^{82} +(-5.06697 - 5.06697i) q^{83} +(-5.84782 - 7.62835i) q^{85} +9.68428i q^{86} +(3.82843 - 3.82843i) q^{88} +12.9463 q^{89} +21.4073 q^{91} +(5.33812 - 5.33812i) q^{92} +10.6477i q^{94} +(2.21680 + 0.292893i) q^{95} +(-1.31796 - 1.31796i) q^{97} +(-3.29289 - 3.29289i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{7} - 4 q^{10} + 16 q^{14} - 8 q^{16} + 8 q^{22} + 8 q^{23} - 16 q^{25} - 8 q^{28} + 16 q^{31} + 4 q^{40} + 8 q^{43} - 32 q^{44} - 24 q^{46} + 24 q^{47} + 16 q^{50} - 32 q^{59} - 24 q^{62}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −0.292893 + 2.21680i −0.130986 + 0.991384i
\(6\) 0 0
\(7\) −2.41421 2.41421i −0.912487 0.912487i 0.0839804 0.996467i \(-0.473237\pi\)
−0.996467 + 0.0839804i \(0.973237\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −1.36041 1.77462i −0.430199 0.561185i
\(11\) 5.41421i 1.63245i −0.577736 0.816223i \(-0.696064\pi\)
0.577736 0.816223i \(-0.303936\pi\)
\(12\) 0 0
\(13\) −4.43361 + 4.43361i −1.22966 + 1.22966i −0.265569 + 0.964092i \(0.585560\pi\)
−0.964092 + 0.265569i \(0.914440\pi\)
\(14\) 3.41421 0.912487
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −3.03955 + 3.03955i −0.737199 + 0.737199i −0.972035 0.234836i \(-0.924545\pi\)
0.234836 + 0.972035i \(0.424545\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 2.21680 + 0.292893i 0.495692 + 0.0654929i
\(21\) 0 0
\(22\) 3.82843 + 3.82843i 0.816223 + 0.816223i
\(23\) 5.33812 + 5.33812i 1.11308 + 1.11308i 0.992732 + 0.120343i \(0.0383995\pi\)
0.120343 + 0.992732i \(0.461600\pi\)
\(24\) 0 0
\(25\) −4.82843 1.29857i −0.965685 0.259715i
\(26\) 6.27006i 1.22966i
\(27\) 0 0
\(28\) −2.41421 + 2.41421i −0.456243 + 0.456243i
\(29\) 8.86721 1.64660 0.823300 0.567607i \(-0.192131\pi\)
0.823300 + 0.567607i \(0.192131\pi\)
\(30\) 0 0
\(31\) 1.80904 0.324912 0.162456 0.986716i \(-0.448058\pi\)
0.162456 + 0.986716i \(0.448058\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0 0
\(34\) 4.29857i 0.737199i
\(35\) 6.05894 4.64473i 1.02415 0.785102i
\(36\) 0 0
\(37\) 1.41421 + 1.41421i 0.232495 + 0.232495i 0.813733 0.581238i \(-0.197432\pi\)
−0.581238 + 0.813733i \(0.697432\pi\)
\(38\) 0.707107 + 0.707107i 0.114708 + 0.114708i
\(39\) 0 0
\(40\) −1.77462 + 1.36041i −0.280593 + 0.215100i
\(41\) 9.84782i 1.53797i −0.639266 0.768985i \(-0.720762\pi\)
0.639266 0.768985i \(-0.279238\pi\)
\(42\) 0 0
\(43\) 6.84782 6.84782i 1.04428 1.04428i 0.0453096 0.998973i \(-0.485573\pi\)
0.998973 0.0453096i \(-0.0144274\pi\)
\(44\) −5.41421 −0.816223
\(45\) 0 0
\(46\) −7.54925 −1.11308
\(47\) 7.52909 7.52909i 1.09823 1.09823i 0.103613 0.994618i \(-0.466960\pi\)
0.994618 0.103613i \(-0.0330402\pi\)
\(48\) 0 0
\(49\) 4.65685i 0.665265i
\(50\) 4.33244 2.49598i 0.612700 0.352985i
\(51\) 0 0
\(52\) 4.43361 + 4.43361i 0.614830 + 0.614830i
\(53\) 4.24264 + 4.24264i 0.582772 + 0.582772i 0.935664 0.352892i \(-0.114802\pi\)
−0.352892 + 0.935664i \(0.614802\pi\)
\(54\) 0 0
\(55\) 12.0022 + 1.58579i 1.61838 + 0.213827i
\(56\) 3.41421i 0.456243i
\(57\) 0 0
\(58\) −6.27006 + 6.27006i −0.823300 + 0.823300i
\(59\) −0.980608 −0.127664 −0.0638322 0.997961i \(-0.520332\pi\)
−0.0638322 + 0.997961i \(0.520332\pi\)
\(60\) 0 0
\(61\) −3.44164 −0.440657 −0.220328 0.975426i \(-0.570713\pi\)
−0.220328 + 0.975426i \(0.570713\pi\)
\(62\) −1.27918 + 1.27918i −0.162456 + 0.162456i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −8.52985 11.1270i −1.05800 1.38013i
\(66\) 0 0
\(67\) 3.01939 + 3.01939i 0.368877 + 0.368877i 0.867068 0.498190i \(-0.166002\pi\)
−0.498190 + 0.867068i \(0.666002\pi\)
\(68\) 3.03955 + 3.03955i 0.368600 + 0.368600i
\(69\) 0 0
\(70\) −1.00000 + 7.56864i −0.119523 + 0.904625i
\(71\) 2.55836i 0.303622i −0.988410 0.151811i \(-0.951490\pi\)
0.988410 0.151811i \(-0.0485105\pi\)
\(72\) 0 0
\(73\) 3.82843 3.82843i 0.448084 0.448084i −0.446634 0.894717i \(-0.647377\pi\)
0.894717 + 0.446634i \(0.147377\pi\)
\(74\) −2.00000 −0.232495
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) −13.0711 + 13.0711i −1.48959 + 1.48959i
\(78\) 0 0
\(79\) 12.1179i 1.36337i 0.731647 + 0.681684i \(0.238752\pi\)
−0.731647 + 0.681684i \(0.761248\pi\)
\(80\) 0.292893 2.21680i 0.0327465 0.247846i
\(81\) 0 0
\(82\) 6.96346 + 6.96346i 0.768985 + 0.768985i
\(83\) −5.06697 5.06697i −0.556173 0.556173i 0.372043 0.928216i \(-0.378657\pi\)
−0.928216 + 0.372043i \(0.878657\pi\)
\(84\) 0 0
\(85\) −5.84782 7.62835i −0.634285 0.827410i
\(86\) 9.68428i 1.04428i
\(87\) 0 0
\(88\) 3.82843 3.82843i 0.408112 0.408112i
\(89\) 12.9463 1.37231 0.686153 0.727457i \(-0.259298\pi\)
0.686153 + 0.727457i \(0.259298\pi\)
\(90\) 0 0
\(91\) 21.4073 2.24410
\(92\) 5.33812 5.33812i 0.556538 0.556538i
\(93\) 0 0
\(94\) 10.6477i 1.09823i
\(95\) 2.21680 + 0.292893i 0.227439 + 0.0300502i
\(96\) 0 0
\(97\) −1.31796 1.31796i −0.133819 0.133819i 0.637025 0.770844i \(-0.280165\pi\)
−0.770844 + 0.637025i \(0.780165\pi\)
\(98\) −3.29289 3.29289i −0.332632 0.332632i
\(99\) 0 0
\(100\) −1.29857 + 4.82843i −0.129857 + 0.482843i
\(101\) 10.2426i 1.01918i 0.860417 + 0.509590i \(0.170203\pi\)
−0.860417 + 0.509590i \(0.829797\pi\)
\(102\) 0 0
\(103\) 7.98285 7.98285i 0.786574 0.786574i −0.194357 0.980931i \(-0.562262\pi\)
0.980931 + 0.194357i \(0.0622621\pi\)
\(104\) −6.27006 −0.614830
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) 3.17157 3.17157i 0.306608 0.306608i −0.536985 0.843592i \(-0.680437\pi\)
0.843592 + 0.536985i \(0.180437\pi\)
\(108\) 0 0
\(109\) 3.86388i 0.370093i −0.982730 0.185046i \(-0.940756\pi\)
0.982730 0.185046i \(-0.0592436\pi\)
\(110\) −9.60819 + 7.36555i −0.916105 + 0.702277i
\(111\) 0 0
\(112\) 2.41421 + 2.41421i 0.228122 + 0.228122i
\(113\) 10.5127 + 10.5127i 0.988952 + 0.988952i 0.999940 0.0109875i \(-0.00349751\pi\)
−0.0109875 + 0.999940i \(0.503498\pi\)
\(114\) 0 0
\(115\) −13.3971 + 10.2701i −1.24928 + 0.957688i
\(116\) 8.86721i 0.823300i
\(117\) 0 0
\(118\) 0.693395 0.693395i 0.0638322 0.0638322i
\(119\) 14.6762 1.34537
\(120\) 0 0
\(121\) −18.3137 −1.66488
\(122\) 2.43361 2.43361i 0.220328 0.220328i
\(123\) 0 0
\(124\) 1.80904i 0.162456i
\(125\) 4.29289 10.3233i 0.383968 0.923346i
\(126\) 0 0
\(127\) −4.54121 4.54121i −0.402968 0.402968i 0.476310 0.879277i \(-0.341974\pi\)
−0.879277 + 0.476310i \(0.841974\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) 13.8995 + 1.83646i 1.21907 + 0.161068i
\(131\) 9.04682i 0.790424i 0.918590 + 0.395212i \(0.129329\pi\)
−0.918590 + 0.395212i \(0.870671\pi\)
\(132\) 0 0
\(133\) −2.41421 + 2.41421i −0.209339 + 0.209339i
\(134\) −4.27006 −0.368877
\(135\) 0 0
\(136\) −4.29857 −0.368600
\(137\) 9.23051 9.23051i 0.788616 0.788616i −0.192651 0.981267i \(-0.561709\pi\)
0.981267 + 0.192651i \(0.0617086\pi\)
\(138\) 0 0
\(139\) 12.2540i 1.03937i −0.854358 0.519685i \(-0.826049\pi\)
0.854358 0.519685i \(-0.173951\pi\)
\(140\) −4.64473 6.05894i −0.392551 0.512074i
\(141\) 0 0
\(142\) 1.80904 + 1.80904i 0.151811 + 0.151811i
\(143\) 24.0045 + 24.0045i 2.00736 + 2.00736i
\(144\) 0 0
\(145\) −2.59715 + 19.6569i −0.215681 + 1.63241i
\(146\) 5.41421i 0.448084i
\(147\) 0 0
\(148\) 1.41421 1.41421i 0.116248 0.116248i
\(149\) 8.89617 0.728802 0.364401 0.931242i \(-0.381274\pi\)
0.364401 + 0.931242i \(0.381274\pi\)
\(150\) 0 0
\(151\) −3.36254 −0.273639 −0.136820 0.990596i \(-0.543688\pi\)
−0.136820 + 0.990596i \(0.543688\pi\)
\(152\) 0.707107 0.707107i 0.0573539 0.0573539i
\(153\) 0 0
\(154\) 18.4853i 1.48959i
\(155\) −0.529854 + 4.01027i −0.0425589 + 0.322113i
\(156\) 0 0
\(157\) −6.49331 6.49331i −0.518223 0.518223i 0.398811 0.917033i \(-0.369423\pi\)
−0.917033 + 0.398811i \(0.869423\pi\)
\(158\) −8.56864 8.56864i −0.681684 0.681684i
\(159\) 0 0
\(160\) 1.36041 + 1.77462i 0.107550 + 0.140296i
\(161\) 25.7747i 2.03133i
\(162\) 0 0
\(163\) 12.5880 12.5880i 0.985971 0.985971i −0.0139324 0.999903i \(-0.504435\pi\)
0.999903 + 0.0139324i \(0.00443497\pi\)
\(164\) −9.84782 −0.768985
\(165\) 0 0
\(166\) 7.16578 0.556173
\(167\) 1.67292 1.67292i 0.129454 0.129454i −0.639411 0.768865i \(-0.720822\pi\)
0.768865 + 0.639411i \(0.220822\pi\)
\(168\) 0 0
\(169\) 26.3137i 2.02413i
\(170\) 9.52909 + 1.25902i 0.730848 + 0.0965626i
\(171\) 0 0
\(172\) −6.84782 6.84782i −0.522141 0.522141i
\(173\) 8.09046 + 8.09046i 0.615106 + 0.615106i 0.944272 0.329166i \(-0.106768\pi\)
−0.329166 + 0.944272i \(0.606768\pi\)
\(174\) 0 0
\(175\) 8.52182 + 14.7919i 0.644189 + 1.11816i
\(176\) 5.41421i 0.408112i
\(177\) 0 0
\(178\) −9.15442 + 9.15442i −0.686153 + 0.686153i
\(179\) −6.96237 −0.520392 −0.260196 0.965556i \(-0.583787\pi\)
−0.260196 + 0.965556i \(0.583787\pi\)
\(180\) 0 0
\(181\) 1.63260 0.121350 0.0606752 0.998158i \(-0.480675\pi\)
0.0606752 + 0.998158i \(0.480675\pi\)
\(182\) −15.1373 + 15.1373i −1.12205 + 1.12205i
\(183\) 0 0
\(184\) 7.54925i 0.556538i
\(185\) −3.54925 + 2.72082i −0.260946 + 0.200039i
\(186\) 0 0
\(187\) 16.4568 + 16.4568i 1.20344 + 1.20344i
\(188\) −7.52909 7.52909i −0.549115 0.549115i
\(189\) 0 0
\(190\) −1.77462 + 1.36041i −0.128745 + 0.0986945i
\(191\) 1.56486i 0.113229i 0.998396 + 0.0566147i \(0.0180307\pi\)
−0.998396 + 0.0566147i \(0.981969\pi\)
\(192\) 0 0
\(193\) −4.33736 + 4.33736i −0.312210 + 0.312210i −0.845765 0.533555i \(-0.820856\pi\)
0.533555 + 0.845765i \(0.320856\pi\)
\(194\) 1.86388 0.133819
\(195\) 0 0
\(196\) 4.65685 0.332632
\(197\) −17.6599 + 17.6599i −1.25821 + 1.25821i −0.306268 + 0.951945i \(0.599080\pi\)
−0.951945 + 0.306268i \(0.900920\pi\)
\(198\) 0 0
\(199\) 11.5450i 0.818403i −0.912444 0.409201i \(-0.865807\pi\)
0.912444 0.409201i \(-0.134193\pi\)
\(200\) −2.49598 4.33244i −0.176493 0.306350i
\(201\) 0 0
\(202\) −7.24264 7.24264i −0.509590 0.509590i
\(203\) −21.4073 21.4073i −1.50250 1.50250i
\(204\) 0 0
\(205\) 21.8307 + 2.88436i 1.52472 + 0.201452i
\(206\) 11.2895i 0.786574i
\(207\) 0 0
\(208\) 4.43361 4.43361i 0.307415 0.307415i
\(209\) −5.41421 −0.374509
\(210\) 0 0
\(211\) 10.7714 0.741534 0.370767 0.928726i \(-0.379095\pi\)
0.370767 + 0.928726i \(0.379095\pi\)
\(212\) 4.24264 4.24264i 0.291386 0.291386i
\(213\) 0 0
\(214\) 4.48528i 0.306608i
\(215\) 13.1746 + 17.1859i 0.898499 + 1.17207i
\(216\) 0 0
\(217\) −4.36740 4.36740i −0.296478 0.296478i
\(218\) 2.73218 + 2.73218i 0.185046 + 0.185046i
\(219\) 0 0
\(220\) 1.58579 12.0022i 0.106914 0.809191i
\(221\) 26.9523i 1.81301i
\(222\) 0 0
\(223\) −17.2175 + 17.2175i −1.15297 + 1.15297i −0.167011 + 0.985955i \(0.553412\pi\)
−0.985955 + 0.167011i \(0.946588\pi\)
\(224\) −3.41421 −0.228122
\(225\) 0 0
\(226\) −14.8672 −0.988952
\(227\) −4.67625 + 4.67625i −0.310373 + 0.310373i −0.845054 0.534681i \(-0.820432\pi\)
0.534681 + 0.845054i \(0.320432\pi\)
\(228\) 0 0
\(229\) 8.57443i 0.566614i −0.959029 0.283307i \(-0.908568\pi\)
0.959029 0.283307i \(-0.0914316\pi\)
\(230\) 2.21112 16.7352i 0.145797 1.10349i
\(231\) 0 0
\(232\) 6.27006 + 6.27006i 0.411650 + 0.411650i
\(233\) 14.1655 + 14.1655i 0.928010 + 0.928010i 0.997577 0.0695668i \(-0.0221617\pi\)
−0.0695668 + 0.997577i \(0.522162\pi\)
\(234\) 0 0
\(235\) 14.4853 + 18.8957i 0.944916 + 1.23262i
\(236\) 0.980608i 0.0638322i
\(237\) 0 0
\(238\) −10.3777 + 10.3777i −0.672685 + 0.672685i
\(239\) −5.49331 −0.355333 −0.177666 0.984091i \(-0.556855\pi\)
−0.177666 + 0.984091i \(0.556855\pi\)
\(240\) 0 0
\(241\) 10.0227 0.645620 0.322810 0.946464i \(-0.395373\pi\)
0.322810 + 0.946464i \(0.395373\pi\)
\(242\) 12.9497 12.9497i 0.832441 0.832441i
\(243\) 0 0
\(244\) 3.44164i 0.220328i
\(245\) −10.3233 1.36396i −0.659533 0.0871403i
\(246\) 0 0
\(247\) 4.43361 + 4.43361i 0.282104 + 0.282104i
\(248\) 1.27918 + 1.27918i 0.0812281 + 0.0812281i
\(249\) 0 0
\(250\) 4.26416 + 10.3352i 0.269689 + 0.653657i
\(251\) 30.7264i 1.93943i 0.244234 + 0.969716i \(0.421463\pi\)
−0.244234 + 0.969716i \(0.578537\pi\)
\(252\) 0 0
\(253\) 28.9017 28.9017i 1.81704 1.81704i
\(254\) 6.42225 0.402968
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.09046 + 6.09046i −0.379912 + 0.379912i −0.871070 0.491158i \(-0.836574\pi\)
0.491158 + 0.871070i \(0.336574\pi\)
\(258\) 0 0
\(259\) 6.82843i 0.424298i
\(260\) −11.1270 + 8.52985i −0.690067 + 0.528999i
\(261\) 0 0
\(262\) −6.39706 6.39706i −0.395212 0.395212i
\(263\) −11.5404 11.5404i −0.711614 0.711614i 0.255258 0.966873i \(-0.417839\pi\)
−0.966873 + 0.255258i \(0.917839\pi\)
\(264\) 0 0
\(265\) −10.6477 + 8.16246i −0.654085 + 0.501416i
\(266\) 3.41421i 0.209339i
\(267\) 0 0
\(268\) 3.01939 3.01939i 0.184439 0.184439i
\(269\) 31.9657 1.94898 0.974492 0.224424i \(-0.0720500\pi\)
0.974492 + 0.224424i \(0.0720500\pi\)
\(270\) 0 0
\(271\) −7.08243 −0.430227 −0.215113 0.976589i \(-0.569012\pi\)
−0.215113 + 0.976589i \(0.569012\pi\)
\(272\) 3.03955 3.03955i 0.184300 0.184300i
\(273\) 0 0
\(274\) 13.0539i 0.788616i
\(275\) −7.03075 + 26.1421i −0.423970 + 1.57643i
\(276\) 0 0
\(277\) 0.319049 + 0.319049i 0.0191698 + 0.0191698i 0.716627 0.697457i \(-0.245685\pi\)
−0.697457 + 0.716627i \(0.745685\pi\)
\(278\) 8.66489 + 8.66489i 0.519685 + 0.519685i
\(279\) 0 0
\(280\) 7.56864 + 1.00000i 0.452313 + 0.0597614i
\(281\) 4.21368i 0.251367i −0.992070 0.125684i \(-0.959888\pi\)
0.992070 0.125684i \(-0.0401124\pi\)
\(282\) 0 0
\(283\) −19.3331 + 19.3331i −1.14923 + 1.14923i −0.162530 + 0.986704i \(0.551965\pi\)
−0.986704 + 0.162530i \(0.948035\pi\)
\(284\) −2.55836 −0.151811
\(285\) 0 0
\(286\) −33.9475 −2.00736
\(287\) −23.7747 + 23.7747i −1.40338 + 1.40338i
\(288\) 0 0
\(289\) 1.47773i 0.0869252i
\(290\) −12.0630 15.7360i −0.708366 0.924047i
\(291\) 0 0
\(292\) −3.82843 3.82843i −0.224042 0.224042i
\(293\) −3.79614 3.79614i −0.221773 0.221773i 0.587472 0.809245i \(-0.300123\pi\)
−0.809245 + 0.587472i \(0.800123\pi\)
\(294\) 0 0
\(295\) 0.287214 2.17382i 0.0167222 0.126564i
\(296\) 2.00000i 0.116248i
\(297\) 0 0
\(298\) −6.29054 + 6.29054i −0.364401 + 0.364401i
\(299\) −47.3343 −2.73741
\(300\) 0 0
\(301\) −33.0642 −1.90579
\(302\) 2.37767 2.37767i 0.136820 0.136820i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) 1.00803 7.62943i 0.0577198 0.436860i
\(306\) 0 0
\(307\) −15.7747 15.7747i −0.900312 0.900312i 0.0951510 0.995463i \(-0.469667\pi\)
−0.995463 + 0.0951510i \(0.969667\pi\)
\(308\) 13.0711 + 13.0711i 0.744793 + 0.744793i
\(309\) 0 0
\(310\) −2.46103 3.21036i −0.139777 0.182336i
\(311\) 15.9625i 0.905152i −0.891726 0.452576i \(-0.850505\pi\)
0.891726 0.452576i \(-0.149495\pi\)
\(312\) 0 0
\(313\) −4.57350 + 4.57350i −0.258509 + 0.258509i −0.824448 0.565938i \(-0.808514\pi\)
0.565938 + 0.824448i \(0.308514\pi\)
\(314\) 9.18293 0.518223
\(315\) 0 0
\(316\) 12.1179 0.681684
\(317\) 15.1099 15.1099i 0.848654 0.848654i −0.141311 0.989965i \(-0.545132\pi\)
0.989965 + 0.141311i \(0.0451319\pi\)
\(318\) 0 0
\(319\) 48.0090i 2.68799i
\(320\) −2.21680 0.292893i −0.123923 0.0163732i
\(321\) 0 0
\(322\) 18.2255 + 18.2255i 1.01567 + 1.01567i
\(323\) 3.03955 + 3.03955i 0.169125 + 0.169125i
\(324\) 0 0
\(325\) 27.1647 15.6500i 1.50683 0.868105i
\(326\) 17.8022i 0.985971i
\(327\) 0 0
\(328\) 6.96346 6.96346i 0.384493 0.384493i
\(329\) −36.3536 −2.00424
\(330\) 0 0
\(331\) 18.6274 1.02386 0.511928 0.859029i \(-0.328932\pi\)
0.511928 + 0.859029i \(0.328932\pi\)
\(332\) −5.06697 + 5.06697i −0.278086 + 0.278086i
\(333\) 0 0
\(334\) 2.36586i 0.129454i
\(335\) −7.57775 + 5.80904i −0.414017 + 0.317382i
\(336\) 0 0
\(337\) −15.0700 15.0700i −0.820914 0.820914i 0.165325 0.986239i \(-0.447133\pi\)
−0.986239 + 0.165325i \(0.947133\pi\)
\(338\) 18.6066 + 18.6066i 1.01207 + 1.01207i
\(339\) 0 0
\(340\) −7.62835 + 5.84782i −0.413705 + 0.317142i
\(341\) 9.79450i 0.530402i
\(342\) 0 0
\(343\) −5.65685 + 5.65685i −0.305441 + 0.305441i
\(344\) 9.68428 0.522141
\(345\) 0 0
\(346\) −11.4416 −0.615106
\(347\) −7.10576 + 7.10576i −0.381457 + 0.381457i −0.871627 0.490170i \(-0.836935\pi\)
0.490170 + 0.871627i \(0.336935\pi\)
\(348\) 0 0
\(349\) 5.49648i 0.294220i −0.989120 0.147110i \(-0.953003\pi\)
0.989120 0.147110i \(-0.0469971\pi\)
\(350\) −16.4853 4.43361i −0.881175 0.236986i
\(351\) 0 0
\(352\) −3.82843 3.82843i −0.204056 0.204056i
\(353\) −1.29826 1.29826i −0.0690992 0.0690992i 0.671713 0.740812i \(-0.265559\pi\)
−0.740812 + 0.671713i \(0.765559\pi\)
\(354\) 0 0
\(355\) 5.67138 + 0.749327i 0.301006 + 0.0397702i
\(356\) 12.9463i 0.686153i
\(357\) 0 0
\(358\) 4.92314 4.92314i 0.260196 0.260196i
\(359\) 10.9753 0.579252 0.289626 0.957140i \(-0.406469\pi\)
0.289626 + 0.957140i \(0.406469\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −1.15442 + 1.15442i −0.0606752 + 0.0606752i
\(363\) 0 0
\(364\) 21.4073i 1.12205i
\(365\) 7.36555 + 9.60819i 0.385530 + 0.502916i
\(366\) 0 0
\(367\) 4.79189 + 4.79189i 0.250134 + 0.250134i 0.821026 0.570891i \(-0.193402\pi\)
−0.570891 + 0.821026i \(0.693402\pi\)
\(368\) −5.33812 5.33812i −0.278269 0.278269i
\(369\) 0 0
\(370\) 0.585786 4.43361i 0.0304536 0.230492i
\(371\) 20.4853i 1.06354i
\(372\) 0 0
\(373\) 16.0114 16.0114i 0.829037 0.829037i −0.158347 0.987384i \(-0.550616\pi\)
0.987384 + 0.158347i \(0.0506164\pi\)
\(374\) −23.2734 −1.20344
\(375\) 0 0
\(376\) 10.6477 0.549115
\(377\) −39.3137 + 39.3137i −2.02476 + 2.02476i
\(378\) 0 0
\(379\) 13.5450i 0.695759i −0.937539 0.347880i \(-0.886902\pi\)
0.937539 0.347880i \(-0.113098\pi\)
\(380\) 0.292893 2.21680i 0.0150251 0.113720i
\(381\) 0 0
\(382\) −1.10652 1.10652i −0.0566147 0.0566147i
\(383\) −7.88814 7.88814i −0.403065 0.403065i 0.476247 0.879312i \(-0.341997\pi\)
−0.879312 + 0.476247i \(0.841997\pi\)
\(384\) 0 0
\(385\) −25.1475 32.8044i −1.28164 1.67187i
\(386\) 6.13395i 0.312210i
\(387\) 0 0
\(388\) −1.31796 + 1.31796i −0.0669095 + 0.0669095i
\(389\) 15.6500 0.793485 0.396743 0.917930i \(-0.370141\pi\)
0.396743 + 0.917930i \(0.370141\pi\)
\(390\) 0 0
\(391\) −32.4510 −1.64112
\(392\) −3.29289 + 3.29289i −0.166316 + 0.166316i
\(393\) 0 0
\(394\) 24.9748i 1.25821i
\(395\) −26.8630 3.54925i −1.35162 0.178582i
\(396\) 0 0
\(397\) 18.6009 + 18.6009i 0.933554 + 0.933554i 0.997926 0.0643724i \(-0.0205046\pi\)
−0.0643724 + 0.997926i \(0.520505\pi\)
\(398\) 8.16354 + 8.16354i 0.409201 + 0.409201i
\(399\) 0 0
\(400\) 4.82843 + 1.29857i 0.241421 + 0.0649286i
\(401\) 30.0287i 1.49956i −0.661685 0.749782i \(-0.730158\pi\)
0.661685 0.749782i \(-0.269842\pi\)
\(402\) 0 0
\(403\) −8.02055 + 8.02055i −0.399532 + 0.399532i
\(404\) 10.2426 0.509590
\(405\) 0 0
\(406\) 30.2745 1.50250
\(407\) 7.65685 7.65685i 0.379536 0.379536i
\(408\) 0 0
\(409\) 27.0481i 1.33744i 0.743513 + 0.668722i \(0.233158\pi\)
−0.743513 + 0.668722i \(0.766842\pi\)
\(410\) −17.4762 + 13.3971i −0.863086 + 0.661634i
\(411\) 0 0
\(412\) −7.98285 7.98285i −0.393287 0.393287i
\(413\) 2.36740 + 2.36740i 0.116492 + 0.116492i
\(414\) 0 0
\(415\) 12.7166 9.74840i 0.624232 0.478530i
\(416\) 6.27006i 0.307415i
\(417\) 0 0
\(418\) 3.82843 3.82843i 0.187254 0.187254i
\(419\) 3.35271 0.163791 0.0818953 0.996641i \(-0.473903\pi\)
0.0818953 + 0.996641i \(0.473903\pi\)
\(420\) 0 0
\(421\) −25.3540 −1.23568 −0.617840 0.786304i \(-0.711992\pi\)
−0.617840 + 0.786304i \(0.711992\pi\)
\(422\) −7.61654 + 7.61654i −0.370767 + 0.370767i
\(423\) 0 0
\(424\) 6.00000i 0.291386i
\(425\) 18.6233 10.7292i 0.903364 0.520441i
\(426\) 0 0
\(427\) 8.30885 + 8.30885i 0.402093 + 0.402093i
\(428\) −3.17157 3.17157i −0.153304 0.153304i
\(429\) 0 0
\(430\) −21.4681 2.83646i −1.03529 0.136786i
\(431\) 31.3364i 1.50942i −0.656057 0.754711i \(-0.727777\pi\)
0.656057 0.754711i \(-0.272223\pi\)
\(432\) 0 0
\(433\) 3.33556 3.33556i 0.160297 0.160297i −0.622401 0.782698i \(-0.713843\pi\)
0.782698 + 0.622401i \(0.213843\pi\)
\(434\) 6.17643 0.296478
\(435\) 0 0
\(436\) −3.86388 −0.185046
\(437\) 5.33812 5.33812i 0.255357 0.255357i
\(438\) 0 0
\(439\) 15.6241i 0.745697i −0.927892 0.372849i \(-0.878381\pi\)
0.927892 0.372849i \(-0.121619\pi\)
\(440\) 7.36555 + 9.60819i 0.351139 + 0.458052i
\(441\) 0 0
\(442\) 19.0582 + 19.0582i 0.906505 + 0.906505i
\(443\) 3.05561 + 3.05561i 0.145177 + 0.145177i 0.775959 0.630783i \(-0.217266\pi\)
−0.630783 + 0.775959i \(0.717266\pi\)
\(444\) 0 0
\(445\) −3.79189 + 28.6994i −0.179753 + 1.36048i
\(446\) 24.3492i 1.15297i
\(447\) 0 0
\(448\) 2.41421 2.41421i 0.114061 0.114061i
\(449\) −34.5547 −1.63074 −0.815368 0.578944i \(-0.803465\pi\)
−0.815368 + 0.578944i \(0.803465\pi\)
\(450\) 0 0
\(451\) −53.3182 −2.51066
\(452\) 10.5127 10.5127i 0.494476 0.494476i
\(453\) 0 0
\(454\) 6.61321i 0.310373i
\(455\) −6.27006 + 47.4558i −0.293945 + 2.22476i
\(456\) 0 0
\(457\) 4.87207 + 4.87207i 0.227906 + 0.227906i 0.811817 0.583911i \(-0.198478\pi\)
−0.583911 + 0.811817i \(0.698478\pi\)
\(458\) 6.06304 + 6.06304i 0.283307 + 0.283307i
\(459\) 0 0
\(460\) 10.2701 + 13.3971i 0.478844 + 0.624641i
\(461\) 16.3788i 0.762835i 0.924403 + 0.381417i \(0.124564\pi\)
−0.924403 + 0.381417i \(0.875436\pi\)
\(462\) 0 0
\(463\) 29.4439 29.4439i 1.36837 1.36837i 0.505612 0.862761i \(-0.331267\pi\)
0.862761 0.505612i \(-0.168733\pi\)
\(464\) −8.86721 −0.411650
\(465\) 0 0
\(466\) −20.0330 −0.928010
\(467\) 4.13202 4.13202i 0.191207 0.191207i −0.605010 0.796218i \(-0.706831\pi\)
0.796218 + 0.605010i \(0.206831\pi\)
\(468\) 0 0
\(469\) 14.5789i 0.673192i
\(470\) −23.6039 3.11865i −1.08877 0.143853i
\(471\) 0 0
\(472\) −0.693395 0.693395i −0.0319161 0.0319161i
\(473\) −37.0756 37.0756i −1.70474 1.70474i
\(474\) 0 0
\(475\) −1.29857 + 4.82843i −0.0595826 + 0.221543i
\(476\) 14.6762i 0.672685i
\(477\) 0 0
\(478\) 3.88436 3.88436i 0.177666 0.177666i
\(479\) 6.02742 0.275400 0.137700 0.990474i \(-0.456029\pi\)
0.137700 + 0.990474i \(0.456029\pi\)
\(480\) 0 0
\(481\) −12.5401 −0.571781
\(482\) −7.08713 + 7.08713i −0.322810 + 0.322810i
\(483\) 0 0
\(484\) 18.3137i 0.832441i
\(485\) 3.30769 2.53564i 0.150194 0.115138i
\(486\) 0 0
\(487\) −0.0801847 0.0801847i −0.00363351 0.00363351i 0.705288 0.708921i \(-0.250818\pi\)
−0.708921 + 0.705288i \(0.750818\pi\)
\(488\) −2.43361 2.43361i −0.110164 0.110164i
\(489\) 0 0
\(490\) 8.26416 6.33523i 0.373337 0.286196i
\(491\) 32.6190i 1.47208i −0.676941 0.736038i \(-0.736695\pi\)
0.676941 0.736038i \(-0.263305\pi\)
\(492\) 0 0
\(493\) −26.9523 + 26.9523i −1.21387 + 1.21387i
\(494\) −6.27006 −0.282104
\(495\) 0 0
\(496\) −1.80904 −0.0812281
\(497\) −6.17643 + 6.17643i −0.277051 + 0.277051i
\(498\) 0 0
\(499\) 19.9496i 0.893068i 0.894767 + 0.446534i \(0.147342\pi\)
−0.894767 + 0.446534i \(0.852658\pi\)
\(500\) −10.3233 4.29289i −0.461673 0.191984i
\(501\) 0 0
\(502\) −21.7268 21.7268i −0.969716 0.969716i
\(503\) −7.58076 7.58076i −0.338010 0.338010i 0.517608 0.855618i \(-0.326822\pi\)
−0.855618 + 0.517608i \(0.826822\pi\)
\(504\) 0 0
\(505\) −22.7059 3.00000i −1.01040 0.133498i
\(506\) 40.8732i 1.81704i
\(507\) 0 0
\(508\) −4.54121 + 4.54121i −0.201484 + 0.201484i
\(509\) 37.8926 1.67956 0.839780 0.542926i \(-0.182684\pi\)
0.839780 + 0.542926i \(0.182684\pi\)
\(510\) 0 0
\(511\) −18.4853 −0.817741
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 8.61321i 0.379912i
\(515\) 15.3583 + 20.0345i 0.676767 + 0.882827i
\(516\) 0 0
\(517\) −40.7641 40.7641i −1.79280 1.79280i
\(518\) 4.82843 + 4.82843i 0.212149 + 0.212149i
\(519\) 0 0
\(520\) 1.83646 13.8995i 0.0805341 0.609533i
\(521\) 25.0497i 1.09745i −0.836004 0.548723i \(-0.815114\pi\)
0.836004 0.548723i \(-0.184886\pi\)
\(522\) 0 0
\(523\) 25.1776 25.1776i 1.10094 1.10094i 0.106642 0.994298i \(-0.465990\pi\)
0.994298 0.106642i \(-0.0340098\pi\)
\(524\) 9.04682 0.395212
\(525\) 0 0
\(526\) 16.3207 0.711614
\(527\) −5.49865 + 5.49865i −0.239525 + 0.239525i
\(528\) 0 0
\(529\) 33.9911i 1.47787i
\(530\) 1.75736 13.3008i 0.0763348 0.577750i
\(531\) 0 0
\(532\) 2.41421 + 2.41421i 0.104669 + 0.104669i
\(533\) 43.6613 + 43.6613i 1.89118 + 1.89118i
\(534\) 0 0
\(535\) 6.10182 + 7.95968i 0.263805 + 0.344127i
\(536\) 4.27006i 0.184439i
\(537\) 0 0
\(538\) −22.6032 + 22.6032i −0.974492 + 0.974492i
\(539\) 25.2132 1.08601
\(540\) 0 0
\(541\) 15.1533 0.651493 0.325746 0.945457i \(-0.394384\pi\)
0.325746 + 0.945457i \(0.394384\pi\)
\(542\) 5.00803 5.00803i 0.215113 0.215113i
\(543\) 0 0
\(544\) 4.29857i 0.184300i
\(545\) 8.56547 + 1.13171i 0.366904 + 0.0484769i
\(546\) 0 0
\(547\) −11.9900 11.9900i −0.512653 0.512653i 0.402685 0.915339i \(-0.368077\pi\)
−0.915339 + 0.402685i \(0.868077\pi\)
\(548\) −9.23051 9.23051i −0.394308 0.394308i
\(549\) 0 0
\(550\) −13.5138 23.4568i −0.576230 1.00020i
\(551\) 8.86721i 0.377756i
\(552\) 0 0
\(553\) 29.2552 29.2552i 1.24406 1.24406i
\(554\) −0.451203 −0.0191698
\(555\) 0 0
\(556\) −12.2540 −0.519685
\(557\) 14.7684 14.7684i 0.625757 0.625757i −0.321240 0.946998i \(-0.604100\pi\)
0.946998 + 0.321240i \(0.104100\pi\)
\(558\) 0 0
\(559\) 60.7210i 2.56823i
\(560\) −6.05894 + 4.64473i −0.256037 + 0.196276i
\(561\) 0 0
\(562\) 2.97952 + 2.97952i 0.125684 + 0.125684i
\(563\) 16.4610 + 16.4610i 0.693750 + 0.693750i 0.963055 0.269305i \(-0.0867940\pi\)
−0.269305 + 0.963055i \(0.586794\pi\)
\(564\) 0 0
\(565\) −26.3837 + 20.2255i −1.10997 + 0.850893i
\(566\) 27.3411i 1.14923i
\(567\) 0 0
\(568\) 1.80904 1.80904i 0.0759054 0.0759054i
\(569\) 13.3282 0.558749 0.279374 0.960182i \(-0.409873\pi\)
0.279374 + 0.960182i \(0.409873\pi\)
\(570\) 0 0
\(571\) 32.2424 1.34930 0.674652 0.738136i \(-0.264294\pi\)
0.674652 + 0.738136i \(0.264294\pi\)
\(572\) 24.0045 24.0045i 1.00368 1.00368i
\(573\) 0 0
\(574\) 33.6226i 1.40338i
\(575\) −18.8428 32.7067i −0.785799 1.36396i
\(576\) 0 0
\(577\) −27.7839 27.7839i −1.15666 1.15666i −0.985190 0.171467i \(-0.945149\pi\)
−0.171467 0.985190i \(-0.554851\pi\)
\(578\) 1.04491 + 1.04491i 0.0434626 + 0.0434626i
\(579\) 0 0
\(580\) 19.6569 + 2.59715i 0.816206 + 0.107841i
\(581\) 24.4655i 1.01500i
\(582\) 0 0
\(583\) 22.9706 22.9706i 0.951344 0.951344i
\(584\) 5.41421 0.224042
\(585\) 0 0
\(586\) 5.36856 0.221773
\(587\) 4.11532 4.11532i 0.169858 0.169858i −0.617059 0.786917i \(-0.711676\pi\)
0.786917 + 0.617059i \(0.211676\pi\)
\(588\) 0 0
\(589\) 1.80904i 0.0745400i
\(590\) 1.33403 + 1.74021i 0.0549211 + 0.0716433i
\(591\) 0 0
\(592\) −1.41421 1.41421i −0.0581238 0.0581238i
\(593\) −5.42301 5.42301i −0.222696 0.222696i 0.586937 0.809633i \(-0.300334\pi\)
−0.809633 + 0.586937i \(0.800334\pi\)
\(594\) 0 0
\(595\) −4.29857 + 32.5343i −0.176224 + 1.33378i
\(596\) 8.89617i 0.364401i
\(597\) 0 0
\(598\) 33.4704 33.4704i 1.36871 1.36871i
\(599\) 28.3476 1.15825 0.579126 0.815238i \(-0.303394\pi\)
0.579126 + 0.815238i \(0.303394\pi\)
\(600\) 0 0
\(601\) 34.9933 1.42741 0.713703 0.700449i \(-0.247017\pi\)
0.713703 + 0.700449i \(0.247017\pi\)
\(602\) 23.3799 23.3799i 0.952894 0.952894i
\(603\) 0 0
\(604\) 3.36254i 0.136820i
\(605\) 5.36396 40.5979i 0.218076 1.65054i
\(606\) 0 0
\(607\) −9.47332 9.47332i −0.384510 0.384510i 0.488214 0.872724i \(-0.337649\pi\)
−0.872724 + 0.488214i \(0.837649\pi\)
\(608\) −0.707107 0.707107i −0.0286770 0.0286770i
\(609\) 0 0
\(610\) 4.68204 + 6.10761i 0.189570 + 0.247290i
\(611\) 66.7620i 2.70090i
\(612\) 0 0
\(613\) 31.6694 31.6694i 1.27911 1.27911i 0.337950 0.941164i \(-0.390267\pi\)
0.941164 0.337950i \(-0.109733\pi\)
\(614\) 22.3088 0.900312
\(615\) 0 0
\(616\) −18.4853 −0.744793
\(617\) −20.5991 + 20.5991i −0.829287 + 0.829287i −0.987418 0.158131i \(-0.949453\pi\)
0.158131 + 0.987418i \(0.449453\pi\)
\(618\) 0 0
\(619\) 9.67509i 0.388875i −0.980915 0.194437i \(-0.937712\pi\)
0.980915 0.194437i \(-0.0622881\pi\)
\(620\) 4.01027 + 0.529854i 0.161057 + 0.0212795i
\(621\) 0 0
\(622\) 11.2872 + 11.2872i 0.452576 + 0.452576i
\(623\) −31.2552 31.2552i −1.25221 1.25221i
\(624\) 0 0
\(625\) 21.6274 + 12.5401i 0.865097 + 0.501605i
\(626\) 6.46790i 0.258509i
\(627\) 0 0
\(628\) −6.49331 + 6.49331i −0.259111 + 0.259111i
\(629\) −8.59715 −0.342791
\(630\) 0 0
\(631\) 22.7050 0.903871 0.451936 0.892051i \(-0.350734\pi\)
0.451936 + 0.892051i \(0.350734\pi\)
\(632\) −8.56864 + 8.56864i −0.340842 + 0.340842i
\(633\) 0 0
\(634\) 21.3686i 0.848654i
\(635\) 11.3971 8.73688i 0.452279 0.346713i
\(636\) 0 0
\(637\) −20.6467 20.6467i −0.818050 0.818050i
\(638\) 33.9475 + 33.9475i 1.34399 + 1.34399i
\(639\) 0 0
\(640\) 1.77462 1.36041i 0.0701481 0.0537749i
\(641\) 22.9075i 0.904793i 0.891817 + 0.452396i \(0.149431\pi\)
−0.891817 + 0.452396i \(0.850569\pi\)
\(642\) 0 0
\(643\) 6.79297 6.79297i 0.267889 0.267889i −0.560360 0.828249i \(-0.689337\pi\)
0.828249 + 0.560360i \(0.189337\pi\)
\(644\) −25.7747 −1.01567
\(645\) 0 0
\(646\) −4.29857 −0.169125
\(647\) −33.3212 + 33.3212i −1.30999 + 1.30999i −0.388574 + 0.921417i \(0.627032\pi\)
−0.921417 + 0.388574i \(0.872968\pi\)
\(648\) 0 0
\(649\) 5.30922i 0.208405i
\(650\) −8.14214 + 30.2745i −0.319361 + 1.18747i
\(651\) 0 0
\(652\) −12.5880 12.5880i −0.492985 0.492985i
\(653\) −32.1666 32.1666i −1.25877 1.25877i −0.951679 0.307096i \(-0.900643\pi\)
−0.307096 0.951679i \(-0.599357\pi\)
\(654\) 0 0
\(655\) −20.0550 2.64975i −0.783614 0.103534i
\(656\) 9.84782i 0.384493i
\(657\) 0 0
\(658\) 25.7059 25.7059i 1.00212 1.00212i
\(659\) −15.4356 −0.601286 −0.300643 0.953737i \(-0.597201\pi\)
−0.300643 + 0.953737i \(0.597201\pi\)
\(660\) 0 0
\(661\) −21.6210 −0.840960 −0.420480 0.907302i \(-0.638138\pi\)
−0.420480 + 0.907302i \(0.638138\pi\)
\(662\) −13.1716 + 13.1716i −0.511928 + 0.511928i
\(663\) 0 0
\(664\) 7.16578i 0.278086i
\(665\) −4.64473 6.05894i −0.180115 0.234956i
\(666\) 0 0
\(667\) 47.3343 + 47.3343i 1.83279 + 1.83279i
\(668\) −1.67292 1.67292i −0.0647272 0.0647272i
\(669\) 0 0
\(670\) 1.25067 9.46589i 0.0483177 0.365699i
\(671\) 18.6338i 0.719348i
\(672\) 0 0
\(673\) −11.2770 + 11.2770i −0.434697 + 0.434697i −0.890223 0.455526i \(-0.849451\pi\)
0.455526 + 0.890223i \(0.349451\pi\)
\(674\) 21.3122 0.820914
\(675\) 0 0
\(676\) −26.3137 −1.01207
\(677\) −14.0334 + 14.0334i −0.539349 + 0.539349i −0.923338 0.383989i \(-0.874550\pi\)
0.383989 + 0.923338i \(0.374550\pi\)
\(678\) 0 0
\(679\) 6.36370i 0.244216i
\(680\) 1.25902 9.52909i 0.0482813 0.365424i
\(681\) 0 0
\(682\) 6.92576 + 6.92576i 0.265201 + 0.265201i
\(683\) 3.28344 + 3.28344i 0.125637 + 0.125637i 0.767130 0.641492i \(-0.221684\pi\)
−0.641492 + 0.767130i \(0.721684\pi\)
\(684\) 0 0
\(685\) 17.7587 + 23.1658i 0.678524 + 0.885119i
\(686\) 8.00000i 0.305441i
\(687\) 0 0
\(688\) −6.84782 + 6.84782i −0.261071 + 0.261071i
\(689\) −37.6204 −1.43322
\(690\) 0 0
\(691\) −32.1970 −1.22483 −0.612415 0.790536i \(-0.709802\pi\)
−0.612415 + 0.790536i \(0.709802\pi\)
\(692\) 8.09046 8.09046i 0.307553 0.307553i
\(693\) 0 0
\(694\) 10.0491i 0.381457i
\(695\) 27.1647 + 3.58911i 1.03042 + 0.136143i
\(696\) 0 0
\(697\) 29.9329 + 29.9329i 1.13379 + 1.13379i
\(698\) 3.88660 + 3.88660i 0.147110 + 0.147110i
\(699\) 0 0
\(700\) 14.7919 8.52182i 0.559081 0.322095i
\(701\) 33.2262i 1.25494i −0.778642 0.627468i \(-0.784091\pi\)
0.778642 0.627468i \(-0.215909\pi\)
\(702\) 0 0
\(703\) 1.41421 1.41421i 0.0533381 0.0533381i
\(704\) 5.41421 0.204056
\(705\) 0 0
\(706\) 1.83601 0.0690992
\(707\) 24.7279 24.7279i 0.929989 0.929989i
\(708\) 0 0
\(709\) 44.9363i 1.68762i 0.536645 + 0.843808i \(0.319692\pi\)
−0.536645 + 0.843808i \(0.680308\pi\)
\(710\) −4.54013 + 3.48042i −0.170388 + 0.130618i
\(711\) 0 0
\(712\) 9.15442 + 9.15442i 0.343077 + 0.343077i
\(713\) 9.65685 + 9.65685i 0.361652 + 0.361652i
\(714\) 0 0
\(715\) −60.2440 + 46.1825i −2.25300 + 1.72713i
\(716\) 6.96237i 0.260196i
\(717\) 0 0
\(718\) −7.76069 + 7.76069i −0.289626 + 0.289626i
\(719\) −7.25384 −0.270523 −0.135261 0.990810i \(-0.543187\pi\)
−0.135261 + 0.990810i \(0.543187\pi\)
\(720\) 0 0
\(721\) −38.5446 −1.43548
\(722\) 0.707107 0.707107i 0.0263158 0.0263158i
\(723\) 0 0
\(724\) 1.63260i 0.0606752i
\(725\) −42.8147 11.5147i −1.59010 0.427646i
\(726\) 0 0
\(727\) 20.0183 + 20.0183i 0.742438 + 0.742438i 0.973047 0.230609i \(-0.0740717\pi\)
−0.230609 + 0.973047i \(0.574072\pi\)
\(728\) 15.1373 + 15.1373i 0.561025 + 0.561025i
\(729\) 0 0
\(730\) −12.0022 1.58579i −0.444223 0.0586926i
\(731\) 41.6286i 1.53969i
\(732\) 0 0
\(733\) −33.0680 + 33.0680i −1.22139 + 1.22139i −0.254257 + 0.967137i \(0.581831\pi\)
−0.967137 + 0.254257i \(0.918169\pi\)
\(734\) −6.77675 −0.250134
\(735\) 0 0
\(736\) 7.54925 0.278269
\(737\) 16.3476 16.3476i 0.602173 0.602173i
\(738\) 0 0
\(739\) 15.7278i 0.578555i 0.957245 + 0.289278i \(0.0934151\pi\)
−0.957245 + 0.289278i \(0.906585\pi\)
\(740\) 2.72082 + 3.54925i 0.100019 + 0.130473i
\(741\) 0 0
\(742\) 14.4853 + 14.4853i 0.531771 + 0.531771i
\(743\) 11.9430 + 11.9430i 0.438146 + 0.438146i 0.891388 0.453242i \(-0.149733\pi\)
−0.453242 + 0.891388i \(0.649733\pi\)
\(744\) 0 0
\(745\) −2.60563 + 19.7210i −0.0954628 + 0.722523i
\(746\) 22.6435i 0.829037i
\(747\) 0 0
\(748\) 16.4568 16.4568i 0.601719 0.601719i
\(749\) −15.3137 −0.559551
\(750\) 0 0
\(751\) −1.59382 −0.0581593 −0.0290796 0.999577i \(-0.509258\pi\)
−0.0290796 + 0.999577i \(0.509258\pi\)
\(752\) −7.52909 + 7.52909i −0.274558 + 0.274558i
\(753\) 0 0
\(754\) 55.5980i 2.02476i
\(755\) 0.984864 7.45408i 0.0358429 0.271282i
\(756\) 0 0
\(757\) 12.9140 + 12.9140i 0.469368 + 0.469368i 0.901710 0.432342i \(-0.142313\pi\)
−0.432342 + 0.901710i \(0.642313\pi\)
\(758\) 9.57775 + 9.57775i 0.347880 + 0.347880i
\(759\) 0 0
\(760\) 1.36041 + 1.77462i 0.0493472 + 0.0643723i
\(761\) 40.0304i 1.45110i 0.688169 + 0.725550i \(0.258415\pi\)
−0.688169 + 0.725550i \(0.741585\pi\)
\(762\) 0 0
\(763\) −9.32824 + 9.32824i −0.337705 + 0.337705i
\(764\) 1.56486 0.0566147
\(765\) 0 0
\(766\) 11.1555 0.403065
\(767\) 4.34763 4.34763i 0.156984 0.156984i
\(768\) 0 0
\(769\) 25.5107i 0.919939i −0.887935 0.459970i \(-0.847860\pi\)
0.887935 0.459970i \(-0.152140\pi\)
\(770\) 40.9782 + 5.41421i 1.47675 + 0.195115i
\(771\) 0 0
\(772\) 4.33736 + 4.33736i 0.156105 + 0.156105i
\(773\) −4.39329 4.39329i −0.158016 0.158016i 0.623671 0.781687i \(-0.285640\pi\)
−0.781687 + 0.623671i \(0.785640\pi\)
\(774\) 0 0
\(775\) −8.73480 2.34916i −0.313763 0.0843845i
\(776\) 1.86388i 0.0669095i
\(777\) 0 0
\(778\) −11.0662 + 11.0662i −0.396743 + 0.396743i
\(779\) −9.84782 −0.352835
\(780\) 0 0
\(781\) −13.8515 −0.495646
\(782\) 22.9463 22.9463i 0.820558 0.820558i
\(783\) 0 0
\(784\) 4.65685i 0.166316i
\(785\) 16.2962 12.4925i 0.581638 0.445878i
\(786\) 0 0
\(787\) 20.5058 + 20.5058i 0.730954 + 0.730954i 0.970809 0.239855i \(-0.0770998\pi\)
−0.239855 + 0.970809i \(0.577100\pi\)
\(788\) 17.6599 + 17.6599i 0.629107 + 0.629107i
\(789\) 0 0
\(790\) 21.5047 16.4853i 0.765102 0.586520i
\(791\) 50.7598i 1.80481i
\(792\) 0 0
\(793\) 15.2589 15.2589i 0.541858 0.541858i
\(794\) −26.3057 −0.933554
\(795\) 0 0
\(796\) −11.5450 −0.409201
\(797\) 4.50669 4.50669i 0.159635 0.159635i −0.622770 0.782405i \(-0.713993\pi\)
0.782405 + 0.622770i \(0.213993\pi\)
\(798\) 0 0
\(799\) 45.7701i 1.61923i
\(800\) −4.33244 + 2.49598i −0.153175 + 0.0882464i
\(801\) 0 0
\(802\) 21.2335 + 21.2335i 0.749782 + 0.749782i
\(803\) −20.7279 20.7279i −0.731472 0.731472i
\(804\) 0 0
\(805\) 57.1375 + 7.54925i 2.01383 + 0.266076i
\(806\) 11.3428i 0.399532i
\(807\) 0 0
\(808\) −7.24264 + 7.24264i −0.254795 + 0.254795i
\(809\) −16.7197 −0.587835 −0.293917 0.955831i \(-0.594959\pi\)
−0.293917 + 0.955831i \(0.594959\pi\)
\(810\) 0 0
\(811\) 46.7920 1.64309 0.821544 0.570145i \(-0.193113\pi\)
0.821544 + 0.570145i \(0.193113\pi\)
\(812\) −21.4073 + 21.4073i −0.751250 + 0.751250i
\(813\) 0 0
\(814\) 10.8284i 0.379536i
\(815\) 24.2182 + 31.5921i 0.848327 + 1.10662i
\(816\) 0 0
\(817\) −6.84782 6.84782i −0.239575 0.239575i
\(818\) −19.1259 19.1259i −0.668722 0.668722i
\(819\) 0 0
\(820\) 2.88436 21.8307i 0.100726 0.762360i
\(821\) 3.42023i 0.119367i 0.998217 + 0.0596835i \(0.0190091\pi\)
−0.998217 + 0.0596835i \(0.980991\pi\)
\(822\) 0 0
\(823\) −10.5078 + 10.5078i −0.366280 + 0.366280i −0.866119 0.499838i \(-0.833393\pi\)
0.499838 + 0.866119i \(0.333393\pi\)
\(824\) 11.2895 0.393287
\(825\) 0 0
\(826\) −3.34801 −0.116492
\(827\) −18.6435 + 18.6435i −0.648297 + 0.648297i −0.952581 0.304284i \(-0.901583\pi\)
0.304284 + 0.952581i \(0.401583\pi\)
\(828\) 0 0
\(829\) 14.2555i 0.495115i −0.968873 0.247558i \(-0.920372\pi\)
0.968873 0.247558i \(-0.0796279\pi\)
\(830\) −2.09881 + 15.8851i −0.0728507 + 0.551381i
\(831\) 0 0
\(832\) −4.43361 4.43361i −0.153708 0.153708i
\(833\) −14.1547 14.1547i −0.490433 0.490433i
\(834\) 0 0
\(835\) 3.21854 + 4.19852i 0.111382 + 0.145296i
\(836\) 5.41421i 0.187254i
\(837\) 0 0
\(838\) −2.37073 + 2.37073i −0.0818953 + 0.0818953i
\(839\) 38.8177 1.34014 0.670069 0.742299i \(-0.266265\pi\)
0.670069 + 0.742299i \(0.266265\pi\)
\(840\) 0 0
\(841\) 49.6274 1.71129
\(842\) 17.9280 17.9280i 0.617840 0.617840i
\(843\) 0 0
\(844\) 10.7714i 0.370767i
\(845\) 58.3323 + 7.70711i 2.00669 + 0.265133i
\(846\) 0 0
\(847\) 44.2132 + 44.2132i 1.51918 + 1.51918i
\(848\) −4.24264 4.24264i −0.145693 0.145693i
\(849\) 0 0
\(850\) −5.58201 + 20.7553i −0.191461 + 0.711902i
\(851\) 15.0985i 0.517570i
\(852\) 0 0
\(853\) −7.38301 + 7.38301i −0.252790 + 0.252790i −0.822113 0.569324i \(-0.807205\pi\)
0.569324 + 0.822113i \(0.307205\pi\)
\(854\) −11.7505 −0.402093
\(855\) 0 0
\(856\) 4.48528 0.153304
\(857\) 30.9980 30.9980i 1.05887 1.05887i 0.0607160 0.998155i \(-0.480662\pi\)
0.998155 0.0607160i \(-0.0193384\pi\)
\(858\) 0 0
\(859\) 31.3913i 1.07106i 0.844517 + 0.535528i \(0.179887\pi\)
−0.844517 + 0.535528i \(0.820113\pi\)
\(860\) 17.1859 13.1746i 0.586036 0.449250i
\(861\) 0 0
\(862\) 22.1582 + 22.1582i 0.754711 + 0.754711i
\(863\) 15.2916 + 15.2916i 0.520533 + 0.520533i 0.917732 0.397199i \(-0.130018\pi\)
−0.397199 + 0.917732i \(0.630018\pi\)
\(864\) 0 0
\(865\) −20.3046 + 15.5653i −0.690377 + 0.529236i
\(866\) 4.71720i 0.160297i
\(867\) 0 0
\(868\) −4.36740 + 4.36740i −0.148239 + 0.148239i
\(869\) 65.6088 2.22563
\(870\) 0 0
\(871\) −26.7736 −0.907188
\(872\) 2.73218 2.73218i 0.0925232 0.0925232i
\(873\) 0 0
\(874\) 7.54925i 0.255357i
\(875\) −35.2867 + 14.5588i −1.19291 + 0.492176i
\(876\) 0 0
\(877\) −18.1475 18.1475i −0.612797 0.612797i 0.330877 0.943674i \(-0.392655\pi\)
−0.943674 + 0.330877i \(0.892655\pi\)
\(878\) 11.0479 + 11.0479i 0.372849 + 0.372849i
\(879\) 0 0
\(880\) −12.0022 1.58579i −0.404596 0.0534568i
\(881\) 16.3151i 0.549669i 0.961492 + 0.274835i \(0.0886231\pi\)
−0.961492 + 0.274835i \(0.911377\pi\)
\(882\) 0 0
\(883\) 20.4031 20.4031i 0.686618 0.686618i −0.274865 0.961483i \(-0.588633\pi\)
0.961483 + 0.274865i \(0.0886330\pi\)
\(884\) −26.9523 −0.906505
\(885\) 0 0
\(886\) −4.32129 −0.145177
\(887\) −23.9042 + 23.9042i −0.802624 + 0.802624i −0.983505 0.180881i \(-0.942105\pi\)
0.180881 + 0.983505i \(0.442105\pi\)
\(888\) 0 0
\(889\) 21.9269i 0.735405i
\(890\) −17.6123 22.9748i −0.590365 0.770118i
\(891\) 0 0
\(892\) 17.2175 + 17.2175i 0.576483 + 0.576483i
\(893\) −7.52909 7.52909i −0.251951 0.251951i
\(894\) 0 0
\(895\) 2.03923 15.4342i 0.0681640 0.515909i
\(896\) 3.41421i 0.114061i
\(897\) 0 0
\(898\) 24.4338 24.4338i 0.815368 0.815368i
\(899\) 16.0411 0.535001
\(900\) 0 0
\(901\) −25.7914 −0.859237
\(902\) 37.7017 37.7017i 1.25533 1.25533i
\(903\) 0 0
\(904\) 14.8672i 0.494476i
\(905\) −0.478178 + 3.61916i −0.0158952 + 0.120305i
\(906\) 0 0
\(907\) 28.4283 + 28.4283i 0.943945 + 0.943945i 0.998510 0.0545652i \(-0.0173773\pi\)
−0.0545652 + 0.998510i \(0.517377\pi\)
\(908\) 4.67625 + 4.67625i 0.155187 + 0.155187i
\(909\) 0 0
\(910\) −29.1227 37.9900i −0.965410 1.25935i
\(911\) 46.1400i 1.52869i −0.644810 0.764343i \(-0.723064\pi\)
0.644810 0.764343i \(-0.276936\pi\)
\(912\) 0 0
\(913\) −27.4337 + 27.4337i −0.907922 + 0.907922i
\(914\) −6.89015 −0.227906
\(915\) 0 0
\(916\) −8.57443 −0.283307
\(917\) 21.8409 21.8409i 0.721252 0.721252i
\(918\) 0 0
\(919\) 7.31371i 0.241257i −0.992698 0.120628i \(-0.961509\pi\)
0.992698 0.120628i \(-0.0384910\pi\)
\(920\) −16.7352 2.21112i −0.551743 0.0728986i
\(921\) 0 0
\(922\) −11.5815 11.5815i −0.381417 0.381417i
\(923\) 11.3428 + 11.3428i 0.373352 + 0.373352i
\(924\) 0 0
\(925\) −4.99197 8.66489i −0.164135 0.284900i
\(926\) 41.6399i 1.36837i
\(927\) 0 0
\(928\) 6.27006 6.27006i 0.205825 0.205825i
\(929\) 2.92106 0.0958367 0.0479184 0.998851i \(-0.484741\pi\)
0.0479184 + 0.998851i \(0.484741\pi\)
\(930\) 0 0
\(931\) 4.65685 0.152622
\(932\) 14.1655 14.1655i 0.464005 0.464005i
\(933\) 0 0
\(934\) 5.84356i 0.191207i
\(935\) −41.3015 + 31.6613i −1.35070 + 1.03544i
\(936\) 0 0
\(937\) −1.26558 1.26558i −0.0413447 0.0413447i 0.686132 0.727477i \(-0.259307\pi\)
−0.727477 + 0.686132i \(0.759307\pi\)
\(938\) 10.3088 + 10.3088i 0.336596 + 0.336596i
\(939\) 0 0
\(940\) 18.8957 14.4853i 0.616310 0.472458i
\(941\) 6.09670i 0.198747i −0.995050 0.0993733i \(-0.968316\pi\)
0.995050 0.0993733i \(-0.0316838\pi\)
\(942\) 0 0
\(943\) 52.5689 52.5689i 1.71188 1.71188i
\(944\) 0.980608 0.0319161
\(945\) 0 0
\(946\) 52.4327 1.70474
\(947\) −2.81297 + 2.81297i −0.0914094 + 0.0914094i −0.751333 0.659923i \(-0.770589\pi\)
0.659923 + 0.751333i \(0.270589\pi\)
\(948\) 0 0
\(949\) 33.9475i 1.10198i
\(950\) −2.49598 4.33244i −0.0809804 0.140563i
\(951\) 0 0
\(952\) 10.3777 + 10.3777i 0.336342 + 0.336342i
\(953\) −31.8264 31.8264i −1.03096 1.03096i −0.999505 0.0314534i \(-0.989986\pi\)
−0.0314534 0.999505i \(-0.510014\pi\)
\(954\) 0 0
\(955\) −3.46899 0.458337i −0.112254 0.0148314i
\(956\) 5.49331i 0.177666i
\(957\) 0 0
\(958\) −4.26203 + 4.26203i −0.137700 + 0.137700i
\(959\) −44.5689 −1.43920
\(960\) 0 0
\(961\) −27.7274 −0.894432
\(962\) 8.86721 8.86721i 0.285890 0.285890i
\(963\) 0 0
\(964\) 10.0227i 0.322810i
\(965\) −8.34468 10.8854i −0.268625 0.350415i
\(966\) 0 0
\(967\) 7.06621 + 7.06621i 0.227234 + 0.227234i 0.811536 0.584302i \(-0.198632\pi\)
−0.584302 + 0.811536i \(0.698632\pi\)
\(968\) −12.9497 12.9497i −0.416221 0.416221i
\(969\) 0 0
\(970\) −0.545919 + 4.13186i −0.0175284 + 0.132666i
\(971\) 17.7132i 0.568445i −0.958758 0.284222i \(-0.908265\pi\)
0.958758 0.284222i \(-0.0917354\pi\)
\(972\) 0 0
\(973\) −29.5838 + 29.5838i −0.948412 + 0.948412i
\(974\) 0.113398 0.00363351
\(975\) 0 0
\(976\) 3.44164 0.110164
\(977\) 32.7339 32.7339i 1.04725 1.04725i 0.0484247 0.998827i \(-0.484580\pi\)
0.998827 0.0484247i \(-0.0154201\pi\)
\(978\) 0 0
\(979\) 70.0941i 2.24022i
\(980\) −1.36396 + 10.3233i −0.0435701 + 0.329767i
\(981\) 0 0
\(982\) 23.0651 + 23.0651i 0.736038 + 0.736038i
\(983\) −8.66018 8.66018i −0.276217 0.276217i 0.555380 0.831597i \(-0.312573\pi\)
−0.831597 + 0.555380i \(0.812573\pi\)
\(984\) 0 0
\(985\) −33.9760 44.3209i −1.08256 1.41218i
\(986\) 38.1163i 1.21387i
\(987\) 0 0
\(988\) 4.43361 4.43361i 0.141052 0.141052i
\(989\) 73.1090 2.32473
\(990\) 0 0
\(991\) 50.8001 1.61372 0.806860 0.590743i \(-0.201165\pi\)
0.806860 + 0.590743i \(0.201165\pi\)
\(992\) 1.27918 1.27918i 0.0406140 0.0406140i
\(993\) 0 0
\(994\) 8.73480i 0.277051i
\(995\) 25.5930 + 3.38145i 0.811351 + 0.107199i
\(996\) 0 0
\(997\) −13.9007 13.9007i −0.440238 0.440238i 0.451854 0.892092i \(-0.350763\pi\)
−0.892092 + 0.451854i \(0.850763\pi\)
\(998\) −14.1065 14.1065i −0.446534 0.446534i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.n.f.647.2 8
3.2 odd 2 1710.2.n.g.647.3 yes 8
5.3 odd 4 1710.2.n.g.1673.4 yes 8
15.8 even 4 inner 1710.2.n.f.1673.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.n.f.647.2 8 1.1 even 1 trivial
1710.2.n.f.1673.1 yes 8 15.8 even 4 inner
1710.2.n.g.647.3 yes 8 3.2 odd 2
1710.2.n.g.1673.4 yes 8 5.3 odd 4