Properties

Label 1710.2.n.i.647.7
Level $1710$
Weight $2$
Character 1710.647
Analytic conductor $13.654$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} - 10 x^{18} + 56 x^{17} + 50 x^{16} - 336 x^{15} + 672 x^{14} - 776 x^{13} + 626 x^{12} + \cdots + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.7
Root \(0.897013 + 0.371555i\) of defining polynomial
Character \(\chi\) \(=\) 1710.647
Dual form 1710.2.n.i.1673.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(-1.16531 + 1.90842i) q^{5} +(2.34049 + 2.34049i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(0.525458 + 2.17345i) q^{10} +2.48235i q^{11} +(0.107294 - 0.107294i) q^{13} +3.30996 q^{14} -1.00000 q^{16} +(-4.48794 + 4.48794i) q^{17} +1.00000i q^{19} +(1.90842 + 1.16531i) q^{20} +(1.75529 + 1.75529i) q^{22} +(-4.05307 - 4.05307i) q^{23} +(-2.28411 - 4.44779i) q^{25} -0.151737i q^{26} +(2.34049 - 2.34049i) q^{28} -4.04058 q^{29} -5.61241 q^{31} +(-0.707107 + 0.707107i) q^{32} +6.34690i q^{34} +(-7.19403 + 1.73924i) q^{35} +(0.107294 + 0.107294i) q^{37} +(0.707107 + 0.707107i) q^{38} +(2.17345 - 0.525458i) q^{40} +0.250062i q^{41} +(-3.85712 + 3.85712i) q^{43} +2.48235 q^{44} -5.73190 q^{46} +(-3.34779 + 3.34779i) q^{47} +3.95582i q^{49} +(-4.76017 - 1.52995i) q^{50} +(-0.107294 - 0.107294i) q^{52} +(3.82456 + 3.82456i) q^{53} +(-4.73737 - 2.89271i) q^{55} -3.30996i q^{56} +(-2.85712 + 2.85712i) q^{58} +7.27853 q^{59} +10.1806 q^{61} +(-3.96857 + 3.96857i) q^{62} +1.00000i q^{64} +(0.0797315 + 0.329794i) q^{65} +(4.48794 + 4.48794i) q^{68} +(-3.85712 + 6.31678i) q^{70} +8.45272i q^{71} +(5.56823 - 5.56823i) q^{73} +0.151737 q^{74} +1.00000 q^{76} +(-5.80993 + 5.80993i) q^{77} +15.3376i q^{79} +(1.16531 - 1.90842i) q^{80} +(0.176821 + 0.176821i) q^{82} +(-0.00476373 - 0.00476373i) q^{83} +(-3.33503 - 13.7947i) q^{85} +5.45479i q^{86} +(1.75529 - 1.75529i) q^{88} -7.88373 q^{89} +0.502244 q^{91} +(-4.05307 + 4.05307i) q^{92} +4.73450i q^{94} +(-1.90842 - 1.16531i) q^{95} +(-5.19120 - 5.19120i) q^{97} +(2.79719 + 2.79719i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{10} - 12 q^{13} - 20 q^{16} - 16 q^{22} + 16 q^{31} - 12 q^{37} - 8 q^{46} + 12 q^{52} + 20 q^{58} - 16 q^{61} + 20 q^{73} + 20 q^{76} - 28 q^{82} - 8 q^{85} - 16 q^{88} + 32 q^{91} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) −1.16531 + 1.90842i −0.521142 + 0.853470i
\(6\) 0 0
\(7\) 2.34049 + 2.34049i 0.884623 + 0.884623i 0.994000 0.109377i \(-0.0348855\pi\)
−0.109377 + 0.994000i \(0.534886\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 0.525458 + 2.17345i 0.166164 + 0.687306i
\(11\) 2.48235i 0.748458i 0.927336 + 0.374229i \(0.122093\pi\)
−0.927336 + 0.374229i \(0.877907\pi\)
\(12\) 0 0
\(13\) 0.107294 0.107294i 0.0297581 0.0297581i −0.692071 0.721829i \(-0.743302\pi\)
0.721829 + 0.692071i \(0.243302\pi\)
\(14\) 3.30996 0.884623
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −4.48794 + 4.48794i −1.08849 + 1.08849i −0.0928004 + 0.995685i \(0.529582\pi\)
−0.995685 + 0.0928004i \(0.970418\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 1.90842 + 1.16531i 0.426735 + 0.260571i
\(21\) 0 0
\(22\) 1.75529 + 1.75529i 0.374229 + 0.374229i
\(23\) −4.05307 4.05307i −0.845123 0.845123i 0.144397 0.989520i \(-0.453876\pi\)
−0.989520 + 0.144397i \(0.953876\pi\)
\(24\) 0 0
\(25\) −2.28411 4.44779i −0.456823 0.889558i
\(26\) 0.151737i 0.0297581i
\(27\) 0 0
\(28\) 2.34049 2.34049i 0.442312 0.442312i
\(29\) −4.04058 −0.750316 −0.375158 0.926961i \(-0.622412\pi\)
−0.375158 + 0.926961i \(0.622412\pi\)
\(30\) 0 0
\(31\) −5.61241 −1.00802 −0.504009 0.863698i \(-0.668142\pi\)
−0.504009 + 0.863698i \(0.668142\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 6.34690i 1.08849i
\(35\) −7.19403 + 1.73924i −1.21601 + 0.293986i
\(36\) 0 0
\(37\) 0.107294 + 0.107294i 0.0176391 + 0.0176391i 0.715871 0.698232i \(-0.246030\pi\)
−0.698232 + 0.715871i \(0.746030\pi\)
\(38\) 0.707107 + 0.707107i 0.114708 + 0.114708i
\(39\) 0 0
\(40\) 2.17345 0.525458i 0.343653 0.0830822i
\(41\) 0.250062i 0.0390531i 0.999809 + 0.0195266i \(0.00621589\pi\)
−0.999809 + 0.0195266i \(0.993784\pi\)
\(42\) 0 0
\(43\) −3.85712 + 3.85712i −0.588205 + 0.588205i −0.937145 0.348940i \(-0.886542\pi\)
0.348940 + 0.937145i \(0.386542\pi\)
\(44\) 2.48235 0.374229
\(45\) 0 0
\(46\) −5.73190 −0.845123
\(47\) −3.34779 + 3.34779i −0.488326 + 0.488326i −0.907778 0.419452i \(-0.862222\pi\)
0.419452 + 0.907778i \(0.362222\pi\)
\(48\) 0 0
\(49\) 3.95582i 0.565117i
\(50\) −4.76017 1.52995i −0.673190 0.216367i
\(51\) 0 0
\(52\) −0.107294 0.107294i −0.0148791 0.0148791i
\(53\) 3.82456 + 3.82456i 0.525344 + 0.525344i 0.919180 0.393837i \(-0.128852\pi\)
−0.393837 + 0.919180i \(0.628852\pi\)
\(54\) 0 0
\(55\) −4.73737 2.89271i −0.638786 0.390052i
\(56\) 3.30996i 0.442312i
\(57\) 0 0
\(58\) −2.85712 + 2.85712i −0.375158 + 0.375158i
\(59\) 7.27853 0.947584 0.473792 0.880637i \(-0.342885\pi\)
0.473792 + 0.880637i \(0.342885\pi\)
\(60\) 0 0
\(61\) 10.1806 1.30350 0.651749 0.758435i \(-0.274036\pi\)
0.651749 + 0.758435i \(0.274036\pi\)
\(62\) −3.96857 + 3.96857i −0.504009 + 0.504009i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 0.0797315 + 0.329794i 0.00988948 + 0.0409059i
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 4.48794 + 4.48794i 0.544243 + 0.544243i
\(69\) 0 0
\(70\) −3.85712 + 6.31678i −0.461014 + 0.755000i
\(71\) 8.45272i 1.00315i 0.865113 + 0.501577i \(0.167246\pi\)
−0.865113 + 0.501577i \(0.832754\pi\)
\(72\) 0 0
\(73\) 5.56823 5.56823i 0.651712 0.651712i −0.301693 0.953405i \(-0.597552\pi\)
0.953405 + 0.301693i \(0.0975518\pi\)
\(74\) 0.151737 0.0176391
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −5.80993 + 5.80993i −0.662103 + 0.662103i
\(78\) 0 0
\(79\) 15.3376i 1.72561i 0.505535 + 0.862806i \(0.331295\pi\)
−0.505535 + 0.862806i \(0.668705\pi\)
\(80\) 1.16531 1.90842i 0.130285 0.213368i
\(81\) 0 0
\(82\) 0.176821 + 0.176821i 0.0195266 + 0.0195266i
\(83\) −0.00476373 0.00476373i −0.000522887 0.000522887i 0.706845 0.707368i \(-0.250118\pi\)
−0.707368 + 0.706845i \(0.750118\pi\)
\(84\) 0 0
\(85\) −3.33503 13.7947i −0.361735 1.49624i
\(86\) 5.45479i 0.588205i
\(87\) 0 0
\(88\) 1.75529 1.75529i 0.187114 0.187114i
\(89\) −7.88373 −0.835674 −0.417837 0.908522i \(-0.637212\pi\)
−0.417837 + 0.908522i \(0.637212\pi\)
\(90\) 0 0
\(91\) 0.502244 0.0526495
\(92\) −4.05307 + 4.05307i −0.422561 + 0.422561i
\(93\) 0 0
\(94\) 4.73450i 0.488326i
\(95\) −1.90842 1.16531i −0.195800 0.119558i
\(96\) 0 0
\(97\) −5.19120 5.19120i −0.527087 0.527087i 0.392616 0.919703i \(-0.371570\pi\)
−0.919703 + 0.392616i \(0.871570\pi\)
\(98\) 2.79719 + 2.79719i 0.282559 + 0.282559i
\(99\) 0 0
\(100\) −4.44779 + 2.28411i −0.444779 + 0.228411i
\(101\) 0.641823i 0.0638637i −0.999490 0.0319319i \(-0.989834\pi\)
0.999490 0.0319319i \(-0.0101660\pi\)
\(102\) 0 0
\(103\) 7.31132 7.31132i 0.720406 0.720406i −0.248282 0.968688i \(-0.579866\pi\)
0.968688 + 0.248282i \(0.0798660\pi\)
\(104\) −0.151737 −0.0148791
\(105\) 0 0
\(106\) 5.40875 0.525344
\(107\) −8.14827 + 8.14827i −0.787723 + 0.787723i −0.981121 0.193397i \(-0.938049\pi\)
0.193397 + 0.981121i \(0.438049\pi\)
\(108\) 0 0
\(109\) 5.59959i 0.536343i 0.963371 + 0.268172i \(0.0864194\pi\)
−0.963371 + 0.268172i \(0.913581\pi\)
\(110\) −5.39528 + 1.30437i −0.514419 + 0.124367i
\(111\) 0 0
\(112\) −2.34049 2.34049i −0.221156 0.221156i
\(113\) 11.2177 + 11.2177i 1.05527 + 1.05527i 0.998380 + 0.0568918i \(0.0181190\pi\)
0.0568918 + 0.998380i \(0.481881\pi\)
\(114\) 0 0
\(115\) 12.4580 3.01187i 1.16172 0.280859i
\(116\) 4.04058i 0.375158i
\(117\) 0 0
\(118\) 5.14670 5.14670i 0.473792 0.473792i
\(119\) −21.0080 −1.92580
\(120\) 0 0
\(121\) 4.83792 0.439811
\(122\) 7.19880 7.19880i 0.651749 0.651749i
\(123\) 0 0
\(124\) 5.61241i 0.504009i
\(125\) 11.1499 + 0.823998i 0.997280 + 0.0737006i
\(126\) 0 0
\(127\) 9.52591 + 9.52591i 0.845288 + 0.845288i 0.989541 0.144253i \(-0.0460780\pi\)
−0.144253 + 0.989541i \(0.546078\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) 0.289578 + 0.176821i 0.0253977 + 0.0155082i
\(131\) 4.66072i 0.407209i −0.979053 0.203605i \(-0.934734\pi\)
0.979053 0.203605i \(-0.0652657\pi\)
\(132\) 0 0
\(133\) −2.34049 + 2.34049i −0.202947 + 0.202947i
\(134\) 0 0
\(135\) 0 0
\(136\) 6.34690 0.544243
\(137\) −7.89391 + 7.89391i −0.674422 + 0.674422i −0.958732 0.284310i \(-0.908235\pi\)
0.284310 + 0.958732i \(0.408235\pi\)
\(138\) 0 0
\(139\) 13.2018i 1.11976i −0.828573 0.559881i \(-0.810847\pi\)
0.828573 0.559881i \(-0.189153\pi\)
\(140\) 1.73924 + 7.19403i 0.146993 + 0.608007i
\(141\) 0 0
\(142\) 5.97698 + 5.97698i 0.501577 + 0.501577i
\(143\) 0.266343 + 0.266343i 0.0222727 + 0.0222727i
\(144\) 0 0
\(145\) 4.70852 7.71111i 0.391021 0.640373i
\(146\) 7.87467i 0.651712i
\(147\) 0 0
\(148\) 0.107294 0.107294i 0.00881955 0.00881955i
\(149\) −11.4660 −0.939328 −0.469664 0.882845i \(-0.655625\pi\)
−0.469664 + 0.882845i \(0.655625\pi\)
\(150\) 0 0
\(151\) 7.88724 0.641855 0.320927 0.947104i \(-0.396005\pi\)
0.320927 + 0.947104i \(0.396005\pi\)
\(152\) 0.707107 0.707107i 0.0573539 0.0573539i
\(153\) 0 0
\(154\) 8.21648i 0.662103i
\(155\) 6.54018 10.7108i 0.525320 0.860314i
\(156\) 0 0
\(157\) 6.76844 + 6.76844i 0.540180 + 0.540180i 0.923582 0.383402i \(-0.125248\pi\)
−0.383402 + 0.923582i \(0.625248\pi\)
\(158\) 10.8453 + 10.8453i 0.862806 + 0.862806i
\(159\) 0 0
\(160\) −0.525458 2.17345i −0.0415411 0.171826i
\(161\) 18.9724i 1.49523i
\(162\) 0 0
\(163\) 3.78577 3.78577i 0.296525 0.296525i −0.543126 0.839651i \(-0.682760\pi\)
0.839651 + 0.543126i \(0.182760\pi\)
\(164\) 0.250062 0.0195266
\(165\) 0 0
\(166\) −0.00673693 −0.000522887
\(167\) 10.3398 10.3398i 0.800115 0.800115i −0.182998 0.983113i \(-0.558580\pi\)
0.983113 + 0.182998i \(0.0585802\pi\)
\(168\) 0 0
\(169\) 12.9770i 0.998229i
\(170\) −12.1125 7.39610i −0.928990 0.567255i
\(171\) 0 0
\(172\) 3.85712 + 3.85712i 0.294103 + 0.294103i
\(173\) −13.1428 13.1428i −0.999232 0.999232i 0.000767569 1.00000i \(-0.499756\pi\)
−1.00000 0.000767569i \(0.999756\pi\)
\(174\) 0 0
\(175\) 5.06406 15.7560i 0.382807 1.19104i
\(176\) 2.48235i 0.187114i
\(177\) 0 0
\(178\) −5.57464 + 5.57464i −0.417837 + 0.417837i
\(179\) 19.0397 1.42310 0.711548 0.702638i \(-0.247994\pi\)
0.711548 + 0.702638i \(0.247994\pi\)
\(180\) 0 0
\(181\) −0.364567 −0.0270981 −0.0135490 0.999908i \(-0.504313\pi\)
−0.0135490 + 0.999908i \(0.504313\pi\)
\(182\) 0.355140 0.355140i 0.0263247 0.0263247i
\(183\) 0 0
\(184\) 5.73190i 0.422561i
\(185\) −0.329794 + 0.0797315i −0.0242469 + 0.00586198i
\(186\) 0 0
\(187\) −11.1406 11.1406i −0.814685 0.814685i
\(188\) 3.34779 + 3.34779i 0.244163 + 0.244163i
\(189\) 0 0
\(190\) −2.17345 + 0.525458i −0.157679 + 0.0381207i
\(191\) 11.3178i 0.818925i −0.912327 0.409462i \(-0.865716\pi\)
0.912327 0.409462i \(-0.134284\pi\)
\(192\) 0 0
\(193\) −11.7832 + 11.7832i −0.848172 + 0.848172i −0.989905 0.141733i \(-0.954733\pi\)
0.141733 + 0.989905i \(0.454733\pi\)
\(194\) −7.34147 −0.527087
\(195\) 0 0
\(196\) 3.95582 0.282559
\(197\) 0.772516 0.772516i 0.0550395 0.0550395i −0.679051 0.734091i \(-0.737609\pi\)
0.734091 + 0.679051i \(0.237609\pi\)
\(198\) 0 0
\(199\) 14.7828i 1.04793i 0.851741 + 0.523963i \(0.175547\pi\)
−0.851741 + 0.523963i \(0.824453\pi\)
\(200\) −1.52995 + 4.76017i −0.108184 + 0.336595i
\(201\) 0 0
\(202\) −0.453837 0.453837i −0.0319319 0.0319319i
\(203\) −9.45695 9.45695i −0.663748 0.663748i
\(204\) 0 0
\(205\) −0.477223 0.291399i −0.0333307 0.0203522i
\(206\) 10.3398i 0.720406i
\(207\) 0 0
\(208\) −0.107294 + 0.107294i −0.00743953 + 0.00743953i
\(209\) −2.48235 −0.171708
\(210\) 0 0
\(211\) 4.43055 0.305012 0.152506 0.988303i \(-0.451266\pi\)
0.152506 + 0.988303i \(0.451266\pi\)
\(212\) 3.82456 3.82456i 0.262672 0.262672i
\(213\) 0 0
\(214\) 11.5234i 0.787723i
\(215\) −2.86626 11.8557i −0.195478 0.808554i
\(216\) 0 0
\(217\) −13.1358 13.1358i −0.891717 0.891717i
\(218\) 3.95951 + 3.95951i 0.268172 + 0.268172i
\(219\) 0 0
\(220\) −2.89271 + 4.73737i −0.195026 + 0.319393i
\(221\) 0.963062i 0.0647825i
\(222\) 0 0
\(223\) −9.76490 + 9.76490i −0.653906 + 0.653906i −0.953931 0.300025i \(-0.903005\pi\)
0.300025 + 0.953931i \(0.403005\pi\)
\(224\) −3.30996 −0.221156
\(225\) 0 0
\(226\) 15.8642 1.05527
\(227\) −15.6881 + 15.6881i −1.04126 + 1.04126i −0.0421470 + 0.999111i \(0.513420\pi\)
−0.999111 + 0.0421470i \(0.986580\pi\)
\(228\) 0 0
\(229\) 23.9430i 1.58220i −0.611687 0.791100i \(-0.709509\pi\)
0.611687 0.791100i \(-0.290491\pi\)
\(230\) 6.67943 10.9389i 0.440429 0.721287i
\(231\) 0 0
\(232\) 2.85712 + 2.85712i 0.187579 + 0.187579i
\(233\) 13.0996 + 13.0996i 0.858184 + 0.858184i 0.991124 0.132940i \(-0.0424418\pi\)
−0.132940 + 0.991124i \(0.542442\pi\)
\(234\) 0 0
\(235\) −2.48778 10.2902i −0.162285 0.671259i
\(236\) 7.27853i 0.473792i
\(237\) 0 0
\(238\) −14.8549 + 14.8549i −0.962899 + 0.962899i
\(239\) 20.4712 1.32417 0.662087 0.749427i \(-0.269671\pi\)
0.662087 + 0.749427i \(0.269671\pi\)
\(240\) 0 0
\(241\) 7.39592 0.476413 0.238207 0.971214i \(-0.423440\pi\)
0.238207 + 0.971214i \(0.423440\pi\)
\(242\) 3.42093 3.42093i 0.219906 0.219906i
\(243\) 0 0
\(244\) 10.1806i 0.651749i
\(245\) −7.54936 4.60975i −0.482311 0.294506i
\(246\) 0 0
\(247\) 0.107294 + 0.107294i 0.00682698 + 0.00682698i
\(248\) 3.96857 + 3.96857i 0.252005 + 0.252005i
\(249\) 0 0
\(250\) 8.46685 7.30154i 0.535490 0.461790i
\(251\) 7.36327i 0.464765i −0.972624 0.232383i \(-0.925348\pi\)
0.972624 0.232383i \(-0.0746522\pi\)
\(252\) 0 0
\(253\) 10.0611 10.0611i 0.632539 0.632539i
\(254\) 13.4717 0.845288
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 10.0781 10.0781i 0.628652 0.628652i −0.319077 0.947729i \(-0.603373\pi\)
0.947729 + 0.319077i \(0.103373\pi\)
\(258\) 0 0
\(259\) 0.502244i 0.0312079i
\(260\) 0.329794 0.0797315i 0.0204529 0.00494474i
\(261\) 0 0
\(262\) −3.29563 3.29563i −0.203605 0.203605i
\(263\) −16.4372 16.4372i −1.01356 1.01356i −0.999907 0.0136562i \(-0.995653\pi\)
−0.0136562 0.999907i \(-0.504347\pi\)
\(264\) 0 0
\(265\) −11.7557 + 2.84207i −0.722144 + 0.174587i
\(266\) 3.30996i 0.202947i
\(267\) 0 0
\(268\) 0 0
\(269\) −1.22760 −0.0748482 −0.0374241 0.999299i \(-0.511915\pi\)
−0.0374241 + 0.999299i \(0.511915\pi\)
\(270\) 0 0
\(271\) 27.2376 1.65457 0.827284 0.561783i \(-0.189885\pi\)
0.827284 + 0.561783i \(0.189885\pi\)
\(272\) 4.48794 4.48794i 0.272121 0.272121i
\(273\) 0 0
\(274\) 11.1637i 0.674422i
\(275\) 11.0410 5.66998i 0.665796 0.341913i
\(276\) 0 0
\(277\) −17.8556 17.8556i −1.07284 1.07284i −0.997130 0.0757076i \(-0.975878\pi\)
−0.0757076 0.997130i \(-0.524122\pi\)
\(278\) −9.33508 9.33508i −0.559881 0.559881i
\(279\) 0 0
\(280\) 6.31678 + 3.85712i 0.377500 + 0.230507i
\(281\) 2.03023i 0.121113i 0.998165 + 0.0605566i \(0.0192876\pi\)
−0.998165 + 0.0605566i \(0.980712\pi\)
\(282\) 0 0
\(283\) 2.75270 2.75270i 0.163631 0.163631i −0.620542 0.784173i \(-0.713087\pi\)
0.784173 + 0.620542i \(0.213087\pi\)
\(284\) 8.45272 0.501577
\(285\) 0 0
\(286\) 0.376665 0.0222727
\(287\) −0.585269 + 0.585269i −0.0345473 + 0.0345473i
\(288\) 0 0
\(289\) 23.2832i 1.36960i
\(290\) −2.12315 8.78200i −0.124676 0.515697i
\(291\) 0 0
\(292\) −5.56823 5.56823i −0.325856 0.325856i
\(293\) 21.6748 + 21.6748i 1.26625 + 1.26625i 0.948008 + 0.318247i \(0.103094\pi\)
0.318247 + 0.948008i \(0.396906\pi\)
\(294\) 0 0
\(295\) −8.48173 + 13.8905i −0.493825 + 0.808735i
\(296\) 0.151737i 0.00881955i
\(297\) 0 0
\(298\) −8.10766 + 8.10766i −0.469664 + 0.469664i
\(299\) −0.869743 −0.0502985
\(300\) 0 0
\(301\) −18.0551 −1.04068
\(302\) 5.57712 5.57712i 0.320927 0.320927i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) −11.8636 + 19.4289i −0.679307 + 1.11250i
\(306\) 0 0
\(307\) −6.59198 6.59198i −0.376224 0.376224i 0.493514 0.869738i \(-0.335712\pi\)
−0.869738 + 0.493514i \(0.835712\pi\)
\(308\) 5.80993 + 5.80993i 0.331052 + 0.331052i
\(309\) 0 0
\(310\) −2.94908 12.1983i −0.167497 0.692817i
\(311\) 23.7065i 1.34427i −0.740428 0.672135i \(-0.765377\pi\)
0.740428 0.672135i \(-0.234623\pi\)
\(312\) 0 0
\(313\) −20.3571 + 20.3571i −1.15065 + 1.15065i −0.164231 + 0.986422i \(0.552514\pi\)
−0.986422 + 0.164231i \(0.947486\pi\)
\(314\) 9.57201 0.540180
\(315\) 0 0
\(316\) 15.3376 0.862806
\(317\) −20.3368 + 20.3368i −1.14223 + 1.14223i −0.154184 + 0.988042i \(0.549275\pi\)
−0.988042 + 0.154184i \(0.950725\pi\)
\(318\) 0 0
\(319\) 10.0301i 0.561580i
\(320\) −1.90842 1.16531i −0.106684 0.0651427i
\(321\) 0 0
\(322\) −13.4155 13.4155i −0.747616 0.747616i
\(323\) −4.48794 4.48794i −0.249716 0.249716i
\(324\) 0 0
\(325\) −0.722296 0.232150i −0.0400657 0.0128774i
\(326\) 5.35389i 0.296525i
\(327\) 0 0
\(328\) 0.176821 0.176821i 0.00976328 0.00976328i
\(329\) −15.6710 −0.863969
\(330\) 0 0
\(331\) −13.8303 −0.760180 −0.380090 0.924949i \(-0.624107\pi\)
−0.380090 + 0.924949i \(0.624107\pi\)
\(332\) −0.00476373 + 0.00476373i −0.000261444 + 0.000261444i
\(333\) 0 0
\(334\) 14.6226i 0.800115i
\(335\) 0 0
\(336\) 0 0
\(337\) 20.3251 + 20.3251i 1.10718 + 1.10718i 0.993520 + 0.113660i \(0.0362574\pi\)
0.113660 + 0.993520i \(0.463743\pi\)
\(338\) 9.17611 + 9.17611i 0.499114 + 0.499114i
\(339\) 0 0
\(340\) −13.7947 + 3.33503i −0.748122 + 0.180867i
\(341\) 13.9320i 0.754459i
\(342\) 0 0
\(343\) 7.12488 7.12488i 0.384707 0.384707i
\(344\) 5.45479 0.294103
\(345\) 0 0
\(346\) −18.5868 −0.999232
\(347\) 1.66858 1.66858i 0.0895739 0.0895739i −0.660900 0.750474i \(-0.729825\pi\)
0.750474 + 0.660900i \(0.229825\pi\)
\(348\) 0 0
\(349\) 3.29409i 0.176329i 0.996106 + 0.0881644i \(0.0281001\pi\)
−0.996106 + 0.0881644i \(0.971900\pi\)
\(350\) −7.56032 14.7220i −0.404116 0.786924i
\(351\) 0 0
\(352\) −1.75529 1.75529i −0.0935572 0.0935572i
\(353\) 17.7359 + 17.7359i 0.943985 + 0.943985i 0.998512 0.0545275i \(-0.0173653\pi\)
−0.0545275 + 0.998512i \(0.517365\pi\)
\(354\) 0 0
\(355\) −16.1313 9.85002i −0.856162 0.522785i
\(356\) 7.88373i 0.417837i
\(357\) 0 0
\(358\) 13.4631 13.4631i 0.711548 0.711548i
\(359\) −0.977134 −0.0515711 −0.0257856 0.999667i \(-0.508209\pi\)
−0.0257856 + 0.999667i \(0.508209\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) −0.257788 + 0.257788i −0.0135490 + 0.0135490i
\(363\) 0 0
\(364\) 0.502244i 0.0263247i
\(365\) 4.13781 + 17.1152i 0.216583 + 0.895851i
\(366\) 0 0
\(367\) −14.1082 14.1082i −0.736444 0.736444i 0.235444 0.971888i \(-0.424346\pi\)
−0.971888 + 0.235444i \(0.924346\pi\)
\(368\) 4.05307 + 4.05307i 0.211281 + 0.211281i
\(369\) 0 0
\(370\) −0.176821 + 0.289578i −0.00919246 + 0.0150544i
\(371\) 17.9027i 0.929463i
\(372\) 0 0
\(373\) −20.5032 + 20.5032i −1.06162 + 1.06162i −0.0636452 + 0.997973i \(0.520273\pi\)
−0.997973 + 0.0636452i \(0.979727\pi\)
\(374\) −15.7553 −0.814685
\(375\) 0 0
\(376\) 4.73450 0.244163
\(377\) −0.433531 + 0.433531i −0.0223280 + 0.0223280i
\(378\) 0 0
\(379\) 28.1712i 1.44706i −0.690295 0.723528i \(-0.742519\pi\)
0.690295 0.723528i \(-0.257481\pi\)
\(380\) −1.16531 + 1.90842i −0.0597790 + 0.0978998i
\(381\) 0 0
\(382\) −8.00287 8.00287i −0.409462 0.409462i
\(383\) 19.7414 + 19.7414i 1.00874 + 1.00874i 0.999961 + 0.00877950i \(0.00279464\pi\)
0.00877950 + 0.999961i \(0.497205\pi\)
\(384\) 0 0
\(385\) −4.31742 17.8581i −0.220036 0.910135i
\(386\) 16.6639i 0.848172i
\(387\) 0 0
\(388\) −5.19120 + 5.19120i −0.263543 + 0.263543i
\(389\) 37.3644 1.89445 0.947225 0.320570i \(-0.103875\pi\)
0.947225 + 0.320570i \(0.103875\pi\)
\(390\) 0 0
\(391\) 36.3798 1.83981
\(392\) 2.79719 2.79719i 0.141279 0.141279i
\(393\) 0 0
\(394\) 1.09250i 0.0550395i
\(395\) −29.2705 17.8730i −1.47276 0.899288i
\(396\) 0 0
\(397\) −17.0923 17.0923i −0.857839 0.857839i 0.133244 0.991083i \(-0.457460\pi\)
−0.991083 + 0.133244i \(0.957460\pi\)
\(398\) 10.4530 + 10.4530i 0.523963 + 0.523963i
\(399\) 0 0
\(400\) 2.28411 + 4.44779i 0.114206 + 0.222389i
\(401\) 15.9215i 0.795083i −0.917584 0.397542i \(-0.869863\pi\)
0.917584 0.397542i \(-0.130137\pi\)
\(402\) 0 0
\(403\) −0.602180 + 0.602180i −0.0299967 + 0.0299967i
\(404\) −0.641823 −0.0319319
\(405\) 0 0
\(406\) −13.3741 −0.663748
\(407\) −0.266343 + 0.266343i −0.0132021 + 0.0132021i
\(408\) 0 0
\(409\) 38.2602i 1.89184i 0.324395 + 0.945922i \(0.394839\pi\)
−0.324395 + 0.945922i \(0.605161\pi\)
\(410\) −0.543498 + 0.131397i −0.0268414 + 0.00648924i
\(411\) 0 0
\(412\) −7.31132 7.31132i −0.360203 0.360203i
\(413\) 17.0354 + 17.0354i 0.838255 + 0.838255i
\(414\) 0 0
\(415\) 0.0146424 0.00353997i 0.000718767 0.000173771i
\(416\) 0.151737i 0.00743953i
\(417\) 0 0
\(418\) −1.75529 + 1.75529i −0.0858540 + 0.0858540i
\(419\) 16.9480 0.827966 0.413983 0.910285i \(-0.364137\pi\)
0.413983 + 0.910285i \(0.364137\pi\)
\(420\) 0 0
\(421\) −25.6208 −1.24868 −0.624340 0.781153i \(-0.714632\pi\)
−0.624340 + 0.781153i \(0.714632\pi\)
\(422\) 3.13287 3.13287i 0.152506 0.152506i
\(423\) 0 0
\(424\) 5.40875i 0.262672i
\(425\) 30.2124 + 9.71043i 1.46552 + 0.471025i
\(426\) 0 0
\(427\) 23.8277 + 23.8277i 1.15310 + 1.15310i
\(428\) 8.14827 + 8.14827i 0.393862 + 0.393862i
\(429\) 0 0
\(430\) −10.4100 6.35651i −0.502016 0.306538i
\(431\) 37.2026i 1.79199i −0.444068 0.895993i \(-0.646465\pi\)
0.444068 0.895993i \(-0.353535\pi\)
\(432\) 0 0
\(433\) −8.87668 + 8.87668i −0.426586 + 0.426586i −0.887464 0.460878i \(-0.847535\pi\)
0.460878 + 0.887464i \(0.347535\pi\)
\(434\) −18.5768 −0.891717
\(435\) 0 0
\(436\) 5.59959 0.268172
\(437\) 4.05307 4.05307i 0.193885 0.193885i
\(438\) 0 0
\(439\) 1.46971i 0.0701456i 0.999385 + 0.0350728i \(0.0111663\pi\)
−0.999385 + 0.0350728i \(0.988834\pi\)
\(440\) 1.30437 + 5.39528i 0.0621835 + 0.257210i
\(441\) 0 0
\(442\) 0.680987 + 0.680987i 0.0323913 + 0.0323913i
\(443\) −0.644785 0.644785i −0.0306347 0.0306347i 0.691624 0.722258i \(-0.256896\pi\)
−0.722258 + 0.691624i \(0.756896\pi\)
\(444\) 0 0
\(445\) 9.18698 15.0455i 0.435504 0.713223i
\(446\) 13.8096i 0.653906i
\(447\) 0 0
\(448\) −2.34049 + 2.34049i −0.110578 + 0.110578i
\(449\) −11.1942 −0.528285 −0.264142 0.964484i \(-0.585089\pi\)
−0.264142 + 0.964484i \(0.585089\pi\)
\(450\) 0 0
\(451\) −0.620742 −0.0292296
\(452\) 11.2177 11.2177i 0.527636 0.527636i
\(453\) 0 0
\(454\) 22.1864i 1.04126i
\(455\) −0.585269 + 0.958491i −0.0274378 + 0.0449347i
\(456\) 0 0
\(457\) 6.28317 + 6.28317i 0.293914 + 0.293914i 0.838624 0.544710i \(-0.183360\pi\)
−0.544710 + 0.838624i \(0.683360\pi\)
\(458\) −16.9303 16.9303i −0.791100 0.791100i
\(459\) 0 0
\(460\) −3.01187 12.4580i −0.140429 0.580858i
\(461\) 30.8581i 1.43721i −0.695420 0.718603i \(-0.744782\pi\)
0.695420 0.718603i \(-0.255218\pi\)
\(462\) 0 0
\(463\) −13.1768 + 13.1768i −0.612379 + 0.612379i −0.943565 0.331187i \(-0.892551\pi\)
0.331187 + 0.943565i \(0.392551\pi\)
\(464\) 4.04058 0.187579
\(465\) 0 0
\(466\) 18.5256 0.858184
\(467\) −6.31117 + 6.31117i −0.292046 + 0.292046i −0.837888 0.545842i \(-0.816210\pi\)
0.545842 + 0.837888i \(0.316210\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −9.03539 5.51714i −0.416772 0.254487i
\(471\) 0 0
\(472\) −5.14670 5.14670i −0.236896 0.236896i
\(473\) −9.57473 9.57473i −0.440247 0.440247i
\(474\) 0 0
\(475\) 4.44779 2.28411i 0.204079 0.104802i
\(476\) 21.0080i 0.962899i
\(477\) 0 0
\(478\) 14.4754 14.4754i 0.662087 0.662087i
\(479\) 40.6014 1.85512 0.927562 0.373670i \(-0.121901\pi\)
0.927562 + 0.373670i \(0.121901\pi\)
\(480\) 0 0
\(481\) 0.0230242 0.00104981
\(482\) 5.22971 5.22971i 0.238207 0.238207i
\(483\) 0 0
\(484\) 4.83792i 0.219906i
\(485\) 15.9563 3.85763i 0.724540 0.175166i
\(486\) 0 0
\(487\) 21.3018 + 21.3018i 0.965275 + 0.965275i 0.999417 0.0341417i \(-0.0108698\pi\)
−0.0341417 + 0.999417i \(0.510870\pi\)
\(488\) −7.19880 7.19880i −0.325874 0.325874i
\(489\) 0 0
\(490\) −8.59779 + 2.07862i −0.388408 + 0.0939024i
\(491\) 40.2353i 1.81579i −0.419194 0.907897i \(-0.637687\pi\)
0.419194 0.907897i \(-0.362313\pi\)
\(492\) 0 0
\(493\) 18.1339 18.1339i 0.816708 0.816708i
\(494\) 0.151737 0.00682698
\(495\) 0 0
\(496\) 5.61241 0.252005
\(497\) −19.7835 + 19.7835i −0.887413 + 0.887413i
\(498\) 0 0
\(499\) 20.1365i 0.901433i 0.892667 + 0.450716i \(0.148831\pi\)
−0.892667 + 0.450716i \(0.851169\pi\)
\(500\) 0.823998 11.1499i 0.0368503 0.498640i
\(501\) 0 0
\(502\) −5.20662 5.20662i −0.232383 0.232383i
\(503\) −0.126633 0.126633i −0.00564630 0.00564630i 0.704278 0.709924i \(-0.251271\pi\)
−0.709924 + 0.704278i \(0.751271\pi\)
\(504\) 0 0
\(505\) 1.22487 + 0.747921i 0.0545058 + 0.0332821i
\(506\) 14.2286i 0.632539i
\(507\) 0 0
\(508\) 9.52591 9.52591i 0.422644 0.422644i
\(509\) −3.80325 −0.168576 −0.0842880 0.996441i \(-0.526862\pi\)
−0.0842880 + 0.996441i \(0.526862\pi\)
\(510\) 0 0
\(511\) 26.0648 1.15304
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 14.2525i 0.628652i
\(515\) 5.43311 + 22.4730i 0.239411 + 0.990278i
\(516\) 0 0
\(517\) −8.31041 8.31041i −0.365491 0.365491i
\(518\) 0.355140 + 0.355140i 0.0156040 + 0.0156040i
\(519\) 0 0
\(520\) 0.176821 0.289578i 0.00775409 0.0126988i
\(521\) 26.0863i 1.14286i −0.820650 0.571431i \(-0.806388\pi\)
0.820650 0.571431i \(-0.193612\pi\)
\(522\) 0 0
\(523\) 19.4645 19.4645i 0.851124 0.851124i −0.139147 0.990272i \(-0.544436\pi\)
0.990272 + 0.139147i \(0.0444361\pi\)
\(524\) −4.66072 −0.203605
\(525\) 0 0
\(526\) −23.2458 −1.01356
\(527\) 25.1881 25.1881i 1.09721 1.09721i
\(528\) 0 0
\(529\) 9.85471i 0.428466i
\(530\) −6.30285 + 10.3221i −0.273778 + 0.448365i
\(531\) 0 0
\(532\) 2.34049 + 2.34049i 0.101473 + 0.101473i
\(533\) 0.0268303 + 0.0268303i 0.00116215 + 0.00116215i
\(534\) 0 0
\(535\) −6.05506 25.0456i −0.261783 1.08281i
\(536\) 0 0
\(537\) 0 0
\(538\) −0.868046 + 0.868046i −0.0374241 + 0.0374241i
\(539\) −9.81974 −0.422966
\(540\) 0 0
\(541\) −39.5875 −1.70200 −0.850999 0.525167i \(-0.824003\pi\)
−0.850999 + 0.525167i \(0.824003\pi\)
\(542\) 19.2599 19.2599i 0.827284 0.827284i
\(543\) 0 0
\(544\) 6.34690i 0.272121i
\(545\) −10.6864 6.52524i −0.457753 0.279511i
\(546\) 0 0
\(547\) 8.19294 + 8.19294i 0.350305 + 0.350305i 0.860223 0.509918i \(-0.170324\pi\)
−0.509918 + 0.860223i \(0.670324\pi\)
\(548\) 7.89391 + 7.89391i 0.337211 + 0.337211i
\(549\) 0 0
\(550\) 3.79787 11.8164i 0.161942 0.503854i
\(551\) 4.04058i 0.172134i
\(552\) 0 0
\(553\) −35.8975 + 35.8975i −1.52652 + 1.52652i
\(554\) −25.2516 −1.07284
\(555\) 0 0
\(556\) −13.2018 −0.559881
\(557\) 8.41488 8.41488i 0.356550 0.356550i −0.505990 0.862540i \(-0.668873\pi\)
0.862540 + 0.505990i \(0.168873\pi\)
\(558\) 0 0
\(559\) 0.827695i 0.0350078i
\(560\) 7.19403 1.73924i 0.304003 0.0734964i
\(561\) 0 0
\(562\) 1.43559 + 1.43559i 0.0605566 + 0.0605566i
\(563\) 1.10342 + 1.10342i 0.0465036 + 0.0465036i 0.729976 0.683473i \(-0.239531\pi\)
−0.683473 + 0.729976i \(0.739531\pi\)
\(564\) 0 0
\(565\) −34.4801 + 8.33598i −1.45059 + 0.350697i
\(566\) 3.89290i 0.163631i
\(567\) 0 0
\(568\) 5.97698 5.97698i 0.250788 0.250788i
\(569\) 30.4270 1.27557 0.637783 0.770217i \(-0.279852\pi\)
0.637783 + 0.770217i \(0.279852\pi\)
\(570\) 0 0
\(571\) −2.44148 −0.102173 −0.0510864 0.998694i \(-0.516268\pi\)
−0.0510864 + 0.998694i \(0.516268\pi\)
\(572\) 0.266343 0.266343i 0.0111363 0.0111363i
\(573\) 0 0
\(574\) 0.827695i 0.0345473i
\(575\) −8.76951 + 27.2849i −0.365714 + 1.13786i
\(576\) 0 0
\(577\) 4.56598 + 4.56598i 0.190084 + 0.190084i 0.795732 0.605648i \(-0.207086\pi\)
−0.605648 + 0.795732i \(0.707086\pi\)
\(578\) −16.4637 16.4637i −0.684800 0.684800i
\(579\) 0 0
\(580\) −7.71111 4.70852i −0.320186 0.195511i
\(581\) 0.0222990i 0.000925117i
\(582\) 0 0
\(583\) −9.49391 + 9.49391i −0.393198 + 0.393198i
\(584\) −7.87467 −0.325856
\(585\) 0 0
\(586\) 30.6528 1.26625
\(587\) −16.5210 + 16.5210i −0.681895 + 0.681895i −0.960427 0.278532i \(-0.910152\pi\)
0.278532 + 0.960427i \(0.410152\pi\)
\(588\) 0 0
\(589\) 5.61241i 0.231255i
\(590\) 3.82456 + 15.8195i 0.157455 + 0.651280i
\(591\) 0 0
\(592\) −0.107294 0.107294i −0.00440977 0.00440977i
\(593\) 0.778495 + 0.778495i 0.0319689 + 0.0319689i 0.722911 0.690942i \(-0.242804\pi\)
−0.690942 + 0.722911i \(0.742804\pi\)
\(594\) 0 0
\(595\) 24.4808 40.0920i 1.00361 1.64361i
\(596\) 11.4660i 0.469664i
\(597\) 0 0
\(598\) −0.615001 + 0.615001i −0.0251493 + 0.0251493i
\(599\) 27.5622 1.12616 0.563081 0.826401i \(-0.309616\pi\)
0.563081 + 0.826401i \(0.309616\pi\)
\(600\) 0 0
\(601\) −18.9758 −0.774037 −0.387019 0.922072i \(-0.626495\pi\)
−0.387019 + 0.922072i \(0.626495\pi\)
\(602\) −12.7669 + 12.7669i −0.520340 + 0.520340i
\(603\) 0 0
\(604\) 7.88724i 0.320927i
\(605\) −5.63767 + 9.23278i −0.229204 + 0.375366i
\(606\) 0 0
\(607\) −9.89047 9.89047i −0.401442 0.401442i 0.477299 0.878741i \(-0.341616\pi\)
−0.878741 + 0.477299i \(0.841616\pi\)
\(608\) −0.707107 0.707107i −0.0286770 0.0286770i
\(609\) 0 0
\(610\) 5.34950 + 22.1271i 0.216595 + 0.895901i
\(611\) 0.718399i 0.0290633i
\(612\) 0 0
\(613\) −10.5506 + 10.5506i −0.426134 + 0.426134i −0.887309 0.461175i \(-0.847428\pi\)
0.461175 + 0.887309i \(0.347428\pi\)
\(614\) −9.32246 −0.376224
\(615\) 0 0
\(616\) 8.21648 0.331052
\(617\) −22.8595 + 22.8595i −0.920290 + 0.920290i −0.997050 0.0767599i \(-0.975543\pi\)
0.0767599 + 0.997050i \(0.475543\pi\)
\(618\) 0 0
\(619\) 36.6303i 1.47230i 0.676821 + 0.736148i \(0.263357\pi\)
−0.676821 + 0.736148i \(0.736643\pi\)
\(620\) −10.7108 6.54018i −0.430157 0.262660i
\(621\) 0 0
\(622\) −16.7630 16.7630i −0.672135 0.672135i
\(623\) −18.4518 18.4518i −0.739257 0.739257i
\(624\) 0 0
\(625\) −14.5656 + 20.3185i −0.582626 + 0.812741i
\(626\) 28.7893i 1.15065i
\(627\) 0 0
\(628\) 6.76844 6.76844i 0.270090 0.270090i
\(629\) −0.963062 −0.0383998
\(630\) 0 0
\(631\) 40.8481 1.62614 0.813069 0.582167i \(-0.197795\pi\)
0.813069 + 0.582167i \(0.197795\pi\)
\(632\) 10.8453 10.8453i 0.431403 0.431403i
\(633\) 0 0
\(634\) 28.7605i 1.14223i
\(635\) −29.2800 + 7.07879i −1.16194 + 0.280913i
\(636\) 0 0
\(637\) 0.424437 + 0.424437i 0.0168168 + 0.0168168i
\(638\) −7.09238 7.09238i −0.280790 0.280790i
\(639\) 0 0
\(640\) −2.17345 + 0.525458i −0.0859132 + 0.0207705i
\(641\) 0.0715441i 0.00282582i 0.999999 + 0.00141291i \(0.000449744\pi\)
−0.999999 + 0.00141291i \(0.999550\pi\)
\(642\) 0 0
\(643\) −1.02615 + 1.02615i −0.0404676 + 0.0404676i −0.727051 0.686583i \(-0.759110\pi\)
0.686583 + 0.727051i \(0.259110\pi\)
\(644\) −18.9724 −0.747616
\(645\) 0 0
\(646\) −6.34690 −0.249716
\(647\) −17.8251 + 17.8251i −0.700778 + 0.700778i −0.964578 0.263800i \(-0.915024\pi\)
0.263800 + 0.964578i \(0.415024\pi\)
\(648\) 0 0
\(649\) 18.0679i 0.709226i
\(650\) −0.674895 + 0.346585i −0.0264716 + 0.0135942i
\(651\) 0 0
\(652\) −3.78577 3.78577i −0.148262 0.148262i
\(653\) −24.0428 24.0428i −0.940867 0.940867i 0.0574801 0.998347i \(-0.481693\pi\)
−0.998347 + 0.0574801i \(0.981693\pi\)
\(654\) 0 0
\(655\) 8.89460 + 5.43117i 0.347541 + 0.212214i
\(656\) 0.250062i 0.00976328i
\(657\) 0 0
\(658\) −11.0811 + 11.0811i −0.431985 + 0.431985i
\(659\) 47.4254 1.84743 0.923716 0.383077i \(-0.125136\pi\)
0.923716 + 0.383077i \(0.125136\pi\)
\(660\) 0 0
\(661\) −15.3029 −0.595214 −0.297607 0.954688i \(-0.596188\pi\)
−0.297607 + 0.954688i \(0.596188\pi\)
\(662\) −9.77948 + 9.77948i −0.380090 + 0.380090i
\(663\) 0 0
\(664\) 0.00673693i 0.000261444i
\(665\) −1.73924 7.19403i −0.0674450 0.278973i
\(666\) 0 0
\(667\) 16.3767 + 16.3767i 0.634110 + 0.634110i
\(668\) −10.3398 10.3398i −0.400058 0.400058i
\(669\) 0 0
\(670\) 0 0
\(671\) 25.2719i 0.975612i
\(672\) 0 0
\(673\) −12.2854 + 12.2854i −0.473568 + 0.473568i −0.903067 0.429499i \(-0.858690\pi\)
0.429499 + 0.903067i \(0.358690\pi\)
\(674\) 28.7441 1.10718
\(675\) 0 0
\(676\) 12.9770 0.499114
\(677\) 26.8800 26.8800i 1.03308 1.03308i 0.0336477 0.999434i \(-0.489288\pi\)
0.999434 0.0336477i \(-0.0107124\pi\)
\(678\) 0 0
\(679\) 24.3000i 0.932547i
\(680\) −7.39610 + 12.1125i −0.283627 + 0.464495i
\(681\) 0 0
\(682\) −9.85140 9.85140i −0.377230 0.377230i
\(683\) −8.29913 8.29913i −0.317557 0.317557i 0.530271 0.847828i \(-0.322090\pi\)
−0.847828 + 0.530271i \(0.822090\pi\)
\(684\) 0 0
\(685\) −5.86604 24.2637i −0.224130 0.927069i
\(686\) 10.0761i 0.384707i
\(687\) 0 0
\(688\) 3.85712 3.85712i 0.147051 0.147051i
\(689\) 0.820708 0.0312665
\(690\) 0 0
\(691\) 1.85848 0.0706998 0.0353499 0.999375i \(-0.488745\pi\)
0.0353499 + 0.999375i \(0.488745\pi\)
\(692\) −13.1428 + 13.1428i −0.499616 + 0.499616i
\(693\) 0 0
\(694\) 2.35973i 0.0895739i
\(695\) 25.1945 + 15.3842i 0.955683 + 0.583554i
\(696\) 0 0
\(697\) −1.12226 1.12226i −0.0425088 0.0425088i
\(698\) 2.32928 + 2.32928i 0.0881644 + 0.0881644i
\(699\) 0 0
\(700\) −15.7560 5.06406i −0.595520 0.191404i
\(701\) 17.0065i 0.642325i 0.947024 + 0.321163i \(0.104074\pi\)
−0.947024 + 0.321163i \(0.895926\pi\)
\(702\) 0 0
\(703\) −0.107294 + 0.107294i −0.00404669 + 0.00404669i
\(704\) −2.48235 −0.0935572
\(705\) 0 0
\(706\) 25.0823 0.943985
\(707\) 1.50218 1.50218i 0.0564954 0.0564954i
\(708\) 0 0
\(709\) 27.4933i 1.03253i 0.856428 + 0.516266i \(0.172678\pi\)
−0.856428 + 0.516266i \(0.827322\pi\)
\(710\) −18.3716 + 4.44155i −0.689473 + 0.166688i
\(711\) 0 0
\(712\) 5.57464 + 5.57464i 0.208918 + 0.208918i
\(713\) 22.7475 + 22.7475i 0.851900 + 0.851900i
\(714\) 0 0
\(715\) −0.818664 + 0.197922i −0.0306163 + 0.00740185i
\(716\) 19.0397i 0.711548i
\(717\) 0 0
\(718\) −0.690938 + 0.690938i −0.0257856 + 0.0257856i
\(719\) −24.3240 −0.907131 −0.453566 0.891223i \(-0.649848\pi\)
−0.453566 + 0.891223i \(0.649848\pi\)
\(720\) 0 0
\(721\) 34.2242 1.27458
\(722\) −0.707107 + 0.707107i −0.0263158 + 0.0263158i
\(723\) 0 0
\(724\) 0.364567i 0.0135490i
\(725\) 9.22914 + 17.9716i 0.342762 + 0.667450i
\(726\) 0 0
\(727\) 19.7688 + 19.7688i 0.733184 + 0.733184i 0.971249 0.238065i \(-0.0765132\pi\)
−0.238065 + 0.971249i \(0.576513\pi\)
\(728\) −0.355140 0.355140i −0.0131624 0.0131624i
\(729\) 0 0
\(730\) 15.0282 + 9.17641i 0.556217 + 0.339634i
\(731\) 34.6210i 1.28051i
\(732\) 0 0
\(733\) 29.4875 29.4875i 1.08915 1.08915i 0.0935309 0.995616i \(-0.470185\pi\)
0.995616 0.0935309i \(-0.0298154\pi\)
\(734\) −19.9521 −0.736444
\(735\) 0 0
\(736\) 5.73190 0.211281
\(737\) 0 0
\(738\) 0 0
\(739\) 35.9052i 1.32079i −0.750917 0.660396i \(-0.770388\pi\)
0.750917 0.660396i \(-0.229612\pi\)
\(740\) 0.0797315 + 0.329794i 0.00293099 + 0.0121235i
\(741\) 0 0
\(742\) 12.6591 + 12.6591i 0.464731 + 0.464731i
\(743\) −10.5627 10.5627i −0.387510 0.387510i 0.486289 0.873798i \(-0.338350\pi\)
−0.873798 + 0.486289i \(0.838350\pi\)
\(744\) 0 0
\(745\) 13.3614 21.8818i 0.489523 0.801688i
\(746\) 28.9960i 1.06162i
\(747\) 0 0
\(748\) −11.1406 + 11.1406i −0.407342 + 0.407342i
\(749\) −38.1420 −1.39368
\(750\) 0 0
\(751\) 32.2193 1.17570 0.587850 0.808970i \(-0.299975\pi\)
0.587850 + 0.808970i \(0.299975\pi\)
\(752\) 3.34779 3.34779i 0.122081 0.122081i
\(753\) 0 0
\(754\) 0.613106i 0.0223280i
\(755\) −9.19107 + 15.0522i −0.334497 + 0.547804i
\(756\) 0 0
\(757\) −24.1074 24.1074i −0.876198 0.876198i 0.116941 0.993139i \(-0.462691\pi\)
−0.993139 + 0.116941i \(0.962691\pi\)
\(758\) −19.9200 19.9200i −0.723528 0.723528i
\(759\) 0 0
\(760\) 0.525458 + 2.17345i 0.0190604 + 0.0788394i
\(761\) 26.0724i 0.945122i 0.881298 + 0.472561i \(0.156670\pi\)
−0.881298 + 0.472561i \(0.843330\pi\)
\(762\) 0 0
\(763\) −13.1058 + 13.1058i −0.474462 + 0.474462i
\(764\) −11.3178 −0.409462
\(765\) 0 0
\(766\) 27.9186 1.00874
\(767\) 0.780946 0.780946i 0.0281983 0.0281983i
\(768\) 0 0
\(769\) 39.5504i 1.42622i 0.701050 + 0.713112i \(0.252715\pi\)
−0.701050 + 0.713112i \(0.747285\pi\)
\(770\) −15.6805 9.57473i −0.565085 0.345049i
\(771\) 0 0
\(772\) 11.7832 + 11.7832i 0.424086 + 0.424086i
\(773\) −19.2419 19.2419i −0.692083 0.692083i 0.270607 0.962690i \(-0.412776\pi\)
−0.962690 + 0.270607i \(0.912776\pi\)
\(774\) 0 0
\(775\) 12.8194 + 24.9628i 0.460486 + 0.896690i
\(776\) 7.34147i 0.263543i
\(777\) 0 0
\(778\) 26.4206 26.4206i 0.947225 0.947225i
\(779\) −0.250062 −0.00895940
\(780\) 0 0
\(781\) −20.9826 −0.750818
\(782\) 25.7244 25.7244i 0.919904 0.919904i
\(783\) 0 0
\(784\) 3.95582i 0.141279i
\(785\) −20.8043 + 5.02969i −0.742538 + 0.179517i
\(786\) 0 0
\(787\) 16.3492 + 16.3492i 0.582785 + 0.582785i 0.935668 0.352882i \(-0.114798\pi\)
−0.352882 + 0.935668i \(0.614798\pi\)
\(788\) −0.772516 0.772516i −0.0275197 0.0275197i
\(789\) 0 0
\(790\) −33.3355 + 8.05925i −1.18602 + 0.286735i
\(791\) 52.5099i 1.86704i
\(792\) 0 0
\(793\) 1.09233 1.09233i 0.0387896 0.0387896i
\(794\) −24.1722 −0.857839
\(795\) 0 0
\(796\) 14.7828 0.523963
\(797\) 27.9196 27.9196i 0.988963 0.988963i −0.0109771 0.999940i \(-0.503494\pi\)
0.999940 + 0.0109771i \(0.00349420\pi\)
\(798\) 0 0
\(799\) 30.0494i 1.06307i
\(800\) 4.76017 + 1.52995i 0.168298 + 0.0540918i
\(801\) 0 0
\(802\) −11.2582 11.2582i −0.397542 0.397542i
\(803\) 13.8223 + 13.8223i 0.487779 + 0.487779i
\(804\) 0 0
\(805\) 36.2072 + 22.1086i 1.27614 + 0.779227i
\(806\) 0.851611i 0.0299967i
\(807\) 0 0
\(808\) −0.453837 + 0.453837i −0.0159659 + 0.0159659i
\(809\) 32.2712 1.13459 0.567297 0.823513i \(-0.307989\pi\)
0.567297 + 0.823513i \(0.307989\pi\)
\(810\) 0 0
\(811\) 2.47485 0.0869039 0.0434519 0.999056i \(-0.486164\pi\)
0.0434519 + 0.999056i \(0.486164\pi\)
\(812\) −9.45695 + 9.45695i −0.331874 + 0.331874i
\(813\) 0 0
\(814\) 0.376665i 0.0132021i
\(815\) 2.81324 + 11.6364i 0.0985436 + 0.407606i
\(816\) 0 0
\(817\) −3.85712 3.85712i −0.134944 0.134944i
\(818\) 27.0540 + 27.0540i 0.945922 + 0.945922i
\(819\) 0 0
\(820\) −0.291399 + 0.477223i −0.0101761 + 0.0166653i
\(821\) 53.2663i 1.85901i 0.368812 + 0.929504i \(0.379765\pi\)
−0.368812 + 0.929504i \(0.620235\pi\)
\(822\) 0 0
\(823\) −21.8689 + 21.8689i −0.762302 + 0.762302i −0.976738 0.214436i \(-0.931209\pi\)
0.214436 + 0.976738i \(0.431209\pi\)
\(824\) −10.3398 −0.360203
\(825\) 0 0
\(826\) 24.0916 0.838255
\(827\) 25.0863 25.0863i 0.872335 0.872335i −0.120391 0.992727i \(-0.538415\pi\)
0.992727 + 0.120391i \(0.0384149\pi\)
\(828\) 0 0
\(829\) 28.5272i 0.990791i −0.868668 0.495395i \(-0.835023\pi\)
0.868668 0.495395i \(-0.164977\pi\)
\(830\) 0.00785060 0.0128569i 0.000272498 0.000446269i
\(831\) 0 0
\(832\) 0.107294 + 0.107294i 0.00371976 + 0.00371976i
\(833\) −17.7535 17.7535i −0.615122 0.615122i
\(834\) 0 0
\(835\) 7.68358 + 31.7816i 0.265901 + 1.09985i
\(836\) 2.48235i 0.0858540i
\(837\) 0 0
\(838\) 11.9841 11.9841i 0.413983 0.413983i
\(839\) 41.8793 1.44583 0.722917 0.690935i \(-0.242801\pi\)
0.722917 + 0.690935i \(0.242801\pi\)
\(840\) 0 0
\(841\) −12.6737 −0.437025
\(842\) −18.1166 + 18.1166i −0.624340 + 0.624340i
\(843\) 0 0
\(844\) 4.43055i 0.152506i
\(845\) −24.7655 15.1222i −0.851959 0.520219i
\(846\) 0 0
\(847\) 11.3231 + 11.3231i 0.389067 + 0.389067i
\(848\) −3.82456 3.82456i −0.131336 0.131336i
\(849\) 0 0
\(850\) 28.2297 14.4971i 0.968270 0.497245i
\(851\) 0.869743i 0.0298144i
\(852\) 0 0
\(853\) −5.31646 + 5.31646i −0.182032 + 0.182032i −0.792241 0.610209i \(-0.791086\pi\)
0.610209 + 0.792241i \(0.291086\pi\)
\(854\) 33.6975 1.15310
\(855\) 0 0
\(856\) 11.5234 0.393862
\(857\) −38.1661 + 38.1661i −1.30373 + 1.30373i −0.377873 + 0.925858i \(0.623344\pi\)
−0.925858 + 0.377873i \(0.876656\pi\)
\(858\) 0 0
\(859\) 13.3449i 0.455321i −0.973741 0.227660i \(-0.926892\pi\)
0.973741 0.227660i \(-0.0731076\pi\)
\(860\) −11.8557 + 2.86626i −0.404277 + 0.0977388i
\(861\) 0 0
\(862\) −26.3062 26.3062i −0.895993 0.895993i
\(863\) −21.0034 21.0034i −0.714965 0.714965i 0.252605 0.967570i \(-0.418713\pi\)
−0.967570 + 0.252605i \(0.918713\pi\)
\(864\) 0 0
\(865\) 40.3975 9.76658i 1.37356 0.332074i
\(866\) 12.5535i 0.426586i
\(867\) 0 0
\(868\) −13.1358 + 13.1358i −0.445858 + 0.445858i
\(869\) −38.0733 −1.29155
\(870\) 0 0
\(871\) 0 0
\(872\) 3.95951 3.95951i 0.134086 0.134086i
\(873\) 0 0
\(874\) 5.73190i 0.193885i
\(875\) 24.1678 + 28.0249i 0.817020 + 0.947415i
\(876\) 0 0
\(877\) 28.8550 + 28.8550i 0.974364 + 0.974364i 0.999680 0.0253157i \(-0.00805910\pi\)
−0.0253157 + 0.999680i \(0.508059\pi\)
\(878\) 1.03924 + 1.03924i 0.0350728 + 0.0350728i
\(879\) 0 0
\(880\) 4.73737 + 2.89271i 0.159697 + 0.0975131i
\(881\) 13.6670i 0.460454i −0.973137 0.230227i \(-0.926053\pi\)
0.973137 0.230227i \(-0.0739468\pi\)
\(882\) 0 0
\(883\) −20.8357 + 20.8357i −0.701177 + 0.701177i −0.964663 0.263486i \(-0.915128\pi\)
0.263486 + 0.964663i \(0.415128\pi\)
\(884\) 0.963062 0.0323913
\(885\) 0 0
\(886\) −0.911863 −0.0306347
\(887\) −4.77598 + 4.77598i −0.160362 + 0.160362i −0.782727 0.622365i \(-0.786172\pi\)
0.622365 + 0.782727i \(0.286172\pi\)
\(888\) 0 0
\(889\) 44.5907i 1.49552i
\(890\) −4.14257 17.1349i −0.138859 0.574364i
\(891\) 0 0
\(892\) 9.76490 + 9.76490i 0.326953 + 0.326953i
\(893\) −3.34779 3.34779i −0.112030 0.112030i
\(894\) 0 0
\(895\) −22.1871 + 36.3357i −0.741634 + 1.21457i
\(896\) 3.30996i 0.110578i
\(897\) 0 0
\(898\) −7.91546 + 7.91546i −0.264142 + 0.264142i
\(899\) 22.6774 0.756333
\(900\) 0 0
\(901\) −34.3288 −1.14366
\(902\) −0.438931 + 0.438931i −0.0146148 + 0.0146148i
\(903\) 0 0
\(904\) 15.8642i 0.527636i
\(905\) 0.424833 0.695746i 0.0141219 0.0231274i
\(906\) 0 0
\(907\) 16.2953 + 16.2953i 0.541076 + 0.541076i 0.923844 0.382768i \(-0.125029\pi\)
−0.382768 + 0.923844i \(0.625029\pi\)
\(908\) 15.6881 + 15.6881i 0.520629 + 0.520629i
\(909\) 0 0
\(910\) 0.263908 + 1.09160i 0.00874846 + 0.0361863i
\(911\) 34.4249i 1.14055i 0.821455 + 0.570273i \(0.193163\pi\)
−0.821455 + 0.570273i \(0.806837\pi\)
\(912\) 0 0
\(913\) 0.0118253 0.0118253i 0.000391359 0.000391359i
\(914\) 8.88574 0.293914
\(915\) 0 0
\(916\) −23.9430 −0.791100
\(917\) 10.9084 10.9084i 0.360227 0.360227i
\(918\) 0 0
\(919\) 8.94023i 0.294911i 0.989069 + 0.147455i \(0.0471083\pi\)
−0.989069 + 0.147455i \(0.952892\pi\)
\(920\) −10.9389 6.67943i −0.360644 0.220214i
\(921\) 0 0
\(922\) −21.8200 21.8200i −0.718603 0.718603i
\(923\) 0.906930 + 0.906930i 0.0298520 + 0.0298520i
\(924\) 0 0
\(925\) 0.232150 0.722296i 0.00763305 0.0237489i
\(926\) 18.6348i 0.612379i
\(927\) 0 0
\(928\) 2.85712 2.85712i 0.0937896 0.0937896i
\(929\) −31.6023 −1.03684 −0.518419 0.855127i \(-0.673479\pi\)
−0.518419 + 0.855127i \(0.673479\pi\)
\(930\) 0 0
\(931\) −3.95582 −0.129647
\(932\) 13.0996 13.0996i 0.429092 0.429092i
\(933\) 0 0
\(934\) 8.92534i 0.292046i
\(935\) 34.2433 8.27872i 1.11988 0.270743i
\(936\) 0 0
\(937\) 29.7784 + 29.7784i 0.972817 + 0.972817i 0.999640 0.0268237i \(-0.00853926\pi\)
−0.0268237 + 0.999640i \(0.508539\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −10.2902 + 2.48778i −0.335629 + 0.0811424i
\(941\) 20.9352i 0.682469i 0.939978 + 0.341234i \(0.110845\pi\)
−0.939978 + 0.341234i \(0.889155\pi\)
\(942\) 0 0
\(943\) 1.01352 1.01352i 0.0330047 0.0330047i
\(944\) −7.27853 −0.236896
\(945\) 0 0
\(946\) −13.5407 −0.440247
\(947\) −10.6944 + 10.6944i −0.347522 + 0.347522i −0.859186 0.511664i \(-0.829029\pi\)
0.511664 + 0.859186i \(0.329029\pi\)
\(948\) 0 0
\(949\) 1.19488i 0.0387874i
\(950\) 1.52995 4.76017i 0.0496381 0.154440i
\(951\) 0 0
\(952\) 14.8549 + 14.8549i 0.481450 + 0.481450i
\(953\) 15.6764 + 15.6764i 0.507809 + 0.507809i 0.913853 0.406045i \(-0.133092\pi\)
−0.406045 + 0.913853i \(0.633092\pi\)
\(954\) 0 0
\(955\) 21.5990 + 13.1887i 0.698928 + 0.426776i
\(956\) 20.4712i 0.662087i
\(957\) 0 0
\(958\) 28.7095 28.7095i 0.927562 0.927562i
\(959\) −36.9513 −1.19322
\(960\) 0 0
\(961\) 0.499132 0.0161010
\(962\) 0.0162806 0.0162806i 0.000524906 0.000524906i
\(963\) 0 0
\(964\) 7.39592i 0.238207i
\(965\) −8.75619 36.2183i −0.281872 1.16591i
\(966\) 0 0
\(967\) −25.7922 25.7922i −0.829421 0.829421i 0.158015 0.987437i \(-0.449490\pi\)
−0.987437 + 0.158015i \(0.949490\pi\)
\(968\) −3.42093 3.42093i −0.109953 0.109953i
\(969\) 0 0
\(970\) 8.55507 14.0106i 0.274687 0.449853i
\(971\) 16.6081i 0.532979i −0.963838 0.266489i \(-0.914136\pi\)
0.963838 0.266489i \(-0.0858638\pi\)
\(972\) 0 0
\(973\) 30.8987 30.8987i 0.990567 0.990567i
\(974\) 30.1252 0.965275
\(975\) 0 0
\(976\) −10.1806 −0.325874
\(977\) −19.4710 + 19.4710i −0.622934 + 0.622934i −0.946281 0.323347i \(-0.895192\pi\)
0.323347 + 0.946281i \(0.395192\pi\)
\(978\) 0 0
\(979\) 19.5702i 0.625467i
\(980\) −4.60975 + 7.54936i −0.147253 + 0.241155i
\(981\) 0 0
\(982\) −28.4506 28.4506i −0.907897 0.907897i
\(983\) −17.5775 17.5775i −0.560636 0.560636i 0.368852 0.929488i \(-0.379751\pi\)
−0.929488 + 0.368852i \(0.879751\pi\)
\(984\) 0 0
\(985\) 0.574064 + 2.37450i 0.0182912 + 0.0756579i
\(986\) 25.6452i 0.816708i
\(987\) 0 0
\(988\) 0.107294 0.107294i 0.00341349 0.00341349i
\(989\) 31.2663 0.994212
\(990\) 0 0
\(991\) 28.8400 0.916132 0.458066 0.888918i \(-0.348542\pi\)
0.458066 + 0.888918i \(0.348542\pi\)
\(992\) 3.96857 3.96857i 0.126002 0.126002i
\(993\) 0 0
\(994\) 27.9781i 0.887413i
\(995\) −28.2118 17.2265i −0.894374 0.546118i
\(996\) 0 0
\(997\) −24.0560 24.0560i −0.761860 0.761860i 0.214798 0.976658i \(-0.431091\pi\)
−0.976658 + 0.214798i \(0.931091\pi\)
\(998\) 14.2386 + 14.2386i 0.450716 + 0.450716i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.n.i.647.7 yes 20
3.2 odd 2 inner 1710.2.n.i.647.4 20
5.3 odd 4 inner 1710.2.n.i.1673.4 yes 20
15.8 even 4 inner 1710.2.n.i.1673.7 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.n.i.647.4 20 3.2 odd 2 inner
1710.2.n.i.647.7 yes 20 1.1 even 1 trivial
1710.2.n.i.1673.4 yes 20 5.3 odd 4 inner
1710.2.n.i.1673.7 yes 20 15.8 even 4 inner