Properties

Label 175.2.o.c.157.1
Level $175$
Weight $2$
Character 175.157
Analytic conductor $1.397$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(68,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.68");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.o (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 157.1
Root \(0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 175.157
Dual form 175.2.o.c.68.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.258819 + 0.965926i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(0.866025 + 0.500000i) q^{4} -1.73205i q^{6} +(2.38014 + 1.15539i) q^{7} +(-2.12132 + 2.12132i) q^{8} +(-2.00000 + 3.46410i) q^{11} +(-1.67303 - 0.448288i) q^{12} +(-2.44949 - 2.44949i) q^{13} +(-1.73205 + 2.00000i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(0.896575 + 3.34607i) q^{17} +(-1.73205 - 3.00000i) q^{19} +(-4.50000 - 0.866025i) q^{21} +(-2.82843 - 2.82843i) q^{22} +(6.76148 + 1.81173i) q^{23} +(2.59808 - 4.50000i) q^{24} +(3.00000 - 1.73205i) q^{26} +(3.67423 - 3.67423i) q^{27} +(1.48356 + 2.19067i) q^{28} +1.00000i q^{29} +(9.00000 + 5.19615i) q^{31} +(-4.82963 + 1.29410i) q^{32} +(1.79315 - 6.69213i) q^{33} -3.46410 q^{34} +(1.03528 - 3.86370i) q^{37} +(3.34607 - 0.896575i) q^{38} +(5.19615 + 3.00000i) q^{39} -8.66025i q^{41} +(2.00120 - 4.12252i) q^{42} +(3.53553 - 3.53553i) q^{43} +(-3.46410 + 2.00000i) q^{44} +(-3.50000 + 6.06218i) q^{46} +(-3.34607 - 0.896575i) q^{47} +(1.22474 + 1.22474i) q^{48} +(4.33013 + 5.50000i) q^{49} +(-3.00000 - 5.19615i) q^{51} +(-0.896575 - 3.34607i) q^{52} +(0.517638 + 1.93185i) q^{53} +(2.59808 + 4.50000i) q^{54} +(-7.50000 + 2.59808i) q^{56} +(4.24264 + 4.24264i) q^{57} +(-0.965926 - 0.258819i) q^{58} +(1.73205 - 3.00000i) q^{59} +(1.50000 - 0.866025i) q^{61} +(-7.34847 + 7.34847i) q^{62} -7.00000i q^{64} +(6.00000 + 3.46410i) q^{66} +(8.69333 - 2.32937i) q^{67} +(-0.896575 + 3.34607i) q^{68} -12.1244 q^{69} +2.00000 q^{71} +(-10.0382 + 2.68973i) q^{73} +(3.46410 + 2.00000i) q^{74} -3.46410i q^{76} +(-8.76268 + 5.93426i) q^{77} +(-4.24264 + 4.24264i) q^{78} +(1.73205 - 1.00000i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(8.36516 + 2.24144i) q^{82} +(3.67423 + 3.67423i) q^{83} +(-3.46410 - 3.00000i) q^{84} +(2.50000 + 4.33013i) q^{86} +(-0.448288 - 1.67303i) q^{87} +(-3.10583 - 11.5911i) q^{88} +(-6.06218 - 10.5000i) q^{89} +(-3.00000 - 8.66025i) q^{91} +(4.94975 + 4.94975i) q^{92} +(-17.3867 - 4.65874i) q^{93} +(1.73205 - 3.00000i) q^{94} +(7.50000 - 4.33013i) q^{96} +(-4.89898 + 4.89898i) q^{97} +(-6.43331 + 2.75908i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{11} - 4 q^{16} - 36 q^{21} + 24 q^{26} + 72 q^{31} - 28 q^{46} - 24 q^{51} - 60 q^{56} + 12 q^{61} + 48 q^{66} + 16 q^{71} - 36 q^{81} + 20 q^{86} - 24 q^{91} + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.258819 + 0.965926i −0.183013 + 0.683013i 0.812035 + 0.583609i \(0.198360\pi\)
−0.995047 + 0.0994033i \(0.968307\pi\)
\(3\) −1.67303 + 0.448288i −0.965926 + 0.258819i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) 0 0
\(6\) 1.73205i 0.707107i
\(7\) 2.38014 + 1.15539i 0.899608 + 0.436698i
\(8\) −2.12132 + 2.12132i −0.750000 + 0.750000i
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 + 3.46410i −0.603023 + 1.04447i 0.389338 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) −1.67303 0.448288i −0.482963 0.129410i
\(13\) −2.44949 2.44949i −0.679366 0.679366i 0.280491 0.959857i \(-0.409503\pi\)
−0.959857 + 0.280491i \(0.909503\pi\)
\(14\) −1.73205 + 2.00000i −0.462910 + 0.534522i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.896575 + 3.34607i 0.217451 + 0.811540i 0.985289 + 0.170896i \(0.0546661\pi\)
−0.767838 + 0.640644i \(0.778667\pi\)
\(18\) 0 0
\(19\) −1.73205 3.00000i −0.397360 0.688247i 0.596040 0.802955i \(-0.296740\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) −4.50000 0.866025i −0.981981 0.188982i
\(22\) −2.82843 2.82843i −0.603023 0.603023i
\(23\) 6.76148 + 1.81173i 1.40987 + 0.377773i 0.881877 0.471479i \(-0.156280\pi\)
0.527989 + 0.849251i \(0.322946\pi\)
\(24\) 2.59808 4.50000i 0.530330 0.918559i
\(25\) 0 0
\(26\) 3.00000 1.73205i 0.588348 0.339683i
\(27\) 3.67423 3.67423i 0.707107 0.707107i
\(28\) 1.48356 + 2.19067i 0.280367 + 0.413998i
\(29\) 1.00000i 0.185695i 0.995680 + 0.0928477i \(0.0295970\pi\)
−0.995680 + 0.0928477i \(0.970403\pi\)
\(30\) 0 0
\(31\) 9.00000 + 5.19615i 1.61645 + 0.933257i 0.987829 + 0.155543i \(0.0497126\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) −4.82963 + 1.29410i −0.853766 + 0.228766i
\(33\) 1.79315 6.69213i 0.312148 1.16495i
\(34\) −3.46410 −0.594089
\(35\) 0 0
\(36\) 0 0
\(37\) 1.03528 3.86370i 0.170198 0.635189i −0.827121 0.562023i \(-0.810023\pi\)
0.997320 0.0731657i \(-0.0233102\pi\)
\(38\) 3.34607 0.896575i 0.542803 0.145444i
\(39\) 5.19615 + 3.00000i 0.832050 + 0.480384i
\(40\) 0 0
\(41\) 8.66025i 1.35250i −0.736670 0.676252i \(-0.763603\pi\)
0.736670 0.676252i \(-0.236397\pi\)
\(42\) 2.00120 4.12252i 0.308792 0.636119i
\(43\) 3.53553 3.53553i 0.539164 0.539164i −0.384120 0.923283i \(-0.625495\pi\)
0.923283 + 0.384120i \(0.125495\pi\)
\(44\) −3.46410 + 2.00000i −0.522233 + 0.301511i
\(45\) 0 0
\(46\) −3.50000 + 6.06218i −0.516047 + 0.893819i
\(47\) −3.34607 0.896575i −0.488074 0.130779i 0.00638578 0.999980i \(-0.497967\pi\)
−0.494460 + 0.869201i \(0.664634\pi\)
\(48\) 1.22474 + 1.22474i 0.176777 + 0.176777i
\(49\) 4.33013 + 5.50000i 0.618590 + 0.785714i
\(50\) 0 0
\(51\) −3.00000 5.19615i −0.420084 0.727607i
\(52\) −0.896575 3.34607i −0.124333 0.464016i
\(53\) 0.517638 + 1.93185i 0.0711031 + 0.265360i 0.992321 0.123686i \(-0.0394714\pi\)
−0.921218 + 0.389046i \(0.872805\pi\)
\(54\) 2.59808 + 4.50000i 0.353553 + 0.612372i
\(55\) 0 0
\(56\) −7.50000 + 2.59808i −1.00223 + 0.347183i
\(57\) 4.24264 + 4.24264i 0.561951 + 0.561951i
\(58\) −0.965926 0.258819i −0.126832 0.0339846i
\(59\) 1.73205 3.00000i 0.225494 0.390567i −0.730974 0.682406i \(-0.760934\pi\)
0.956467 + 0.291839i \(0.0942671\pi\)
\(60\) 0 0
\(61\) 1.50000 0.866025i 0.192055 0.110883i −0.400889 0.916127i \(-0.631299\pi\)
0.592944 + 0.805243i \(0.297965\pi\)
\(62\) −7.34847 + 7.34847i −0.933257 + 0.933257i
\(63\) 0 0
\(64\) 7.00000i 0.875000i
\(65\) 0 0
\(66\) 6.00000 + 3.46410i 0.738549 + 0.426401i
\(67\) 8.69333 2.32937i 1.06206 0.284578i 0.314833 0.949147i \(-0.398052\pi\)
0.747227 + 0.664569i \(0.231385\pi\)
\(68\) −0.896575 + 3.34607i −0.108726 + 0.405770i
\(69\) −12.1244 −1.45960
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) −10.0382 + 2.68973i −1.17488 + 0.314809i −0.792895 0.609359i \(-0.791427\pi\)
−0.381987 + 0.924168i \(0.624760\pi\)
\(74\) 3.46410 + 2.00000i 0.402694 + 0.232495i
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) −8.76268 + 5.93426i −0.998600 + 0.676271i
\(78\) −4.24264 + 4.24264i −0.480384 + 0.480384i
\(79\) 1.73205 1.00000i 0.194871 0.112509i −0.399390 0.916781i \(-0.630778\pi\)
0.594261 + 0.804272i \(0.297445\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 8.36516 + 2.24144i 0.923778 + 0.247525i
\(83\) 3.67423 + 3.67423i 0.403300 + 0.403300i 0.879394 0.476094i \(-0.157948\pi\)
−0.476094 + 0.879394i \(0.657948\pi\)
\(84\) −3.46410 3.00000i −0.377964 0.327327i
\(85\) 0 0
\(86\) 2.50000 + 4.33013i 0.269582 + 0.466930i
\(87\) −0.448288 1.67303i −0.0480615 0.179368i
\(88\) −3.10583 11.5911i −0.331082 1.23562i
\(89\) −6.06218 10.5000i −0.642590 1.11300i −0.984853 0.173394i \(-0.944527\pi\)
0.342263 0.939604i \(-0.388807\pi\)
\(90\) 0 0
\(91\) −3.00000 8.66025i −0.314485 0.907841i
\(92\) 4.94975 + 4.94975i 0.516047 + 0.516047i
\(93\) −17.3867 4.65874i −1.80291 0.483089i
\(94\) 1.73205 3.00000i 0.178647 0.309426i
\(95\) 0 0
\(96\) 7.50000 4.33013i 0.765466 0.441942i
\(97\) −4.89898 + 4.89898i −0.497416 + 0.497416i −0.910633 0.413217i \(-0.864405\pi\)
0.413217 + 0.910633i \(0.364405\pi\)
\(98\) −6.43331 + 2.75908i −0.649863 + 0.278709i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.50000 + 0.866025i 0.149256 + 0.0861727i 0.572768 0.819718i \(-0.305870\pi\)
−0.423512 + 0.905890i \(0.639203\pi\)
\(102\) 5.79555 1.55291i 0.573845 0.153761i
\(103\) −4.03459 + 15.0573i −0.397540 + 1.48364i 0.419871 + 0.907584i \(0.362075\pi\)
−0.817411 + 0.576055i \(0.804591\pi\)
\(104\) 10.3923 1.01905
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) −0.258819 + 0.965926i −0.0250210 + 0.0933796i −0.977307 0.211827i \(-0.932059\pi\)
0.952286 + 0.305206i \(0.0987254\pi\)
\(108\) 5.01910 1.34486i 0.482963 0.129410i
\(109\) 2.59808 + 1.50000i 0.248851 + 0.143674i 0.619238 0.785203i \(-0.287442\pi\)
−0.370387 + 0.928877i \(0.620775\pi\)
\(110\) 0 0
\(111\) 6.92820i 0.657596i
\(112\) −0.189469 2.63896i −0.0179031 0.249358i
\(113\) 7.07107 7.07107i 0.665190 0.665190i −0.291409 0.956599i \(-0.594124\pi\)
0.956599 + 0.291409i \(0.0941239\pi\)
\(114\) −5.19615 + 3.00000i −0.486664 + 0.280976i
\(115\) 0 0
\(116\) −0.500000 + 0.866025i −0.0464238 + 0.0804084i
\(117\) 0 0
\(118\) 2.44949 + 2.44949i 0.225494 + 0.225494i
\(119\) −1.73205 + 9.00000i −0.158777 + 0.825029i
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 0.448288 + 1.67303i 0.0405861 + 0.151469i
\(123\) 3.88229 + 14.4889i 0.350054 + 1.30642i
\(124\) 5.19615 + 9.00000i 0.466628 + 0.808224i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) −2.89778 0.776457i −0.256130 0.0686298i
\(129\) −4.33013 + 7.50000i −0.381246 + 0.660338i
\(130\) 0 0
\(131\) −6.00000 + 3.46410i −0.524222 + 0.302660i −0.738661 0.674078i \(-0.764541\pi\)
0.214438 + 0.976738i \(0.431208\pi\)
\(132\) 4.89898 4.89898i 0.426401 0.426401i
\(133\) −0.656339 9.14162i −0.0569118 0.792679i
\(134\) 9.00000i 0.777482i
\(135\) 0 0
\(136\) −9.00000 5.19615i −0.771744 0.445566i
\(137\) −15.4548 + 4.14110i −1.32039 + 0.353798i −0.849125 0.528191i \(-0.822870\pi\)
−0.471268 + 0.881990i \(0.656204\pi\)
\(138\) 3.13801 11.7112i 0.267126 0.996926i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) −0.517638 + 1.93185i −0.0434392 + 0.162117i
\(143\) 13.3843 3.58630i 1.11925 0.299902i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.3923i 0.860073i
\(147\) −9.71003 7.26054i −0.800869 0.598839i
\(148\) 2.82843 2.82843i 0.232495 0.232495i
\(149\) 14.7224 8.50000i 1.20611 0.696347i 0.244202 0.969724i \(-0.421474\pi\)
0.961907 + 0.273377i \(0.0881408\pi\)
\(150\) 0 0
\(151\) 3.00000 5.19615i 0.244137 0.422857i −0.717752 0.696299i \(-0.754829\pi\)
0.961888 + 0.273442i \(0.0881622\pi\)
\(152\) 10.0382 + 2.68973i 0.814205 + 0.218166i
\(153\) 0 0
\(154\) −3.46410 10.0000i −0.279145 0.805823i
\(155\) 0 0
\(156\) 3.00000 + 5.19615i 0.240192 + 0.416025i
\(157\) −3.58630 13.3843i −0.286218 1.06818i −0.947945 0.318435i \(-0.896843\pi\)
0.661727 0.749745i \(-0.269824\pi\)
\(158\) 0.517638 + 1.93185i 0.0411811 + 0.153690i
\(159\) −1.73205 3.00000i −0.137361 0.237915i
\(160\) 0 0
\(161\) 14.0000 + 12.1244i 1.10335 + 0.955533i
\(162\) −6.36396 6.36396i −0.500000 0.500000i
\(163\) 11.5911 + 3.10583i 0.907886 + 0.243267i 0.682400 0.730979i \(-0.260936\pi\)
0.225486 + 0.974246i \(0.427603\pi\)
\(164\) 4.33013 7.50000i 0.338126 0.585652i
\(165\) 0 0
\(166\) −4.50000 + 2.59808i −0.349268 + 0.201650i
\(167\) 13.4722 13.4722i 1.04251 1.04251i 0.0434542 0.999055i \(-0.486164\pi\)
0.999055 0.0434542i \(-0.0138363\pi\)
\(168\) 11.3831 7.70882i 0.878222 0.594749i
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 4.82963 1.29410i 0.368256 0.0986738i
\(173\) −1.79315 + 6.69213i −0.136331 + 0.508793i 0.863658 + 0.504078i \(0.168168\pi\)
−0.999989 + 0.00471527i \(0.998499\pi\)
\(174\) 1.73205 0.131306
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) −1.55291 + 5.79555i −0.116724 + 0.435621i
\(178\) 11.7112 3.13801i 0.877794 0.235204i
\(179\) −19.0526 11.0000i −1.42406 0.822179i −0.427413 0.904057i \(-0.640575\pi\)
−0.996642 + 0.0818780i \(0.973908\pi\)
\(180\) 0 0
\(181\) 8.66025i 0.643712i 0.946789 + 0.321856i \(0.104307\pi\)
−0.946789 + 0.321856i \(0.895693\pi\)
\(182\) 9.14162 0.656339i 0.677622 0.0486511i
\(183\) −2.12132 + 2.12132i −0.156813 + 0.156813i
\(184\) −18.1865 + 10.5000i −1.34073 + 0.774070i
\(185\) 0 0
\(186\) 9.00000 15.5885i 0.659912 1.14300i
\(187\) −13.3843 3.58630i −0.978754 0.262256i
\(188\) −2.44949 2.44949i −0.178647 0.178647i
\(189\) 12.9904 4.50000i 0.944911 0.327327i
\(190\) 0 0
\(191\) −2.00000 3.46410i −0.144715 0.250654i 0.784552 0.620063i \(-0.212893\pi\)
−0.929267 + 0.369410i \(0.879560\pi\)
\(192\) 3.13801 + 11.7112i 0.226467 + 0.845185i
\(193\) −2.07055 7.72741i −0.149042 0.556231i −0.999542 0.0302567i \(-0.990368\pi\)
0.850501 0.525974i \(-0.176299\pi\)
\(194\) −3.46410 6.00000i −0.248708 0.430775i
\(195\) 0 0
\(196\) 1.00000 + 6.92820i 0.0714286 + 0.494872i
\(197\) −14.1421 14.1421i −1.00759 1.00759i −0.999971 0.00761443i \(-0.997576\pi\)
−0.00761443 0.999971i \(-0.502424\pi\)
\(198\) 0 0
\(199\) −6.92820 + 12.0000i −0.491127 + 0.850657i −0.999948 0.0102152i \(-0.996748\pi\)
0.508821 + 0.860873i \(0.330082\pi\)
\(200\) 0 0
\(201\) −13.5000 + 7.79423i −0.952217 + 0.549762i
\(202\) −1.22474 + 1.22474i −0.0861727 + 0.0861727i
\(203\) −1.15539 + 2.38014i −0.0810928 + 0.167053i
\(204\) 6.00000i 0.420084i
\(205\) 0 0
\(206\) −13.5000 7.79423i −0.940590 0.543050i
\(207\) 0 0
\(208\) −0.896575 + 3.34607i −0.0621663 + 0.232008i
\(209\) 13.8564 0.958468
\(210\) 0 0
\(211\) −18.0000 −1.23917 −0.619586 0.784929i \(-0.712699\pi\)
−0.619586 + 0.784929i \(0.712699\pi\)
\(212\) −0.517638 + 1.93185i −0.0355515 + 0.132680i
\(213\) −3.34607 + 0.896575i −0.229269 + 0.0614323i
\(214\) −0.866025 0.500000i −0.0592003 0.0341793i
\(215\) 0 0
\(216\) 15.5885i 1.06066i
\(217\) 15.4176 + 22.7661i 1.04662 + 1.54546i
\(218\) −2.12132 + 2.12132i −0.143674 + 0.143674i
\(219\) 15.5885 9.00000i 1.05337 0.608164i
\(220\) 0 0
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) −6.69213 1.79315i −0.449146 0.120348i
\(223\) −2.44949 2.44949i −0.164030 0.164030i 0.620319 0.784349i \(-0.287003\pi\)
−0.784349 + 0.620319i \(0.787003\pi\)
\(224\) −12.9904 2.50000i −0.867956 0.167038i
\(225\) 0 0
\(226\) 5.00000 + 8.66025i 0.332595 + 0.576072i
\(227\) 0.896575 + 3.34607i 0.0595078 + 0.222086i 0.989276 0.146060i \(-0.0466593\pi\)
−0.929768 + 0.368146i \(0.879993\pi\)
\(228\) 1.55291 + 5.79555i 0.102844 + 0.383820i
\(229\) 6.92820 + 12.0000i 0.457829 + 0.792982i 0.998846 0.0480291i \(-0.0152940\pi\)
−0.541017 + 0.841011i \(0.681961\pi\)
\(230\) 0 0
\(231\) 12.0000 13.8564i 0.789542 0.911685i
\(232\) −2.12132 2.12132i −0.139272 0.139272i
\(233\) 1.93185 + 0.517638i 0.126560 + 0.0339116i 0.321543 0.946895i \(-0.395799\pi\)
−0.194983 + 0.980807i \(0.562465\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.00000 1.73205i 0.195283 0.112747i
\(237\) −2.44949 + 2.44949i −0.159111 + 0.159111i
\(238\) −8.24504 4.00240i −0.534447 0.259437i
\(239\) 26.0000i 1.68180i 0.541190 + 0.840900i \(0.317974\pi\)
−0.541190 + 0.840900i \(0.682026\pi\)
\(240\) 0 0
\(241\) −6.00000 3.46410i −0.386494 0.223142i 0.294146 0.955761i \(-0.404965\pi\)
−0.680640 + 0.732618i \(0.738298\pi\)
\(242\) 4.82963 1.29410i 0.310460 0.0831876i
\(243\) 0 0
\(244\) 1.73205 0.110883
\(245\) 0 0
\(246\) −15.0000 −0.956365
\(247\) −3.10583 + 11.5911i −0.197619 + 0.737525i
\(248\) −30.1146 + 8.06918i −1.91228 + 0.512393i
\(249\) −7.79423 4.50000i −0.493939 0.285176i
\(250\) 0 0
\(251\) 17.3205i 1.09326i 0.837374 + 0.546630i \(0.184090\pi\)
−0.837374 + 0.546630i \(0.815910\pi\)
\(252\) 0 0
\(253\) −19.7990 + 19.7990i −1.24475 + 1.24475i
\(254\) 0 0
\(255\) 0 0
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) 13.3843 + 3.58630i 0.834887 + 0.223707i 0.650845 0.759211i \(-0.274415\pi\)
0.184043 + 0.982918i \(0.441082\pi\)
\(258\) −6.12372 6.12372i −0.381246 0.381246i
\(259\) 6.92820 8.00000i 0.430498 0.497096i
\(260\) 0 0
\(261\) 0 0
\(262\) −1.79315 6.69213i −0.110781 0.413441i
\(263\) −3.36465 12.5570i −0.207473 0.774300i −0.988681 0.150030i \(-0.952063\pi\)
0.781208 0.624270i \(-0.214604\pi\)
\(264\) 10.3923 + 18.0000i 0.639602 + 1.10782i
\(265\) 0 0
\(266\) 9.00000 + 1.73205i 0.551825 + 0.106199i
\(267\) 14.8492 + 14.8492i 0.908759 + 0.908759i
\(268\) 8.69333 + 2.32937i 0.531030 + 0.142289i
\(269\) −11.2583 + 19.5000i −0.686433 + 1.18894i 0.286552 + 0.958065i \(0.407491\pi\)
−0.972984 + 0.230871i \(0.925842\pi\)
\(270\) 0 0
\(271\) 9.00000 5.19615i 0.546711 0.315644i −0.201083 0.979574i \(-0.564446\pi\)
0.747794 + 0.663930i \(0.231113\pi\)
\(272\) 2.44949 2.44949i 0.148522 0.148522i
\(273\) 8.90138 + 13.1440i 0.538736 + 0.795513i
\(274\) 16.0000i 0.966595i
\(275\) 0 0
\(276\) −10.5000 6.06218i −0.632026 0.364900i
\(277\) −5.79555 + 1.55291i −0.348221 + 0.0933056i −0.428690 0.903452i \(-0.641025\pi\)
0.0804691 + 0.996757i \(0.474358\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) −1.55291 + 5.79555i −0.0924747 + 0.345120i
\(283\) −10.0382 + 2.68973i −0.596709 + 0.159888i −0.544518 0.838749i \(-0.683287\pi\)
−0.0521913 + 0.998637i \(0.516621\pi\)
\(284\) 1.73205 + 1.00000i 0.102778 + 0.0593391i
\(285\) 0 0
\(286\) 13.8564i 0.819346i
\(287\) 10.0060 20.6126i 0.590636 1.21672i
\(288\) 0 0
\(289\) 4.33013 2.50000i 0.254713 0.147059i
\(290\) 0 0
\(291\) 6.00000 10.3923i 0.351726 0.609208i
\(292\) −10.0382 2.68973i −0.587441 0.157404i
\(293\) −14.6969 14.6969i −0.858604 0.858604i 0.132569 0.991174i \(-0.457677\pi\)
−0.991174 + 0.132569i \(0.957677\pi\)
\(294\) 9.52628 7.50000i 0.555584 0.437409i
\(295\) 0 0
\(296\) 6.00000 + 10.3923i 0.348743 + 0.604040i
\(297\) 5.37945 + 20.0764i 0.312148 + 1.16495i
\(298\) 4.39992 + 16.4207i 0.254881 + 0.951228i
\(299\) −12.1244 21.0000i −0.701170 1.21446i
\(300\) 0 0
\(301\) 12.5000 4.33013i 0.720488 0.249584i
\(302\) 4.24264 + 4.24264i 0.244137 + 0.244137i
\(303\) −2.89778 0.776457i −0.166473 0.0446063i
\(304\) −1.73205 + 3.00000i −0.0993399 + 0.172062i
\(305\) 0 0
\(306\) 0 0
\(307\) −11.0227 + 11.0227i −0.629099 + 0.629099i −0.947841 0.318742i \(-0.896740\pi\)
0.318742 + 0.947841i \(0.396740\pi\)
\(308\) −10.5558 + 0.757875i −0.601474 + 0.0431839i
\(309\) 27.0000i 1.53598i
\(310\) 0 0
\(311\) −21.0000 12.1244i −1.19080 0.687509i −0.232313 0.972641i \(-0.574629\pi\)
−0.958488 + 0.285132i \(0.907963\pi\)
\(312\) −17.3867 + 4.65874i −0.984326 + 0.263749i
\(313\) 7.17260 26.7685i 0.405420 1.51305i −0.397861 0.917446i \(-0.630247\pi\)
0.803281 0.595601i \(-0.203086\pi\)
\(314\) 13.8564 0.781962
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 8.79985 32.8415i 0.494249 1.84456i −0.0399492 0.999202i \(-0.512720\pi\)
0.534198 0.845359i \(-0.320614\pi\)
\(318\) 3.34607 0.896575i 0.187638 0.0502775i
\(319\) −3.46410 2.00000i −0.193952 0.111979i
\(320\) 0 0
\(321\) 1.73205i 0.0966736i
\(322\) −15.3347 + 10.3849i −0.854569 + 0.578730i
\(323\) 8.48528 8.48528i 0.472134 0.472134i
\(324\) −7.79423 + 4.50000i −0.433013 + 0.250000i
\(325\) 0 0
\(326\) −6.00000 + 10.3923i −0.332309 + 0.575577i
\(327\) −5.01910 1.34486i −0.277557 0.0743711i
\(328\) 18.3712 + 18.3712i 1.01438 + 1.01438i
\(329\) −6.92820 6.00000i −0.381964 0.330791i
\(330\) 0 0
\(331\) 3.00000 + 5.19615i 0.164895 + 0.285606i 0.936618 0.350352i \(-0.113938\pi\)
−0.771723 + 0.635959i \(0.780605\pi\)
\(332\) 1.34486 + 5.01910i 0.0738090 + 0.275459i
\(333\) 0 0
\(334\) 9.52628 + 16.5000i 0.521255 + 0.902840i
\(335\) 0 0
\(336\) 1.50000 + 4.33013i 0.0818317 + 0.236228i
\(337\) 7.07107 + 7.07107i 0.385186 + 0.385186i 0.872966 0.487781i \(-0.162193\pi\)
−0.487781 + 0.872966i \(0.662193\pi\)
\(338\) 0.965926 + 0.258819i 0.0525394 + 0.0140779i
\(339\) −8.66025 + 15.0000i −0.470360 + 0.814688i
\(340\) 0 0
\(341\) −36.0000 + 20.7846i −1.94951 + 1.12555i
\(342\) 0 0
\(343\) 3.95164 + 18.0938i 0.213368 + 0.976972i
\(344\) 15.0000i 0.808746i
\(345\) 0 0
\(346\) −6.00000 3.46410i −0.322562 0.186231i
\(347\) 18.3526 4.91756i 0.985219 0.263989i 0.269978 0.962867i \(-0.412984\pi\)
0.715241 + 0.698878i \(0.246317\pi\)
\(348\) 0.448288 1.67303i 0.0240307 0.0896840i
\(349\) −25.9808 −1.39072 −0.695359 0.718662i \(-0.744755\pi\)
−0.695359 + 0.718662i \(0.744755\pi\)
\(350\) 0 0
\(351\) −18.0000 −0.960769
\(352\) 5.17638 19.3185i 0.275902 1.02968i
\(353\) 23.4225 6.27603i 1.24665 0.334039i 0.425609 0.904907i \(-0.360060\pi\)
0.821042 + 0.570868i \(0.193393\pi\)
\(354\) −5.19615 3.00000i −0.276172 0.159448i
\(355\) 0 0
\(356\) 12.1244i 0.642590i
\(357\) −1.13681 15.8338i −0.0601665 0.838011i
\(358\) 15.5563 15.5563i 0.822179 0.822179i
\(359\) 1.73205 1.00000i 0.0914141 0.0527780i −0.453596 0.891207i \(-0.649859\pi\)
0.545010 + 0.838429i \(0.316526\pi\)
\(360\) 0 0
\(361\) 3.50000 6.06218i 0.184211 0.319062i
\(362\) −8.36516 2.24144i −0.439663 0.117807i
\(363\) 6.12372 + 6.12372i 0.321412 + 0.321412i
\(364\) 1.73205 9.00000i 0.0907841 0.471728i
\(365\) 0 0
\(366\) −1.50000 2.59808i −0.0784063 0.135804i
\(367\) −1.34486 5.01910i −0.0702013 0.261995i 0.921901 0.387425i \(-0.126635\pi\)
−0.992102 + 0.125430i \(0.959969\pi\)
\(368\) −1.81173 6.76148i −0.0944431 0.352467i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.00000 + 5.19615i −0.0519174 + 0.269771i
\(372\) −12.7279 12.7279i −0.659912 0.659912i
\(373\) 11.5911 + 3.10583i 0.600165 + 0.160814i 0.546095 0.837723i \(-0.316114\pi\)
0.0540702 + 0.998537i \(0.482781\pi\)
\(374\) 6.92820 12.0000i 0.358249 0.620505i
\(375\) 0 0
\(376\) 9.00000 5.19615i 0.464140 0.267971i
\(377\) 2.44949 2.44949i 0.126155 0.126155i
\(378\) 0.984508 + 13.7124i 0.0506376 + 0.705291i
\(379\) 6.00000i 0.308199i 0.988055 + 0.154100i \(0.0492477\pi\)
−0.988055 + 0.154100i \(0.950752\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.86370 1.03528i 0.197684 0.0529693i
\(383\) 4.93117 18.4034i 0.251971 0.940368i −0.717780 0.696270i \(-0.754842\pi\)
0.969751 0.244098i \(-0.0784917\pi\)
\(384\) 5.19615 0.265165
\(385\) 0 0
\(386\) 8.00000 0.407189
\(387\) 0 0
\(388\) −6.69213 + 1.79315i −0.339741 + 0.0910334i
\(389\) −1.73205 1.00000i −0.0878185 0.0507020i 0.455448 0.890263i \(-0.349479\pi\)
−0.543266 + 0.839561i \(0.682813\pi\)
\(390\) 0 0
\(391\) 24.2487i 1.22631i
\(392\) −20.8528 2.48168i −1.05323 0.125344i
\(393\) 8.48528 8.48528i 0.428026 0.428026i
\(394\) 17.3205 10.0000i 0.872595 0.503793i
\(395\) 0 0
\(396\) 0 0
\(397\) 13.3843 + 3.58630i 0.671737 + 0.179991i 0.578537 0.815656i \(-0.303624\pi\)
0.0931997 + 0.995647i \(0.470290\pi\)
\(398\) −9.79796 9.79796i −0.491127 0.491127i
\(399\) 5.19615 + 15.0000i 0.260133 + 0.750939i
\(400\) 0 0
\(401\) −9.50000 16.4545i −0.474407 0.821698i 0.525163 0.851002i \(-0.324004\pi\)
−0.999571 + 0.0293039i \(0.990671\pi\)
\(402\) −4.03459 15.0573i −0.201227 0.750990i
\(403\) −9.31749 34.7733i −0.464137 1.73218i
\(404\) 0.866025 + 1.50000i 0.0430864 + 0.0746278i
\(405\) 0 0
\(406\) −2.00000 1.73205i −0.0992583 0.0859602i
\(407\) 11.3137 + 11.3137i 0.560800 + 0.560800i
\(408\) 17.3867 + 4.65874i 0.860768 + 0.230642i
\(409\) 6.06218 10.5000i 0.299755 0.519192i −0.676324 0.736604i \(-0.736428\pi\)
0.976080 + 0.217412i \(0.0697616\pi\)
\(410\) 0 0
\(411\) 24.0000 13.8564i 1.18383 0.683486i
\(412\) −11.0227 + 11.0227i −0.543050 + 0.543050i
\(413\) 7.58871 5.13922i 0.373416 0.252884i
\(414\) 0 0
\(415\) 0 0
\(416\) 15.0000 + 8.66025i 0.735436 + 0.424604i
\(417\) 0 0
\(418\) −3.58630 + 13.3843i −0.175412 + 0.654646i
\(419\) 34.6410 1.69232 0.846162 0.532925i \(-0.178907\pi\)
0.846162 + 0.532925i \(0.178907\pi\)
\(420\) 0 0
\(421\) 7.00000 0.341159 0.170580 0.985344i \(-0.445436\pi\)
0.170580 + 0.985344i \(0.445436\pi\)
\(422\) 4.65874 17.3867i 0.226784 0.846370i
\(423\) 0 0
\(424\) −5.19615 3.00000i −0.252347 0.145693i
\(425\) 0 0
\(426\) 3.46410i 0.167836i
\(427\) 4.57081 0.328169i 0.221197 0.0158812i
\(428\) −0.707107 + 0.707107i −0.0341793 + 0.0341793i
\(429\) −20.7846 + 12.0000i −1.00349 + 0.579365i
\(430\) 0 0
\(431\) 8.00000 13.8564i 0.385346 0.667440i −0.606471 0.795106i \(-0.707415\pi\)
0.991817 + 0.127666i \(0.0407486\pi\)
\(432\) −5.01910 1.34486i −0.241481 0.0647048i
\(433\) 22.0454 + 22.0454i 1.05943 + 1.05943i 0.998118 + 0.0613163i \(0.0195298\pi\)
0.0613163 + 0.998118i \(0.480470\pi\)
\(434\) −25.9808 + 9.00000i −1.24712 + 0.432014i
\(435\) 0 0
\(436\) 1.50000 + 2.59808i 0.0718370 + 0.124425i
\(437\) −6.27603 23.4225i −0.300223 1.12045i
\(438\) 4.65874 + 17.3867i 0.222603 + 0.830767i
\(439\) −10.3923 18.0000i −0.495998 0.859093i 0.503992 0.863708i \(-0.331864\pi\)
−0.999989 + 0.00461537i \(0.998531\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 8.48528 + 8.48528i 0.403604 + 0.403604i
\(443\) −12.5570 3.36465i −0.596603 0.159859i −0.0521336 0.998640i \(-0.516602\pi\)
−0.544469 + 0.838781i \(0.683269\pi\)
\(444\) −3.46410 + 6.00000i −0.164399 + 0.284747i
\(445\) 0 0
\(446\) 3.00000 1.73205i 0.142054 0.0820150i
\(447\) −20.8207 + 20.8207i −0.984784 + 0.984784i
\(448\) 8.08776 16.6610i 0.382111 0.787157i
\(449\) 31.0000i 1.46298i 0.681852 + 0.731490i \(0.261175\pi\)
−0.681852 + 0.731490i \(0.738825\pi\)
\(450\) 0 0
\(451\) 30.0000 + 17.3205i 1.41264 + 0.815591i
\(452\) 9.65926 2.58819i 0.454333 0.121738i
\(453\) −2.68973 + 10.0382i −0.126374 + 0.471636i
\(454\) −3.46410 −0.162578
\(455\) 0 0
\(456\) −18.0000 −0.842927
\(457\) −4.14110 + 15.4548i −0.193713 + 0.722946i 0.798884 + 0.601486i \(0.205424\pi\)
−0.992596 + 0.121460i \(0.961242\pi\)
\(458\) −13.3843 + 3.58630i −0.625405 + 0.167577i
\(459\) 15.5885 + 9.00000i 0.727607 + 0.420084i
\(460\) 0 0
\(461\) 34.6410i 1.61339i −0.590966 0.806696i \(-0.701253\pi\)
0.590966 0.806696i \(-0.298747\pi\)
\(462\) 10.2784 + 15.1774i 0.478196 + 0.706117i
\(463\) −10.6066 + 10.6066i −0.492931 + 0.492931i −0.909228 0.416298i \(-0.863327\pi\)
0.416298 + 0.909228i \(0.363327\pi\)
\(464\) 0.866025 0.500000i 0.0402042 0.0232119i
\(465\) 0 0
\(466\) −1.00000 + 1.73205i −0.0463241 + 0.0802357i
\(467\) 5.01910 + 1.34486i 0.232256 + 0.0622328i 0.373070 0.927803i \(-0.378305\pi\)
−0.140814 + 0.990036i \(0.544972\pi\)
\(468\) 0 0
\(469\) 23.3827 + 4.50000i 1.07971 + 0.207791i
\(470\) 0 0
\(471\) 12.0000 + 20.7846i 0.552931 + 0.957704i
\(472\) 2.68973 + 10.0382i 0.123805 + 0.462045i
\(473\) 5.17638 + 19.3185i 0.238010 + 0.888266i
\(474\) −1.73205 3.00000i −0.0795557 0.137795i
\(475\) 0 0
\(476\) −6.00000 + 6.92820i −0.275010 + 0.317554i
\(477\) 0 0
\(478\) −25.1141 6.72930i −1.14869 0.307791i
\(479\) 19.0526 33.0000i 0.870534 1.50781i 0.00908799 0.999959i \(-0.497107\pi\)
0.861446 0.507850i \(-0.169560\pi\)
\(480\) 0 0
\(481\) −12.0000 + 6.92820i −0.547153 + 0.315899i
\(482\) 4.89898 4.89898i 0.223142 0.223142i
\(483\) −28.8577 14.0084i −1.31307 0.637405i
\(484\) 5.00000i 0.227273i
\(485\) 0 0
\(486\) 0 0
\(487\) 3.86370 1.03528i 0.175081 0.0469128i −0.170213 0.985407i \(-0.554446\pi\)
0.345294 + 0.938494i \(0.387779\pi\)
\(488\) −1.34486 + 5.01910i −0.0608791 + 0.227204i
\(489\) −20.7846 −0.939913
\(490\) 0 0
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) −3.88229 + 14.4889i −0.175027 + 0.653209i
\(493\) −3.34607 + 0.896575i −0.150699 + 0.0403797i
\(494\) −10.3923 6.00000i −0.467572 0.269953i
\(495\) 0 0
\(496\) 10.3923i 0.466628i
\(497\) 4.76028 + 2.31079i 0.213528 + 0.103653i
\(498\) 6.36396 6.36396i 0.285176 0.285176i
\(499\) 10.3923 6.00000i 0.465223 0.268597i −0.249015 0.968500i \(-0.580107\pi\)
0.714238 + 0.699903i \(0.246773\pi\)
\(500\) 0 0
\(501\) −16.5000 + 28.5788i −0.737166 + 1.27681i
\(502\) −16.7303 4.48288i −0.746711 0.200081i
\(503\) −8.57321 8.57321i −0.382261 0.382261i 0.489655 0.871916i \(-0.337123\pi\)
−0.871916 + 0.489655i \(0.837123\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −14.0000 24.2487i −0.622376 1.07799i
\(507\) 0.448288 + 1.67303i 0.0199092 + 0.0743020i
\(508\) 0 0
\(509\) 2.59808 + 4.50000i 0.115158 + 0.199459i 0.917843 0.396944i \(-0.129929\pi\)
−0.802685 + 0.596403i \(0.796596\pi\)
\(510\) 0 0
\(511\) −27.0000 5.19615i −1.19441 0.229864i
\(512\) 7.77817 + 7.77817i 0.343750 + 0.343750i
\(513\) −17.3867 4.65874i −0.767640 0.205689i
\(514\) −6.92820 + 12.0000i −0.305590 + 0.529297i
\(515\) 0 0
\(516\) −7.50000 + 4.33013i −0.330169 + 0.190623i
\(517\) 9.79796 9.79796i 0.430914 0.430914i
\(518\) 5.93426 + 8.76268i 0.260736 + 0.385010i
\(519\) 12.0000i 0.526742i
\(520\) 0 0
\(521\) −6.00000 3.46410i −0.262865 0.151765i 0.362776 0.931876i \(-0.381829\pi\)
−0.625641 + 0.780111i \(0.715162\pi\)
\(522\) 0 0
\(523\) −6.27603 + 23.4225i −0.274432 + 1.02419i 0.681790 + 0.731548i \(0.261202\pi\)
−0.956221 + 0.292644i \(0.905465\pi\)
\(524\) −6.92820 −0.302660
\(525\) 0 0
\(526\) 13.0000 0.566827
\(527\) −9.31749 + 34.7733i −0.405876 + 1.51475i
\(528\) −6.69213 + 1.79315i −0.291238 + 0.0780369i
\(529\) 22.5167 + 13.0000i 0.978985 + 0.565217i
\(530\) 0 0
\(531\) 0 0
\(532\) 4.00240 8.24504i 0.173526 0.357468i
\(533\) −21.2132 + 21.2132i −0.918846 + 0.918846i
\(534\) −18.1865 + 10.5000i −0.787008 + 0.454379i
\(535\) 0 0
\(536\) −13.5000 + 23.3827i −0.583111 + 1.00998i
\(537\) 36.8067 + 9.86233i 1.58833 + 0.425591i
\(538\) −15.9217 15.9217i −0.686433 0.686433i
\(539\) −27.7128 + 4.00000i −1.19368 + 0.172292i
\(540\) 0 0
\(541\) −9.50000 16.4545i −0.408437 0.707433i 0.586278 0.810110i \(-0.300593\pi\)
−0.994715 + 0.102677i \(0.967259\pi\)
\(542\) 2.68973 + 10.0382i 0.115534 + 0.431177i
\(543\) −3.88229 14.4889i −0.166605 0.621778i
\(544\) −8.66025 15.0000i −0.371305 0.643120i
\(545\) 0 0
\(546\) −15.0000 + 5.19615i −0.641941 + 0.222375i
\(547\) −31.8198 31.8198i −1.36052 1.36052i −0.873257 0.487259i \(-0.837997\pi\)
−0.487259 0.873257i \(-0.662003\pi\)
\(548\) −15.4548 4.14110i −0.660197 0.176899i
\(549\) 0 0
\(550\) 0 0
\(551\) 3.00000 1.73205i 0.127804 0.0737878i
\(552\) 25.7196 25.7196i 1.09470 1.09470i
\(553\) 5.27792 0.378937i 0.224440 0.0161141i
\(554\) 6.00000i 0.254916i
\(555\) 0 0
\(556\) 0 0
\(557\) −15.4548 + 4.14110i −0.654841 + 0.175464i −0.570917 0.821008i \(-0.693412\pi\)
−0.0839246 + 0.996472i \(0.526745\pi\)
\(558\) 0 0
\(559\) −17.3205 −0.732579
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) −5.69402 + 21.2504i −0.240188 + 0.896393i
\(563\) 15.0573 4.03459i 0.634589 0.170038i 0.0728379 0.997344i \(-0.476794\pi\)
0.561751 + 0.827306i \(0.310128\pi\)
\(564\) 5.19615 + 3.00000i 0.218797 + 0.126323i
\(565\) 0 0
\(566\) 10.3923i 0.436821i
\(567\) −19.7160 + 13.3521i −0.827996 + 0.560734i
\(568\) −4.24264 + 4.24264i −0.178017 + 0.178017i
\(569\) 1.73205 1.00000i 0.0726113 0.0419222i −0.463255 0.886225i \(-0.653319\pi\)
0.535866 + 0.844303i \(0.319985\pi\)
\(570\) 0 0
\(571\) −17.0000 + 29.4449i −0.711428 + 1.23223i 0.252893 + 0.967494i \(0.418618\pi\)
−0.964321 + 0.264735i \(0.914716\pi\)
\(572\) 13.3843 + 3.58630i 0.559624 + 0.149951i
\(573\) 4.89898 + 4.89898i 0.204658 + 0.204658i
\(574\) 17.3205 + 15.0000i 0.722944 + 0.626088i
\(575\) 0 0
\(576\) 0 0
\(577\) 5.37945 + 20.0764i 0.223950 + 0.835791i 0.982823 + 0.184553i \(0.0590836\pi\)
−0.758873 + 0.651239i \(0.774250\pi\)
\(578\) 1.29410 + 4.82963i 0.0538273 + 0.200886i
\(579\) 6.92820 + 12.0000i 0.287926 + 0.498703i
\(580\) 0 0
\(581\) 4.50000 + 12.9904i 0.186691 + 0.538932i
\(582\) 8.48528 + 8.48528i 0.351726 + 0.351726i
\(583\) −7.72741 2.07055i −0.320036 0.0857535i
\(584\) 15.5885 27.0000i 0.645055 1.11727i
\(585\) 0 0
\(586\) 18.0000 10.3923i 0.743573 0.429302i
\(587\) 7.34847 7.34847i 0.303304 0.303304i −0.539001 0.842305i \(-0.681198\pi\)
0.842305 + 0.539001i \(0.181198\pi\)
\(588\) −4.77886 11.1428i −0.197077 0.459522i
\(589\) 36.0000i 1.48335i
\(590\) 0 0
\(591\) 30.0000 + 17.3205i 1.23404 + 0.712470i
\(592\) −3.86370 + 1.03528i −0.158797 + 0.0425496i
\(593\) −6.27603 + 23.4225i −0.257726 + 0.961845i 0.708828 + 0.705381i \(0.249224\pi\)
−0.966554 + 0.256464i \(0.917443\pi\)
\(594\) −20.7846 −0.852803
\(595\) 0 0
\(596\) 17.0000 0.696347
\(597\) 6.21166 23.1822i 0.254226 0.948785i
\(598\) 23.4225 6.27603i 0.957815 0.256646i
\(599\) 6.92820 + 4.00000i 0.283079 + 0.163436i 0.634816 0.772663i \(-0.281076\pi\)
−0.351738 + 0.936099i \(0.614409\pi\)
\(600\) 0 0
\(601\) 34.6410i 1.41304i −0.707695 0.706518i \(-0.750265\pi\)
0.707695 0.706518i \(-0.249735\pi\)
\(602\) 0.947343 + 13.1948i 0.0386108 + 0.537780i
\(603\) 0 0
\(604\) 5.19615 3.00000i 0.211428 0.122068i
\(605\) 0 0
\(606\) 1.50000 2.59808i 0.0609333 0.105540i
\(607\) −11.7112 3.13801i −0.475344 0.127368i 0.0131898 0.999913i \(-0.495801\pi\)
−0.488534 + 0.872545i \(0.662468\pi\)
\(608\) 12.2474 + 12.2474i 0.496700 + 0.496700i
\(609\) 0.866025 4.50000i 0.0350931 0.182349i
\(610\) 0 0
\(611\) 6.00000 + 10.3923i 0.242734 + 0.420428i
\(612\) 0 0
\(613\) 10.8704 + 40.5689i 0.439051 + 1.63856i 0.731181 + 0.682183i \(0.238969\pi\)
−0.292130 + 0.956379i \(0.594364\pi\)
\(614\) −7.79423 13.5000i −0.314549 0.544816i
\(615\) 0 0
\(616\) 6.00000 31.1769i 0.241747 1.25615i
\(617\) −28.2843 28.2843i −1.13868 1.13868i −0.988687 0.149995i \(-0.952074\pi\)
−0.149995 0.988687i \(-0.547926\pi\)
\(618\) 26.0800 + 6.98811i 1.04909 + 0.281103i
\(619\) −6.92820 + 12.0000i −0.278468 + 0.482321i −0.971004 0.239062i \(-0.923160\pi\)
0.692536 + 0.721383i \(0.256493\pi\)
\(620\) 0 0
\(621\) 31.5000 18.1865i 1.26405 0.729800i
\(622\) 17.1464 17.1464i 0.687509 0.687509i
\(623\) −2.29719 31.9957i −0.0920348 1.28188i
\(624\) 6.00000i 0.240192i
\(625\) 0 0
\(626\) 24.0000 + 13.8564i 0.959233 + 0.553813i
\(627\) −23.1822 + 6.21166i −0.925809 + 0.248070i
\(628\) 3.58630 13.3843i 0.143109 0.534090i
\(629\) 13.8564 0.552491
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) −1.55291 + 5.79555i −0.0617716 + 0.230535i
\(633\) 30.1146 8.06918i 1.19695 0.320721i
\(634\) 29.4449 + 17.0000i 1.16940 + 0.675156i
\(635\) 0 0
\(636\) 3.46410i 0.137361i
\(637\) 2.86559 24.0788i 0.113539 0.954037i
\(638\) 2.82843 2.82843i 0.111979 0.111979i
\(639\) 0 0
\(640\) 0 0
\(641\) −14.5000 + 25.1147i −0.572716 + 0.991972i 0.423570 + 0.905863i \(0.360777\pi\)
−0.996286 + 0.0861092i \(0.972557\pi\)
\(642\) 1.67303 + 0.448288i 0.0660293 + 0.0176925i
\(643\) −26.9444 26.9444i −1.06258 1.06258i −0.997906 0.0646766i \(-0.979398\pi\)
−0.0646766 0.997906i \(-0.520602\pi\)
\(644\) 6.06218 + 17.5000i 0.238883 + 0.689597i
\(645\) 0 0
\(646\) 6.00000 + 10.3923i 0.236067 + 0.408880i
\(647\) 3.13801 + 11.7112i 0.123368 + 0.460416i 0.999776 0.0211531i \(-0.00673374\pi\)
−0.876408 + 0.481569i \(0.840067\pi\)
\(648\) −6.98811 26.0800i −0.274519 1.02452i
\(649\) 6.92820 + 12.0000i 0.271956 + 0.471041i
\(650\) 0 0
\(651\) −36.0000 31.1769i −1.41095 1.22192i
\(652\) 8.48528 + 8.48528i 0.332309 + 0.332309i
\(653\) 21.2504 + 5.69402i 0.831591 + 0.222824i 0.649408 0.760440i \(-0.275017\pi\)
0.182183 + 0.983265i \(0.441684\pi\)
\(654\) 2.59808 4.50000i 0.101593 0.175964i
\(655\) 0 0
\(656\) −7.50000 + 4.33013i −0.292826 + 0.169063i
\(657\) 0 0
\(658\) 7.58871 5.13922i 0.295839 0.200348i
\(659\) 26.0000i 1.01282i 0.862294 + 0.506408i \(0.169027\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(660\) 0 0
\(661\) 1.50000 + 0.866025i 0.0583432 + 0.0336845i 0.528888 0.848692i \(-0.322609\pi\)
−0.470545 + 0.882376i \(0.655943\pi\)
\(662\) −5.79555 + 1.55291i −0.225251 + 0.0603557i
\(663\) −5.37945 + 20.0764i −0.208921 + 0.779702i
\(664\) −15.5885 −0.604949
\(665\) 0 0
\(666\) 0 0
\(667\) −1.81173 + 6.76148i −0.0701506 + 0.261806i
\(668\) 18.4034 4.93117i 0.712047 0.190793i
\(669\) 5.19615 + 3.00000i 0.200895 + 0.115987i
\(670\) 0 0
\(671\) 6.92820i 0.267460i
\(672\) 22.8541 1.64085i 0.881614 0.0632970i
\(673\) 28.2843 28.2843i 1.09028 1.09028i 0.0947803 0.995498i \(-0.469785\pi\)
0.995498 0.0947803i \(-0.0302149\pi\)
\(674\) −8.66025 + 5.00000i −0.333581 + 0.192593i
\(675\) 0 0
\(676\) 0.500000 0.866025i 0.0192308 0.0333087i
\(677\) −36.8067 9.86233i −1.41460 0.379040i −0.531033 0.847351i \(-0.678196\pi\)
−0.883564 + 0.468311i \(0.844863\pi\)
\(678\) −12.2474 12.2474i −0.470360 0.470360i
\(679\) −17.3205 + 6.00000i −0.664700 + 0.230259i
\(680\) 0 0
\(681\) −3.00000 5.19615i −0.114960 0.199117i
\(682\) −10.7589 40.1528i −0.411980 1.53753i
\(683\) 4.39992 + 16.4207i 0.168358 + 0.628322i 0.997588 + 0.0694139i \(0.0221129\pi\)
−0.829230 + 0.558908i \(0.811220\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −18.5000 0.866025i −0.706333 0.0330650i
\(687\) −16.9706 16.9706i −0.647467 0.647467i
\(688\) −4.82963 1.29410i −0.184128 0.0493369i
\(689\) 3.46410 6.00000i 0.131972 0.228582i
\(690\) 0 0
\(691\) 24.0000 13.8564i 0.913003 0.527123i 0.0316069 0.999500i \(-0.489938\pi\)
0.881396 + 0.472378i \(0.156604\pi\)
\(692\) −4.89898 + 4.89898i −0.186231 + 0.186231i
\(693\) 0 0
\(694\) 19.0000i 0.721230i
\(695\) 0 0
\(696\) 4.50000 + 2.59808i 0.170572 + 0.0984798i
\(697\) 28.9778 7.76457i 1.09761 0.294104i
\(698\) 6.72432 25.0955i 0.254519 0.949878i
\(699\) −3.46410 −0.131024
\(700\) 0 0
\(701\) 17.0000 0.642081 0.321041 0.947065i \(-0.395967\pi\)
0.321041 + 0.947065i \(0.395967\pi\)
\(702\) 4.65874 17.3867i 0.175833 0.656217i
\(703\) −13.3843 + 3.58630i −0.504797 + 0.135260i
\(704\) 24.2487 + 14.0000i 0.913908 + 0.527645i
\(705\) 0 0
\(706\) 24.2487i 0.912612i
\(707\) 2.56961 + 3.79435i 0.0966401 + 0.142701i
\(708\) −4.24264 + 4.24264i −0.159448 + 0.159448i
\(709\) −28.5788 + 16.5000i −1.07330 + 0.619671i −0.929081 0.369875i \(-0.879400\pi\)
−0.144219 + 0.989546i \(0.546067\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 35.1337 + 9.41404i 1.31669 + 0.352806i
\(713\) 51.4393 + 51.4393i 1.92642 + 1.92642i
\(714\) 15.5885 + 3.00000i 0.583383 + 0.112272i
\(715\) 0 0
\(716\) −11.0000 19.0526i −0.411089 0.712028i
\(717\) −11.6555 43.4988i −0.435282 1.62449i
\(718\) 0.517638 + 1.93185i 0.0193181 + 0.0720961i
\(719\) −10.3923 18.0000i −0.387568 0.671287i 0.604554 0.796564i \(-0.293351\pi\)
−0.992122 + 0.125277i \(0.960018\pi\)
\(720\) 0 0
\(721\) −27.0000 + 31.1769i −1.00553 + 1.16109i
\(722\) 4.94975 + 4.94975i 0.184211 + 0.184211i
\(723\) 11.5911 + 3.10583i 0.431078 + 0.115507i
\(724\) −4.33013 + 7.50000i −0.160928 + 0.278735i
\(725\) 0 0
\(726\) −7.50000 + 4.33013i −0.278351 + 0.160706i
\(727\) 1.22474 1.22474i 0.0454233 0.0454233i −0.684030 0.729454i \(-0.739774\pi\)
0.729454 + 0.684030i \(0.239774\pi\)
\(728\) 24.7351 + 12.0072i 0.916745 + 0.445017i
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 15.0000 + 8.66025i 0.554795 + 0.320311i
\(732\) −2.89778 + 0.776457i −0.107105 + 0.0286987i
\(733\) 7.17260 26.7685i 0.264926 0.988718i −0.697369 0.716712i \(-0.745646\pi\)
0.962296 0.272006i \(-0.0876871\pi\)
\(734\) 5.19615 0.191793
\(735\) 0 0
\(736\) −35.0000 −1.29012
\(737\) −9.31749 + 34.7733i −0.343214 + 1.28089i
\(738\) 0 0
\(739\) −27.7128 16.0000i −1.01943 0.588570i −0.105493 0.994420i \(-0.533642\pi\)
−0.913939 + 0.405851i \(0.866975\pi\)
\(740\) 0 0
\(741\) 20.7846i 0.763542i
\(742\) −4.76028 2.31079i −0.174755 0.0848317i
\(743\) −3.53553 + 3.53553i −0.129706 + 0.129706i −0.768980 0.639273i \(-0.779235\pi\)
0.639273 + 0.768980i \(0.279235\pi\)
\(744\) 46.7654 27.0000i 1.71450 0.989868i
\(745\) 0 0
\(746\) −6.00000 + 10.3923i −0.219676 + 0.380489i
\(747\) 0 0
\(748\) −9.79796 9.79796i −0.358249 0.358249i
\(749\) −1.73205 + 2.00000i −0.0632878 + 0.0730784i
\(750\) 0 0
\(751\) −12.0000 20.7846i −0.437886 0.758441i 0.559640 0.828736i \(-0.310939\pi\)
−0.997526 + 0.0702946i \(0.977606\pi\)
\(752\) 0.896575 + 3.34607i 0.0326947 + 0.122018i
\(753\) −7.76457 28.9778i −0.282957 1.05601i
\(754\) 1.73205 + 3.00000i 0.0630776 + 0.109254i
\(755\) 0 0
\(756\) 13.5000 + 2.59808i 0.490990 + 0.0944911i
\(757\) 7.07107 + 7.07107i 0.257002 + 0.257002i 0.823834 0.566831i \(-0.191831\pi\)
−0.566831 + 0.823834i \(0.691831\pi\)
\(758\) −5.79555 1.55291i −0.210504 0.0564044i
\(759\) 24.2487 42.0000i 0.880172 1.52450i
\(760\) 0 0
\(761\) −6.00000 + 3.46410i −0.217500 + 0.125574i −0.604792 0.796383i \(-0.706744\pi\)
0.387292 + 0.921957i \(0.373410\pi\)
\(762\) 0 0
\(763\) 4.45069 + 6.57201i 0.161126 + 0.237923i
\(764\) 4.00000i 0.144715i
\(765\) 0 0
\(766\) 16.5000 + 9.52628i 0.596169 + 0.344198i
\(767\) −11.5911 + 3.10583i −0.418531 + 0.112145i
\(768\) −7.62089 + 28.4416i −0.274995 + 1.02630i
\(769\) −34.6410 −1.24919 −0.624593 0.780950i \(-0.714735\pi\)
−0.624593 + 0.780950i \(0.714735\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 2.07055 7.72741i 0.0745208 0.278115i
\(773\) −43.4988 + 11.6555i −1.56454 + 0.419219i −0.934099 0.357015i \(-0.883795\pi\)
−0.630446 + 0.776233i \(0.717128\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 20.7846i 0.746124i
\(777\) −8.00481 + 16.4901i −0.287171 + 0.591579i
\(778\) 1.41421 1.41421i 0.0507020 0.0507020i
\(779\) −25.9808 + 15.0000i −0.930857 + 0.537431i
\(780\) 0 0
\(781\) −4.00000 + 6.92820i −0.143131 + 0.247911i
\(782\) −23.4225 6.27603i −0.837585 0.224430i
\(783\) 3.67423 + 3.67423i 0.131306 + 0.131306i
\(784\) 2.59808 6.50000i 0.0927884 0.232143i
\(785\) 0 0
\(786\) 6.00000 + 10.3923i 0.214013 + 0.370681i
\(787\) 7.62089 + 28.4416i 0.271655 + 1.01383i 0.958050 + 0.286602i \(0.0925258\pi\)
−0.686394 + 0.727230i \(0.740808\pi\)
\(788\) −5.17638 19.3185i −0.184401 0.688194i
\(789\) 11.2583 + 19.5000i 0.400807 + 0.694218i
\(790\) 0 0
\(791\) 25.0000 8.66025i 0.888898 0.307923i
\(792\) 0 0
\(793\) −5.79555 1.55291i −0.205806 0.0551456i
\(794\) −6.92820 + 12.0000i −0.245873 + 0.425864i
\(795\) 0 0
\(796\) −12.0000 + 6.92820i −0.425329 + 0.245564i
\(797\) −29.3939 + 29.3939i −1.04118 + 1.04118i −0.0420699 + 0.999115i \(0.513395\pi\)
−0.999115 + 0.0420699i \(0.986605\pi\)
\(798\) −15.8338 + 1.13681i −0.560509 + 0.0402427i
\(799\) 12.0000i 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) 18.3526 4.91756i 0.648053 0.173645i
\(803\) 10.7589 40.1528i 0.379674 1.41696i
\(804\) −15.5885 −0.549762
\(805\) 0 0
\(806\) 36.0000 1.26805
\(807\) 10.0939 37.6711i 0.355324 1.32609i
\(808\) −5.01910 + 1.34486i −0.176571 + 0.0473121i
\(809\) −14.7224 8.50000i −0.517613 0.298844i 0.218344 0.975872i \(-0.429934\pi\)
−0.735958 + 0.677028i \(0.763268\pi\)
\(810\) 0 0
\(811\) 17.3205i 0.608205i −0.952639 0.304103i \(-0.901643\pi\)
0.952639 0.304103i \(-0.0983566\pi\)
\(812\) −2.19067 + 1.48356i −0.0768775 + 0.0520629i
\(813\) −12.7279 + 12.7279i −0.446388 + 0.446388i
\(814\) −13.8564 + 8.00000i −0.485667 + 0.280400i
\(815\) 0 0
\(816\) −3.00000 + 5.19615i −0.105021 + 0.181902i
\(817\) −16.7303 4.48288i −0.585320 0.156836i
\(818\) 8.57321 + 8.57321i 0.299755 + 0.299755i
\(819\) 0 0
\(820\) 0 0
\(821\) 13.0000 + 22.5167i 0.453703 + 0.785837i 0.998613 0.0526580i \(-0.0167693\pi\)
−0.544909 + 0.838495i \(0.683436\pi\)
\(822\) 7.17260 + 26.7685i 0.250173 + 0.933659i
\(823\) 6.98811 + 26.0800i 0.243590 + 0.909092i 0.974087 + 0.226175i \(0.0726221\pi\)
−0.730496 + 0.682917i \(0.760711\pi\)
\(824\) −23.3827 40.5000i −0.814574 1.41088i
\(825\) 0 0
\(826\) 3.00000 + 8.66025i 0.104383 + 0.301329i
\(827\) 24.7487 + 24.7487i 0.860598 + 0.860598i 0.991408 0.130810i \(-0.0417577\pi\)
−0.130810 + 0.991408i \(0.541758\pi\)
\(828\) 0 0
\(829\) 10.3923 18.0000i 0.360940 0.625166i −0.627176 0.778878i \(-0.715789\pi\)
0.988116 + 0.153712i \(0.0491227\pi\)
\(830\) 0 0
\(831\) 9.00000 5.19615i 0.312207 0.180253i
\(832\) −17.1464 + 17.1464i −0.594445 + 0.594445i
\(833\) −14.5211 + 19.4201i −0.503125 + 0.672865i
\(834\) 0 0
\(835\) 0 0
\(836\) 12.0000 + 6.92820i 0.415029 + 0.239617i
\(837\) 52.1600 13.9762i 1.80291 0.483089i
\(838\) −8.96575 + 33.4607i −0.309717 + 1.15588i
\(839\) 34.6410 1.19594 0.597970 0.801518i \(-0.295974\pi\)
0.597970 + 0.801518i \(0.295974\pi\)
\(840\) 0 0
\(841\) 28.0000 0.965517
\(842\) −1.81173 + 6.76148i −0.0624365 + 0.233016i
\(843\) −36.8067 + 9.86233i −1.26769 + 0.339677i
\(844\) −15.5885 9.00000i −0.536577 0.309793i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.947343 13.1948i −0.0325511 0.453378i
\(848\) 1.41421 1.41421i 0.0485643 0.0485643i
\(849\) 15.5885 9.00000i 0.534994 0.308879i
\(850\) 0 0
\(851\) 14.0000 24.2487i 0.479914 0.831235i
\(852\) −3.34607 0.896575i −0.114634 0.0307162i
\(853\) −26.9444 26.9444i −0.922558 0.922558i 0.0746514 0.997210i \(-0.476216\pi\)
−0.997210 + 0.0746514i \(0.976216\pi\)
\(854\) −0.866025 + 4.50000i −0.0296348 + 0.153987i
\(855\) 0 0
\(856\) −1.50000 2.59808i −0.0512689 0.0888004i
\(857\) 5.37945 + 20.0764i 0.183759 + 0.685796i 0.994893 + 0.100936i \(0.0321839\pi\)
−0.811134 + 0.584860i \(0.801149\pi\)
\(858\) −6.21166 23.1822i −0.212062 0.791428i
\(859\) 24.2487 + 42.0000i 0.827355 + 1.43302i 0.900106 + 0.435671i \(0.143489\pi\)
−0.0727505 + 0.997350i \(0.523178\pi\)
\(860\) 0 0
\(861\) −7.50000 + 38.9711i −0.255599 + 1.32813i
\(862\) 11.3137 + 11.3137i 0.385346 + 0.385346i
\(863\) −12.5570 3.36465i −0.427446 0.114534i 0.0386808 0.999252i \(-0.487684\pi\)
−0.466127 + 0.884718i \(0.654351\pi\)
\(864\) −12.9904 + 22.5000i −0.441942 + 0.765466i
\(865\) 0 0
\(866\) −27.0000 + 15.5885i −0.917497 + 0.529717i
\(867\) −6.12372 + 6.12372i −0.207973 + 0.207973i
\(868\) 1.96902 + 27.4249i 0.0668328 + 0.930860i
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) −27.0000 15.5885i −0.914860 0.528195i
\(872\) −8.69333 + 2.32937i −0.294393 + 0.0788825i
\(873\) 0 0
\(874\) 24.2487 0.820225
\(875\) 0 0
\(876\) 18.0000 0.608164
\(877\) 13.9762 52.1600i 0.471944 1.76132i −0.160831 0.986982i \(-0.551417\pi\)
0.632775 0.774336i \(-0.281916\pi\)
\(878\) 20.0764 5.37945i 0.677545 0.181548i
\(879\) 31.1769 + 18.0000i 1.05157 + 0.607125i
\(880\) 0 0
\(881\) 8.66025i 0.291771i −0.989301 0.145886i \(-0.953397\pi\)
0.989301 0.145886i \(-0.0466032\pi\)
\(882\) 0 0
\(883\) −14.1421 + 14.1421i −0.475921 + 0.475921i −0.903824 0.427904i \(-0.859252\pi\)
0.427904 + 0.903824i \(0.359252\pi\)
\(884\) 10.3923 6.00000i 0.349531 0.201802i
\(885\) 0 0
\(886\) 6.50000 11.2583i 0.218372 0.378231i
\(887\) 21.7494 + 5.82774i 0.730274 + 0.195676i 0.604751 0.796414i \(-0.293272\pi\)
0.125523 + 0.992091i \(0.459939\pi\)
\(888\) −14.6969 14.6969i −0.493197 0.493197i
\(889\) 0 0
\(890\) 0 0
\(891\) −18.0000 31.1769i −0.603023 1.04447i
\(892\) −0.896575 3.34607i −0.0300196 0.112035i
\(893\) 3.10583 + 11.5911i 0.103933 + 0.387882i
\(894\) −14.7224 25.5000i −0.492392 0.852848i
\(895\) 0 0
\(896\) −6.00000 5.19615i −0.200446 0.173591i
\(897\) 29.6985 + 29.6985i 0.991604 + 0.991604i
\(898\) −29.9437 8.02339i −0.999234 0.267744i
\(899\) −5.19615 + 9.00000i −0.173301 + 0.300167i
\(900\) 0 0
\(901\) −6.00000 + 3.46410i −0.199889 + 0.115406i
\(902\) −24.4949 + 24.4949i −0.815591 + 0.815591i
\(903\) −18.9718 + 12.8480i −0.631341 + 0.427556i
\(904\) 30.0000i 0.997785i
\(905\) 0 0
\(906\) −9.00000 5.19615i −0.299005 0.172631i
\(907\) −39.6030 + 10.6116i −1.31499 + 0.352352i −0.847100 0.531433i \(-0.821654\pi\)
−0.467894 + 0.883784i \(0.654987\pi\)
\(908\) −0.896575 + 3.34607i −0.0297539 + 0.111043i
\(909\) 0 0
\(910\) 0 0
\(911\) −28.0000 −0.927681 −0.463841 0.885919i \(-0.653529\pi\)
−0.463841 + 0.885919i \(0.653529\pi\)
\(912\) 1.55291 5.79555i 0.0514221 0.191910i
\(913\) −20.0764 + 5.37945i −0.664432 + 0.178034i
\(914\) −13.8564 8.00000i −0.458329 0.264616i
\(915\) 0 0
\(916\) 13.8564i 0.457829i
\(917\) −18.2832 + 1.31268i −0.603766 + 0.0433484i
\(918\) −12.7279 + 12.7279i −0.420084 + 0.420084i
\(919\) −15.5885 + 9.00000i −0.514216 + 0.296883i −0.734565 0.678538i \(-0.762614\pi\)
0.220349 + 0.975421i \(0.429280\pi\)
\(920\) 0 0
\(921\) 13.5000 23.3827i 0.444840 0.770486i
\(922\) 33.4607 + 8.96575i 1.10197 + 0.295271i
\(923\) −4.89898 4.89898i −0.161252 0.161252i
\(924\) 17.3205 6.00000i 0.569803 0.197386i
\(925\) 0 0
\(926\) −7.50000 12.9904i −0.246465 0.426890i
\(927\) 0 0
\(928\) −1.29410 4.82963i −0.0424808 0.158540i
\(929\) 11.2583 + 19.5000i 0.369374 + 0.639774i 0.989468 0.144753i \(-0.0462389\pi\)
−0.620094 + 0.784528i \(0.712906\pi\)
\(930\) 0 0
\(931\) 9.00000 22.5167i 0.294963 0.737954i
\(932\) 1.41421 + 1.41421i 0.0463241 + 0.0463241i
\(933\) 40.5689 + 10.8704i 1.32817 + 0.355881i
\(934\) −2.59808 + 4.50000i −0.0850117 + 0.147244i
\(935\) 0 0
\(936\) 0 0
\(937\) 19.5959 19.5959i 0.640171 0.640171i −0.310427 0.950597i \(-0.600472\pi\)
0.950597 + 0.310427i \(0.100472\pi\)
\(938\) −10.3986 + 21.4213i −0.339525 + 0.699429i
\(939\) 48.0000i 1.56642i
\(940\) 0 0
\(941\) −36.0000 20.7846i −1.17357 0.677559i −0.219049 0.975714i \(-0.570295\pi\)
−0.954517 + 0.298155i \(0.903629\pi\)
\(942\) −23.1822 + 6.21166i −0.755318 + 0.202387i
\(943\) 15.6901 58.5561i 0.510939 1.90685i
\(944\) −3.46410 −0.112747
\(945\) 0 0
\(946\) −20.0000 −0.650256
\(947\) −2.84701 + 10.6252i −0.0925154 + 0.345272i −0.996631 0.0820157i \(-0.973864\pi\)
0.904116 + 0.427288i \(0.140531\pi\)
\(948\) −3.34607 + 0.896575i −0.108675 + 0.0291194i
\(949\) 31.1769 + 18.0000i 1.01205 + 0.584305i
\(950\) 0 0
\(951\) 58.8897i 1.90963i
\(952\) −15.4176 22.7661i −0.499689 0.737854i
\(953\) 28.2843 28.2843i 0.916217 0.916217i −0.0805344 0.996752i \(-0.525663\pi\)
0.996752 + 0.0805344i \(0.0256627\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −13.0000 + 22.5167i −0.420450 + 0.728241i
\(957\) 6.69213 + 1.79315i 0.216326 + 0.0579643i
\(958\) 26.9444 + 26.9444i 0.870534 + 0.870534i
\(959\) −41.5692 8.00000i −1.34234 0.258333i
\(960\) 0 0
\(961\) 38.5000 + 66.6840i 1.24194 + 2.15110i
\(962\) −3.58630 13.3843i −0.115627 0.431526i
\(963\) 0 0
\(964\) −3.46410 6.00000i −0.111571 0.193247i
\(965\) 0 0
\(966\) 21.0000 24.2487i 0.675664 0.780189i
\(967\) 10.6066 + 10.6066i 0.341085 + 0.341085i 0.856775 0.515690i \(-0.172464\pi\)
−0.515690 + 0.856775i \(0.672464\pi\)
\(968\) 14.4889 + 3.88229i 0.465690 + 0.124781i
\(969\) −10.3923 + 18.0000i −0.333849 + 0.578243i
\(970\) 0 0
\(971\) 24.0000 13.8564i 0.770197 0.444673i −0.0627481 0.998029i \(-0.519986\pi\)
0.832945 + 0.553356i \(0.186653\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4.00000i 0.128168i
\(975\) 0 0
\(976\) −1.50000 0.866025i −0.0480138 0.0277208i
\(977\) 3.86370 1.03528i 0.123611 0.0331214i −0.196483 0.980507i \(-0.562952\pi\)
0.320094 + 0.947386i \(0.396285\pi\)
\(978\) 5.37945 20.0764i 0.172016 0.641972i
\(979\) 48.4974 1.54998
\(980\) 0 0
\(981\) 0 0
\(982\) −0.517638 + 1.93185i −0.0165185 + 0.0616479i
\(983\) −18.4034 + 4.93117i −0.586976 + 0.157280i −0.540071 0.841620i \(-0.681603\pi\)
−0.0469052 + 0.998899i \(0.514936\pi\)
\(984\) −38.9711 22.5000i −1.24235 0.717274i
\(985\) 0 0
\(986\) 3.46410i 0.110319i
\(987\) 14.2808 + 6.93237i 0.454564 + 0.220660i
\(988\) −8.48528 + 8.48528i −0.269953 + 0.269953i
\(989\) 30.3109 17.5000i 0.963830 0.556468i
\(990\) 0 0
\(991\) 3.00000 5.19615i 0.0952981 0.165061i −0.814435 0.580255i \(-0.802953\pi\)
0.909733 + 0.415194i \(0.136286\pi\)
\(992\) −50.1910 13.4486i −1.59357 0.426994i
\(993\) −7.34847 7.34847i −0.233197 0.233197i
\(994\) −3.46410 + 4.00000i −0.109875 + 0.126872i
\(995\) 0 0
\(996\) −4.50000 7.79423i −0.142588 0.246970i
\(997\) 9.86233 + 36.8067i 0.312343 + 1.16568i 0.926438 + 0.376448i \(0.122855\pi\)
−0.614095 + 0.789232i \(0.710479\pi\)
\(998\) 3.10583 + 11.5911i 0.0983133 + 0.366910i
\(999\) −10.3923 18.0000i −0.328798 0.569495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.2.o.c.157.1 yes 8
5.2 odd 4 inner 175.2.o.c.143.1 yes 8
5.3 odd 4 inner 175.2.o.c.143.2 yes 8
5.4 even 2 inner 175.2.o.c.157.2 yes 8
7.5 odd 6 inner 175.2.o.c.82.2 yes 8
35.12 even 12 inner 175.2.o.c.68.2 yes 8
35.19 odd 6 inner 175.2.o.c.82.1 yes 8
35.33 even 12 inner 175.2.o.c.68.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.o.c.68.1 8 35.33 even 12 inner
175.2.o.c.68.2 yes 8 35.12 even 12 inner
175.2.o.c.82.1 yes 8 35.19 odd 6 inner
175.2.o.c.82.2 yes 8 7.5 odd 6 inner
175.2.o.c.143.1 yes 8 5.2 odd 4 inner
175.2.o.c.143.2 yes 8 5.3 odd 4 inner
175.2.o.c.157.1 yes 8 1.1 even 1 trivial
175.2.o.c.157.2 yes 8 5.4 even 2 inner