Properties

Label 1710.2.n.i.1673.6
Level $1710$
Weight $2$
Character 1710.1673
Analytic conductor $13.654$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} - 10 x^{18} + 56 x^{17} + 50 x^{16} - 336 x^{15} + 672 x^{14} - 776 x^{13} + 626 x^{12} + \cdots + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1673.6
Root \(-3.06999 + 1.27163i\) of defining polynomial
Character \(\chi\) \(=\) 1710.1673
Dual form 1710.2.n.i.647.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 + 0.707107i) q^{2} +1.00000i q^{4} +(-2.21129 + 0.331972i) q^{5} +(-1.82552 + 1.82552i) q^{7} +(-0.707107 + 0.707107i) q^{8} +(-1.79836 - 1.32888i) q^{10} -2.09952i q^{11} +(-1.64265 - 1.64265i) q^{13} -2.58168 q^{14} -1.00000 q^{16} +(-3.29353 - 3.29353i) q^{17} -1.00000i q^{19} +(-0.331972 - 2.21129i) q^{20} +(1.48459 - 1.48459i) q^{22} +(5.12494 - 5.12494i) q^{23} +(4.77959 - 1.46817i) q^{25} -2.32305i q^{26} +(-1.82552 - 1.82552i) q^{28} +9.48773 q^{29} +4.22425 q^{31} +(-0.707107 - 0.707107i) q^{32} -4.65775i q^{34} +(3.43074 - 4.64278i) q^{35} +(-1.64265 + 1.64265i) q^{37} +(0.707107 - 0.707107i) q^{38} +(1.32888 - 1.79836i) q^{40} +7.26473i q^{41} +(5.70884 + 5.70884i) q^{43} +2.09952 q^{44} +7.24776 q^{46} +(-9.10895 - 9.10895i) q^{47} +0.334925i q^{49} +(4.41783 + 2.34153i) q^{50} +(1.64265 - 1.64265i) q^{52} +(10.0145 - 10.0145i) q^{53} +(0.696982 + 4.64265i) q^{55} -2.58168i q^{56} +(6.70884 + 6.70884i) q^{58} -5.56868 q^{59} -13.7834 q^{61} +(2.98700 + 2.98700i) q^{62} -1.00000i q^{64} +(4.17768 + 3.08705i) q^{65} +(3.29353 - 3.29353i) q^{68} +(5.70884 - 0.857046i) q^{70} -0.853364i q^{71} +(-8.55918 - 8.55918i) q^{73} -2.32305 q^{74} +1.00000 q^{76} +(3.83273 + 3.83273i) q^{77} -1.45962i q^{79} +(2.21129 - 0.331972i) q^{80} +(-5.13694 + 5.13694i) q^{82} +(6.31562 - 6.31562i) q^{83} +(8.37630 + 6.18958i) q^{85} +8.07352i q^{86} +(1.48459 + 1.48459i) q^{88} +8.59262 q^{89} +5.99738 q^{91} +(5.12494 + 5.12494i) q^{92} -12.8820i q^{94} +(0.331972 + 2.21129i) q^{95} +(11.0176 - 11.0176i) q^{97} +(-0.236828 + 0.236828i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{10} - 12 q^{13} - 20 q^{16} - 16 q^{22} + 16 q^{31} - 12 q^{37} - 8 q^{46} + 12 q^{52} + 20 q^{58} - 16 q^{61} + 20 q^{73} + 20 q^{76} - 28 q^{82} - 8 q^{85} - 16 q^{88} + 32 q^{91} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 + 0.707107i 0.500000 + 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −2.21129 + 0.331972i −0.988918 + 0.148462i
\(6\) 0 0
\(7\) −1.82552 + 1.82552i −0.689983 + 0.689983i −0.962228 0.272245i \(-0.912234\pi\)
0.272245 + 0.962228i \(0.412234\pi\)
\(8\) −0.707107 + 0.707107i −0.250000 + 0.250000i
\(9\) 0 0
\(10\) −1.79836 1.32888i −0.568690 0.420228i
\(11\) 2.09952i 0.633030i −0.948588 0.316515i \(-0.897487\pi\)
0.948588 0.316515i \(-0.102513\pi\)
\(12\) 0 0
\(13\) −1.64265 1.64265i −0.455588 0.455588i 0.441616 0.897204i \(-0.354405\pi\)
−0.897204 + 0.441616i \(0.854405\pi\)
\(14\) −2.58168 −0.689983
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −3.29353 3.29353i −0.798798 0.798798i 0.184108 0.982906i \(-0.441060\pi\)
−0.982906 + 0.184108i \(0.941060\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) −0.331972 2.21129i −0.0742312 0.494459i
\(21\) 0 0
\(22\) 1.48459 1.48459i 0.316515 0.316515i
\(23\) 5.12494 5.12494i 1.06862 1.06862i 0.0711590 0.997465i \(-0.477330\pi\)
0.997465 0.0711590i \(-0.0226698\pi\)
\(24\) 0 0
\(25\) 4.77959 1.46817i 0.955918 0.293634i
\(26\) 2.32305i 0.455588i
\(27\) 0 0
\(28\) −1.82552 1.82552i −0.344992 0.344992i
\(29\) 9.48773 1.76183 0.880914 0.473277i \(-0.156929\pi\)
0.880914 + 0.473277i \(0.156929\pi\)
\(30\) 0 0
\(31\) 4.22425 0.758698 0.379349 0.925254i \(-0.376148\pi\)
0.379349 + 0.925254i \(0.376148\pi\)
\(32\) −0.707107 0.707107i −0.125000 0.125000i
\(33\) 0 0
\(34\) 4.65775i 0.798798i
\(35\) 3.43074 4.64278i 0.579900 0.784773i
\(36\) 0 0
\(37\) −1.64265 + 1.64265i −0.270050 + 0.270050i −0.829120 0.559071i \(-0.811158\pi\)
0.559071 + 0.829120i \(0.311158\pi\)
\(38\) 0.707107 0.707107i 0.114708 0.114708i
\(39\) 0 0
\(40\) 1.32888 1.79836i 0.210114 0.284345i
\(41\) 7.26473i 1.13456i 0.823525 + 0.567280i \(0.192004\pi\)
−0.823525 + 0.567280i \(0.807996\pi\)
\(42\) 0 0
\(43\) 5.70884 + 5.70884i 0.870590 + 0.870590i 0.992537 0.121947i \(-0.0389137\pi\)
−0.121947 + 0.992537i \(0.538914\pi\)
\(44\) 2.09952 0.316515
\(45\) 0 0
\(46\) 7.24776 1.06862
\(47\) −9.10895 9.10895i −1.32868 1.32868i −0.906525 0.422153i \(-0.861274\pi\)
−0.422153 0.906525i \(-0.638726\pi\)
\(48\) 0 0
\(49\) 0.334925i 0.0478465i
\(50\) 4.41783 + 2.34153i 0.624776 + 0.331142i
\(51\) 0 0
\(52\) 1.64265 1.64265i 0.227794 0.227794i
\(53\) 10.0145 10.0145i 1.37559 1.37559i 0.523675 0.851918i \(-0.324561\pi\)
0.851918 0.523675i \(-0.175439\pi\)
\(54\) 0 0
\(55\) 0.696982 + 4.64265i 0.0939811 + 0.626014i
\(56\) 2.58168i 0.344992i
\(57\) 0 0
\(58\) 6.70884 + 6.70884i 0.880914 + 0.880914i
\(59\) −5.56868 −0.724980 −0.362490 0.931988i \(-0.618073\pi\)
−0.362490 + 0.931988i \(0.618073\pi\)
\(60\) 0 0
\(61\) −13.7834 −1.76479 −0.882394 0.470512i \(-0.844069\pi\)
−0.882394 + 0.470512i \(0.844069\pi\)
\(62\) 2.98700 + 2.98700i 0.379349 + 0.379349i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 4.17768 + 3.08705i 0.518177 + 0.382902i
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) 3.29353 3.29353i 0.399399 0.399399i
\(69\) 0 0
\(70\) 5.70884 0.857046i 0.682337 0.102437i
\(71\) 0.853364i 0.101276i −0.998717 0.0506378i \(-0.983875\pi\)
0.998717 0.0506378i \(-0.0161254\pi\)
\(72\) 0 0
\(73\) −8.55918 8.55918i −1.00178 1.00178i −0.999998 0.00177765i \(-0.999434\pi\)
−0.00177765 0.999998i \(-0.500566\pi\)
\(74\) −2.32305 −0.270050
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) 3.83273 + 3.83273i 0.436780 + 0.436780i
\(78\) 0 0
\(79\) 1.45962i 0.164221i −0.996623 0.0821103i \(-0.973834\pi\)
0.996623 0.0821103i \(-0.0261660\pi\)
\(80\) 2.21129 0.331972i 0.247230 0.0371156i
\(81\) 0 0
\(82\) −5.13694 + 5.13694i −0.567280 + 0.567280i
\(83\) 6.31562 6.31562i 0.693230 0.693230i −0.269712 0.962941i \(-0.586928\pi\)
0.962941 + 0.269712i \(0.0869284\pi\)
\(84\) 0 0
\(85\) 8.37630 + 6.18958i 0.908538 + 0.671355i
\(86\) 8.07352i 0.870590i
\(87\) 0 0
\(88\) 1.48459 + 1.48459i 0.158257 + 0.158257i
\(89\) 8.59262 0.910816 0.455408 0.890283i \(-0.349493\pi\)
0.455408 + 0.890283i \(0.349493\pi\)
\(90\) 0 0
\(91\) 5.99738 0.628697
\(92\) 5.12494 + 5.12494i 0.534312 + 0.534312i
\(93\) 0 0
\(94\) 12.8820i 1.32868i
\(95\) 0.331972 + 2.21129i 0.0340596 + 0.226873i
\(96\) 0 0
\(97\) 11.0176 11.0176i 1.11867 1.11867i 0.126735 0.991937i \(-0.459550\pi\)
0.991937 0.126735i \(-0.0404499\pi\)
\(98\) −0.236828 + 0.236828i −0.0239232 + 0.0239232i
\(99\) 0 0
\(100\) 1.46817 + 4.77959i 0.146817 + 0.477959i
\(101\) 14.5956i 1.45232i −0.687527 0.726159i \(-0.741304\pi\)
0.687527 0.726159i \(-0.258696\pi\)
\(102\) 0 0
\(103\) −5.69373 5.69373i −0.561020 0.561020i 0.368577 0.929597i \(-0.379845\pi\)
−0.929597 + 0.368577i \(0.879845\pi\)
\(104\) 2.32305 0.227794
\(105\) 0 0
\(106\) 14.1626 1.37559
\(107\) −11.2683 11.2683i −1.08934 1.08934i −0.995596 0.0937480i \(-0.970115\pi\)
−0.0937480 0.995596i \(-0.529885\pi\)
\(108\) 0 0
\(109\) 9.19081i 0.880320i 0.897919 + 0.440160i \(0.145078\pi\)
−0.897919 + 0.440160i \(0.854922\pi\)
\(110\) −2.79001 + 3.77569i −0.266017 + 0.359998i
\(111\) 0 0
\(112\) 1.82552 1.82552i 0.172496 0.172496i
\(113\) 3.32007 3.32007i 0.312326 0.312326i −0.533484 0.845810i \(-0.679118\pi\)
0.845810 + 0.533484i \(0.179118\pi\)
\(114\) 0 0
\(115\) −9.63138 + 13.0341i −0.898131 + 1.21543i
\(116\) 9.48773i 0.880914i
\(117\) 0 0
\(118\) −3.93765 3.93765i −0.362490 0.362490i
\(119\) 12.0248 1.10231
\(120\) 0 0
\(121\) 6.59201 0.599273
\(122\) −9.74636 9.74636i −0.882394 0.882394i
\(123\) 0 0
\(124\) 4.22425i 0.379349i
\(125\) −10.0817 + 4.83324i −0.901731 + 0.432298i
\(126\) 0 0
\(127\) −6.97903 + 6.97903i −0.619289 + 0.619289i −0.945349 0.326060i \(-0.894279\pi\)
0.326060 + 0.945349i \(0.394279\pi\)
\(128\) 0.707107 0.707107i 0.0625000 0.0625000i
\(129\) 0 0
\(130\) 0.771189 + 5.13694i 0.0676377 + 0.450540i
\(131\) 1.52919i 0.133606i −0.997766 0.0668029i \(-0.978720\pi\)
0.997766 0.0668029i \(-0.0212799\pi\)
\(132\) 0 0
\(133\) 1.82552 + 1.82552i 0.158293 + 0.158293i
\(134\) 0 0
\(135\) 0 0
\(136\) 4.65775 0.399399
\(137\) −8.70549 8.70549i −0.743760 0.743760i 0.229539 0.973299i \(-0.426278\pi\)
−0.973299 + 0.229539i \(0.926278\pi\)
\(138\) 0 0
\(139\) 11.8451i 1.00469i −0.864668 0.502344i \(-0.832471\pi\)
0.864668 0.502344i \(-0.167529\pi\)
\(140\) 4.64278 + 3.43074i 0.392387 + 0.289950i
\(141\) 0 0
\(142\) 0.603419 0.603419i 0.0506378 0.0506378i
\(143\) −3.44877 + 3.44877i −0.288401 + 0.288401i
\(144\) 0 0
\(145\) −20.9801 + 3.14966i −1.74230 + 0.261565i
\(146\) 12.1045i 1.00178i
\(147\) 0 0
\(148\) −1.64265 1.64265i −0.135025 0.135025i
\(149\) −19.3650 −1.58644 −0.793221 0.608934i \(-0.791598\pi\)
−0.793221 + 0.608934i \(0.791598\pi\)
\(150\) 0 0
\(151\) 2.09187 0.170234 0.0851170 0.996371i \(-0.472874\pi\)
0.0851170 + 0.996371i \(0.472874\pi\)
\(152\) 0.707107 + 0.707107i 0.0573539 + 0.0573539i
\(153\) 0 0
\(154\) 5.42029i 0.436780i
\(155\) −9.34104 + 1.40233i −0.750290 + 0.112638i
\(156\) 0 0
\(157\) 0.0362263 0.0362263i 0.00289117 0.00289117i −0.705660 0.708551i \(-0.749349\pi\)
0.708551 + 0.705660i \(0.249349\pi\)
\(158\) 1.03211 1.03211i 0.0821103 0.0821103i
\(159\) 0 0
\(160\) 1.79836 + 1.32888i 0.142173 + 0.105057i
\(161\) 18.7114i 1.47467i
\(162\) 0 0
\(163\) 14.6211 + 14.6211i 1.14521 + 1.14521i 0.987483 + 0.157727i \(0.0504166\pi\)
0.157727 + 0.987483i \(0.449583\pi\)
\(164\) −7.26473 −0.567280
\(165\) 0 0
\(166\) 8.93164 0.693230
\(167\) −8.05215 8.05215i −0.623094 0.623094i 0.323227 0.946321i \(-0.395232\pi\)
−0.946321 + 0.323227i \(0.895232\pi\)
\(168\) 0 0
\(169\) 7.60342i 0.584878i
\(170\) 1.54624 + 10.2996i 0.118591 + 0.789946i
\(171\) 0 0
\(172\) −5.70884 + 5.70884i −0.435295 + 0.435295i
\(173\) 12.5516 12.5516i 0.954278 0.954278i −0.0447212 0.999000i \(-0.514240\pi\)
0.999000 + 0.0447212i \(0.0142400\pi\)
\(174\) 0 0
\(175\) −6.04507 + 11.4054i −0.456965 + 0.862170i
\(176\) 2.09952i 0.158257i
\(177\) 0 0
\(178\) 6.07590 + 6.07590i 0.455408 + 0.455408i
\(179\) −11.9025 −0.889638 −0.444819 0.895620i \(-0.646732\pi\)
−0.444819 + 0.895620i \(0.646732\pi\)
\(180\) 0 0
\(181\) −4.82767 −0.358838 −0.179419 0.983773i \(-0.557422\pi\)
−0.179419 + 0.983773i \(0.557422\pi\)
\(182\) 4.24079 + 4.24079i 0.314348 + 0.314348i
\(183\) 0 0
\(184\) 7.24776i 0.534312i
\(185\) 3.08705 4.17768i 0.226965 0.307149i
\(186\) 0 0
\(187\) −6.91484 + 6.91484i −0.505663 + 0.505663i
\(188\) 9.10895 9.10895i 0.664339 0.664339i
\(189\) 0 0
\(190\) −1.32888 + 1.79836i −0.0964069 + 0.130466i
\(191\) 7.88988i 0.570892i −0.958395 0.285446i \(-0.907858\pi\)
0.958395 0.285446i \(-0.0921417\pi\)
\(192\) 0 0
\(193\) −1.49129 1.49129i −0.107346 0.107346i 0.651394 0.758740i \(-0.274185\pi\)
−0.758740 + 0.651394i \(0.774185\pi\)
\(194\) 15.5813 1.11867
\(195\) 0 0
\(196\) −0.334925 −0.0239232
\(197\) −14.4190 14.4190i −1.02731 1.02731i −0.999616 0.0276953i \(-0.991183\pi\)
−0.0276953 0.999616i \(-0.508817\pi\)
\(198\) 0 0
\(199\) 2.84447i 0.201639i 0.994905 + 0.100820i \(0.0321465\pi\)
−0.994905 + 0.100820i \(0.967853\pi\)
\(200\) −2.34153 + 4.41783i −0.165571 + 0.312388i
\(201\) 0 0
\(202\) 10.3207 10.3207i 0.726159 0.726159i
\(203\) −17.3201 + 17.3201i −1.21563 + 1.21563i
\(204\) 0 0
\(205\) −2.41169 16.0644i −0.168440 1.12199i
\(206\) 8.05215i 0.561020i
\(207\) 0 0
\(208\) 1.64265 + 1.64265i 0.113897 + 0.113897i
\(209\) −2.09952 −0.145227
\(210\) 0 0
\(211\) −10.7289 −0.738607 −0.369304 0.929309i \(-0.620404\pi\)
−0.369304 + 0.929309i \(0.620404\pi\)
\(212\) 10.0145 + 10.0145i 0.687797 + 0.687797i
\(213\) 0 0
\(214\) 15.9357i 1.08934i
\(215\) −14.5191 10.7287i −0.990192 0.731692i
\(216\) 0 0
\(217\) −7.71148 + 7.71148i −0.523489 + 0.523489i
\(218\) −6.49888 + 6.49888i −0.440160 + 0.440160i
\(219\) 0 0
\(220\) −4.64265 + 0.696982i −0.313007 + 0.0469905i
\(221\) 10.8202i 0.727846i
\(222\) 0 0
\(223\) 13.0260 + 13.0260i 0.872288 + 0.872288i 0.992721 0.120433i \(-0.0384283\pi\)
−0.120433 + 0.992721i \(0.538428\pi\)
\(224\) 2.58168 0.172496
\(225\) 0 0
\(226\) 4.69529 0.312326
\(227\) 20.4647 + 20.4647i 1.35829 + 1.35829i 0.876029 + 0.482259i \(0.160184\pi\)
0.482259 + 0.876029i \(0.339816\pi\)
\(228\) 0 0
\(229\) 1.89472i 0.125206i −0.998038 0.0626032i \(-0.980060\pi\)
0.998038 0.0626032i \(-0.0199403\pi\)
\(230\) −16.0269 + 2.40605i −1.05678 + 0.158650i
\(231\) 0 0
\(232\) −6.70884 + 6.70884i −0.440457 + 0.440457i
\(233\) 2.12791 2.12791i 0.139404 0.139404i −0.633961 0.773365i \(-0.718572\pi\)
0.773365 + 0.633961i \(0.218572\pi\)
\(234\) 0 0
\(235\) 23.1664 + 17.1186i 1.51121 + 1.11669i
\(236\) 5.56868i 0.362490i
\(237\) 0 0
\(238\) 8.50284 + 8.50284i 0.551157 + 0.551157i
\(239\) 14.0763 0.910521 0.455260 0.890358i \(-0.349546\pi\)
0.455260 + 0.890358i \(0.349546\pi\)
\(240\) 0 0
\(241\) 11.1960 0.721200 0.360600 0.932720i \(-0.382572\pi\)
0.360600 + 0.932720i \(0.382572\pi\)
\(242\) 4.66125 + 4.66125i 0.299637 + 0.299637i
\(243\) 0 0
\(244\) 13.7834i 0.882394i
\(245\) −0.111186 0.740616i −0.00710340 0.0473162i
\(246\) 0 0
\(247\) −1.64265 + 1.64265i −0.104519 + 0.104519i
\(248\) −2.98700 + 2.98700i −0.189675 + 0.189675i
\(249\) 0 0
\(250\) −10.5464 3.71119i −0.667014 0.234716i
\(251\) 21.3245i 1.34599i 0.739647 + 0.672995i \(0.234992\pi\)
−0.739647 + 0.672995i \(0.765008\pi\)
\(252\) 0 0
\(253\) −10.7599 10.7599i −0.676471 0.676471i
\(254\) −9.86983 −0.619289
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 19.5098 + 19.5098i 1.21699 + 1.21699i 0.968681 + 0.248309i \(0.0798749\pi\)
0.248309 + 0.968681i \(0.420125\pi\)
\(258\) 0 0
\(259\) 5.99738i 0.372659i
\(260\) −3.08705 + 4.17768i −0.191451 + 0.259089i
\(261\) 0 0
\(262\) 1.08130 1.08130i 0.0668029 0.0668029i
\(263\) 6.06124 6.06124i 0.373752 0.373752i −0.495090 0.868842i \(-0.664865\pi\)
0.868842 + 0.495090i \(0.164865\pi\)
\(264\) 0 0
\(265\) −18.8204 + 25.4694i −1.15613 + 1.56457i
\(266\) 2.58168i 0.158293i
\(267\) 0 0
\(268\) 0 0
\(269\) −9.04067 −0.551219 −0.275610 0.961270i \(-0.588880\pi\)
−0.275610 + 0.961270i \(0.588880\pi\)
\(270\) 0 0
\(271\) 12.5180 0.760417 0.380209 0.924901i \(-0.375852\pi\)
0.380209 + 0.924901i \(0.375852\pi\)
\(272\) 3.29353 + 3.29353i 0.199700 + 0.199700i
\(273\) 0 0
\(274\) 12.3114i 0.743760i
\(275\) −3.08246 10.0349i −0.185879 0.605124i
\(276\) 0 0
\(277\) 9.58199 9.58199i 0.575726 0.575726i −0.357997 0.933723i \(-0.616540\pi\)
0.933723 + 0.357997i \(0.116540\pi\)
\(278\) 8.37574 8.37574i 0.502344 0.502344i
\(279\) 0 0
\(280\) 0.857046 + 5.70884i 0.0512183 + 0.341168i
\(281\) 4.36612i 0.260461i 0.991484 + 0.130230i \(0.0415717\pi\)
−0.991484 + 0.130230i \(0.958428\pi\)
\(282\) 0 0
\(283\) −18.6452 18.6452i −1.10834 1.10834i −0.993369 0.114972i \(-0.963322\pi\)
−0.114972 0.993369i \(-0.536678\pi\)
\(284\) 0.853364 0.0506378
\(285\) 0 0
\(286\) −4.87730 −0.288401
\(287\) −13.2619 13.2619i −0.782828 0.782828i
\(288\) 0 0
\(289\) 4.69467i 0.276157i
\(290\) −17.0623 12.6080i −1.00193 0.740369i
\(291\) 0 0
\(292\) 8.55918 8.55918i 0.500888 0.500888i
\(293\) −17.8949 + 17.8949i −1.04543 + 1.04543i −0.0465116 + 0.998918i \(0.514810\pi\)
−0.998918 + 0.0465116i \(0.985190\pi\)
\(294\) 0 0
\(295\) 12.3140 1.84865i 0.716946 0.107632i
\(296\) 2.32305i 0.135025i
\(297\) 0 0
\(298\) −13.6931 13.6931i −0.793221 0.793221i
\(299\) −16.8369 −0.973705
\(300\) 0 0
\(301\) −20.8432 −1.20138
\(302\) 1.47917 + 1.47917i 0.0851170 + 0.0851170i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) 30.4791 4.57571i 1.74523 0.262005i
\(306\) 0 0
\(307\) −12.5089 + 12.5089i −0.713923 + 0.713923i −0.967353 0.253431i \(-0.918441\pi\)
0.253431 + 0.967353i \(0.418441\pi\)
\(308\) −3.83273 + 3.83273i −0.218390 + 0.218390i
\(309\) 0 0
\(310\) −7.59671 5.61351i −0.431464 0.318826i
\(311\) 30.0324i 1.70298i 0.524369 + 0.851491i \(0.324301\pi\)
−0.524369 + 0.851491i \(0.675699\pi\)
\(312\) 0 0
\(313\) −2.49454 2.49454i −0.141000 0.141000i 0.633084 0.774083i \(-0.281789\pi\)
−0.774083 + 0.633084i \(0.781789\pi\)
\(314\) 0.0512317 0.00289117
\(315\) 0 0
\(316\) 1.45962 0.0821103
\(317\) −14.4465 14.4465i −0.811398 0.811398i 0.173446 0.984843i \(-0.444510\pi\)
−0.984843 + 0.173446i \(0.944510\pi\)
\(318\) 0 0
\(319\) 19.9197i 1.11529i
\(320\) 0.331972 + 2.21129i 0.0185578 + 0.123615i
\(321\) 0 0
\(322\) −13.2310 + 13.2310i −0.737333 + 0.737333i
\(323\) −3.29353 + 3.29353i −0.183257 + 0.183257i
\(324\) 0 0
\(325\) −10.2629 5.43949i −0.569281 0.301729i
\(326\) 20.6773i 1.14521i
\(327\) 0 0
\(328\) −5.13694 5.13694i −0.283640 0.283640i
\(329\) 33.2572 1.83353
\(330\) 0 0
\(331\) 17.8028 0.978533 0.489267 0.872134i \(-0.337265\pi\)
0.489267 + 0.872134i \(0.337265\pi\)
\(332\) 6.31562 + 6.31562i 0.346615 + 0.346615i
\(333\) 0 0
\(334\) 11.3875i 0.623094i
\(335\) 0 0
\(336\) 0 0
\(337\) 8.82883 8.82883i 0.480937 0.480937i −0.424494 0.905431i \(-0.639548\pi\)
0.905431 + 0.424494i \(0.139548\pi\)
\(338\) 5.37643 5.37643i 0.292439 0.292439i
\(339\) 0 0
\(340\) −6.18958 + 8.37630i −0.335677 + 0.454269i
\(341\) 8.86891i 0.480279i
\(342\) 0 0
\(343\) −13.3901 13.3901i −0.722996 0.722996i
\(344\) −8.07352 −0.435295
\(345\) 0 0
\(346\) 17.7506 0.954278
\(347\) 3.97699 + 3.97699i 0.213496 + 0.213496i 0.805751 0.592255i \(-0.201762\pi\)
−0.592255 + 0.805751i \(0.701762\pi\)
\(348\) 0 0
\(349\) 16.3895i 0.877308i −0.898656 0.438654i \(-0.855455\pi\)
0.898656 0.438654i \(-0.144545\pi\)
\(350\) −12.3394 + 3.79035i −0.659567 + 0.202603i
\(351\) 0 0
\(352\) −1.48459 + 1.48459i −0.0791287 + 0.0791287i
\(353\) 2.24748 2.24748i 0.119621 0.119621i −0.644762 0.764383i \(-0.723044\pi\)
0.764383 + 0.644762i \(0.223044\pi\)
\(354\) 0 0
\(355\) 0.283293 + 1.88703i 0.0150356 + 0.100153i
\(356\) 8.59262i 0.455408i
\(357\) 0 0
\(358\) −8.41637 8.41637i −0.444819 0.444819i
\(359\) −15.4071 −0.813158 −0.406579 0.913616i \(-0.633278\pi\)
−0.406579 + 0.913616i \(0.633278\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −3.41368 3.41368i −0.179419 0.179419i
\(363\) 0 0
\(364\) 5.99738i 0.314348i
\(365\) 21.7682 + 16.0854i 1.13940 + 0.841948i
\(366\) 0 0
\(367\) −7.28985 + 7.28985i −0.380527 + 0.380527i −0.871292 0.490765i \(-0.836717\pi\)
0.490765 + 0.871292i \(0.336717\pi\)
\(368\) −5.12494 + 5.12494i −0.267156 + 0.267156i
\(369\) 0 0
\(370\) 5.13694 0.771189i 0.267057 0.0400922i
\(371\) 36.5633i 1.89827i
\(372\) 0 0
\(373\) −5.96016 5.96016i −0.308605 0.308605i 0.535763 0.844368i \(-0.320024\pi\)
−0.844368 + 0.535763i \(0.820024\pi\)
\(374\) −9.77906 −0.505663
\(375\) 0 0
\(376\) 12.8820 0.664339
\(377\) −15.5850 15.5850i −0.802668 0.802668i
\(378\) 0 0
\(379\) 18.4581i 0.948128i 0.880490 + 0.474064i \(0.157213\pi\)
−0.880490 + 0.474064i \(0.842787\pi\)
\(380\) −2.21129 + 0.331972i −0.113437 + 0.0170298i
\(381\) 0 0
\(382\) 5.57899 5.57899i 0.285446 0.285446i
\(383\) 3.44149 3.44149i 0.175852 0.175852i −0.613693 0.789545i \(-0.710317\pi\)
0.789545 + 0.613693i \(0.210317\pi\)
\(384\) 0 0
\(385\) −9.74762 7.20291i −0.496785 0.367094i
\(386\) 2.10901i 0.107346i
\(387\) 0 0
\(388\) 11.0176 + 11.0176i 0.559336 + 0.559336i
\(389\) 13.9339 0.706475 0.353238 0.935534i \(-0.385081\pi\)
0.353238 + 0.935534i \(0.385081\pi\)
\(390\) 0 0
\(391\) −33.7583 −1.70723
\(392\) −0.236828 0.236828i −0.0119616 0.0119616i
\(393\) 0 0
\(394\) 20.3916i 1.02731i
\(395\) 0.484554 + 3.22765i 0.0243806 + 0.162401i
\(396\) 0 0
\(397\) −3.29740 + 3.29740i −0.165492 + 0.165492i −0.784994 0.619503i \(-0.787334\pi\)
0.619503 + 0.784994i \(0.287334\pi\)
\(398\) −2.01135 + 2.01135i −0.100820 + 0.100820i
\(399\) 0 0
\(400\) −4.77959 + 1.46817i −0.238979 + 0.0734086i
\(401\) 17.5402i 0.875918i 0.898995 + 0.437959i \(0.144298\pi\)
−0.898995 + 0.437959i \(0.855702\pi\)
\(402\) 0 0
\(403\) −6.93896 6.93896i −0.345654 0.345654i
\(404\) 14.5956 0.726159
\(405\) 0 0
\(406\) −24.4943 −1.21563
\(407\) 3.44877 + 3.44877i 0.170949 + 0.170949i
\(408\) 0 0
\(409\) 14.2981i 0.706995i −0.935435 0.353498i \(-0.884992\pi\)
0.935435 0.353498i \(-0.115008\pi\)
\(410\) 9.65394 13.0646i 0.476774 0.645214i
\(411\) 0 0
\(412\) 5.69373 5.69373i 0.280510 0.280510i
\(413\) 10.1658 10.1658i 0.500224 0.500224i
\(414\) 0 0
\(415\) −11.8690 + 16.0623i −0.582629 + 0.788466i
\(416\) 2.32305i 0.113897i
\(417\) 0 0
\(418\) −1.48459 1.48459i −0.0726135 0.0726135i
\(419\) 7.08174 0.345966 0.172983 0.984925i \(-0.444659\pi\)
0.172983 + 0.984925i \(0.444659\pi\)
\(420\) 0 0
\(421\) 6.84570 0.333639 0.166820 0.985987i \(-0.446650\pi\)
0.166820 + 0.985987i \(0.446650\pi\)
\(422\) −7.58647 7.58647i −0.369304 0.369304i
\(423\) 0 0
\(424\) 14.1626i 0.687797i
\(425\) −20.5772 10.9063i −0.998140 0.529031i
\(426\) 0 0
\(427\) 25.1620 25.1620i 1.21767 1.21767i
\(428\) 11.2683 11.2683i 0.544672 0.544672i
\(429\) 0 0
\(430\) −2.68018 17.8529i −0.129250 0.860942i
\(431\) 18.5138i 0.891780i 0.895088 + 0.445890i \(0.147113\pi\)
−0.895088 + 0.445890i \(0.852887\pi\)
\(432\) 0 0
\(433\) 4.67392 + 4.67392i 0.224614 + 0.224614i 0.810438 0.585824i \(-0.199229\pi\)
−0.585824 + 0.810438i \(0.699229\pi\)
\(434\) −10.9057 −0.523489
\(435\) 0 0
\(436\) −9.19081 −0.440160
\(437\) −5.12494 5.12494i −0.245159 0.245159i
\(438\) 0 0
\(439\) 32.4355i 1.54806i −0.633146 0.774032i \(-0.718237\pi\)
0.633146 0.774032i \(-0.281763\pi\)
\(440\) −3.77569 2.79001i −0.179999 0.133008i
\(441\) 0 0
\(442\) −7.65105 + 7.65105i −0.363923 + 0.363923i
\(443\) −2.39842 + 2.39842i −0.113952 + 0.113952i −0.761784 0.647831i \(-0.775676\pi\)
0.647831 + 0.761784i \(0.275676\pi\)
\(444\) 0 0
\(445\) −19.0008 + 2.85251i −0.900722 + 0.135222i
\(446\) 18.4216i 0.872288i
\(447\) 0 0
\(448\) 1.82552 + 1.82552i 0.0862479 + 0.0862479i
\(449\) 27.3174 1.28919 0.644595 0.764525i \(-0.277026\pi\)
0.644595 + 0.764525i \(0.277026\pi\)
\(450\) 0 0
\(451\) 15.2525 0.718211
\(452\) 3.32007 + 3.32007i 0.156163 + 0.156163i
\(453\) 0 0
\(454\) 28.9414i 1.35829i
\(455\) −13.2619 + 1.99096i −0.621729 + 0.0933378i
\(456\) 0 0
\(457\) 4.28791 4.28791i 0.200580 0.200580i −0.599669 0.800249i \(-0.704701\pi\)
0.800249 + 0.599669i \(0.204701\pi\)
\(458\) 1.33977 1.33977i 0.0626032 0.0626032i
\(459\) 0 0
\(460\) −13.0341 9.63138i −0.607716 0.449066i
\(461\) 26.0363i 1.21263i 0.795224 + 0.606316i \(0.207353\pi\)
−0.795224 + 0.606316i \(0.792647\pi\)
\(462\) 0 0
\(463\) −7.86306 7.86306i −0.365427 0.365427i 0.500379 0.865806i \(-0.333194\pi\)
−0.865806 + 0.500379i \(0.833194\pi\)
\(464\) −9.48773 −0.440457
\(465\) 0 0
\(466\) 3.00932 0.139404
\(467\) 4.57597 + 4.57597i 0.211751 + 0.211751i 0.805011 0.593260i \(-0.202159\pi\)
−0.593260 + 0.805011i \(0.702159\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 4.27647 + 28.4858i 0.197259 + 1.31395i
\(471\) 0 0
\(472\) 3.93765 3.93765i 0.181245 0.181245i
\(473\) 11.9858 11.9858i 0.551109 0.551109i
\(474\) 0 0
\(475\) −1.46817 4.77959i −0.0673643 0.219303i
\(476\) 12.0248i 0.551157i
\(477\) 0 0
\(478\) 9.95345 + 9.95345i 0.455260 + 0.455260i
\(479\) 23.6217 1.07930 0.539652 0.841888i \(-0.318556\pi\)
0.539652 + 0.841888i \(0.318556\pi\)
\(480\) 0 0
\(481\) 5.39658 0.246063
\(482\) 7.91680 + 7.91680i 0.360600 + 0.360600i
\(483\) 0 0
\(484\) 6.59201i 0.299637i
\(485\) −20.7056 + 28.0207i −0.940194 + 1.27236i
\(486\) 0 0
\(487\) −14.9536 + 14.9536i −0.677612 + 0.677612i −0.959459 0.281847i \(-0.909053\pi\)
0.281847 + 0.959459i \(0.409053\pi\)
\(488\) 9.74636 9.74636i 0.441197 0.441197i
\(489\) 0 0
\(490\) 0.445074 0.602315i 0.0201064 0.0272098i
\(491\) 37.3226i 1.68435i −0.539207 0.842173i \(-0.681276\pi\)
0.539207 0.842173i \(-0.318724\pi\)
\(492\) 0 0
\(493\) −31.2481 31.2481i −1.40734 1.40734i
\(494\) −2.32305 −0.104519
\(495\) 0 0
\(496\) −4.22425 −0.189675
\(497\) 1.55784 + 1.55784i 0.0698785 + 0.0698785i
\(498\) 0 0
\(499\) 24.7116i 1.10624i 0.833101 + 0.553121i \(0.186563\pi\)
−0.833101 + 0.553121i \(0.813437\pi\)
\(500\) −4.83324 10.0817i −0.216149 0.450865i
\(501\) 0 0
\(502\) −15.0787 + 15.0787i −0.672995 + 0.672995i
\(503\) −19.3802 + 19.3802i −0.864120 + 0.864120i −0.991814 0.127693i \(-0.959243\pi\)
0.127693 + 0.991814i \(0.459243\pi\)
\(504\) 0 0
\(505\) 4.84534 + 32.2751i 0.215615 + 1.43622i
\(506\) 15.2168i 0.676471i
\(507\) 0 0
\(508\) −6.97903 6.97903i −0.309644 0.309644i
\(509\) −31.1709 −1.38163 −0.690813 0.723034i \(-0.742747\pi\)
−0.690813 + 0.723034i \(0.742747\pi\)
\(510\) 0 0
\(511\) 31.2500 1.38242
\(512\) 0.707107 + 0.707107i 0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 27.5911i 1.21699i
\(515\) 14.4806 + 10.7003i 0.638093 + 0.471513i
\(516\) 0 0
\(517\) −19.1244 + 19.1244i −0.841092 + 0.841092i
\(518\) 4.24079 4.24079i 0.186330 0.186330i
\(519\) 0 0
\(520\) −5.13694 + 0.771189i −0.225270 + 0.0338189i
\(521\) 3.18272i 0.139438i −0.997567 0.0697188i \(-0.977790\pi\)
0.997567 0.0697188i \(-0.0222102\pi\)
\(522\) 0 0
\(523\) 8.17601 + 8.17601i 0.357512 + 0.357512i 0.862895 0.505383i \(-0.168649\pi\)
−0.505383 + 0.862895i \(0.668649\pi\)
\(524\) 1.52919 0.0668029
\(525\) 0 0
\(526\) 8.57189 0.373752
\(527\) −13.9127 13.9127i −0.606047 0.606047i
\(528\) 0 0
\(529\) 29.5300i 1.28391i
\(530\) −31.3176 + 4.70159i −1.36035 + 0.204224i
\(531\) 0 0
\(532\) −1.82552 + 1.82552i −0.0791465 + 0.0791465i
\(533\) 11.9334 11.9334i 0.516893 0.516893i
\(534\) 0 0
\(535\) 28.6581 + 21.1766i 1.23900 + 0.915545i
\(536\) 0 0
\(537\) 0 0
\(538\) −6.39272 6.39272i −0.275610 0.275610i
\(539\) 0.703183 0.0302882
\(540\) 0 0
\(541\) 36.1737 1.55523 0.777614 0.628742i \(-0.216430\pi\)
0.777614 + 0.628742i \(0.216430\pi\)
\(542\) 8.85160 + 8.85160i 0.380209 + 0.380209i
\(543\) 0 0
\(544\) 4.65775i 0.199700i
\(545\) −3.05109 20.3235i −0.130694 0.870564i
\(546\) 0 0
\(547\) −8.84018 + 8.84018i −0.377979 + 0.377979i −0.870372 0.492394i \(-0.836122\pi\)
0.492394 + 0.870372i \(0.336122\pi\)
\(548\) 8.70549 8.70549i 0.371880 0.371880i
\(549\) 0 0
\(550\) 4.91609 9.27534i 0.209623 0.395502i
\(551\) 9.48773i 0.404191i
\(552\) 0 0
\(553\) 2.66458 + 2.66458i 0.113309 + 0.113309i
\(554\) 13.5510 0.575726
\(555\) 0 0
\(556\) 11.8451 0.502344
\(557\) −10.8373 10.8373i −0.459190 0.459190i 0.439200 0.898390i \(-0.355262\pi\)
−0.898390 + 0.439200i \(0.855262\pi\)
\(558\) 0 0
\(559\) 18.7552i 0.793261i
\(560\) −3.43074 + 4.64278i −0.144975 + 0.196193i
\(561\) 0 0
\(562\) −3.08731 + 3.08731i −0.130230 + 0.130230i
\(563\) −3.71984 + 3.71984i −0.156772 + 0.156772i −0.781135 0.624362i \(-0.785359\pi\)
0.624362 + 0.781135i \(0.285359\pi\)
\(564\) 0 0
\(565\) −6.23946 + 8.44380i −0.262496 + 0.355233i
\(566\) 26.3683i 1.10834i
\(567\) 0 0
\(568\) 0.603419 + 0.603419i 0.0253189 + 0.0253189i
\(569\) 24.0334 1.00753 0.503767 0.863839i \(-0.331947\pi\)
0.503767 + 0.863839i \(0.331947\pi\)
\(570\) 0 0
\(571\) −2.37267 −0.0992930 −0.0496465 0.998767i \(-0.515809\pi\)
−0.0496465 + 0.998767i \(0.515809\pi\)
\(572\) −3.44877 3.44877i −0.144200 0.144200i
\(573\) 0 0
\(574\) 18.7552i 0.782828i
\(575\) 16.9708 32.0194i 0.707732 1.33530i
\(576\) 0 0
\(577\) 10.3672 10.3672i 0.431593 0.431593i −0.457577 0.889170i \(-0.651283\pi\)
0.889170 + 0.457577i \(0.151283\pi\)
\(578\) −3.31964 + 3.31964i −0.138079 + 0.138079i
\(579\) 0 0
\(580\) −3.14966 20.9801i −0.130783 0.871152i
\(581\) 23.0586i 0.956633i
\(582\) 0 0
\(583\) −21.0256 21.0256i −0.870791 0.870791i
\(584\) 12.1045 0.500888
\(585\) 0 0
\(586\) −25.3072 −1.04543
\(587\) 21.0872 + 21.0872i 0.870360 + 0.870360i 0.992511 0.122152i \(-0.0389794\pi\)
−0.122152 + 0.992511i \(0.538979\pi\)
\(588\) 0 0
\(589\) 4.22425i 0.174057i
\(590\) 10.0145 + 7.40009i 0.412289 + 0.304657i
\(591\) 0 0
\(592\) 1.64265 1.64265i 0.0675124 0.0675124i
\(593\) 2.52768 2.52768i 0.103799 0.103799i −0.653300 0.757099i \(-0.726616\pi\)
0.757099 + 0.653300i \(0.226616\pi\)
\(594\) 0 0
\(595\) −26.5904 + 3.99191i −1.09010 + 0.163652i
\(596\) 19.3650i 0.793221i
\(597\) 0 0
\(598\) −11.9055 11.9055i −0.486853 0.486853i
\(599\) 4.86149 0.198635 0.0993175 0.995056i \(-0.468334\pi\)
0.0993175 + 0.995056i \(0.468334\pi\)
\(600\) 0 0
\(601\) 15.6846 0.639790 0.319895 0.947453i \(-0.396352\pi\)
0.319895 + 0.947453i \(0.396352\pi\)
\(602\) −14.7384 14.7384i −0.600692 0.600692i
\(603\) 0 0
\(604\) 2.09187i 0.0851170i
\(605\) −14.5768 + 2.18836i −0.592632 + 0.0889696i
\(606\) 0 0
\(607\) 2.15135 2.15135i 0.0873208 0.0873208i −0.662097 0.749418i \(-0.730333\pi\)
0.749418 + 0.662097i \(0.230333\pi\)
\(608\) −0.707107 + 0.707107i −0.0286770 + 0.0286770i
\(609\) 0 0
\(610\) 24.7875 + 18.3165i 1.00362 + 0.741613i
\(611\) 29.9256i 1.21066i
\(612\) 0 0
\(613\) −25.6148 25.6148i −1.03457 1.03457i −0.999381 0.0351923i \(-0.988796\pi\)
−0.0351923 0.999381i \(-0.511204\pi\)
\(614\) −17.6903 −0.713923
\(615\) 0 0
\(616\) −5.42029 −0.218390
\(617\) −4.42755 4.42755i −0.178246 0.178246i 0.612345 0.790591i \(-0.290226\pi\)
−0.790591 + 0.612345i \(0.790226\pi\)
\(618\) 0 0
\(619\) 26.6804i 1.07238i 0.844098 + 0.536189i \(0.180136\pi\)
−0.844098 + 0.536189i \(0.819864\pi\)
\(620\) −1.40233 9.34104i −0.0563191 0.375145i
\(621\) 0 0
\(622\) −21.2361 + 21.2361i −0.851491 + 0.851491i
\(623\) −15.6860 + 15.6860i −0.628448 + 0.628448i
\(624\) 0 0
\(625\) 20.6889 14.0345i 0.827558 0.561380i
\(626\) 3.52782i 0.141000i
\(627\) 0 0
\(628\) 0.0362263 + 0.0362263i 0.00144559 + 0.00144559i
\(629\) 10.8202 0.431430
\(630\) 0 0
\(631\) −44.2590 −1.76192 −0.880962 0.473186i \(-0.843104\pi\)
−0.880962 + 0.473186i \(0.843104\pi\)
\(632\) 1.03211 + 1.03211i 0.0410551 + 0.0410551i
\(633\) 0 0
\(634\) 20.4305i 0.811398i
\(635\) 13.1158 17.7495i 0.520485 0.704367i
\(636\) 0 0
\(637\) 0.550164 0.550164i 0.0217983 0.0217983i
\(638\) 14.0854 14.0854i 0.557645 0.557645i
\(639\) 0 0
\(640\) −1.32888 + 1.79836i −0.0525285 + 0.0710863i
\(641\) 9.64240i 0.380852i −0.981702 0.190426i \(-0.939013\pi\)
0.981702 0.190426i \(-0.0609869\pi\)
\(642\) 0 0
\(643\) 8.17076 + 8.17076i 0.322223 + 0.322223i 0.849619 0.527396i \(-0.176832\pi\)
−0.527396 + 0.849619i \(0.676832\pi\)
\(644\) −18.7114 −0.737333
\(645\) 0 0
\(646\) −4.65775 −0.183257
\(647\) 6.20608 + 6.20608i 0.243986 + 0.243986i 0.818497 0.574511i \(-0.194808\pi\)
−0.574511 + 0.818497i \(0.694808\pi\)
\(648\) 0 0
\(649\) 11.6916i 0.458934i
\(650\) −3.41064 11.1032i −0.133776 0.435505i
\(651\) 0 0
\(652\) −14.6211 + 14.6211i −0.572605 + 0.572605i
\(653\) −14.3615 + 14.3615i −0.562008 + 0.562008i −0.929877 0.367870i \(-0.880087\pi\)
0.367870 + 0.929877i \(0.380087\pi\)
\(654\) 0 0
\(655\) 0.507647 + 3.38147i 0.0198354 + 0.132125i
\(656\) 7.26473i 0.283640i
\(657\) 0 0
\(658\) 23.5164 + 23.5164i 0.916765 + 0.916765i
\(659\) −49.6826 −1.93536 −0.967680 0.252182i \(-0.918852\pi\)
−0.967680 + 0.252182i \(0.918852\pi\)
\(660\) 0 0
\(661\) 33.7100 1.31117 0.655584 0.755122i \(-0.272422\pi\)
0.655584 + 0.755122i \(0.272422\pi\)
\(662\) 12.5885 + 12.5885i 0.489267 + 0.489267i
\(663\) 0 0
\(664\) 8.93164i 0.346615i
\(665\) −4.64278 3.43074i −0.180039 0.133038i
\(666\) 0 0
\(667\) 48.6241 48.6241i 1.88273 1.88273i
\(668\) 8.05215 8.05215i 0.311547 0.311547i
\(669\) 0 0
\(670\) 0 0
\(671\) 28.9386i 1.11716i
\(672\) 0 0
\(673\) −7.48868 7.48868i −0.288667 0.288667i 0.547886 0.836553i \(-0.315433\pi\)
−0.836553 + 0.547886i \(0.815433\pi\)
\(674\) 12.4859 0.480937
\(675\) 0 0
\(676\) 7.60342 0.292439
\(677\) −34.8468 34.8468i −1.33927 1.33927i −0.896766 0.442504i \(-0.854090\pi\)
−0.442504 0.896766i \(-0.645910\pi\)
\(678\) 0 0
\(679\) 40.2259i 1.54373i
\(680\) −10.2996 + 1.54624i −0.394973 + 0.0592957i
\(681\) 0 0
\(682\) 6.27127 6.27127i 0.240139 0.240139i
\(683\) 0.0313944 0.0313944i 0.00120127 0.00120127i −0.706506 0.707707i \(-0.749730\pi\)
0.707707 + 0.706506i \(0.249730\pi\)
\(684\) 0 0
\(685\) 22.1403 + 16.3604i 0.845938 + 0.625097i
\(686\) 18.9364i 0.722996i
\(687\) 0 0
\(688\) −5.70884 5.70884i −0.217647 0.217647i
\(689\) −32.9005 −1.25341
\(690\) 0 0
\(691\) 17.8533 0.679170 0.339585 0.940575i \(-0.389713\pi\)
0.339585 + 0.940575i \(0.389713\pi\)
\(692\) 12.5516 + 12.5516i 0.477139 + 0.477139i
\(693\) 0 0
\(694\) 5.62431i 0.213496i
\(695\) 3.93224 + 26.1929i 0.149158 + 0.993553i
\(696\) 0 0
\(697\) 23.9266 23.9266i 0.906285 0.906285i
\(698\) 11.5891 11.5891i 0.438654 0.438654i
\(699\) 0 0
\(700\) −11.4054 6.04507i −0.431085 0.228482i
\(701\) 32.4158i 1.22433i −0.790730 0.612165i \(-0.790299\pi\)
0.790730 0.612165i \(-0.209701\pi\)
\(702\) 0 0
\(703\) 1.64265 + 1.64265i 0.0619536 + 0.0619536i
\(704\) −2.09952 −0.0791287
\(705\) 0 0
\(706\) 3.17842 0.119621
\(707\) 26.6446 + 26.6446i 1.00208 + 1.00208i
\(708\) 0 0
\(709\) 5.58539i 0.209764i 0.994485 + 0.104882i \(0.0334464\pi\)
−0.994485 + 0.104882i \(0.966554\pi\)
\(710\) −1.13402 + 1.53465i −0.0425588 + 0.0575945i
\(711\) 0 0
\(712\) −6.07590 + 6.07590i −0.227704 + 0.227704i
\(713\) 21.6490 21.6490i 0.810763 0.810763i
\(714\) 0 0
\(715\) 6.48134 8.77113i 0.242388 0.328022i
\(716\) 11.9025i 0.444819i
\(717\) 0 0
\(718\) −10.8945 10.8945i −0.406579 0.406579i
\(719\) −28.8576 −1.07621 −0.538104 0.842878i \(-0.680859\pi\)
−0.538104 + 0.842878i \(0.680859\pi\)
\(720\) 0 0
\(721\) 20.7881 0.774189
\(722\) −0.707107 0.707107i −0.0263158 0.0263158i
\(723\) 0 0
\(724\) 4.82767i 0.179419i
\(725\) 45.3475 13.9296i 1.68416 0.517333i
\(726\) 0 0
\(727\) 20.3720 20.3720i 0.755555 0.755555i −0.219955 0.975510i \(-0.570591\pi\)
0.975510 + 0.219955i \(0.0705910\pi\)
\(728\) −4.24079 + 4.24079i −0.157174 + 0.157174i
\(729\) 0 0
\(730\) 4.01836 + 26.7665i 0.148726 + 0.990674i
\(731\) 37.6045i 1.39085i
\(732\) 0 0
\(733\) −11.7713 11.7713i −0.434784 0.434784i 0.455468 0.890252i \(-0.349472\pi\)
−0.890252 + 0.455468i \(0.849472\pi\)
\(734\) −10.3094 −0.380527
\(735\) 0 0
\(736\) −7.24776 −0.267156
\(737\) 0 0
\(738\) 0 0
\(739\) 30.7303i 1.13043i 0.824943 + 0.565216i \(0.191207\pi\)
−0.824943 + 0.565216i \(0.808793\pi\)
\(740\) 4.17768 + 3.08705i 0.153575 + 0.113482i
\(741\) 0 0
\(742\) −25.8542 + 25.8542i −0.949136 + 0.949136i
\(743\) −33.6074 + 33.6074i −1.23294 + 1.23294i −0.270105 + 0.962831i \(0.587058\pi\)
−0.962831 + 0.270105i \(0.912942\pi\)
\(744\) 0 0
\(745\) 42.8216 6.42864i 1.56886 0.235527i
\(746\) 8.42894i 0.308605i
\(747\) 0 0
\(748\) −6.91484 6.91484i −0.252831 0.252831i
\(749\) 41.1410 1.50326
\(750\) 0 0
\(751\) 39.7645 1.45103 0.725513 0.688208i \(-0.241603\pi\)
0.725513 + 0.688208i \(0.241603\pi\)
\(752\) 9.10895 + 9.10895i 0.332169 + 0.332169i
\(753\) 0 0
\(754\) 22.0405i 0.802668i
\(755\) −4.62573 + 0.694442i −0.168347 + 0.0252733i
\(756\) 0 0
\(757\) 4.66245 4.66245i 0.169460 0.169460i −0.617282 0.786742i \(-0.711766\pi\)
0.786742 + 0.617282i \(0.211766\pi\)
\(758\) −13.0518 + 13.0518i −0.474064 + 0.474064i
\(759\) 0 0
\(760\) −1.79836 1.32888i −0.0652332 0.0482034i
\(761\) 19.9340i 0.722607i 0.932448 + 0.361303i \(0.117668\pi\)
−0.932448 + 0.361303i \(0.882332\pi\)
\(762\) 0 0
\(763\) −16.7780 16.7780i −0.607406 0.607406i
\(764\) 7.88988 0.285446
\(765\) 0 0
\(766\) 4.86700 0.175852
\(767\) 9.14738 + 9.14738i 0.330293 + 0.330293i
\(768\) 0 0
\(769\) 45.7105i 1.64836i −0.566325 0.824182i \(-0.691635\pi\)
0.566325 0.824182i \(-0.308365\pi\)
\(770\) −1.79939 11.9858i −0.0648454 0.431939i
\(771\) 0 0
\(772\) 1.49129 1.49129i 0.0536728 0.0536728i
\(773\) −11.3039 + 11.3039i −0.406574 + 0.406574i −0.880542 0.473968i \(-0.842821\pi\)
0.473968 + 0.880542i \(0.342821\pi\)
\(774\) 0 0
\(775\) 20.1902 6.20193i 0.725253 0.222780i
\(776\) 15.5813i 0.559336i
\(777\) 0 0
\(778\) 9.85274 + 9.85274i 0.353238 + 0.353238i
\(779\) 7.26473 0.260286
\(780\) 0 0
\(781\) −1.79166 −0.0641105
\(782\) −23.8707 23.8707i −0.853615 0.853615i
\(783\) 0 0
\(784\) 0.334925i 0.0119616i
\(785\) −0.0680806 + 0.0921328i −0.00242990 + 0.00328836i
\(786\) 0 0
\(787\) −21.8619 + 21.8619i −0.779292 + 0.779292i −0.979710 0.200418i \(-0.935770\pi\)
0.200418 + 0.979710i \(0.435770\pi\)
\(788\) 14.4190 14.4190i 0.513656 0.513656i
\(789\) 0 0
\(790\) −1.93966 + 2.62492i −0.0690100 + 0.0933906i
\(791\) 12.1217i 0.430999i
\(792\) 0 0
\(793\) 22.6413 + 22.6413i 0.804017 + 0.804017i
\(794\) −4.66323 −0.165492
\(795\) 0 0
\(796\) −2.84447 −0.100820
\(797\) −13.3091 13.3091i −0.471433 0.471433i 0.430945 0.902378i \(-0.358180\pi\)
−0.902378 + 0.430945i \(0.858180\pi\)
\(798\) 0 0
\(799\) 60.0012i 2.12269i
\(800\) −4.41783 2.34153i −0.156194 0.0827854i
\(801\) 0 0
\(802\) −12.4028 + 12.4028i −0.437959 + 0.437959i
\(803\) −17.9702 + 17.9702i −0.634154 + 0.634154i
\(804\) 0 0
\(805\) −6.21166 41.3763i −0.218932 1.45832i
\(806\) 9.81317i 0.345654i
\(807\) 0 0
\(808\) 10.3207 + 10.3207i 0.363080 + 0.363080i
\(809\) 27.0517 0.951089 0.475544 0.879692i \(-0.342251\pi\)
0.475544 + 0.879692i \(0.342251\pi\)
\(810\) 0 0
\(811\) 21.6005 0.758496 0.379248 0.925295i \(-0.376183\pi\)
0.379248 + 0.925295i \(0.376183\pi\)
\(812\) −17.3201 17.3201i −0.607816 0.607816i
\(813\) 0 0
\(814\) 4.87730i 0.170949i
\(815\) −37.1852 27.4776i −1.30254 0.962498i
\(816\) 0 0
\(817\) 5.70884 5.70884i 0.199727 0.199727i
\(818\) 10.1103 10.1103i 0.353498 0.353498i
\(819\) 0 0
\(820\) 16.0644 2.41169i 0.560994 0.0842198i
\(821\) 3.62159i 0.126394i 0.998001 + 0.0631972i \(0.0201297\pi\)
−0.998001 + 0.0631972i \(0.979870\pi\)
\(822\) 0 0
\(823\) 19.7193 + 19.7193i 0.687372 + 0.687372i 0.961650 0.274278i \(-0.0884390\pi\)
−0.274278 + 0.961650i \(0.588439\pi\)
\(824\) 8.05215 0.280510
\(825\) 0 0
\(826\) 14.3765 0.500224
\(827\) 20.6069 + 20.6069i 0.716572 + 0.716572i 0.967902 0.251329i \(-0.0808677\pi\)
−0.251329 + 0.967902i \(0.580868\pi\)
\(828\) 0 0
\(829\) 38.1819i 1.32611i −0.748570 0.663055i \(-0.769259\pi\)
0.748570 0.663055i \(-0.230741\pi\)
\(830\) −19.7504 + 2.96505i −0.685547 + 0.102919i
\(831\) 0 0
\(832\) −1.64265 + 1.64265i −0.0569486 + 0.0569486i
\(833\) 1.10309 1.10309i 0.0382197 0.0382197i
\(834\) 0 0
\(835\) 20.4787 + 15.1325i 0.708695 + 0.523683i
\(836\) 2.09952i 0.0726135i
\(837\) 0 0
\(838\) 5.00755 + 5.00755i 0.172983 + 0.172983i
\(839\) 48.7158 1.68186 0.840928 0.541147i \(-0.182010\pi\)
0.840928 + 0.541147i \(0.182010\pi\)
\(840\) 0 0
\(841\) 61.0171 2.10404
\(842\) 4.84064 + 4.84064i 0.166820 + 0.166820i
\(843\) 0 0
\(844\) 10.7289i 0.369304i
\(845\) 2.52412 + 16.8133i 0.0868324 + 0.578397i
\(846\) 0 0
\(847\) −12.0339 + 12.0339i −0.413489 + 0.413489i
\(848\) −10.0145 + 10.0145i −0.343898 + 0.343898i
\(849\) 0 0
\(850\) −6.83838 22.2622i −0.234555 0.763586i
\(851\) 16.8369i 0.577163i
\(852\) 0 0
\(853\) −11.2720 11.2720i −0.385945 0.385945i 0.487294 0.873238i \(-0.337984\pi\)
−0.873238 + 0.487294i \(0.837984\pi\)
\(854\) 35.5844 1.21767
\(855\) 0 0
\(856\) 15.9357 0.544672
\(857\) 8.44951 + 8.44951i 0.288630 + 0.288630i 0.836538 0.547908i \(-0.184576\pi\)
−0.547908 + 0.836538i \(0.684576\pi\)
\(858\) 0 0
\(859\) 48.2324i 1.64567i 0.568282 + 0.822834i \(0.307608\pi\)
−0.568282 + 0.822834i \(0.692392\pi\)
\(860\) 10.7287 14.5191i 0.365846 0.495096i
\(861\) 0 0
\(862\) −13.0913 + 13.0913i −0.445890 + 0.445890i
\(863\) 3.19558 3.19558i 0.108779 0.108779i −0.650622 0.759401i \(-0.725492\pi\)
0.759401 + 0.650622i \(0.225492\pi\)
\(864\) 0 0
\(865\) −23.5884 + 31.9219i −0.802029 + 1.08538i
\(866\) 6.60992i 0.224614i
\(867\) 0 0
\(868\) −7.71148 7.71148i −0.261745 0.261745i
\(869\) −3.06451 −0.103956
\(870\) 0 0
\(871\) 0 0
\(872\) −6.49888 6.49888i −0.220080 0.220080i
\(873\) 0 0
\(874\) 7.24776i 0.245159i
\(875\) 9.58111 27.2275i 0.323901 0.920457i
\(876\) 0 0
\(877\) 13.8213 13.8213i 0.466711 0.466711i −0.434136 0.900847i \(-0.642946\pi\)
0.900847 + 0.434136i \(0.142946\pi\)
\(878\) 22.9354 22.9354i 0.774032 0.774032i
\(879\) 0 0
\(880\) −0.696982 4.64265i −0.0234953 0.156504i
\(881\) 13.9308i 0.469341i 0.972075 + 0.234670i \(0.0754011\pi\)
−0.972075 + 0.234670i \(0.924599\pi\)
\(882\) 0 0
\(883\) −8.79801 8.79801i −0.296076 0.296076i 0.543398 0.839475i \(-0.317137\pi\)
−0.839475 + 0.543398i \(0.817137\pi\)
\(884\) −10.8202 −0.363923
\(885\) 0 0
\(886\) −3.39188 −0.113952
\(887\) −19.4915 19.4915i −0.654461 0.654461i 0.299603 0.954064i \(-0.403146\pi\)
−0.954064 + 0.299603i \(0.903146\pi\)
\(888\) 0 0
\(889\) 25.4808i 0.854597i
\(890\) −15.4526 11.4185i −0.517972 0.382750i
\(891\) 0 0
\(892\) −13.0260 + 13.0260i −0.436144 + 0.436144i
\(893\) −9.10895 + 9.10895i −0.304820 + 0.304820i
\(894\) 0 0
\(895\) 26.3200 3.95131i 0.879779 0.132078i
\(896\) 2.58168i 0.0862479i
\(897\) 0 0
\(898\) 19.3163 + 19.3163i 0.644595 + 0.644595i
\(899\) 40.0786 1.33670
\(900\) 0 0
\(901\) −65.9659 −2.19764
\(902\) 10.7851 + 10.7851i 0.359105 + 0.359105i
\(903\) 0 0
\(904\) 4.69529i 0.156163i
\(905\) 10.6754 1.60265i 0.354861 0.0532740i
\(906\) 0 0
\(907\) −12.0103 + 12.0103i −0.398795 + 0.398795i −0.877808 0.479013i \(-0.840995\pi\)
0.479013 + 0.877808i \(0.340995\pi\)
\(908\) −20.4647 + 20.4647i −0.679144 + 0.679144i
\(909\) 0 0
\(910\) −10.7854 7.96979i −0.357534 0.264196i
\(911\) 30.3411i 1.00525i −0.864506 0.502623i \(-0.832369\pi\)
0.864506 0.502623i \(-0.167631\pi\)
\(912\) 0 0
\(913\) −13.2598 13.2598i −0.438835 0.438835i
\(914\) 6.06402 0.200580
\(915\) 0 0
\(916\) 1.89472 0.0626032
\(917\) 2.79157 + 2.79157i 0.0921857 + 0.0921857i
\(918\) 0 0
\(919\) 54.6727i 1.80349i 0.432272 + 0.901743i \(0.357712\pi\)
−0.432272 + 0.901743i \(0.642288\pi\)
\(920\) −2.40605 16.0269i −0.0793252 0.528391i
\(921\) 0 0
\(922\) −18.4104 + 18.4104i −0.606316 + 0.606316i
\(923\) −1.40178 + 1.40178i −0.0461400 + 0.0461400i
\(924\) 0 0
\(925\) −5.43949 + 10.2629i −0.178849 + 0.337441i
\(926\) 11.1200i 0.365427i
\(927\) 0 0
\(928\) −6.70884 6.70884i −0.220228 0.220228i
\(929\) 15.0006 0.492153 0.246077 0.969250i \(-0.420859\pi\)
0.246077 + 0.969250i \(0.420859\pi\)
\(930\) 0 0
\(931\) 0.334925 0.0109767
\(932\) 2.12791 + 2.12791i 0.0697021 + 0.0697021i
\(933\) 0 0
\(934\) 6.47140i 0.211751i
\(935\) 12.9952 17.5862i 0.424987 0.575131i
\(936\) 0 0
\(937\) −15.4325 + 15.4325i −0.504157 + 0.504157i −0.912727 0.408570i \(-0.866028\pi\)
0.408570 + 0.912727i \(0.366028\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −17.1186 + 23.1664i −0.558347 + 0.755606i
\(941\) 44.9592i 1.46563i −0.680428 0.732815i \(-0.738206\pi\)
0.680428 0.732815i \(-0.261794\pi\)
\(942\) 0 0
\(943\) 37.2313 + 37.2313i 1.21242 + 1.21242i
\(944\) 5.56868 0.181245
\(945\) 0 0
\(946\) 16.9505 0.551109
\(947\) −28.0152 28.0152i −0.910372 0.910372i 0.0859292 0.996301i \(-0.472614\pi\)
−0.996301 + 0.0859292i \(0.972614\pi\)
\(948\) 0 0
\(949\) 28.1194i 0.912795i
\(950\) 2.34153 4.41783i 0.0759691 0.143333i
\(951\) 0 0
\(952\) −8.50284 + 8.50284i −0.275579 + 0.275579i
\(953\) 14.5780 14.5780i 0.472227 0.472227i −0.430408 0.902635i \(-0.641630\pi\)
0.902635 + 0.430408i \(0.141630\pi\)
\(954\) 0 0
\(955\) 2.61922 + 17.4468i 0.0847560 + 0.564565i
\(956\) 14.0763i 0.455260i
\(957\) 0 0
\(958\) 16.7031 + 16.7031i 0.539652 + 0.539652i
\(959\) 31.7841 1.02636
\(960\) 0 0
\(961\) −13.1557 −0.424377
\(962\) 3.81596 + 3.81596i 0.123031 + 0.123031i
\(963\) 0 0
\(964\) 11.1960i 0.360600i
\(965\) 3.79274 + 2.80261i 0.122093 + 0.0902192i
\(966\) 0 0
\(967\) −5.38393 + 5.38393i −0.173136 + 0.173136i −0.788356 0.615220i \(-0.789067\pi\)
0.615220 + 0.788356i \(0.289067\pi\)
\(968\) −4.66125 + 4.66125i −0.149818 + 0.149818i
\(969\) 0 0
\(970\) −34.4547 + 5.17255i −1.10627 + 0.166081i
\(971\) 47.0342i 1.50940i −0.656070 0.754700i \(-0.727782\pi\)
0.656070 0.754700i \(-0.272218\pi\)
\(972\) 0 0
\(973\) 21.6235 + 21.6235i 0.693217 + 0.693217i
\(974\) −21.1476 −0.677612
\(975\) 0 0
\(976\) 13.7834 0.441197
\(977\) −26.0939 26.0939i −0.834816 0.834816i 0.153355 0.988171i \(-0.450992\pi\)
−0.988171 + 0.153355i \(0.950992\pi\)
\(978\) 0 0
\(979\) 18.0404i 0.576574i
\(980\) 0.740616 0.111186i 0.0236581 0.00355170i
\(981\) 0 0
\(982\) 26.3911 26.3911i 0.842173 0.842173i
\(983\) −7.67835 + 7.67835i −0.244901 + 0.244901i −0.818874 0.573973i \(-0.805401\pi\)
0.573973 + 0.818874i \(0.305401\pi\)
\(984\) 0 0
\(985\) 36.6713 + 27.0979i 1.16844 + 0.863410i
\(986\) 44.1915i 1.40734i
\(987\) 0 0
\(988\) −1.64265 1.64265i −0.0522596 0.0522596i
\(989\) 58.5149 1.86067
\(990\) 0 0
\(991\) −16.9894 −0.539685 −0.269842 0.962904i \(-0.586972\pi\)
−0.269842 + 0.962904i \(0.586972\pi\)
\(992\) −2.98700 2.98700i −0.0948373 0.0948373i
\(993\) 0 0
\(994\) 2.20311i 0.0698785i
\(995\) −0.944285 6.28995i −0.0299359 0.199405i
\(996\) 0 0
\(997\) 3.67554 3.67554i 0.116406 0.116406i −0.646505 0.762910i \(-0.723770\pi\)
0.762910 + 0.646505i \(0.223770\pi\)
\(998\) −17.4737 + 17.4737i −0.553121 + 0.553121i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.n.i.1673.6 yes 20
3.2 odd 2 inner 1710.2.n.i.1673.5 yes 20
5.2 odd 4 inner 1710.2.n.i.647.5 20
15.2 even 4 inner 1710.2.n.i.647.6 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.n.i.647.5 20 5.2 odd 4 inner
1710.2.n.i.647.6 yes 20 15.2 even 4 inner
1710.2.n.i.1673.5 yes 20 3.2 odd 2 inner
1710.2.n.i.1673.6 yes 20 1.1 even 1 trivial