Properties

Label 1710.2.n.i.647.8
Level $1710$
Weight $2$
Character 1710.647
Analytic conductor $13.654$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1710,2,Mod(647,1710)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1710, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1710.647");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1710 = 2 \cdot 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1710.n (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.6544187456\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 4 x^{19} - 10 x^{18} + 56 x^{17} + 50 x^{16} - 336 x^{15} + 672 x^{14} - 776 x^{13} + 626 x^{12} + \cdots + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 647.8
Root \(3.60603 + 1.49367i\) of defining polynomial
Character \(\chi\) \(=\) 1710.647
Dual form 1710.2.n.i.1673.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 0.707107i) q^{2} -1.00000i q^{4} +(0.975056 + 2.01228i) q^{5} +(-3.02518 - 3.02518i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(2.11236 + 0.733428i) q^{10} -6.04990i q^{11} +(-2.89899 + 2.89899i) q^{13} -4.27825 q^{14} -1.00000 q^{16} +(-2.45144 + 2.45144i) q^{17} +1.00000i q^{19} +(2.01228 - 0.975056i) q^{20} +(-4.27792 - 4.27792i) q^{22} +(1.29092 + 1.29092i) q^{23} +(-3.09853 + 3.92417i) q^{25} +4.09979i q^{26} +(-3.02518 + 3.02518i) q^{28} -4.48523 q^{29} +0.106387 q^{31} +(-0.707107 + 0.707107i) q^{32} +3.46686i q^{34} +(3.13779 - 9.03723i) q^{35} +(-2.89899 - 2.89899i) q^{37} +(0.707107 + 0.707107i) q^{38} +(0.733428 - 2.11236i) q^{40} +5.65335i q^{41} +(-4.17154 + 4.17154i) q^{43} -6.04990 q^{44} +1.82564 q^{46} +(-5.35509 + 5.35509i) q^{47} +11.3035i q^{49} +(0.583812 + 4.96580i) q^{50} +(2.89899 + 2.89899i) q^{52} +(-9.19614 - 9.19614i) q^{53} +(12.1741 - 5.89899i) q^{55} +4.27825i q^{56} +(-3.17154 + 3.17154i) q^{58} -4.35348 q^{59} +6.09068 q^{61} +(0.0752273 - 0.0752273i) q^{62} +1.00000i q^{64} +(-8.66024 - 3.00690i) q^{65} +(2.45144 + 2.45144i) q^{68} +(-4.17154 - 8.60904i) q^{70} -15.2852i q^{71} +(7.19707 - 7.19707i) q^{73} -4.09979 q^{74} +1.00000 q^{76} +(-18.3020 + 18.3020i) q^{77} -8.46020i q^{79} +(-0.975056 - 2.01228i) q^{80} +(3.99752 + 3.99752i) q^{82} +(-7.44455 - 7.44455i) q^{83} +(-7.32326 - 2.54269i) q^{85} +5.89944i q^{86} +(-4.27792 + 4.27792i) q^{88} -13.7025 q^{89} +17.5399 q^{91} +(1.29092 - 1.29092i) q^{92} +7.57324i q^{94} +(-2.01228 + 0.975056i) q^{95} +(2.34568 + 2.34568i) q^{97} +(7.99275 + 7.99275i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{10} - 12 q^{13} - 20 q^{16} - 16 q^{22} + 16 q^{31} - 12 q^{37} - 8 q^{46} + 12 q^{52} + 20 q^{58} - 16 q^{61} + 20 q^{73} + 20 q^{76} - 28 q^{82} - 8 q^{85} - 16 q^{88} + 32 q^{91} - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1710\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(1027\) \(1351\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 0.707107i 0.500000 0.500000i
\(3\) 0 0
\(4\) 1.00000i 0.500000i
\(5\) 0.975056 + 2.01228i 0.436058 + 0.899918i
\(6\) 0 0
\(7\) −3.02518 3.02518i −1.14341 1.14341i −0.987822 0.155590i \(-0.950272\pi\)
−0.155590 0.987822i \(-0.549728\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) 2.11236 + 0.733428i 0.667988 + 0.231930i
\(11\) 6.04990i 1.82411i −0.410065 0.912056i \(-0.634494\pi\)
0.410065 0.912056i \(-0.365506\pi\)
\(12\) 0 0
\(13\) −2.89899 + 2.89899i −0.804034 + 0.804034i −0.983723 0.179689i \(-0.942491\pi\)
0.179689 + 0.983723i \(0.442491\pi\)
\(14\) −4.27825 −1.14341
\(15\) 0 0
\(16\) −1.00000 −0.250000
\(17\) −2.45144 + 2.45144i −0.594561 + 0.594561i −0.938860 0.344299i \(-0.888117\pi\)
0.344299 + 0.938860i \(0.388117\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i
\(20\) 2.01228 0.975056i 0.449959 0.218029i
\(21\) 0 0
\(22\) −4.27792 4.27792i −0.912056 0.912056i
\(23\) 1.29092 + 1.29092i 0.269175 + 0.269175i 0.828768 0.559593i \(-0.189042\pi\)
−0.559593 + 0.828768i \(0.689042\pi\)
\(24\) 0 0
\(25\) −3.09853 + 3.92417i −0.619707 + 0.784834i
\(26\) 4.09979i 0.804034i
\(27\) 0 0
\(28\) −3.02518 + 3.02518i −0.571706 + 0.571706i
\(29\) −4.48523 −0.832886 −0.416443 0.909162i \(-0.636723\pi\)
−0.416443 + 0.909162i \(0.636723\pi\)
\(30\) 0 0
\(31\) 0.106387 0.0191078 0.00955388 0.999954i \(-0.496959\pi\)
0.00955388 + 0.999954i \(0.496959\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 3.46686i 0.594561i
\(35\) 3.13779 9.03723i 0.530383 1.52757i
\(36\) 0 0
\(37\) −2.89899 2.89899i −0.476590 0.476590i 0.427449 0.904039i \(-0.359412\pi\)
−0.904039 + 0.427449i \(0.859412\pi\)
\(38\) 0.707107 + 0.707107i 0.114708 + 0.114708i
\(39\) 0 0
\(40\) 0.733428 2.11236i 0.115965 0.333994i
\(41\) 5.65335i 0.882904i 0.897285 + 0.441452i \(0.145536\pi\)
−0.897285 + 0.441452i \(0.854464\pi\)
\(42\) 0 0
\(43\) −4.17154 + 4.17154i −0.636153 + 0.636153i −0.949604 0.313451i \(-0.898515\pi\)
0.313451 + 0.949604i \(0.398515\pi\)
\(44\) −6.04990 −0.912056
\(45\) 0 0
\(46\) 1.82564 0.269175
\(47\) −5.35509 + 5.35509i −0.781120 + 0.781120i −0.980020 0.198900i \(-0.936263\pi\)
0.198900 + 0.980020i \(0.436263\pi\)
\(48\) 0 0
\(49\) 11.3035i 1.61478i
\(50\) 0.583812 + 4.96580i 0.0825635 + 0.702270i
\(51\) 0 0
\(52\) 2.89899 + 2.89899i 0.402017 + 0.402017i
\(53\) −9.19614 9.19614i −1.26319 1.26319i −0.949540 0.313647i \(-0.898449\pi\)
−0.313647 0.949540i \(-0.601551\pi\)
\(54\) 0 0
\(55\) 12.1741 5.89899i 1.64155 0.795419i
\(56\) 4.27825i 0.571706i
\(57\) 0 0
\(58\) −3.17154 + 3.17154i −0.416443 + 0.416443i
\(59\) −4.35348 −0.566775 −0.283387 0.959005i \(-0.591458\pi\)
−0.283387 + 0.959005i \(0.591458\pi\)
\(60\) 0 0
\(61\) 6.09068 0.779831 0.389916 0.920851i \(-0.372504\pi\)
0.389916 + 0.920851i \(0.372504\pi\)
\(62\) 0.0752273 0.0752273i 0.00955388 0.00955388i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) −8.66024 3.00690i −1.07417 0.372959i
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 2.45144 + 2.45144i 0.297280 + 0.297280i
\(69\) 0 0
\(70\) −4.17154 8.60904i −0.498594 1.02898i
\(71\) 15.2852i 1.81401i −0.421115 0.907007i \(-0.638361\pi\)
0.421115 0.907007i \(-0.361639\pi\)
\(72\) 0 0
\(73\) 7.19707 7.19707i 0.842353 0.842353i −0.146812 0.989164i \(-0.546901\pi\)
0.989164 + 0.146812i \(0.0469011\pi\)
\(74\) −4.09979 −0.476590
\(75\) 0 0
\(76\) 1.00000 0.114708
\(77\) −18.3020 + 18.3020i −2.08571 + 2.08571i
\(78\) 0 0
\(79\) 8.46020i 0.951847i −0.879487 0.475924i \(-0.842114\pi\)
0.879487 0.475924i \(-0.157886\pi\)
\(80\) −0.975056 2.01228i −0.109015 0.224980i
\(81\) 0 0
\(82\) 3.99752 + 3.99752i 0.441452 + 0.441452i
\(83\) −7.44455 7.44455i −0.817145 0.817145i 0.168548 0.985693i \(-0.446092\pi\)
−0.985693 + 0.168548i \(0.946092\pi\)
\(84\) 0 0
\(85\) −7.32326 2.54269i −0.794319 0.275793i
\(86\) 5.89944i 0.636153i
\(87\) 0 0
\(88\) −4.27792 + 4.27792i −0.456028 + 0.456028i
\(89\) −13.7025 −1.45246 −0.726229 0.687453i \(-0.758729\pi\)
−0.726229 + 0.687453i \(0.758729\pi\)
\(90\) 0 0
\(91\) 17.5399 1.83868
\(92\) 1.29092 1.29092i 0.134588 0.134588i
\(93\) 0 0
\(94\) 7.57324i 0.781120i
\(95\) −2.01228 + 0.975056i −0.206455 + 0.100039i
\(96\) 0 0
\(97\) 2.34568 + 2.34568i 0.238168 + 0.238168i 0.816091 0.577923i \(-0.196137\pi\)
−0.577923 + 0.816091i \(0.696137\pi\)
\(98\) 7.99275 + 7.99275i 0.807390 + 0.807390i
\(99\) 0 0
\(100\) 3.92417 + 3.09853i 0.392417 + 0.309853i
\(101\) 13.8994i 1.38305i −0.722354 0.691523i \(-0.756940\pi\)
0.722354 0.691523i \(-0.243060\pi\)
\(102\) 0 0
\(103\) 1.73940 1.73940i 0.171389 0.171389i −0.616201 0.787589i \(-0.711329\pi\)
0.787589 + 0.616201i \(0.211329\pi\)
\(104\) 4.09979 0.402017
\(105\) 0 0
\(106\) −13.0053 −1.26319
\(107\) −3.13123 + 3.13123i −0.302707 + 0.302707i −0.842072 0.539365i \(-0.818664\pi\)
0.539365 + 0.842072i \(0.318664\pi\)
\(108\) 0 0
\(109\) 5.09046i 0.487578i −0.969828 0.243789i \(-0.921610\pi\)
0.969828 0.243789i \(-0.0783904\pi\)
\(110\) 4.43716 12.7796i 0.423067 1.21849i
\(111\) 0 0
\(112\) 3.02518 + 3.02518i 0.285853 + 0.285853i
\(113\) 8.08873 + 8.08873i 0.760924 + 0.760924i 0.976489 0.215566i \(-0.0691595\pi\)
−0.215566 + 0.976489i \(0.569160\pi\)
\(114\) 0 0
\(115\) −1.33897 + 3.85641i −0.124860 + 0.359612i
\(116\) 4.48523i 0.416443i
\(117\) 0 0
\(118\) −3.07838 + 3.07838i −0.283387 + 0.283387i
\(119\) 14.8321 1.35966
\(120\) 0 0
\(121\) −25.6012 −2.32739
\(122\) 4.30676 4.30676i 0.389916 0.389916i
\(123\) 0 0
\(124\) 0.106387i 0.00955388i
\(125\) −10.9178 2.40883i −0.976514 0.215452i
\(126\) 0 0
\(127\) −2.05857 2.05857i −0.182668 0.182668i 0.609849 0.792517i \(-0.291230\pi\)
−0.792517 + 0.609849i \(0.791230\pi\)
\(128\) 0.707107 + 0.707107i 0.0625000 + 0.0625000i
\(129\) 0 0
\(130\) −8.24991 + 3.99752i −0.723565 + 0.350606i
\(131\) 17.6814i 1.54483i −0.635116 0.772416i \(-0.719048\pi\)
0.635116 0.772416i \(-0.280952\pi\)
\(132\) 0 0
\(133\) 3.02518 3.02518i 0.262317 0.262317i
\(134\) 0 0
\(135\) 0 0
\(136\) 3.46686 0.297280
\(137\) −1.39816 + 1.39816i −0.119453 + 0.119453i −0.764306 0.644853i \(-0.776918\pi\)
0.644853 + 0.764306i \(0.276918\pi\)
\(138\) 0 0
\(139\) 15.0210i 1.27407i 0.770837 + 0.637033i \(0.219838\pi\)
−0.770837 + 0.637033i \(0.780162\pi\)
\(140\) −9.03723 3.13779i −0.763785 0.265192i
\(141\) 0 0
\(142\) −10.8082 10.8082i −0.907007 0.907007i
\(143\) 17.5386 + 17.5386i 1.46665 + 1.46665i
\(144\) 0 0
\(145\) −4.37335 9.02553i −0.363187 0.749530i
\(146\) 10.1782i 0.842353i
\(147\) 0 0
\(148\) −2.89899 + 2.89899i −0.238295 + 0.238295i
\(149\) 14.3677 1.17705 0.588525 0.808479i \(-0.299709\pi\)
0.588525 + 0.808479i \(0.299709\pi\)
\(150\) 0 0
\(151\) 20.2474 1.64771 0.823856 0.566799i \(-0.191818\pi\)
0.823856 + 0.566799i \(0.191818\pi\)
\(152\) 0.707107 0.707107i 0.0573539 0.0573539i
\(153\) 0 0
\(154\) 25.8830i 2.08571i
\(155\) 0.103734 + 0.214081i 0.00833209 + 0.0171954i
\(156\) 0 0
\(157\) 13.7423 + 13.7423i 1.09675 + 1.09675i 0.994788 + 0.101967i \(0.0325136\pi\)
0.101967 + 0.994788i \(0.467486\pi\)
\(158\) −5.98227 5.98227i −0.475924 0.475924i
\(159\) 0 0
\(160\) −2.11236 0.733428i −0.166997 0.0579825i
\(161\) 7.81053i 0.615556i
\(162\) 0 0
\(163\) −5.46255 + 5.46255i −0.427860 + 0.427860i −0.887899 0.460039i \(-0.847836\pi\)
0.460039 + 0.887899i \(0.347836\pi\)
\(164\) 5.65335 0.441452
\(165\) 0 0
\(166\) −10.5282 −0.817145
\(167\) 2.45989 2.45989i 0.190352 0.190352i −0.605496 0.795848i \(-0.707025\pi\)
0.795848 + 0.605496i \(0.207025\pi\)
\(168\) 0 0
\(169\) 3.80824i 0.292941i
\(170\) −6.97628 + 3.38038i −0.535056 + 0.259263i
\(171\) 0 0
\(172\) 4.17154 + 4.17154i 0.318077 + 0.318077i
\(173\) 10.1212 + 10.1212i 0.769499 + 0.769499i 0.978018 0.208520i \(-0.0668645\pi\)
−0.208520 + 0.978018i \(0.566864\pi\)
\(174\) 0 0
\(175\) 21.2449 2.49770i 1.60597 0.188808i
\(176\) 6.04990i 0.456028i
\(177\) 0 0
\(178\) −9.68910 + 9.68910i −0.726229 + 0.726229i
\(179\) 7.88157 0.589096 0.294548 0.955637i \(-0.404831\pi\)
0.294548 + 0.955637i \(0.404831\pi\)
\(180\) 0 0
\(181\) 10.7019 0.795462 0.397731 0.917502i \(-0.369798\pi\)
0.397731 + 0.917502i \(0.369798\pi\)
\(182\) 12.4026 12.4026i 0.919342 0.919342i
\(183\) 0 0
\(184\) 1.82564i 0.134588i
\(185\) 3.00690 8.66024i 0.221071 0.636714i
\(186\) 0 0
\(187\) 14.8309 + 14.8309i 1.08455 + 1.08455i
\(188\) 5.35509 + 5.35509i 0.390560 + 0.390560i
\(189\) 0 0
\(190\) −0.733428 + 2.11236i −0.0532084 + 0.153247i
\(191\) 16.6132i 1.20209i 0.799215 + 0.601045i \(0.205249\pi\)
−0.799215 + 0.601045i \(0.794751\pi\)
\(192\) 0 0
\(193\) 7.86143 7.86143i 0.565878 0.565878i −0.365093 0.930971i \(-0.618963\pi\)
0.930971 + 0.365093i \(0.118963\pi\)
\(194\) 3.31730 0.238168
\(195\) 0 0
\(196\) 11.3035 0.807390
\(197\) −9.53010 + 9.53010i −0.678992 + 0.678992i −0.959772 0.280780i \(-0.909407\pi\)
0.280780 + 0.959772i \(0.409407\pi\)
\(198\) 0 0
\(199\) 10.3991i 0.737172i 0.929594 + 0.368586i \(0.120158\pi\)
−0.929594 + 0.368586i \(0.879842\pi\)
\(200\) 4.96580 0.583812i 0.351135 0.0412818i
\(201\) 0 0
\(202\) −9.82840 9.82840i −0.691523 0.691523i
\(203\) 13.5686 + 13.5686i 0.952331 + 0.952331i
\(204\) 0 0
\(205\) −11.3761 + 5.51233i −0.794542 + 0.384998i
\(206\) 2.45989i 0.171389i
\(207\) 0 0
\(208\) 2.89899 2.89899i 0.201009 0.201009i
\(209\) 6.04990 0.418480
\(210\) 0 0
\(211\) −22.0447 −1.51762 −0.758810 0.651312i \(-0.774219\pi\)
−0.758810 + 0.651312i \(0.774219\pi\)
\(212\) −9.19614 + 9.19614i −0.631593 + 0.631593i
\(213\) 0 0
\(214\) 4.42823i 0.302707i
\(215\) −12.4618 4.32681i −0.849886 0.295086i
\(216\) 0 0
\(217\) −0.321841 0.321841i −0.0218480 0.0218480i
\(218\) −3.59950 3.59950i −0.243789 0.243789i
\(219\) 0 0
\(220\) −5.89899 12.1741i −0.397710 0.820776i
\(221\) 14.2134i 0.956094i
\(222\) 0 0
\(223\) 5.49706 5.49706i 0.368111 0.368111i −0.498677 0.866788i \(-0.666181\pi\)
0.866788 + 0.498677i \(0.166181\pi\)
\(224\) 4.27825 0.285853
\(225\) 0 0
\(226\) 11.4392 0.760924
\(227\) 15.1349 15.1349i 1.00454 1.00454i 0.00454820 0.999990i \(-0.498552\pi\)
0.999990 0.00454820i \(-0.00144774\pi\)
\(228\) 0 0
\(229\) 9.08041i 0.600051i −0.953931 0.300025i \(-0.903005\pi\)
0.953931 0.300025i \(-0.0969951\pi\)
\(230\) 1.78010 + 3.67369i 0.117376 + 0.242236i
\(231\) 0 0
\(232\) 3.17154 + 3.17154i 0.208221 + 0.208221i
\(233\) −8.57256 8.57256i −0.561607 0.561607i 0.368157 0.929764i \(-0.379989\pi\)
−0.929764 + 0.368157i \(0.879989\pi\)
\(234\) 0 0
\(235\) −15.9974 5.55443i −1.04356 0.362331i
\(236\) 4.35348i 0.283387i
\(237\) 0 0
\(238\) 10.4879 10.4879i 0.679828 0.679828i
\(239\) −21.9823 −1.42192 −0.710958 0.703235i \(-0.751738\pi\)
−0.710958 + 0.703235i \(0.751738\pi\)
\(240\) 0 0
\(241\) −15.9894 −1.02997 −0.514983 0.857200i \(-0.672202\pi\)
−0.514983 + 0.857200i \(0.672202\pi\)
\(242\) −18.1028 + 18.1028i −1.16369 + 1.16369i
\(243\) 0 0
\(244\) 6.09068i 0.389916i
\(245\) −22.7457 + 11.0215i −1.45317 + 0.704138i
\(246\) 0 0
\(247\) −2.89899 2.89899i −0.184458 0.184458i
\(248\) −0.0752273 0.0752273i −0.00477694 0.00477694i
\(249\) 0 0
\(250\) −9.42332 + 6.01672i −0.595983 + 0.380531i
\(251\) 18.4375i 1.16376i −0.813273 0.581882i \(-0.802317\pi\)
0.813273 0.581882i \(-0.197683\pi\)
\(252\) 0 0
\(253\) 7.80993 7.80993i 0.491006 0.491006i
\(254\) −2.91125 −0.182668
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −10.5893 + 10.5893i −0.660540 + 0.660540i −0.955507 0.294968i \(-0.904691\pi\)
0.294968 + 0.955507i \(0.404691\pi\)
\(258\) 0 0
\(259\) 17.5399i 1.08988i
\(260\) −3.00690 + 8.66024i −0.186480 + 0.537085i
\(261\) 0 0
\(262\) −12.5027 12.5027i −0.772416 0.772416i
\(263\) −9.08683 9.08683i −0.560318 0.560318i 0.369080 0.929398i \(-0.379673\pi\)
−0.929398 + 0.369080i \(0.879673\pi\)
\(264\) 0 0
\(265\) 9.53845 27.4719i 0.585942 1.68759i
\(266\) 4.27825i 0.262317i
\(267\) 0 0
\(268\) 0 0
\(269\) 24.7846 1.51114 0.755572 0.655066i \(-0.227359\pi\)
0.755572 + 0.655066i \(0.227359\pi\)
\(270\) 0 0
\(271\) 20.7713 1.26177 0.630883 0.775878i \(-0.282693\pi\)
0.630883 + 0.775878i \(0.282693\pi\)
\(272\) 2.45144 2.45144i 0.148640 0.148640i
\(273\) 0 0
\(274\) 1.97730i 0.119453i
\(275\) 23.7408 + 18.7458i 1.43162 + 1.13041i
\(276\) 0 0
\(277\) 14.7122 + 14.7122i 0.883973 + 0.883973i 0.993936 0.109962i \(-0.0350730\pi\)
−0.109962 + 0.993936i \(0.535073\pi\)
\(278\) 10.6215 + 10.6215i 0.637033 + 0.637033i
\(279\) 0 0
\(280\) −8.60904 + 4.17154i −0.514489 + 0.249297i
\(281\) 11.4607i 0.683685i −0.939757 0.341843i \(-0.888949\pi\)
0.939757 0.341843i \(-0.111051\pi\)
\(282\) 0 0
\(283\) −13.6768 + 13.6768i −0.813001 + 0.813001i −0.985083 0.172081i \(-0.944951\pi\)
0.172081 + 0.985083i \(0.444951\pi\)
\(284\) −15.2852 −0.907007
\(285\) 0 0
\(286\) 24.8033 1.46665
\(287\) 17.1024 17.1024i 1.00952 1.00952i
\(288\) 0 0
\(289\) 4.98092i 0.292995i
\(290\) −9.47444 3.28959i −0.556358 0.193171i
\(291\) 0 0
\(292\) −7.19707 7.19707i −0.421176 0.421176i
\(293\) −12.4849 12.4849i −0.729377 0.729377i 0.241118 0.970496i \(-0.422486\pi\)
−0.970496 + 0.241118i \(0.922486\pi\)
\(294\) 0 0
\(295\) −4.24489 8.76042i −0.247147 0.510051i
\(296\) 4.09979i 0.238295i
\(297\) 0 0
\(298\) 10.1595 10.1595i 0.588525 0.588525i
\(299\) −7.48471 −0.432852
\(300\) 0 0
\(301\) 25.2393 1.45477
\(302\) 14.3171 14.3171i 0.823856 0.823856i
\(303\) 0 0
\(304\) 1.00000i 0.0573539i
\(305\) 5.93875 + 12.2561i 0.340052 + 0.701785i
\(306\) 0 0
\(307\) 5.51575 + 5.51575i 0.314800 + 0.314800i 0.846766 0.531966i \(-0.178546\pi\)
−0.531966 + 0.846766i \(0.678546\pi\)
\(308\) 18.3020 + 18.3020i 1.04286 + 1.04286i
\(309\) 0 0
\(310\) 0.224729 + 0.0780275i 0.0127638 + 0.00443166i
\(311\) 13.8509i 0.785413i −0.919664 0.392706i \(-0.871539\pi\)
0.919664 0.392706i \(-0.128461\pi\)
\(312\) 0 0
\(313\) −12.0521 + 12.0521i −0.681222 + 0.681222i −0.960276 0.279053i \(-0.909979\pi\)
0.279053 + 0.960276i \(0.409979\pi\)
\(314\) 19.4345 1.09675
\(315\) 0 0
\(316\) −8.46020 −0.475924
\(317\) 16.2141 16.2141i 0.910674 0.910674i −0.0856508 0.996325i \(-0.527297\pi\)
0.996325 + 0.0856508i \(0.0272969\pi\)
\(318\) 0 0
\(319\) 27.1352i 1.51928i
\(320\) −2.01228 + 0.975056i −0.112490 + 0.0545073i
\(321\) 0 0
\(322\) −5.52288 5.52288i −0.307778 0.307778i
\(323\) −2.45144 2.45144i −0.136402 0.136402i
\(324\) 0 0
\(325\) −2.39350 20.3587i −0.132768 1.12930i
\(326\) 7.72522i 0.427860i
\(327\) 0 0
\(328\) 3.99752 3.99752i 0.220726 0.220726i
\(329\) 32.4003 1.78628
\(330\) 0 0
\(331\) −11.3278 −0.622634 −0.311317 0.950306i \(-0.600770\pi\)
−0.311317 + 0.950306i \(0.600770\pi\)
\(332\) −7.44455 + 7.44455i −0.408573 + 0.408573i
\(333\) 0 0
\(334\) 3.47881i 0.190352i
\(335\) 0 0
\(336\) 0 0
\(337\) −23.7048 23.7048i −1.29128 1.29128i −0.933994 0.357289i \(-0.883701\pi\)
−0.357289 0.933994i \(-0.616299\pi\)
\(338\) −2.69283 2.69283i −0.146471 0.146471i
\(339\) 0 0
\(340\) −2.54269 + 7.32326i −0.137897 + 0.397160i
\(341\) 0.643633i 0.0348547i
\(342\) 0 0
\(343\) 13.0187 13.0187i 0.702945 0.702945i
\(344\) 5.89944 0.318077
\(345\) 0 0
\(346\) 14.3135 0.769499
\(347\) 3.14728 3.14728i 0.168955 0.168955i −0.617565 0.786520i \(-0.711881\pi\)
0.786520 + 0.617565i \(0.211881\pi\)
\(348\) 0 0
\(349\) 26.4388i 1.41524i −0.706594 0.707619i \(-0.749769\pi\)
0.706594 0.707619i \(-0.250231\pi\)
\(350\) 13.2563 16.7886i 0.708580 0.897388i
\(351\) 0 0
\(352\) 4.27792 + 4.27792i 0.228014 + 0.228014i
\(353\) −0.920487 0.920487i −0.0489926 0.0489926i 0.682186 0.731179i \(-0.261029\pi\)
−0.731179 + 0.682186i \(0.761029\pi\)
\(354\) 0 0
\(355\) 30.7580 14.9039i 1.63247 0.791016i
\(356\) 13.7025i 0.726229i
\(357\) 0 0
\(358\) 5.57311 5.57311i 0.294548 0.294548i
\(359\) −20.7621 −1.09578 −0.547891 0.836550i \(-0.684569\pi\)
−0.547891 + 0.836550i \(0.684569\pi\)
\(360\) 0 0
\(361\) −1.00000 −0.0526316
\(362\) 7.56735 7.56735i 0.397731 0.397731i
\(363\) 0 0
\(364\) 17.5399i 0.919342i
\(365\) 21.5000 + 7.46496i 1.12536 + 0.390734i
\(366\) 0 0
\(367\) −22.9415 22.9415i −1.19754 1.19754i −0.974902 0.222634i \(-0.928534\pi\)
−0.222634 0.974902i \(-0.571466\pi\)
\(368\) −1.29092 1.29092i −0.0672938 0.0672938i
\(369\) 0 0
\(370\) −3.99752 8.24991i −0.207821 0.428892i
\(371\) 55.6400i 2.88868i
\(372\) 0 0
\(373\) 23.1273 23.1273i 1.19749 1.19749i 0.222571 0.974916i \(-0.428555\pi\)
0.974916 0.222571i \(-0.0714451\pi\)
\(374\) 20.9741 1.08455
\(375\) 0 0
\(376\) 7.57324 0.390560
\(377\) 13.0026 13.0026i 0.669669 0.669669i
\(378\) 0 0
\(379\) 18.2545i 0.937673i 0.883285 + 0.468836i \(0.155327\pi\)
−0.883285 + 0.468836i \(0.844673\pi\)
\(380\) 0.975056 + 2.01228i 0.0500193 + 0.103228i
\(381\) 0 0
\(382\) 11.7473 + 11.7473i 0.601045 + 0.601045i
\(383\) 7.58085 + 7.58085i 0.387363 + 0.387363i 0.873746 0.486383i \(-0.161684\pi\)
−0.486383 + 0.873746i \(0.661684\pi\)
\(384\) 0 0
\(385\) −54.6743 18.9833i −2.78646 0.967479i
\(386\) 11.1177i 0.565878i
\(387\) 0 0
\(388\) 2.34568 2.34568i 0.119084 0.119084i
\(389\) 10.1767 0.515978 0.257989 0.966148i \(-0.416940\pi\)
0.257989 + 0.966148i \(0.416940\pi\)
\(390\) 0 0
\(391\) −6.32921 −0.320082
\(392\) 7.99275 7.99275i 0.403695 0.403695i
\(393\) 0 0
\(394\) 13.4776i 0.678992i
\(395\) 17.0243 8.24917i 0.856585 0.415061i
\(396\) 0 0
\(397\) −4.40091 4.40091i −0.220876 0.220876i 0.587992 0.808867i \(-0.299919\pi\)
−0.808867 + 0.587992i \(0.799919\pi\)
\(398\) 7.35327 + 7.35327i 0.368586 + 0.368586i
\(399\) 0 0
\(400\) 3.09853 3.92417i 0.154927 0.196208i
\(401\) 21.2664i 1.06199i −0.847374 0.530997i \(-0.821818\pi\)
0.847374 0.530997i \(-0.178182\pi\)
\(402\) 0 0
\(403\) −0.308416 + 0.308416i −0.0153633 + 0.0153633i
\(404\) −13.8994 −0.691523
\(405\) 0 0
\(406\) 19.1889 0.952331
\(407\) −17.5386 + 17.5386i −0.869354 + 0.869354i
\(408\) 0 0
\(409\) 6.78915i 0.335702i −0.985812 0.167851i \(-0.946317\pi\)
0.985812 0.167851i \(-0.0536828\pi\)
\(410\) −4.14632 + 11.9419i −0.204772 + 0.589770i
\(411\) 0 0
\(412\) −1.73940 1.73940i −0.0856943 0.0856943i
\(413\) 13.1701 + 13.1701i 0.648057 + 0.648057i
\(414\) 0 0
\(415\) 7.72166 22.2394i 0.379041 1.09169i
\(416\) 4.09979i 0.201009i
\(417\) 0 0
\(418\) 4.27792 4.27792i 0.209240 0.209240i
\(419\) −13.4924 −0.659148 −0.329574 0.944130i \(-0.606905\pi\)
−0.329574 + 0.944130i \(0.606905\pi\)
\(420\) 0 0
\(421\) 26.4411 1.28866 0.644331 0.764747i \(-0.277136\pi\)
0.644331 + 0.764747i \(0.277136\pi\)
\(422\) −15.5880 + 15.5880i −0.758810 + 0.758810i
\(423\) 0 0
\(424\) 13.0053i 0.631593i
\(425\) −2.02399 17.2157i −0.0981780 0.835084i
\(426\) 0 0
\(427\) −18.4254 18.4254i −0.891668 0.891668i
\(428\) 3.13123 + 3.13123i 0.151354 + 0.151354i
\(429\) 0 0
\(430\) −11.8713 + 5.75228i −0.572486 + 0.277400i
\(431\) 20.9690i 1.01004i −0.863107 0.505021i \(-0.831485\pi\)
0.863107 0.505021i \(-0.168515\pi\)
\(432\) 0 0
\(433\) −24.6838 + 24.6838i −1.18623 + 1.18623i −0.208125 + 0.978102i \(0.566736\pi\)
−0.978102 + 0.208125i \(0.933264\pi\)
\(434\) −0.455153 −0.0218480
\(435\) 0 0
\(436\) −5.09046 −0.243789
\(437\) −1.29092 + 1.29092i −0.0617530 + 0.0617530i
\(438\) 0 0
\(439\) 23.3746i 1.11561i −0.829973 0.557804i \(-0.811644\pi\)
0.829973 0.557804i \(-0.188356\pi\)
\(440\) −12.7796 4.43716i −0.609243 0.211533i
\(441\) 0 0
\(442\) −10.0504 10.0504i −0.478047 0.478047i
\(443\) 6.76580 + 6.76580i 0.321453 + 0.321453i 0.849324 0.527872i \(-0.177010\pi\)
−0.527872 + 0.849324i \(0.677010\pi\)
\(444\) 0 0
\(445\) −13.3607 27.5732i −0.633356 1.30709i
\(446\) 7.77402i 0.368111i
\(447\) 0 0
\(448\) 3.02518 3.02518i 0.142926 0.142926i
\(449\) −20.7890 −0.981095 −0.490548 0.871414i \(-0.663203\pi\)
−0.490548 + 0.871414i \(0.663203\pi\)
\(450\) 0 0
\(451\) 34.2022 1.61052
\(452\) 8.08873 8.08873i 0.380462 0.380462i
\(453\) 0 0
\(454\) 21.4040i 1.00454i
\(455\) 17.1024 + 35.2952i 0.801773 + 1.65467i
\(456\) 0 0
\(457\) −4.74195 4.74195i −0.221819 0.221819i 0.587445 0.809264i \(-0.300134\pi\)
−0.809264 + 0.587445i \(0.800134\pi\)
\(458\) −6.42082 6.42082i −0.300025 0.300025i
\(459\) 0 0
\(460\) 3.85641 + 1.33897i 0.179806 + 0.0624299i
\(461\) 27.5735i 1.28423i 0.766610 + 0.642113i \(0.221942\pi\)
−0.766610 + 0.642113i \(0.778058\pi\)
\(462\) 0 0
\(463\) −16.9975 + 16.9975i −0.789942 + 0.789942i −0.981484 0.191543i \(-0.938651\pi\)
0.191543 + 0.981484i \(0.438651\pi\)
\(464\) 4.48523 0.208221
\(465\) 0 0
\(466\) −12.1234 −0.561607
\(467\) −13.7802 + 13.7802i −0.637670 + 0.637670i −0.949980 0.312310i \(-0.898897\pi\)
0.312310 + 0.949980i \(0.398897\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −15.2395 + 7.38433i −0.702945 + 0.340614i
\(471\) 0 0
\(472\) 3.07838 + 3.07838i 0.141694 + 0.141694i
\(473\) 25.2374 + 25.2374i 1.16041 + 1.16041i
\(474\) 0 0
\(475\) −3.92417 3.09853i −0.180053 0.142170i
\(476\) 14.8321i 0.679828i
\(477\) 0 0
\(478\) −15.5438 + 15.5438i −0.710958 + 0.710958i
\(479\) 11.5548 0.527951 0.263976 0.964529i \(-0.414966\pi\)
0.263976 + 0.964529i \(0.414966\pi\)
\(480\) 0 0
\(481\) 16.8082 0.766390
\(482\) −11.3062 + 11.3062i −0.514983 + 0.514983i
\(483\) 0 0
\(484\) 25.6012i 1.16369i
\(485\) −2.43300 + 7.00734i −0.110477 + 0.318187i
\(486\) 0 0
\(487\) 19.9875 + 19.9875i 0.905721 + 0.905721i 0.995923 0.0902020i \(-0.0287513\pi\)
−0.0902020 + 0.995923i \(0.528751\pi\)
\(488\) −4.30676 4.30676i −0.194958 0.194958i
\(489\) 0 0
\(490\) −8.29026 + 23.8770i −0.374516 + 1.07865i
\(491\) 9.03147i 0.407585i −0.979014 0.203792i \(-0.934673\pi\)
0.979014 0.203792i \(-0.0653267\pi\)
\(492\) 0 0
\(493\) 10.9953 10.9953i 0.495201 0.495201i
\(494\) −4.09979 −0.184458
\(495\) 0 0
\(496\) −0.106387 −0.00477694
\(497\) −46.2404 + 46.2404i −2.07416 + 2.07416i
\(498\) 0 0
\(499\) 6.15516i 0.275543i 0.990464 + 0.137772i \(0.0439940\pi\)
−0.990464 + 0.137772i \(0.956006\pi\)
\(500\) −2.40883 + 10.9178i −0.107726 + 0.488257i
\(501\) 0 0
\(502\) −13.0373 13.0373i −0.581882 0.581882i
\(503\) −4.49738 4.49738i −0.200528 0.200528i 0.599698 0.800226i \(-0.295287\pi\)
−0.800226 + 0.599698i \(0.795287\pi\)
\(504\) 0 0
\(505\) 27.9696 13.5527i 1.24463 0.603089i
\(506\) 11.0449i 0.491006i
\(507\) 0 0
\(508\) −2.05857 + 2.05857i −0.0913341 + 0.0913341i
\(509\) −17.0624 −0.756277 −0.378139 0.925749i \(-0.623436\pi\)
−0.378139 + 0.925749i \(0.623436\pi\)
\(510\) 0 0
\(511\) −43.5449 −1.92631
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) 14.9755i 0.660540i
\(515\) 5.19618 + 1.80415i 0.228971 + 0.0795004i
\(516\) 0 0
\(517\) 32.3977 + 32.3977i 1.42485 + 1.42485i
\(518\) 12.4026 + 12.4026i 0.544939 + 0.544939i
\(519\) 0 0
\(520\) 3.99752 + 8.24991i 0.175303 + 0.361783i
\(521\) 4.92329i 0.215693i −0.994168 0.107847i \(-0.965604\pi\)
0.994168 0.107847i \(-0.0343955\pi\)
\(522\) 0 0
\(523\) −26.1723 + 26.1723i −1.14444 + 1.14444i −0.156806 + 0.987629i \(0.550120\pi\)
−0.987629 + 0.156806i \(0.949880\pi\)
\(524\) −17.6814 −0.772416
\(525\) 0 0
\(526\) −12.8507 −0.560318
\(527\) −0.260802 + 0.260802i −0.0113607 + 0.0113607i
\(528\) 0 0
\(529\) 19.6671i 0.855089i
\(530\) −12.6809 26.1703i −0.550823 1.13677i
\(531\) 0 0
\(532\) −3.02518 3.02518i −0.131158 0.131158i
\(533\) −16.3890 16.3890i −0.709885 0.709885i
\(534\) 0 0
\(535\) −9.35403 3.24779i −0.404410 0.140414i
\(536\) 0 0
\(537\) 0 0
\(538\) 17.5254 17.5254i 0.755572 0.755572i
\(539\) 68.3847 2.94554
\(540\) 0 0
\(541\) −5.51982 −0.237316 −0.118658 0.992935i \(-0.537859\pi\)
−0.118658 + 0.992935i \(0.537859\pi\)
\(542\) 14.6875 14.6875i 0.630883 0.630883i
\(543\) 0 0
\(544\) 3.46686i 0.148640i
\(545\) 10.2434 4.96348i 0.438780 0.212612i
\(546\) 0 0
\(547\) −29.0550 29.0550i −1.24230 1.24230i −0.959044 0.283257i \(-0.908585\pi\)
−0.283257 0.959044i \(-0.591415\pi\)
\(548\) 1.39816 + 1.39816i 0.0597265 + 0.0597265i
\(549\) 0 0
\(550\) 30.0426 3.53200i 1.28102 0.150605i
\(551\) 4.48523i 0.191077i
\(552\) 0 0
\(553\) −25.5937 + 25.5937i −1.08835 + 1.08835i
\(554\) 20.8063 0.883973
\(555\) 0 0
\(556\) 15.0210 0.637033
\(557\) −24.9185 + 24.9185i −1.05583 + 1.05583i −0.0574844 + 0.998346i \(0.518308\pi\)
−0.998346 + 0.0574844i \(0.981692\pi\)
\(558\) 0 0
\(559\) 24.1864i 1.02298i
\(560\) −3.13779 + 9.03723i −0.132596 + 0.381893i
\(561\) 0 0
\(562\) −8.10391 8.10391i −0.341843 0.341843i
\(563\) −28.3656 28.3656i −1.19547 1.19547i −0.975510 0.219957i \(-0.929408\pi\)
−0.219957 0.975510i \(-0.570592\pi\)
\(564\) 0 0
\(565\) −8.38982 + 24.1637i −0.352962 + 1.01658i
\(566\) 19.3419i 0.813001i
\(567\) 0 0
\(568\) −10.8082 + 10.8082i −0.453504 + 0.453504i
\(569\) −40.9892 −1.71836 −0.859178 0.511676i \(-0.829025\pi\)
−0.859178 + 0.511676i \(0.829025\pi\)
\(570\) 0 0
\(571\) 42.7416 1.78868 0.894340 0.447388i \(-0.147646\pi\)
0.894340 + 0.447388i \(0.147646\pi\)
\(572\) 17.5386 17.5386i 0.733324 0.733324i
\(573\) 0 0
\(574\) 24.1864i 1.00952i
\(575\) −9.06574 + 1.06583i −0.378067 + 0.0444481i
\(576\) 0 0
\(577\) 29.7487 + 29.7487i 1.23846 + 1.23846i 0.960632 + 0.277823i \(0.0896130\pi\)
0.277823 + 0.960632i \(0.410387\pi\)
\(578\) 3.52204 + 3.52204i 0.146498 + 0.146498i
\(579\) 0 0
\(580\) −9.02553 + 4.37335i −0.374765 + 0.181593i
\(581\) 45.0422i 1.86867i
\(582\) 0 0
\(583\) −55.6357 + 55.6357i −2.30419 + 2.30419i
\(584\) −10.1782 −0.421176
\(585\) 0 0
\(586\) −17.6564 −0.729377
\(587\) 27.5003 27.5003i 1.13506 1.13506i 0.145737 0.989323i \(-0.453445\pi\)
0.989323 0.145737i \(-0.0465554\pi\)
\(588\) 0 0
\(589\) 0.106387i 0.00438362i
\(590\) −9.19614 3.19296i −0.378599 0.131452i
\(591\) 0 0
\(592\) 2.89899 + 2.89899i 0.119148 + 0.119148i
\(593\) 11.7043 + 11.7043i 0.480637 + 0.480637i 0.905335 0.424698i \(-0.139620\pi\)
−0.424698 + 0.905335i \(0.639620\pi\)
\(594\) 0 0
\(595\) 14.4621 + 29.8463i 0.592889 + 1.22358i
\(596\) 14.3677i 0.588525i
\(597\) 0 0
\(598\) −5.29249 + 5.29249i −0.216426 + 0.216426i
\(599\) 20.2471 0.827275 0.413638 0.910442i \(-0.364258\pi\)
0.413638 + 0.910442i \(0.364258\pi\)
\(600\) 0 0
\(601\) 22.6559 0.924153 0.462076 0.886840i \(-0.347105\pi\)
0.462076 + 0.886840i \(0.347105\pi\)
\(602\) 17.8469 17.8469i 0.727385 0.727385i
\(603\) 0 0
\(604\) 20.2474i 0.823856i
\(605\) −24.9626 51.5169i −1.01488 2.09446i
\(606\) 0 0
\(607\) 12.7604 + 12.7604i 0.517929 + 0.517929i 0.916944 0.399015i \(-0.130648\pi\)
−0.399015 + 0.916944i \(0.630648\pi\)
\(608\) −0.707107 0.707107i −0.0286770 0.0286770i
\(609\) 0 0
\(610\) 12.8657 + 4.46707i 0.520918 + 0.180866i
\(611\) 31.0487i 1.25609i
\(612\) 0 0
\(613\) −14.3081 + 14.3081i −0.577897 + 0.577897i −0.934324 0.356426i \(-0.883995\pi\)
0.356426 + 0.934324i \(0.383995\pi\)
\(614\) 7.80045 0.314800
\(615\) 0 0
\(616\) 25.8830 1.04286
\(617\) 8.75912 8.75912i 0.352629 0.352629i −0.508458 0.861087i \(-0.669784\pi\)
0.861087 + 0.508458i \(0.169784\pi\)
\(618\) 0 0
\(619\) 9.66513i 0.388474i 0.980955 + 0.194237i \(0.0622231\pi\)
−0.980955 + 0.194237i \(0.937777\pi\)
\(620\) 0.214081 0.103734i 0.00859771 0.00416605i
\(621\) 0 0
\(622\) −9.79407 9.79407i −0.392706 0.392706i
\(623\) 41.4524 + 41.4524i 1.66076 + 1.66076i
\(624\) 0 0
\(625\) −5.79819 24.3183i −0.231928 0.972733i
\(626\) 17.0442i 0.681222i
\(627\) 0 0
\(628\) 13.7423 13.7423i 0.548377 0.548377i
\(629\) 14.2134 0.566724
\(630\) 0 0
\(631\) 17.0994 0.680715 0.340357 0.940296i \(-0.389452\pi\)
0.340357 + 0.940296i \(0.389452\pi\)
\(632\) −5.98227 + 5.98227i −0.237962 + 0.237962i
\(633\) 0 0
\(634\) 22.9302i 0.910674i
\(635\) 2.13519 6.14963i 0.0847326 0.244041i
\(636\) 0 0
\(637\) −32.7686 32.7686i −1.29834 1.29834i
\(638\) 19.1875 + 19.1875i 0.759639 + 0.759639i
\(639\) 0 0
\(640\) −0.733428 + 2.11236i −0.0289913 + 0.0834985i
\(641\) 6.80437i 0.268756i −0.990930 0.134378i \(-0.957096\pi\)
0.990930 0.134378i \(-0.0429037\pi\)
\(642\) 0 0
\(643\) −17.1258 + 17.1258i −0.675375 + 0.675375i −0.958950 0.283575i \(-0.908479\pi\)
0.283575 + 0.958950i \(0.408479\pi\)
\(644\) −7.81053 −0.307778
\(645\) 0 0
\(646\) −3.46686 −0.136402
\(647\) −5.30837 + 5.30837i −0.208694 + 0.208694i −0.803712 0.595018i \(-0.797145\pi\)
0.595018 + 0.803712i \(0.297145\pi\)
\(648\) 0 0
\(649\) 26.3381i 1.03386i
\(650\) −16.0882 12.7033i −0.631033 0.498265i
\(651\) 0 0
\(652\) 5.46255 + 5.46255i 0.213930 + 0.213930i
\(653\) 16.1665 + 16.1665i 0.632645 + 0.632645i 0.948731 0.316086i \(-0.102369\pi\)
−0.316086 + 0.948731i \(0.602369\pi\)
\(654\) 0 0
\(655\) 35.5799 17.2404i 1.39022 0.673637i
\(656\) 5.65335i 0.220726i
\(657\) 0 0
\(658\) 22.9104 22.9104i 0.893142 0.893142i
\(659\) −41.3861 −1.61217 −0.806087 0.591798i \(-0.798419\pi\)
−0.806087 + 0.591798i \(0.798419\pi\)
\(660\) 0 0
\(661\) −23.9495 −0.931527 −0.465764 0.884909i \(-0.654220\pi\)
−0.465764 + 0.884909i \(0.654220\pi\)
\(662\) −8.00999 + 8.00999i −0.311317 + 0.311317i
\(663\) 0 0
\(664\) 10.5282i 0.408573i
\(665\) 9.03723 + 3.13779i 0.350449 + 0.121678i
\(666\) 0 0
\(667\) −5.79007 5.79007i −0.224192 0.224192i
\(668\) −2.45989 2.45989i −0.0951760 0.0951760i
\(669\) 0 0
\(670\) 0 0
\(671\) 36.8480i 1.42250i
\(672\) 0 0
\(673\) −9.67849 + 9.67849i −0.373078 + 0.373078i −0.868597 0.495519i \(-0.834978\pi\)
0.495519 + 0.868597i \(0.334978\pi\)
\(674\) −33.5237 −1.29128
\(675\) 0 0
\(676\) −3.80824 −0.146471
\(677\) −0.874008 + 0.874008i −0.0335909 + 0.0335909i −0.723703 0.690112i \(-0.757561\pi\)
0.690112 + 0.723703i \(0.257561\pi\)
\(678\) 0 0
\(679\) 14.1922i 0.544648i
\(680\) 3.38038 + 6.97628i 0.129632 + 0.267528i
\(681\) 0 0
\(682\) −0.455117 0.455117i −0.0174273 0.0174273i
\(683\) 6.34870 + 6.34870i 0.242926 + 0.242926i 0.818060 0.575133i \(-0.195050\pi\)
−0.575133 + 0.818060i \(0.695050\pi\)
\(684\) 0 0
\(685\) −4.17678 1.45021i −0.159586 0.0554095i
\(686\) 18.4113i 0.702945i
\(687\) 0 0
\(688\) 4.17154 4.17154i 0.159038 0.159038i
\(689\) 53.3190 2.03129
\(690\) 0 0
\(691\) 36.9338 1.40503 0.702515 0.711669i \(-0.252061\pi\)
0.702515 + 0.711669i \(0.252061\pi\)
\(692\) 10.1212 10.1212i 0.384749 0.384749i
\(693\) 0 0
\(694\) 4.45093i 0.168955i
\(695\) −30.2265 + 14.6463i −1.14656 + 0.555567i
\(696\) 0 0
\(697\) −13.8588 13.8588i −0.524940 0.524940i
\(698\) −18.6951 18.6951i −0.707619 0.707619i
\(699\) 0 0
\(700\) −2.49770 21.2449i −0.0944041 0.802984i
\(701\) 4.10587i 0.155076i 0.996989 + 0.0775382i \(0.0247060\pi\)
−0.996989 + 0.0775382i \(0.975294\pi\)
\(702\) 0 0
\(703\) 2.89899 2.89899i 0.109337 0.109337i
\(704\) 6.04990 0.228014
\(705\) 0 0
\(706\) −1.30177 −0.0489926
\(707\) −42.0484 + 42.0484i −1.58139 + 1.58139i
\(708\) 0 0
\(709\) 40.8587i 1.53448i −0.641359 0.767241i \(-0.721629\pi\)
0.641359 0.767241i \(-0.278371\pi\)
\(710\) 11.2106 32.2878i 0.420725 1.21174i
\(711\) 0 0
\(712\) 9.68910 + 9.68910i 0.363114 + 0.363114i
\(713\) 0.137338 + 0.137338i 0.00514333 + 0.00514333i
\(714\) 0 0
\(715\) −18.1914 + 52.3936i −0.680320 + 1.95941i
\(716\) 7.88157i 0.294548i
\(717\) 0 0
\(718\) −14.6810 + 14.6810i −0.547891 + 0.547891i
\(719\) 30.8224 1.14948 0.574741 0.818335i \(-0.305103\pi\)
0.574741 + 0.818335i \(0.305103\pi\)
\(720\) 0 0
\(721\) −10.5240 −0.391935
\(722\) −0.707107 + 0.707107i −0.0263158 + 0.0263158i
\(723\) 0 0
\(724\) 10.7019i 0.397731i
\(725\) 13.8976 17.6008i 0.516145 0.653677i
\(726\) 0 0
\(727\) 11.4818 + 11.4818i 0.425835 + 0.425835i 0.887207 0.461372i \(-0.152643\pi\)
−0.461372 + 0.887207i \(0.652643\pi\)
\(728\) −12.4026 12.4026i −0.459671 0.459671i
\(729\) 0 0
\(730\) 20.4814 9.92430i 0.758049 0.367315i
\(731\) 20.4525i 0.756463i
\(732\) 0 0
\(733\) 6.69362 6.69362i 0.247235 0.247235i −0.572600 0.819835i \(-0.694065\pi\)
0.819835 + 0.572600i \(0.194065\pi\)
\(734\) −32.4442 −1.19754
\(735\) 0 0
\(736\) −1.82564 −0.0672938
\(737\) 0 0
\(738\) 0 0
\(739\) 2.33543i 0.0859101i 0.999077 + 0.0429551i \(0.0136772\pi\)
−0.999077 + 0.0429551i \(0.986323\pi\)
\(740\) −8.66024 3.00690i −0.318357 0.110536i
\(741\) 0 0
\(742\) 39.3434 + 39.3434i 1.44434 + 1.44434i
\(743\) −18.5919 18.5919i −0.682072 0.682072i 0.278395 0.960467i \(-0.410198\pi\)
−0.960467 + 0.278395i \(0.910198\pi\)
\(744\) 0 0
\(745\) 14.0093 + 28.9119i 0.513262 + 1.05925i
\(746\) 32.7070i 1.19749i
\(747\) 0 0
\(748\) 14.8309 14.8309i 0.542273 0.542273i
\(749\) 18.9451 0.692238
\(750\) 0 0
\(751\) −25.6079 −0.934445 −0.467222 0.884140i \(-0.654745\pi\)
−0.467222 + 0.884140i \(0.654745\pi\)
\(752\) 5.35509 5.35509i 0.195280 0.195280i
\(753\) 0 0
\(754\) 18.3885i 0.669669i
\(755\) 19.7424 + 40.7435i 0.718498 + 1.48281i
\(756\) 0 0
\(757\) 7.16667 + 7.16667i 0.260477 + 0.260477i 0.825248 0.564771i \(-0.191035\pi\)
−0.564771 + 0.825248i \(0.691035\pi\)
\(758\) 12.9079 + 12.9079i 0.468836 + 0.468836i
\(759\) 0 0
\(760\) 2.11236 + 0.733428i 0.0766235 + 0.0266042i
\(761\) 0.433779i 0.0157245i −0.999969 0.00786223i \(-0.997497\pi\)
0.999969 0.00786223i \(-0.00250265\pi\)
\(762\) 0 0
\(763\) −15.3996 + 15.3996i −0.557502 + 0.557502i
\(764\) 16.6132 0.601045
\(765\) 0 0
\(766\) 10.7209 0.387363
\(767\) 12.6207 12.6207i 0.455706 0.455706i
\(768\) 0 0
\(769\) 27.9476i 1.00782i 0.863757 + 0.503908i \(0.168105\pi\)
−0.863757 + 0.503908i \(0.831895\pi\)
\(770\) −52.0838 + 25.2374i −1.87697 + 0.909491i
\(771\) 0 0
\(772\) −7.86143 7.86143i −0.282939 0.282939i
\(773\) −37.2574 37.2574i −1.34006 1.34006i −0.895999 0.444056i \(-0.853539\pi\)
−0.444056 0.895999i \(-0.646461\pi\)
\(774\) 0 0
\(775\) −0.329645 + 0.417482i −0.0118412 + 0.0149964i
\(776\) 3.31730i 0.119084i
\(777\) 0 0
\(778\) 7.19599 7.19599i 0.257989 0.257989i
\(779\) −5.65335 −0.202552
\(780\) 0 0
\(781\) −92.4736 −3.30897
\(782\) −4.47543 + 4.47543i −0.160041 + 0.160041i
\(783\) 0 0
\(784\) 11.3035i 0.403695i
\(785\) −14.2538 + 41.0528i −0.508741 + 1.46524i
\(786\) 0 0
\(787\) −27.3238 27.3238i −0.973987 0.973987i 0.0256829 0.999670i \(-0.491824\pi\)
−0.999670 + 0.0256829i \(0.991824\pi\)
\(788\) 9.53010 + 9.53010i 0.339496 + 0.339496i
\(789\) 0 0
\(790\) 6.20495 17.8710i 0.220762 0.635823i
\(791\) 48.9398i 1.74010i
\(792\) 0 0
\(793\) −17.6568 + 17.6568i −0.627011 + 0.627011i
\(794\) −6.22383 −0.220876
\(795\) 0 0
\(796\) 10.3991 0.368586
\(797\) 9.55946 9.55946i 0.338614 0.338614i −0.517232 0.855845i \(-0.673037\pi\)
0.855845 + 0.517232i \(0.173037\pi\)
\(798\) 0 0
\(799\) 26.2553i 0.928847i
\(800\) −0.583812 4.96580i −0.0206409 0.175568i
\(801\) 0 0
\(802\) −15.0376 15.0376i −0.530997 0.530997i
\(803\) −43.5415 43.5415i −1.53655 1.53655i
\(804\) 0 0
\(805\) 15.7170 7.61570i 0.553950 0.268418i
\(806\) 0.436166i 0.0153633i
\(807\) 0 0
\(808\) −9.82840 + 9.82840i −0.345762 + 0.345762i
\(809\) 49.2790 1.73256 0.866279 0.499560i \(-0.166505\pi\)
0.866279 + 0.499560i \(0.166505\pi\)
\(810\) 0 0
\(811\) 27.7776 0.975402 0.487701 0.873011i \(-0.337836\pi\)
0.487701 + 0.873011i \(0.337836\pi\)
\(812\) 13.5686 13.5686i 0.476166 0.476166i
\(813\) 0 0
\(814\) 24.8033i 0.869354i
\(815\) −16.3185 5.66589i −0.571611 0.198467i
\(816\) 0 0
\(817\) −4.17154 4.17154i −0.145944 0.145944i
\(818\) −4.80066 4.80066i −0.167851 0.167851i
\(819\) 0 0
\(820\) 5.51233 + 11.3761i 0.192499 + 0.397271i
\(821\) 31.8134i 1.11030i 0.831752 + 0.555148i \(0.187338\pi\)
−0.831752 + 0.555148i \(0.812662\pi\)
\(822\) 0 0
\(823\) −0.429455 + 0.429455i −0.0149699 + 0.0149699i −0.714552 0.699582i \(-0.753369\pi\)
0.699582 + 0.714552i \(0.253369\pi\)
\(824\) −2.45989 −0.0856943
\(825\) 0 0
\(826\) 18.6253 0.648057
\(827\) −3.66864 + 3.66864i −0.127571 + 0.127571i −0.768010 0.640438i \(-0.778753\pi\)
0.640438 + 0.768010i \(0.278753\pi\)
\(828\) 0 0
\(829\) 12.3930i 0.430427i 0.976567 + 0.215213i \(0.0690447\pi\)
−0.976567 + 0.215213i \(0.930955\pi\)
\(830\) −10.2656 21.1856i −0.356323 0.735364i
\(831\) 0 0
\(832\) −2.89899 2.89899i −0.100504 0.100504i
\(833\) −27.7097 27.7097i −0.960084 0.960084i
\(834\) 0 0
\(835\) 7.34851 + 2.55145i 0.254306 + 0.0882967i
\(836\) 6.04990i 0.209240i
\(837\) 0 0
\(838\) −9.54058 + 9.54058i −0.329574 + 0.329574i
\(839\) −9.37261 −0.323579 −0.161789 0.986825i \(-0.551726\pi\)
−0.161789 + 0.986825i \(0.551726\pi\)
\(840\) 0 0
\(841\) −8.88273 −0.306301
\(842\) 18.6967 18.6967i 0.644331 0.644331i
\(843\) 0 0
\(844\) 22.0447i 0.758810i
\(845\) 7.66324 3.71324i 0.263623 0.127739i
\(846\) 0 0
\(847\) 77.4484 + 77.4484i 2.66116 + 2.66116i
\(848\) 9.19614 + 9.19614i 0.315797 + 0.315797i
\(849\) 0 0
\(850\) −13.6045 10.7422i −0.466631 0.368453i
\(851\) 7.48471i 0.256573i
\(852\) 0 0
\(853\) 17.6452 17.6452i 0.604160 0.604160i −0.337254 0.941414i \(-0.609498\pi\)
0.941414 + 0.337254i \(0.109498\pi\)
\(854\) −26.0575 −0.891668
\(855\) 0 0
\(856\) 4.42823 0.151354
\(857\) −18.1205 + 18.1205i −0.618983 + 0.618983i −0.945271 0.326287i \(-0.894202\pi\)
0.326287 + 0.945271i \(0.394202\pi\)
\(858\) 0 0
\(859\) 34.6323i 1.18164i 0.806804 + 0.590819i \(0.201195\pi\)
−0.806804 + 0.590819i \(0.798805\pi\)
\(860\) −4.32681 + 12.4618i −0.147543 + 0.424943i
\(861\) 0 0
\(862\) −14.8273 14.8273i −0.505021 0.505021i
\(863\) −34.6765 34.6765i −1.18040 1.18040i −0.979640 0.200761i \(-0.935658\pi\)
−0.200761 0.979640i \(-0.564342\pi\)
\(864\) 0 0
\(865\) −10.4979 + 30.2353i −0.356940 + 1.02803i
\(866\) 34.9082i 1.18623i
\(867\) 0 0
\(868\) −0.321841 + 0.321841i −0.0109240 + 0.0109240i
\(869\) −51.1834 −1.73628
\(870\) 0 0
\(871\) 0 0
\(872\) −3.59950 + 3.59950i −0.121894 + 0.121894i
\(873\) 0 0
\(874\) 1.82564i 0.0617530i
\(875\) 25.7411 + 40.3154i 0.870207 + 1.36291i
\(876\) 0 0
\(877\) −30.8133 30.8133i −1.04049 1.04049i −0.999145 0.0413448i \(-0.986836\pi\)
−0.0413448 0.999145i \(-0.513164\pi\)
\(878\) −16.5283 16.5283i −0.557804 0.557804i
\(879\) 0 0
\(880\) −12.1741 + 5.89899i −0.410388 + 0.198855i
\(881\) 33.0964i 1.11505i 0.830161 + 0.557524i \(0.188248\pi\)
−0.830161 + 0.557524i \(0.811752\pi\)
\(882\) 0 0
\(883\) 35.2607 35.2607i 1.18662 1.18662i 0.208618 0.977997i \(-0.433103\pi\)
0.977997 0.208618i \(-0.0668966\pi\)
\(884\) −14.2134 −0.478047
\(885\) 0 0
\(886\) 9.56828 0.321453
\(887\) 30.8053 30.8053i 1.03434 1.03434i 0.0349518 0.999389i \(-0.488872\pi\)
0.999389 0.0349518i \(-0.0111278\pi\)
\(888\) 0 0
\(889\) 12.4551i 0.417730i
\(890\) −28.9446 10.0498i −0.970225 0.336869i
\(891\) 0 0
\(892\) −5.49706 5.49706i −0.184055 0.184055i
\(893\) −5.35509 5.35509i −0.179201 0.179201i
\(894\) 0 0
\(895\) 7.68497 + 15.8599i 0.256880 + 0.530138i
\(896\) 4.27825i 0.142926i
\(897\) 0 0
\(898\) −14.7001 + 14.7001i −0.490548 + 0.490548i
\(899\) −0.477172 −0.0159146
\(900\) 0 0
\(901\) 45.0875 1.50208
\(902\) 24.1846 24.1846i 0.805258 0.805258i
\(903\) 0 0
\(904\) 11.4392i 0.380462i
\(905\) 10.4349 + 21.5351i 0.346868 + 0.715851i
\(906\) 0 0
\(907\) 23.5242 + 23.5242i 0.781109 + 0.781109i 0.980018 0.198909i \(-0.0637399\pi\)
−0.198909 + 0.980018i \(0.563740\pi\)
\(908\) −15.1349 15.1349i −0.502269 0.502269i
\(909\) 0 0
\(910\) 37.0507 + 12.8643i 1.22822 + 0.426446i
\(911\) 48.9596i 1.62210i 0.584975 + 0.811051i \(0.301104\pi\)
−0.584975 + 0.811051i \(0.698896\pi\)
\(912\) 0 0
\(913\) −45.0388 + 45.0388i −1.49057 + 1.49057i
\(914\) −6.70613 −0.221819
\(915\) 0 0
\(916\) −9.08041 −0.300025
\(917\) −53.4895 + 53.4895i −1.76638 + 1.76638i
\(918\) 0 0
\(919\) 52.3323i 1.72628i 0.504962 + 0.863142i \(0.331507\pi\)
−0.504962 + 0.863142i \(0.668493\pi\)
\(920\) 3.67369 1.78010i 0.121118 0.0586880i
\(921\) 0 0
\(922\) 19.4974 + 19.4974i 0.642113 + 0.642113i
\(923\) 44.3115 + 44.3115i 1.45853 + 1.45853i
\(924\) 0 0
\(925\) 20.3587 2.39350i 0.669390 0.0786979i
\(926\) 24.0381i 0.789942i
\(927\) 0 0
\(928\) 3.17154 3.17154i 0.104111 0.104111i
\(929\) −46.3140 −1.51951 −0.759756 0.650208i \(-0.774682\pi\)
−0.759756 + 0.650208i \(0.774682\pi\)
\(930\) 0 0
\(931\) −11.3035 −0.370456
\(932\) −8.57256 + 8.57256i −0.280804 + 0.280804i
\(933\) 0 0
\(934\) 19.4881i 0.637670i
\(935\) −15.3830 + 44.3050i −0.503078 + 1.44893i
\(936\) 0 0
\(937\) −25.9197 25.9197i −0.846760 0.846760i 0.142967 0.989727i \(-0.454336\pi\)
−0.989727 + 0.142967i \(0.954336\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −5.55443 + 15.9974i −0.181165 + 0.521779i
\(941\) 3.72116i 0.121306i −0.998159 0.0606532i \(-0.980682\pi\)
0.998159 0.0606532i \(-0.0193184\pi\)
\(942\) 0 0
\(943\) −7.29801 + 7.29801i −0.237656 + 0.237656i
\(944\) 4.35348 0.141694
\(945\) 0 0
\(946\) 35.6910 1.16041
\(947\) 15.0544 15.0544i 0.489203 0.489203i −0.418851 0.908055i \(-0.637567\pi\)
0.908055 + 0.418851i \(0.137567\pi\)
\(948\) 0 0
\(949\) 41.7284i 1.35456i
\(950\) −4.96580 + 0.583812i −0.161112 + 0.0189414i
\(951\) 0 0
\(952\) −10.4879 10.4879i −0.339914 0.339914i
\(953\) −6.93373 6.93373i −0.224606 0.224606i 0.585829 0.810435i \(-0.300769\pi\)
−0.810435 + 0.585829i \(0.800769\pi\)
\(954\) 0 0
\(955\) −33.4304 + 16.1988i −1.08178 + 0.524181i
\(956\) 21.9823i 0.710958i
\(957\) 0 0
\(958\) 8.17046 8.17046i 0.263976 0.263976i
\(959\) 8.45939 0.273168
\(960\) 0 0
\(961\) −30.9887 −0.999635
\(962\) 11.8852 11.8852i 0.383195 0.383195i
\(963\) 0 0
\(964\) 15.9894i 0.514983i
\(965\) 23.4847 + 8.15406i 0.756000 + 0.262488i
\(966\) 0 0
\(967\) 30.1816 + 30.1816i 0.970574 + 0.970574i 0.999579 0.0290051i \(-0.00923392\pi\)
−0.0290051 + 0.999579i \(0.509234\pi\)
\(968\) 18.1028 + 18.1028i 0.581847 + 0.581847i
\(969\) 0 0
\(970\) 3.23455 + 6.67533i 0.103855 + 0.214332i
\(971\) 24.8445i 0.797298i 0.917104 + 0.398649i \(0.130521\pi\)
−0.917104 + 0.398649i \(0.869479\pi\)
\(972\) 0 0
\(973\) 45.4413 45.4413i 1.45678 1.45678i
\(974\) 28.2666 0.905721
\(975\) 0 0
\(976\) −6.09068 −0.194958
\(977\) −17.9692 + 17.9692i −0.574886 + 0.574886i −0.933490 0.358604i \(-0.883253\pi\)
0.358604 + 0.933490i \(0.383253\pi\)
\(978\) 0 0
\(979\) 82.8985i 2.64945i
\(980\) 11.0215 + 22.7457i 0.352069 + 0.726585i
\(981\) 0 0
\(982\) −6.38621 6.38621i −0.203792 0.203792i
\(983\) −0.571422 0.571422i −0.0182255 0.0182255i 0.697935 0.716161i \(-0.254102\pi\)
−0.716161 + 0.697935i \(0.754102\pi\)
\(984\) 0 0
\(985\) −28.4696 9.88485i −0.907117 0.314957i
\(986\) 15.5496i 0.495201i
\(987\) 0 0
\(988\) −2.89899 + 2.89899i −0.0922290 + 0.0922290i
\(989\) −10.7702 −0.342473
\(990\) 0 0
\(991\) −17.2167 −0.546906 −0.273453 0.961885i \(-0.588166\pi\)
−0.273453 + 0.961885i \(0.588166\pi\)
\(992\) −0.0752273 + 0.0752273i −0.00238847 + 0.00238847i
\(993\) 0 0
\(994\) 65.3938i 2.07416i
\(995\) −20.9259 + 10.1397i −0.663395 + 0.321450i
\(996\) 0 0
\(997\) 5.04553 + 5.04553i 0.159794 + 0.159794i 0.782475 0.622682i \(-0.213957\pi\)
−0.622682 + 0.782475i \(0.713957\pi\)
\(998\) 4.35236 + 4.35236i 0.137772 + 0.137772i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1710.2.n.i.647.8 yes 20
3.2 odd 2 inner 1710.2.n.i.647.3 20
5.3 odd 4 inner 1710.2.n.i.1673.3 yes 20
15.8 even 4 inner 1710.2.n.i.1673.8 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1710.2.n.i.647.3 20 3.2 odd 2 inner
1710.2.n.i.647.8 yes 20 1.1 even 1 trivial
1710.2.n.i.1673.3 yes 20 5.3 odd 4 inner
1710.2.n.i.1673.8 yes 20 15.8 even 4 inner