Properties

Label 175.2.o.c.157.2
Level $175$
Weight $2$
Character 175.157
Analytic conductor $1.397$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(68,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.68");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.o (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 157.2
Root \(-0.965926 - 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 175.157
Dual form 175.2.o.c.68.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 - 0.965926i) q^{2} +(1.67303 - 0.448288i) q^{3} +(0.866025 + 0.500000i) q^{4} -1.73205i q^{6} +(-2.38014 - 1.15539i) q^{7} +(2.12132 - 2.12132i) q^{8} +(-2.00000 + 3.46410i) q^{11} +(1.67303 + 0.448288i) q^{12} +(2.44949 + 2.44949i) q^{13} +(-1.73205 + 2.00000i) q^{14} +(-0.500000 - 0.866025i) q^{16} +(-0.896575 - 3.34607i) q^{17} +(-1.73205 - 3.00000i) q^{19} +(-4.50000 - 0.866025i) q^{21} +(2.82843 + 2.82843i) q^{22} +(-6.76148 - 1.81173i) q^{23} +(2.59808 - 4.50000i) q^{24} +(3.00000 - 1.73205i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(-1.48356 - 2.19067i) q^{28} +1.00000i q^{29} +(9.00000 + 5.19615i) q^{31} +(4.82963 - 1.29410i) q^{32} +(-1.79315 + 6.69213i) q^{33} -3.46410 q^{34} +(-1.03528 + 3.86370i) q^{37} +(-3.34607 + 0.896575i) q^{38} +(5.19615 + 3.00000i) q^{39} -8.66025i q^{41} +(-2.00120 + 4.12252i) q^{42} +(-3.53553 + 3.53553i) q^{43} +(-3.46410 + 2.00000i) q^{44} +(-3.50000 + 6.06218i) q^{46} +(3.34607 + 0.896575i) q^{47} +(-1.22474 - 1.22474i) q^{48} +(4.33013 + 5.50000i) q^{49} +(-3.00000 - 5.19615i) q^{51} +(0.896575 + 3.34607i) q^{52} +(-0.517638 - 1.93185i) q^{53} +(2.59808 + 4.50000i) q^{54} +(-7.50000 + 2.59808i) q^{56} +(-4.24264 - 4.24264i) q^{57} +(0.965926 + 0.258819i) q^{58} +(1.73205 - 3.00000i) q^{59} +(1.50000 - 0.866025i) q^{61} +(7.34847 - 7.34847i) q^{62} -7.00000i q^{64} +(6.00000 + 3.46410i) q^{66} +(-8.69333 + 2.32937i) q^{67} +(0.896575 - 3.34607i) q^{68} -12.1244 q^{69} +2.00000 q^{71} +(10.0382 - 2.68973i) q^{73} +(3.46410 + 2.00000i) q^{74} -3.46410i q^{76} +(8.76268 - 5.93426i) q^{77} +(4.24264 - 4.24264i) q^{78} +(1.73205 - 1.00000i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-8.36516 - 2.24144i) q^{82} +(-3.67423 - 3.67423i) q^{83} +(-3.46410 - 3.00000i) q^{84} +(2.50000 + 4.33013i) q^{86} +(0.448288 + 1.67303i) q^{87} +(3.10583 + 11.5911i) q^{88} +(-6.06218 - 10.5000i) q^{89} +(-3.00000 - 8.66025i) q^{91} +(-4.94975 - 4.94975i) q^{92} +(17.3867 + 4.65874i) q^{93} +(1.73205 - 3.00000i) q^{94} +(7.50000 - 4.33013i) q^{96} +(4.89898 - 4.89898i) q^{97} +(6.43331 - 2.75908i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{11} - 4 q^{16} - 36 q^{21} + 24 q^{26} + 72 q^{31} - 28 q^{46} - 24 q^{51} - 60 q^{56} + 12 q^{61} + 48 q^{66} + 16 q^{71} - 36 q^{81} + 20 q^{86} - 24 q^{91} + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 0.965926i 0.183013 0.683013i −0.812035 0.583609i \(-0.801640\pi\)
0.995047 0.0994033i \(-0.0316934\pi\)
\(3\) 1.67303 0.448288i 0.965926 0.258819i 0.258819 0.965926i \(-0.416667\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 0.866025 + 0.500000i 0.433013 + 0.250000i
\(5\) 0 0
\(6\) 1.73205i 0.707107i
\(7\) −2.38014 1.15539i −0.899608 0.436698i
\(8\) 2.12132 2.12132i 0.750000 0.750000i
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 + 3.46410i −0.603023 + 1.04447i 0.389338 + 0.921095i \(0.372704\pi\)
−0.992361 + 0.123371i \(0.960630\pi\)
\(12\) 1.67303 + 0.448288i 0.482963 + 0.129410i
\(13\) 2.44949 + 2.44949i 0.679366 + 0.679366i 0.959857 0.280491i \(-0.0904971\pi\)
−0.280491 + 0.959857i \(0.590497\pi\)
\(14\) −1.73205 + 2.00000i −0.462910 + 0.534522i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.896575 3.34607i −0.217451 0.811540i −0.985289 0.170896i \(-0.945334\pi\)
0.767838 0.640644i \(-0.221333\pi\)
\(18\) 0 0
\(19\) −1.73205 3.00000i −0.397360 0.688247i 0.596040 0.802955i \(-0.296740\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) −4.50000 0.866025i −0.981981 0.188982i
\(22\) 2.82843 + 2.82843i 0.603023 + 0.603023i
\(23\) −6.76148 1.81173i −1.40987 0.377773i −0.527989 0.849251i \(-0.677054\pi\)
−0.881877 + 0.471479i \(0.843720\pi\)
\(24\) 2.59808 4.50000i 0.530330 0.918559i
\(25\) 0 0
\(26\) 3.00000 1.73205i 0.588348 0.339683i
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) −1.48356 2.19067i −0.280367 0.413998i
\(29\) 1.00000i 0.185695i 0.995680 + 0.0928477i \(0.0295970\pi\)
−0.995680 + 0.0928477i \(0.970403\pi\)
\(30\) 0 0
\(31\) 9.00000 + 5.19615i 1.61645 + 0.933257i 0.987829 + 0.155543i \(0.0497126\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 4.82963 1.29410i 0.853766 0.228766i
\(33\) −1.79315 + 6.69213i −0.312148 + 1.16495i
\(34\) −3.46410 −0.594089
\(35\) 0 0
\(36\) 0 0
\(37\) −1.03528 + 3.86370i −0.170198 + 0.635189i 0.827121 + 0.562023i \(0.189977\pi\)
−0.997320 + 0.0731657i \(0.976690\pi\)
\(38\) −3.34607 + 0.896575i −0.542803 + 0.145444i
\(39\) 5.19615 + 3.00000i 0.832050 + 0.480384i
\(40\) 0 0
\(41\) 8.66025i 1.35250i −0.736670 0.676252i \(-0.763603\pi\)
0.736670 0.676252i \(-0.236397\pi\)
\(42\) −2.00120 + 4.12252i −0.308792 + 0.636119i
\(43\) −3.53553 + 3.53553i −0.539164 + 0.539164i −0.923283 0.384120i \(-0.874505\pi\)
0.384120 + 0.923283i \(0.374505\pi\)
\(44\) −3.46410 + 2.00000i −0.522233 + 0.301511i
\(45\) 0 0
\(46\) −3.50000 + 6.06218i −0.516047 + 0.893819i
\(47\) 3.34607 + 0.896575i 0.488074 + 0.130779i 0.494460 0.869201i \(-0.335366\pi\)
−0.00638578 + 0.999980i \(0.502033\pi\)
\(48\) −1.22474 1.22474i −0.176777 0.176777i
\(49\) 4.33013 + 5.50000i 0.618590 + 0.785714i
\(50\) 0 0
\(51\) −3.00000 5.19615i −0.420084 0.727607i
\(52\) 0.896575 + 3.34607i 0.124333 + 0.464016i
\(53\) −0.517638 1.93185i −0.0711031 0.265360i 0.921218 0.389046i \(-0.127195\pi\)
−0.992321 + 0.123686i \(0.960529\pi\)
\(54\) 2.59808 + 4.50000i 0.353553 + 0.612372i
\(55\) 0 0
\(56\) −7.50000 + 2.59808i −1.00223 + 0.347183i
\(57\) −4.24264 4.24264i −0.561951 0.561951i
\(58\) 0.965926 + 0.258819i 0.126832 + 0.0339846i
\(59\) 1.73205 3.00000i 0.225494 0.390567i −0.730974 0.682406i \(-0.760934\pi\)
0.956467 + 0.291839i \(0.0942671\pi\)
\(60\) 0 0
\(61\) 1.50000 0.866025i 0.192055 0.110883i −0.400889 0.916127i \(-0.631299\pi\)
0.592944 + 0.805243i \(0.297965\pi\)
\(62\) 7.34847 7.34847i 0.933257 0.933257i
\(63\) 0 0
\(64\) 7.00000i 0.875000i
\(65\) 0 0
\(66\) 6.00000 + 3.46410i 0.738549 + 0.426401i
\(67\) −8.69333 + 2.32937i −1.06206 + 0.284578i −0.747227 0.664569i \(-0.768615\pi\)
−0.314833 + 0.949147i \(0.601948\pi\)
\(68\) 0.896575 3.34607i 0.108726 0.405770i
\(69\) −12.1244 −1.45960
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 10.0382 2.68973i 1.17488 0.314809i 0.381987 0.924168i \(-0.375240\pi\)
0.792895 + 0.609359i \(0.208573\pi\)
\(74\) 3.46410 + 2.00000i 0.402694 + 0.232495i
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) 8.76268 5.93426i 0.998600 0.676271i
\(78\) 4.24264 4.24264i 0.480384 0.480384i
\(79\) 1.73205 1.00000i 0.194871 0.112509i −0.399390 0.916781i \(-0.630778\pi\)
0.594261 + 0.804272i \(0.297445\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) −8.36516 2.24144i −0.923778 0.247525i
\(83\) −3.67423 3.67423i −0.403300 0.403300i 0.476094 0.879394i \(-0.342052\pi\)
−0.879394 + 0.476094i \(0.842052\pi\)
\(84\) −3.46410 3.00000i −0.377964 0.327327i
\(85\) 0 0
\(86\) 2.50000 + 4.33013i 0.269582 + 0.466930i
\(87\) 0.448288 + 1.67303i 0.0480615 + 0.179368i
\(88\) 3.10583 + 11.5911i 0.331082 + 1.23562i
\(89\) −6.06218 10.5000i −0.642590 1.11300i −0.984853 0.173394i \(-0.944527\pi\)
0.342263 0.939604i \(-0.388807\pi\)
\(90\) 0 0
\(91\) −3.00000 8.66025i −0.314485 0.907841i
\(92\) −4.94975 4.94975i −0.516047 0.516047i
\(93\) 17.3867 + 4.65874i 1.80291 + 0.483089i
\(94\) 1.73205 3.00000i 0.178647 0.309426i
\(95\) 0 0
\(96\) 7.50000 4.33013i 0.765466 0.441942i
\(97\) 4.89898 4.89898i 0.497416 0.497416i −0.413217 0.910633i \(-0.635595\pi\)
0.910633 + 0.413217i \(0.135595\pi\)
\(98\) 6.43331 2.75908i 0.649863 0.278709i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.50000 + 0.866025i 0.149256 + 0.0861727i 0.572768 0.819718i \(-0.305870\pi\)
−0.423512 + 0.905890i \(0.639203\pi\)
\(102\) −5.79555 + 1.55291i −0.573845 + 0.153761i
\(103\) 4.03459 15.0573i 0.397540 1.48364i −0.419871 0.907584i \(-0.637925\pi\)
0.817411 0.576055i \(-0.195409\pi\)
\(104\) 10.3923 1.01905
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 0.258819 0.965926i 0.0250210 0.0933796i −0.952286 0.305206i \(-0.901275\pi\)
0.977307 + 0.211827i \(0.0679412\pi\)
\(108\) −5.01910 + 1.34486i −0.482963 + 0.129410i
\(109\) 2.59808 + 1.50000i 0.248851 + 0.143674i 0.619238 0.785203i \(-0.287442\pi\)
−0.370387 + 0.928877i \(0.620775\pi\)
\(110\) 0 0
\(111\) 6.92820i 0.657596i
\(112\) 0.189469 + 2.63896i 0.0179031 + 0.249358i
\(113\) −7.07107 + 7.07107i −0.665190 + 0.665190i −0.956599 0.291409i \(-0.905876\pi\)
0.291409 + 0.956599i \(0.405876\pi\)
\(114\) −5.19615 + 3.00000i −0.486664 + 0.280976i
\(115\) 0 0
\(116\) −0.500000 + 0.866025i −0.0464238 + 0.0804084i
\(117\) 0 0
\(118\) −2.44949 2.44949i −0.225494 0.225494i
\(119\) −1.73205 + 9.00000i −0.158777 + 0.825029i
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) −0.448288 1.67303i −0.0405861 0.151469i
\(123\) −3.88229 14.4889i −0.350054 1.30642i
\(124\) 5.19615 + 9.00000i 0.466628 + 0.808224i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(128\) 2.89778 + 0.776457i 0.256130 + 0.0686298i
\(129\) −4.33013 + 7.50000i −0.381246 + 0.660338i
\(130\) 0 0
\(131\) −6.00000 + 3.46410i −0.524222 + 0.302660i −0.738661 0.674078i \(-0.764541\pi\)
0.214438 + 0.976738i \(0.431208\pi\)
\(132\) −4.89898 + 4.89898i −0.426401 + 0.426401i
\(133\) 0.656339 + 9.14162i 0.0569118 + 0.792679i
\(134\) 9.00000i 0.777482i
\(135\) 0 0
\(136\) −9.00000 5.19615i −0.771744 0.445566i
\(137\) 15.4548 4.14110i 1.32039 0.353798i 0.471268 0.881990i \(-0.343796\pi\)
0.849125 + 0.528191i \(0.177130\pi\)
\(138\) −3.13801 + 11.7112i −0.267126 + 0.996926i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0.517638 1.93185i 0.0434392 0.162117i
\(143\) −13.3843 + 3.58630i −1.11925 + 0.299902i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.3923i 0.860073i
\(147\) 9.71003 + 7.26054i 0.800869 + 0.598839i
\(148\) −2.82843 + 2.82843i −0.232495 + 0.232495i
\(149\) 14.7224 8.50000i 1.20611 0.696347i 0.244202 0.969724i \(-0.421474\pi\)
0.961907 + 0.273377i \(0.0881408\pi\)
\(150\) 0 0
\(151\) 3.00000 5.19615i 0.244137 0.422857i −0.717752 0.696299i \(-0.754829\pi\)
0.961888 + 0.273442i \(0.0881622\pi\)
\(152\) −10.0382 2.68973i −0.814205 0.218166i
\(153\) 0 0
\(154\) −3.46410 10.0000i −0.279145 0.805823i
\(155\) 0 0
\(156\) 3.00000 + 5.19615i 0.240192 + 0.416025i
\(157\) 3.58630 + 13.3843i 0.286218 + 1.06818i 0.947945 + 0.318435i \(0.103157\pi\)
−0.661727 + 0.749745i \(0.730176\pi\)
\(158\) −0.517638 1.93185i −0.0411811 0.153690i
\(159\) −1.73205 3.00000i −0.137361 0.237915i
\(160\) 0 0
\(161\) 14.0000 + 12.1244i 1.10335 + 0.955533i
\(162\) 6.36396 + 6.36396i 0.500000 + 0.500000i
\(163\) −11.5911 3.10583i −0.907886 0.243267i −0.225486 0.974246i \(-0.572397\pi\)
−0.682400 + 0.730979i \(0.739064\pi\)
\(164\) 4.33013 7.50000i 0.338126 0.585652i
\(165\) 0 0
\(166\) −4.50000 + 2.59808i −0.349268 + 0.201650i
\(167\) −13.4722 + 13.4722i −1.04251 + 1.04251i −0.0434542 + 0.999055i \(0.513836\pi\)
−0.999055 + 0.0434542i \(0.986164\pi\)
\(168\) −11.3831 + 7.70882i −0.878222 + 0.594749i
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.82963 + 1.29410i −0.368256 + 0.0986738i
\(173\) 1.79315 6.69213i 0.136331 0.508793i −0.863658 0.504078i \(-0.831832\pi\)
0.999989 0.00471527i \(-0.00150092\pi\)
\(174\) 1.73205 0.131306
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 1.55291 5.79555i 0.116724 0.435621i
\(178\) −11.7112 + 3.13801i −0.877794 + 0.235204i
\(179\) −19.0526 11.0000i −1.42406 0.822179i −0.427413 0.904057i \(-0.640575\pi\)
−0.996642 + 0.0818780i \(0.973908\pi\)
\(180\) 0 0
\(181\) 8.66025i 0.643712i 0.946789 + 0.321856i \(0.104307\pi\)
−0.946789 + 0.321856i \(0.895693\pi\)
\(182\) −9.14162 + 0.656339i −0.677622 + 0.0486511i
\(183\) 2.12132 2.12132i 0.156813 0.156813i
\(184\) −18.1865 + 10.5000i −1.34073 + 0.774070i
\(185\) 0 0
\(186\) 9.00000 15.5885i 0.659912 1.14300i
\(187\) 13.3843 + 3.58630i 0.978754 + 0.262256i
\(188\) 2.44949 + 2.44949i 0.178647 + 0.178647i
\(189\) 12.9904 4.50000i 0.944911 0.327327i
\(190\) 0 0
\(191\) −2.00000 3.46410i −0.144715 0.250654i 0.784552 0.620063i \(-0.212893\pi\)
−0.929267 + 0.369410i \(0.879560\pi\)
\(192\) −3.13801 11.7112i −0.226467 0.845185i
\(193\) 2.07055 + 7.72741i 0.149042 + 0.556231i 0.999542 + 0.0302567i \(0.00963249\pi\)
−0.850501 + 0.525974i \(0.823701\pi\)
\(194\) −3.46410 6.00000i −0.248708 0.430775i
\(195\) 0 0
\(196\) 1.00000 + 6.92820i 0.0714286 + 0.494872i
\(197\) 14.1421 + 14.1421i 1.00759 + 1.00759i 0.999971 + 0.00761443i \(0.00242377\pi\)
0.00761443 + 0.999971i \(0.497576\pi\)
\(198\) 0 0
\(199\) −6.92820 + 12.0000i −0.491127 + 0.850657i −0.999948 0.0102152i \(-0.996748\pi\)
0.508821 + 0.860873i \(0.330082\pi\)
\(200\) 0 0
\(201\) −13.5000 + 7.79423i −0.952217 + 0.549762i
\(202\) 1.22474 1.22474i 0.0861727 0.0861727i
\(203\) 1.15539 2.38014i 0.0810928 0.167053i
\(204\) 6.00000i 0.420084i
\(205\) 0 0
\(206\) −13.5000 7.79423i −0.940590 0.543050i
\(207\) 0 0
\(208\) 0.896575 3.34607i 0.0621663 0.232008i
\(209\) 13.8564 0.958468
\(210\) 0 0
\(211\) −18.0000 −1.23917 −0.619586 0.784929i \(-0.712699\pi\)
−0.619586 + 0.784929i \(0.712699\pi\)
\(212\) 0.517638 1.93185i 0.0355515 0.132680i
\(213\) 3.34607 0.896575i 0.229269 0.0614323i
\(214\) −0.866025 0.500000i −0.0592003 0.0341793i
\(215\) 0 0
\(216\) 15.5885i 1.06066i
\(217\) −15.4176 22.7661i −1.04662 1.54546i
\(218\) 2.12132 2.12132i 0.143674 0.143674i
\(219\) 15.5885 9.00000i 1.05337 0.608164i
\(220\) 0 0
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 6.69213 + 1.79315i 0.449146 + 0.120348i
\(223\) 2.44949 + 2.44949i 0.164030 + 0.164030i 0.784349 0.620319i \(-0.212997\pi\)
−0.620319 + 0.784349i \(0.712997\pi\)
\(224\) −12.9904 2.50000i −0.867956 0.167038i
\(225\) 0 0
\(226\) 5.00000 + 8.66025i 0.332595 + 0.576072i
\(227\) −0.896575 3.34607i −0.0595078 0.222086i 0.929768 0.368146i \(-0.120007\pi\)
−0.989276 + 0.146060i \(0.953341\pi\)
\(228\) −1.55291 5.79555i −0.102844 0.383820i
\(229\) 6.92820 + 12.0000i 0.457829 + 0.792982i 0.998846 0.0480291i \(-0.0152940\pi\)
−0.541017 + 0.841011i \(0.681961\pi\)
\(230\) 0 0
\(231\) 12.0000 13.8564i 0.789542 0.911685i
\(232\) 2.12132 + 2.12132i 0.139272 + 0.139272i
\(233\) −1.93185 0.517638i −0.126560 0.0339116i 0.194983 0.980807i \(-0.437535\pi\)
−0.321543 + 0.946895i \(0.604201\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.00000 1.73205i 0.195283 0.112747i
\(237\) 2.44949 2.44949i 0.159111 0.159111i
\(238\) 8.24504 + 4.00240i 0.534447 + 0.259437i
\(239\) 26.0000i 1.68180i 0.541190 + 0.840900i \(0.317974\pi\)
−0.541190 + 0.840900i \(0.682026\pi\)
\(240\) 0 0
\(241\) −6.00000 3.46410i −0.386494 0.223142i 0.294146 0.955761i \(-0.404965\pi\)
−0.680640 + 0.732618i \(0.738298\pi\)
\(242\) −4.82963 + 1.29410i −0.310460 + 0.0831876i
\(243\) 0 0
\(244\) 1.73205 0.110883
\(245\) 0 0
\(246\) −15.0000 −0.956365
\(247\) 3.10583 11.5911i 0.197619 0.737525i
\(248\) 30.1146 8.06918i 1.91228 0.512393i
\(249\) −7.79423 4.50000i −0.493939 0.285176i
\(250\) 0 0
\(251\) 17.3205i 1.09326i 0.837374 + 0.546630i \(0.184090\pi\)
−0.837374 + 0.546630i \(0.815910\pi\)
\(252\) 0 0
\(253\) 19.7990 19.7990i 1.24475 1.24475i
\(254\) 0 0
\(255\) 0 0
\(256\) 8.50000 14.7224i 0.531250 0.920152i
\(257\) −13.3843 3.58630i −0.834887 0.223707i −0.184043 0.982918i \(-0.558918\pi\)
−0.650845 + 0.759211i \(0.725585\pi\)
\(258\) 6.12372 + 6.12372i 0.381246 + 0.381246i
\(259\) 6.92820 8.00000i 0.430498 0.497096i
\(260\) 0 0
\(261\) 0 0
\(262\) 1.79315 + 6.69213i 0.110781 + 0.413441i
\(263\) 3.36465 + 12.5570i 0.207473 + 0.774300i 0.988681 + 0.150030i \(0.0479369\pi\)
−0.781208 + 0.624270i \(0.785396\pi\)
\(264\) 10.3923 + 18.0000i 0.639602 + 1.10782i
\(265\) 0 0
\(266\) 9.00000 + 1.73205i 0.551825 + 0.106199i
\(267\) −14.8492 14.8492i −0.908759 0.908759i
\(268\) −8.69333 2.32937i −0.531030 0.142289i
\(269\) −11.2583 + 19.5000i −0.686433 + 1.18894i 0.286552 + 0.958065i \(0.407491\pi\)
−0.972984 + 0.230871i \(0.925842\pi\)
\(270\) 0 0
\(271\) 9.00000 5.19615i 0.546711 0.315644i −0.201083 0.979574i \(-0.564446\pi\)
0.747794 + 0.663930i \(0.231113\pi\)
\(272\) −2.44949 + 2.44949i −0.148522 + 0.148522i
\(273\) −8.90138 13.1440i −0.538736 0.795513i
\(274\) 16.0000i 0.966595i
\(275\) 0 0
\(276\) −10.5000 6.06218i −0.632026 0.364900i
\(277\) 5.79555 1.55291i 0.348221 0.0933056i −0.0804691 0.996757i \(-0.525642\pi\)
0.428690 + 0.903452i \(0.358975\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 1.55291 5.79555i 0.0924747 0.345120i
\(283\) 10.0382 2.68973i 0.596709 0.159888i 0.0521913 0.998637i \(-0.483379\pi\)
0.544518 + 0.838749i \(0.316713\pi\)
\(284\) 1.73205 + 1.00000i 0.102778 + 0.0593391i
\(285\) 0 0
\(286\) 13.8564i 0.819346i
\(287\) −10.0060 + 20.6126i −0.590636 + 1.21672i
\(288\) 0 0
\(289\) 4.33013 2.50000i 0.254713 0.147059i
\(290\) 0 0
\(291\) 6.00000 10.3923i 0.351726 0.609208i
\(292\) 10.0382 + 2.68973i 0.587441 + 0.157404i
\(293\) 14.6969 + 14.6969i 0.858604 + 0.858604i 0.991174 0.132569i \(-0.0423227\pi\)
−0.132569 + 0.991174i \(0.542323\pi\)
\(294\) 9.52628 7.50000i 0.555584 0.437409i
\(295\) 0 0
\(296\) 6.00000 + 10.3923i 0.348743 + 0.604040i
\(297\) −5.37945 20.0764i −0.312148 1.16495i
\(298\) −4.39992 16.4207i −0.254881 0.951228i
\(299\) −12.1244 21.0000i −0.701170 1.21446i
\(300\) 0 0
\(301\) 12.5000 4.33013i 0.720488 0.249584i
\(302\) −4.24264 4.24264i −0.244137 0.244137i
\(303\) 2.89778 + 0.776457i 0.166473 + 0.0446063i
\(304\) −1.73205 + 3.00000i −0.0993399 + 0.172062i
\(305\) 0 0
\(306\) 0 0
\(307\) 11.0227 11.0227i 0.629099 0.629099i −0.318742 0.947841i \(-0.603260\pi\)
0.947841 + 0.318742i \(0.103260\pi\)
\(308\) 10.5558 0.757875i 0.601474 0.0431839i
\(309\) 27.0000i 1.53598i
\(310\) 0 0
\(311\) −21.0000 12.1244i −1.19080 0.687509i −0.232313 0.972641i \(-0.574629\pi\)
−0.958488 + 0.285132i \(0.907963\pi\)
\(312\) 17.3867 4.65874i 0.984326 0.263749i
\(313\) −7.17260 + 26.7685i −0.405420 + 1.51305i 0.397861 + 0.917446i \(0.369753\pi\)
−0.803281 + 0.595601i \(0.796914\pi\)
\(314\) 13.8564 0.781962
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) −8.79985 + 32.8415i −0.494249 + 1.84456i 0.0399492 + 0.999202i \(0.487280\pi\)
−0.534198 + 0.845359i \(0.679386\pi\)
\(318\) −3.34607 + 0.896575i −0.187638 + 0.0502775i
\(319\) −3.46410 2.00000i −0.193952 0.111979i
\(320\) 0 0
\(321\) 1.73205i 0.0966736i
\(322\) 15.3347 10.3849i 0.854569 0.578730i
\(323\) −8.48528 + 8.48528i −0.472134 + 0.472134i
\(324\) −7.79423 + 4.50000i −0.433013 + 0.250000i
\(325\) 0 0
\(326\) −6.00000 + 10.3923i −0.332309 + 0.575577i
\(327\) 5.01910 + 1.34486i 0.277557 + 0.0743711i
\(328\) −18.3712 18.3712i −1.01438 1.01438i
\(329\) −6.92820 6.00000i −0.381964 0.330791i
\(330\) 0 0
\(331\) 3.00000 + 5.19615i 0.164895 + 0.285606i 0.936618 0.350352i \(-0.113938\pi\)
−0.771723 + 0.635959i \(0.780605\pi\)
\(332\) −1.34486 5.01910i −0.0738090 0.275459i
\(333\) 0 0
\(334\) 9.52628 + 16.5000i 0.521255 + 0.902840i
\(335\) 0 0
\(336\) 1.50000 + 4.33013i 0.0818317 + 0.236228i
\(337\) −7.07107 7.07107i −0.385186 0.385186i 0.487781 0.872966i \(-0.337807\pi\)
−0.872966 + 0.487781i \(0.837807\pi\)
\(338\) −0.965926 0.258819i −0.0525394 0.0140779i
\(339\) −8.66025 + 15.0000i −0.470360 + 0.814688i
\(340\) 0 0
\(341\) −36.0000 + 20.7846i −1.94951 + 1.12555i
\(342\) 0 0
\(343\) −3.95164 18.0938i −0.213368 0.976972i
\(344\) 15.0000i 0.808746i
\(345\) 0 0
\(346\) −6.00000 3.46410i −0.322562 0.186231i
\(347\) −18.3526 + 4.91756i −0.985219 + 0.263989i −0.715241 0.698878i \(-0.753683\pi\)
−0.269978 + 0.962867i \(0.587016\pi\)
\(348\) −0.448288 + 1.67303i −0.0240307 + 0.0896840i
\(349\) −25.9808 −1.39072 −0.695359 0.718662i \(-0.744755\pi\)
−0.695359 + 0.718662i \(0.744755\pi\)
\(350\) 0 0
\(351\) −18.0000 −0.960769
\(352\) −5.17638 + 19.3185i −0.275902 + 1.02968i
\(353\) −23.4225 + 6.27603i −1.24665 + 0.334039i −0.821042 0.570868i \(-0.806607\pi\)
−0.425609 + 0.904907i \(0.639940\pi\)
\(354\) −5.19615 3.00000i −0.276172 0.159448i
\(355\) 0 0
\(356\) 12.1244i 0.642590i
\(357\) 1.13681 + 15.8338i 0.0601665 + 0.838011i
\(358\) −15.5563 + 15.5563i −0.822179 + 0.822179i
\(359\) 1.73205 1.00000i 0.0914141 0.0527780i −0.453596 0.891207i \(-0.649859\pi\)
0.545010 + 0.838429i \(0.316526\pi\)
\(360\) 0 0
\(361\) 3.50000 6.06218i 0.184211 0.319062i
\(362\) 8.36516 + 2.24144i 0.439663 + 0.117807i
\(363\) −6.12372 6.12372i −0.321412 0.321412i
\(364\) 1.73205 9.00000i 0.0907841 0.471728i
\(365\) 0 0
\(366\) −1.50000 2.59808i −0.0784063 0.135804i
\(367\) 1.34486 + 5.01910i 0.0702013 + 0.261995i 0.992102 0.125430i \(-0.0400312\pi\)
−0.921901 + 0.387425i \(0.873365\pi\)
\(368\) 1.81173 + 6.76148i 0.0944431 + 0.352467i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.00000 + 5.19615i −0.0519174 + 0.269771i
\(372\) 12.7279 + 12.7279i 0.659912 + 0.659912i
\(373\) −11.5911 3.10583i −0.600165 0.160814i −0.0540702 0.998537i \(-0.517219\pi\)
−0.546095 + 0.837723i \(0.683886\pi\)
\(374\) 6.92820 12.0000i 0.358249 0.620505i
\(375\) 0 0
\(376\) 9.00000 5.19615i 0.464140 0.267971i
\(377\) −2.44949 + 2.44949i −0.126155 + 0.126155i
\(378\) −0.984508 13.7124i −0.0506376 0.705291i
\(379\) 6.00000i 0.308199i 0.988055 + 0.154100i \(0.0492477\pi\)
−0.988055 + 0.154100i \(0.950752\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.86370 + 1.03528i −0.197684 + 0.0529693i
\(383\) −4.93117 + 18.4034i −0.251971 + 0.940368i 0.717780 + 0.696270i \(0.245158\pi\)
−0.969751 + 0.244098i \(0.921508\pi\)
\(384\) 5.19615 0.265165
\(385\) 0 0
\(386\) 8.00000 0.407189
\(387\) 0 0
\(388\) 6.69213 1.79315i 0.339741 0.0910334i
\(389\) −1.73205 1.00000i −0.0878185 0.0507020i 0.455448 0.890263i \(-0.349479\pi\)
−0.543266 + 0.839561i \(0.682813\pi\)
\(390\) 0 0
\(391\) 24.2487i 1.22631i
\(392\) 20.8528 + 2.48168i 1.05323 + 0.125344i
\(393\) −8.48528 + 8.48528i −0.428026 + 0.428026i
\(394\) 17.3205 10.0000i 0.872595 0.503793i
\(395\) 0 0
\(396\) 0 0
\(397\) −13.3843 3.58630i −0.671737 0.179991i −0.0931997 0.995647i \(-0.529710\pi\)
−0.578537 + 0.815656i \(0.696376\pi\)
\(398\) 9.79796 + 9.79796i 0.491127 + 0.491127i
\(399\) 5.19615 + 15.0000i 0.260133 + 0.750939i
\(400\) 0 0
\(401\) −9.50000 16.4545i −0.474407 0.821698i 0.525163 0.851002i \(-0.324004\pi\)
−0.999571 + 0.0293039i \(0.990671\pi\)
\(402\) 4.03459 + 15.0573i 0.201227 + 0.750990i
\(403\) 9.31749 + 34.7733i 0.464137 + 1.73218i
\(404\) 0.866025 + 1.50000i 0.0430864 + 0.0746278i
\(405\) 0 0
\(406\) −2.00000 1.73205i −0.0992583 0.0859602i
\(407\) −11.3137 11.3137i −0.560800 0.560800i
\(408\) −17.3867 4.65874i −0.860768 0.230642i
\(409\) 6.06218 10.5000i 0.299755 0.519192i −0.676324 0.736604i \(-0.736428\pi\)
0.976080 + 0.217412i \(0.0697616\pi\)
\(410\) 0 0
\(411\) 24.0000 13.8564i 1.18383 0.683486i
\(412\) 11.0227 11.0227i 0.543050 0.543050i
\(413\) −7.58871 + 5.13922i −0.373416 + 0.252884i
\(414\) 0 0
\(415\) 0 0
\(416\) 15.0000 + 8.66025i 0.735436 + 0.424604i
\(417\) 0 0
\(418\) 3.58630 13.3843i 0.175412 0.654646i
\(419\) 34.6410 1.69232 0.846162 0.532925i \(-0.178907\pi\)
0.846162 + 0.532925i \(0.178907\pi\)
\(420\) 0 0
\(421\) 7.00000 0.341159 0.170580 0.985344i \(-0.445436\pi\)
0.170580 + 0.985344i \(0.445436\pi\)
\(422\) −4.65874 + 17.3867i −0.226784 + 0.846370i
\(423\) 0 0
\(424\) −5.19615 3.00000i −0.252347 0.145693i
\(425\) 0 0
\(426\) 3.46410i 0.167836i
\(427\) −4.57081 + 0.328169i −0.221197 + 0.0158812i
\(428\) 0.707107 0.707107i 0.0341793 0.0341793i
\(429\) −20.7846 + 12.0000i −1.00349 + 0.579365i
\(430\) 0 0
\(431\) 8.00000 13.8564i 0.385346 0.667440i −0.606471 0.795106i \(-0.707415\pi\)
0.991817 + 0.127666i \(0.0407486\pi\)
\(432\) 5.01910 + 1.34486i 0.241481 + 0.0647048i
\(433\) −22.0454 22.0454i −1.05943 1.05943i −0.998118 0.0613163i \(-0.980470\pi\)
−0.0613163 0.998118i \(-0.519530\pi\)
\(434\) −25.9808 + 9.00000i −1.24712 + 0.432014i
\(435\) 0 0
\(436\) 1.50000 + 2.59808i 0.0718370 + 0.124425i
\(437\) 6.27603 + 23.4225i 0.300223 + 1.12045i
\(438\) −4.65874 17.3867i −0.222603 0.830767i
\(439\) −10.3923 18.0000i −0.495998 0.859093i 0.503992 0.863708i \(-0.331864\pi\)
−0.999989 + 0.00461537i \(0.998531\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −8.48528 8.48528i −0.403604 0.403604i
\(443\) 12.5570 + 3.36465i 0.596603 + 0.159859i 0.544469 0.838781i \(-0.316731\pi\)
0.0521336 + 0.998640i \(0.483398\pi\)
\(444\) −3.46410 + 6.00000i −0.164399 + 0.284747i
\(445\) 0 0
\(446\) 3.00000 1.73205i 0.142054 0.0820150i
\(447\) 20.8207 20.8207i 0.984784 0.984784i
\(448\) −8.08776 + 16.6610i −0.382111 + 0.787157i
\(449\) 31.0000i 1.46298i 0.681852 + 0.731490i \(0.261175\pi\)
−0.681852 + 0.731490i \(0.738825\pi\)
\(450\) 0 0
\(451\) 30.0000 + 17.3205i 1.41264 + 0.815591i
\(452\) −9.65926 + 2.58819i −0.454333 + 0.121738i
\(453\) 2.68973 10.0382i 0.126374 0.471636i
\(454\) −3.46410 −0.162578
\(455\) 0 0
\(456\) −18.0000 −0.842927
\(457\) 4.14110 15.4548i 0.193713 0.722946i −0.798884 0.601486i \(-0.794576\pi\)
0.992596 0.121460i \(-0.0387576\pi\)
\(458\) 13.3843 3.58630i 0.625405 0.167577i
\(459\) 15.5885 + 9.00000i 0.727607 + 0.420084i
\(460\) 0 0
\(461\) 34.6410i 1.61339i −0.590966 0.806696i \(-0.701253\pi\)
0.590966 0.806696i \(-0.298747\pi\)
\(462\) −10.2784 15.1774i −0.478196 0.706117i
\(463\) 10.6066 10.6066i 0.492931 0.492931i −0.416298 0.909228i \(-0.636673\pi\)
0.909228 + 0.416298i \(0.136673\pi\)
\(464\) 0.866025 0.500000i 0.0402042 0.0232119i
\(465\) 0 0
\(466\) −1.00000 + 1.73205i −0.0463241 + 0.0802357i
\(467\) −5.01910 1.34486i −0.232256 0.0622328i 0.140814 0.990036i \(-0.455028\pi\)
−0.373070 + 0.927803i \(0.621695\pi\)
\(468\) 0 0
\(469\) 23.3827 + 4.50000i 1.07971 + 0.207791i
\(470\) 0 0
\(471\) 12.0000 + 20.7846i 0.552931 + 0.957704i
\(472\) −2.68973 10.0382i −0.123805 0.462045i
\(473\) −5.17638 19.3185i −0.238010 0.888266i
\(474\) −1.73205 3.00000i −0.0795557 0.137795i
\(475\) 0 0
\(476\) −6.00000 + 6.92820i −0.275010 + 0.317554i
\(477\) 0 0
\(478\) 25.1141 + 6.72930i 1.14869 + 0.307791i
\(479\) 19.0526 33.0000i 0.870534 1.50781i 0.00908799 0.999959i \(-0.497107\pi\)
0.861446 0.507850i \(-0.169560\pi\)
\(480\) 0 0
\(481\) −12.0000 + 6.92820i −0.547153 + 0.315899i
\(482\) −4.89898 + 4.89898i −0.223142 + 0.223142i
\(483\) 28.8577 + 14.0084i 1.31307 + 0.637405i
\(484\) 5.00000i 0.227273i
\(485\) 0 0
\(486\) 0 0
\(487\) −3.86370 + 1.03528i −0.175081 + 0.0469128i −0.345294 0.938494i \(-0.612221\pi\)
0.170213 + 0.985407i \(0.445554\pi\)
\(488\) 1.34486 5.01910i 0.0608791 0.227204i
\(489\) −20.7846 −0.939913
\(490\) 0 0
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) 3.88229 14.4889i 0.175027 0.653209i
\(493\) 3.34607 0.896575i 0.150699 0.0403797i
\(494\) −10.3923 6.00000i −0.467572 0.269953i
\(495\) 0 0
\(496\) 10.3923i 0.466628i
\(497\) −4.76028 2.31079i −0.213528 0.103653i
\(498\) −6.36396 + 6.36396i −0.285176 + 0.285176i
\(499\) 10.3923 6.00000i 0.465223 0.268597i −0.249015 0.968500i \(-0.580107\pi\)
0.714238 + 0.699903i \(0.246773\pi\)
\(500\) 0 0
\(501\) −16.5000 + 28.5788i −0.737166 + 1.27681i
\(502\) 16.7303 + 4.48288i 0.746711 + 0.200081i
\(503\) 8.57321 + 8.57321i 0.382261 + 0.382261i 0.871916 0.489655i \(-0.162877\pi\)
−0.489655 + 0.871916i \(0.662877\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −14.0000 24.2487i −0.622376 1.07799i
\(507\) −0.448288 1.67303i −0.0199092 0.0743020i
\(508\) 0 0
\(509\) 2.59808 + 4.50000i 0.115158 + 0.199459i 0.917843 0.396944i \(-0.129929\pi\)
−0.802685 + 0.596403i \(0.796596\pi\)
\(510\) 0 0
\(511\) −27.0000 5.19615i −1.19441 0.229864i
\(512\) −7.77817 7.77817i −0.343750 0.343750i
\(513\) 17.3867 + 4.65874i 0.767640 + 0.205689i
\(514\) −6.92820 + 12.0000i −0.305590 + 0.529297i
\(515\) 0 0
\(516\) −7.50000 + 4.33013i −0.330169 + 0.190623i
\(517\) −9.79796 + 9.79796i −0.430914 + 0.430914i
\(518\) −5.93426 8.76268i −0.260736 0.385010i
\(519\) 12.0000i 0.526742i
\(520\) 0 0
\(521\) −6.00000 3.46410i −0.262865 0.151765i 0.362776 0.931876i \(-0.381829\pi\)
−0.625641 + 0.780111i \(0.715162\pi\)
\(522\) 0 0
\(523\) 6.27603 23.4225i 0.274432 1.02419i −0.681790 0.731548i \(-0.738798\pi\)
0.956221 0.292644i \(-0.0945352\pi\)
\(524\) −6.92820 −0.302660
\(525\) 0 0
\(526\) 13.0000 0.566827
\(527\) 9.31749 34.7733i 0.405876 1.51475i
\(528\) 6.69213 1.79315i 0.291238 0.0780369i
\(529\) 22.5167 + 13.0000i 0.978985 + 0.565217i
\(530\) 0 0
\(531\) 0 0
\(532\) −4.00240 + 8.24504i −0.173526 + 0.357468i
\(533\) 21.2132 21.2132i 0.918846 0.918846i
\(534\) −18.1865 + 10.5000i −0.787008 + 0.454379i
\(535\) 0 0
\(536\) −13.5000 + 23.3827i −0.583111 + 1.00998i
\(537\) −36.8067 9.86233i −1.58833 0.425591i
\(538\) 15.9217 + 15.9217i 0.686433 + 0.686433i
\(539\) −27.7128 + 4.00000i −1.19368 + 0.172292i
\(540\) 0 0
\(541\) −9.50000 16.4545i −0.408437 0.707433i 0.586278 0.810110i \(-0.300593\pi\)
−0.994715 + 0.102677i \(0.967259\pi\)
\(542\) −2.68973 10.0382i −0.115534 0.431177i
\(543\) 3.88229 + 14.4889i 0.166605 + 0.621778i
\(544\) −8.66025 15.0000i −0.371305 0.643120i
\(545\) 0 0
\(546\) −15.0000 + 5.19615i −0.641941 + 0.222375i
\(547\) 31.8198 + 31.8198i 1.36052 + 1.36052i 0.873257 + 0.487259i \(0.162003\pi\)
0.487259 + 0.873257i \(0.337997\pi\)
\(548\) 15.4548 + 4.14110i 0.660197 + 0.176899i
\(549\) 0 0
\(550\) 0 0
\(551\) 3.00000 1.73205i 0.127804 0.0737878i
\(552\) −25.7196 + 25.7196i −1.09470 + 1.09470i
\(553\) −5.27792 + 0.378937i −0.224440 + 0.0161141i
\(554\) 6.00000i 0.254916i
\(555\) 0 0
\(556\) 0 0
\(557\) 15.4548 4.14110i 0.654841 0.175464i 0.0839246 0.996472i \(-0.473255\pi\)
0.570917 + 0.821008i \(0.306588\pi\)
\(558\) 0 0
\(559\) −17.3205 −0.732579
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) 5.69402 21.2504i 0.240188 0.896393i
\(563\) −15.0573 + 4.03459i −0.634589 + 0.170038i −0.561751 0.827306i \(-0.689872\pi\)
−0.0728379 + 0.997344i \(0.523206\pi\)
\(564\) 5.19615 + 3.00000i 0.218797 + 0.126323i
\(565\) 0 0
\(566\) 10.3923i 0.436821i
\(567\) 19.7160 13.3521i 0.827996 0.560734i
\(568\) 4.24264 4.24264i 0.178017 0.178017i
\(569\) 1.73205 1.00000i 0.0726113 0.0419222i −0.463255 0.886225i \(-0.653319\pi\)
0.535866 + 0.844303i \(0.319985\pi\)
\(570\) 0 0
\(571\) −17.0000 + 29.4449i −0.711428 + 1.23223i 0.252893 + 0.967494i \(0.418618\pi\)
−0.964321 + 0.264735i \(0.914716\pi\)
\(572\) −13.3843 3.58630i −0.559624 0.149951i
\(573\) −4.89898 4.89898i −0.204658 0.204658i
\(574\) 17.3205 + 15.0000i 0.722944 + 0.626088i
\(575\) 0 0
\(576\) 0 0
\(577\) −5.37945 20.0764i −0.223950 0.835791i −0.982823 0.184553i \(-0.940916\pi\)
0.758873 0.651239i \(-0.225750\pi\)
\(578\) −1.29410 4.82963i −0.0538273 0.200886i
\(579\) 6.92820 + 12.0000i 0.287926 + 0.498703i
\(580\) 0 0
\(581\) 4.50000 + 12.9904i 0.186691 + 0.538932i
\(582\) −8.48528 8.48528i −0.351726 0.351726i
\(583\) 7.72741 + 2.07055i 0.320036 + 0.0857535i
\(584\) 15.5885 27.0000i 0.645055 1.11727i
\(585\) 0 0
\(586\) 18.0000 10.3923i 0.743573 0.429302i
\(587\) −7.34847 + 7.34847i −0.303304 + 0.303304i −0.842305 0.539001i \(-0.818802\pi\)
0.539001 + 0.842305i \(0.318802\pi\)
\(588\) 4.77886 + 11.1428i 0.197077 + 0.459522i
\(589\) 36.0000i 1.48335i
\(590\) 0 0
\(591\) 30.0000 + 17.3205i 1.23404 + 0.712470i
\(592\) 3.86370 1.03528i 0.158797 0.0425496i
\(593\) 6.27603 23.4225i 0.257726 0.961845i −0.708828 0.705381i \(-0.750776\pi\)
0.966554 0.256464i \(-0.0825575\pi\)
\(594\) −20.7846 −0.852803
\(595\) 0 0
\(596\) 17.0000 0.696347
\(597\) −6.21166 + 23.1822i −0.254226 + 0.948785i
\(598\) −23.4225 + 6.27603i −0.957815 + 0.256646i
\(599\) 6.92820 + 4.00000i 0.283079 + 0.163436i 0.634816 0.772663i \(-0.281076\pi\)
−0.351738 + 0.936099i \(0.614409\pi\)
\(600\) 0 0
\(601\) 34.6410i 1.41304i −0.707695 0.706518i \(-0.750265\pi\)
0.707695 0.706518i \(-0.249735\pi\)
\(602\) −0.947343 13.1948i −0.0386108 0.537780i
\(603\) 0 0
\(604\) 5.19615 3.00000i 0.211428 0.122068i
\(605\) 0 0
\(606\) 1.50000 2.59808i 0.0609333 0.105540i
\(607\) 11.7112 + 3.13801i 0.475344 + 0.127368i 0.488534 0.872545i \(-0.337532\pi\)
−0.0131898 + 0.999913i \(0.504199\pi\)
\(608\) −12.2474 12.2474i −0.496700 0.496700i
\(609\) 0.866025 4.50000i 0.0350931 0.182349i
\(610\) 0 0
\(611\) 6.00000 + 10.3923i 0.242734 + 0.420428i
\(612\) 0 0
\(613\) −10.8704 40.5689i −0.439051 1.63856i −0.731181 0.682183i \(-0.761031\pi\)
0.292130 0.956379i \(-0.405636\pi\)
\(614\) −7.79423 13.5000i −0.314549 0.544816i
\(615\) 0 0
\(616\) 6.00000 31.1769i 0.241747 1.25615i
\(617\) 28.2843 + 28.2843i 1.13868 + 1.13868i 0.988687 + 0.149995i \(0.0479258\pi\)
0.149995 + 0.988687i \(0.452074\pi\)
\(618\) −26.0800 6.98811i −1.04909 0.281103i
\(619\) −6.92820 + 12.0000i −0.278468 + 0.482321i −0.971004 0.239062i \(-0.923160\pi\)
0.692536 + 0.721383i \(0.256493\pi\)
\(620\) 0 0
\(621\) 31.5000 18.1865i 1.26405 0.729800i
\(622\) −17.1464 + 17.1464i −0.687509 + 0.687509i
\(623\) 2.29719 + 31.9957i 0.0920348 + 1.28188i
\(624\) 6.00000i 0.240192i
\(625\) 0 0
\(626\) 24.0000 + 13.8564i 0.959233 + 0.553813i
\(627\) 23.1822 6.21166i 0.925809 0.248070i
\(628\) −3.58630 + 13.3843i −0.143109 + 0.534090i
\(629\) 13.8564 0.552491
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 1.55291 5.79555i 0.0617716 0.230535i
\(633\) −30.1146 + 8.06918i −1.19695 + 0.320721i
\(634\) 29.4449 + 17.0000i 1.16940 + 0.675156i
\(635\) 0 0
\(636\) 3.46410i 0.137361i
\(637\) −2.86559 + 24.0788i −0.113539 + 0.954037i
\(638\) −2.82843 + 2.82843i −0.111979 + 0.111979i
\(639\) 0 0
\(640\) 0 0
\(641\) −14.5000 + 25.1147i −0.572716 + 0.991972i 0.423570 + 0.905863i \(0.360777\pi\)
−0.996286 + 0.0861092i \(0.972557\pi\)
\(642\) −1.67303 0.448288i −0.0660293 0.0176925i
\(643\) 26.9444 + 26.9444i 1.06258 + 1.06258i 0.997906 + 0.0646766i \(0.0206016\pi\)
0.0646766 + 0.997906i \(0.479398\pi\)
\(644\) 6.06218 + 17.5000i 0.238883 + 0.689597i
\(645\) 0 0
\(646\) 6.00000 + 10.3923i 0.236067 + 0.408880i
\(647\) −3.13801 11.7112i −0.123368 0.460416i 0.876408 0.481569i \(-0.159933\pi\)
−0.999776 + 0.0211531i \(0.993266\pi\)
\(648\) 6.98811 + 26.0800i 0.274519 + 1.02452i
\(649\) 6.92820 + 12.0000i 0.271956 + 0.471041i
\(650\) 0 0
\(651\) −36.0000 31.1769i −1.41095 1.22192i
\(652\) −8.48528 8.48528i −0.332309 0.332309i
\(653\) −21.2504 5.69402i −0.831591 0.222824i −0.182183 0.983265i \(-0.558316\pi\)
−0.649408 + 0.760440i \(0.724983\pi\)
\(654\) 2.59808 4.50000i 0.101593 0.175964i
\(655\) 0 0
\(656\) −7.50000 + 4.33013i −0.292826 + 0.169063i
\(657\) 0 0
\(658\) −7.58871 + 5.13922i −0.295839 + 0.200348i
\(659\) 26.0000i 1.01282i 0.862294 + 0.506408i \(0.169027\pi\)
−0.862294 + 0.506408i \(0.830973\pi\)
\(660\) 0 0
\(661\) 1.50000 + 0.866025i 0.0583432 + 0.0336845i 0.528888 0.848692i \(-0.322609\pi\)
−0.470545 + 0.882376i \(0.655943\pi\)
\(662\) 5.79555 1.55291i 0.225251 0.0603557i
\(663\) 5.37945 20.0764i 0.208921 0.779702i
\(664\) −15.5885 −0.604949
\(665\) 0 0
\(666\) 0 0
\(667\) 1.81173 6.76148i 0.0701506 0.261806i
\(668\) −18.4034 + 4.93117i −0.712047 + 0.190793i
\(669\) 5.19615 + 3.00000i 0.200895 + 0.115987i
\(670\) 0 0
\(671\) 6.92820i 0.267460i
\(672\) −22.8541 + 1.64085i −0.881614 + 0.0632970i
\(673\) −28.2843 + 28.2843i −1.09028 + 1.09028i −0.0947803 + 0.995498i \(0.530215\pi\)
−0.995498 + 0.0947803i \(0.969785\pi\)
\(674\) −8.66025 + 5.00000i −0.333581 + 0.192593i
\(675\) 0 0
\(676\) 0.500000 0.866025i 0.0192308 0.0333087i
\(677\) 36.8067 + 9.86233i 1.41460 + 0.379040i 0.883564 0.468311i \(-0.155137\pi\)
0.531033 + 0.847351i \(0.321804\pi\)
\(678\) 12.2474 + 12.2474i 0.470360 + 0.470360i
\(679\) −17.3205 + 6.00000i −0.664700 + 0.230259i
\(680\) 0 0
\(681\) −3.00000 5.19615i −0.114960 0.199117i
\(682\) 10.7589 + 40.1528i 0.411980 + 1.53753i
\(683\) −4.39992 16.4207i −0.168358 0.628322i −0.997588 0.0694139i \(-0.977887\pi\)
0.829230 0.558908i \(-0.188780\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −18.5000 0.866025i −0.706333 0.0330650i
\(687\) 16.9706 + 16.9706i 0.647467 + 0.647467i
\(688\) 4.82963 + 1.29410i 0.184128 + 0.0493369i
\(689\) 3.46410 6.00000i 0.131972 0.228582i
\(690\) 0 0
\(691\) 24.0000 13.8564i 0.913003 0.527123i 0.0316069 0.999500i \(-0.489938\pi\)
0.881396 + 0.472378i \(0.156604\pi\)
\(692\) 4.89898 4.89898i 0.186231 0.186231i
\(693\) 0 0
\(694\) 19.0000i 0.721230i
\(695\) 0 0
\(696\) 4.50000 + 2.59808i 0.170572 + 0.0984798i
\(697\) −28.9778 + 7.76457i −1.09761 + 0.294104i
\(698\) −6.72432 + 25.0955i −0.254519 + 0.949878i
\(699\) −3.46410 −0.131024
\(700\) 0 0
\(701\) 17.0000 0.642081 0.321041 0.947065i \(-0.395967\pi\)
0.321041 + 0.947065i \(0.395967\pi\)
\(702\) −4.65874 + 17.3867i −0.175833 + 0.656217i
\(703\) 13.3843 3.58630i 0.504797 0.135260i
\(704\) 24.2487 + 14.0000i 0.913908 + 0.527645i
\(705\) 0 0
\(706\) 24.2487i 0.912612i
\(707\) −2.56961 3.79435i −0.0966401 0.142701i
\(708\) 4.24264 4.24264i 0.159448 0.159448i
\(709\) −28.5788 + 16.5000i −1.07330 + 0.619671i −0.929081 0.369875i \(-0.879400\pi\)
−0.144219 + 0.989546i \(0.546067\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −35.1337 9.41404i −1.31669 0.352806i
\(713\) −51.4393 51.4393i −1.92642 1.92642i
\(714\) 15.5885 + 3.00000i 0.583383 + 0.112272i
\(715\) 0 0
\(716\) −11.0000 19.0526i −0.411089 0.712028i
\(717\) 11.6555 + 43.4988i 0.435282 + 1.62449i
\(718\) −0.517638 1.93185i −0.0193181 0.0720961i
\(719\) −10.3923 18.0000i −0.387568 0.671287i 0.604554 0.796564i \(-0.293351\pi\)
−0.992122 + 0.125277i \(0.960018\pi\)
\(720\) 0 0
\(721\) −27.0000 + 31.1769i −1.00553 + 1.16109i
\(722\) −4.94975 4.94975i −0.184211 0.184211i
\(723\) −11.5911 3.10583i −0.431078 0.115507i
\(724\) −4.33013 + 7.50000i −0.160928 + 0.278735i
\(725\) 0 0
\(726\) −7.50000 + 4.33013i −0.278351 + 0.160706i
\(727\) −1.22474 + 1.22474i −0.0454233 + 0.0454233i −0.729454 0.684030i \(-0.760226\pi\)
0.684030 + 0.729454i \(0.260226\pi\)
\(728\) −24.7351 12.0072i −0.916745 0.445017i
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 15.0000 + 8.66025i 0.554795 + 0.320311i
\(732\) 2.89778 0.776457i 0.107105 0.0286987i
\(733\) −7.17260 + 26.7685i −0.264926 + 0.988718i 0.697369 + 0.716712i \(0.254354\pi\)
−0.962296 + 0.272006i \(0.912313\pi\)
\(734\) 5.19615 0.191793
\(735\) 0 0
\(736\) −35.0000 −1.29012
\(737\) 9.31749 34.7733i 0.343214 1.28089i
\(738\) 0 0
\(739\) −27.7128 16.0000i −1.01943 0.588570i −0.105493 0.994420i \(-0.533642\pi\)
−0.913939 + 0.405851i \(0.866975\pi\)
\(740\) 0 0
\(741\) 20.7846i 0.763542i
\(742\) 4.76028 + 2.31079i 0.174755 + 0.0848317i
\(743\) 3.53553 3.53553i 0.129706 0.129706i −0.639273 0.768980i \(-0.720765\pi\)
0.768980 + 0.639273i \(0.220765\pi\)
\(744\) 46.7654 27.0000i 1.71450 0.989868i
\(745\) 0 0
\(746\) −6.00000 + 10.3923i −0.219676 + 0.380489i
\(747\) 0 0
\(748\) 9.79796 + 9.79796i 0.358249 + 0.358249i
\(749\) −1.73205 + 2.00000i −0.0632878 + 0.0730784i
\(750\) 0 0
\(751\) −12.0000 20.7846i −0.437886 0.758441i 0.559640 0.828736i \(-0.310939\pi\)
−0.997526 + 0.0702946i \(0.977606\pi\)
\(752\) −0.896575 3.34607i −0.0326947 0.122018i
\(753\) 7.76457 + 28.9778i 0.282957 + 1.05601i
\(754\) 1.73205 + 3.00000i 0.0630776 + 0.109254i
\(755\) 0 0
\(756\) 13.5000 + 2.59808i 0.490990 + 0.0944911i
\(757\) −7.07107 7.07107i −0.257002 0.257002i 0.566831 0.823834i \(-0.308169\pi\)
−0.823834 + 0.566831i \(0.808169\pi\)
\(758\) 5.79555 + 1.55291i 0.210504 + 0.0564044i
\(759\) 24.2487 42.0000i 0.880172 1.52450i
\(760\) 0 0
\(761\) −6.00000 + 3.46410i −0.217500 + 0.125574i −0.604792 0.796383i \(-0.706744\pi\)
0.387292 + 0.921957i \(0.373410\pi\)
\(762\) 0 0
\(763\) −4.45069 6.57201i −0.161126 0.237923i
\(764\) 4.00000i 0.144715i
\(765\) 0 0
\(766\) 16.5000 + 9.52628i 0.596169 + 0.344198i
\(767\) 11.5911 3.10583i 0.418531 0.112145i
\(768\) 7.62089 28.4416i 0.274995 1.02630i
\(769\) −34.6410 −1.24919 −0.624593 0.780950i \(-0.714735\pi\)
−0.624593 + 0.780950i \(0.714735\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) −2.07055 + 7.72741i −0.0745208 + 0.278115i
\(773\) 43.4988 11.6555i 1.56454 0.419219i 0.630446 0.776233i \(-0.282872\pi\)
0.934099 + 0.357015i \(0.116205\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 20.7846i 0.746124i
\(777\) 8.00481 16.4901i 0.287171 0.591579i
\(778\) −1.41421 + 1.41421i −0.0507020 + 0.0507020i
\(779\) −25.9808 + 15.0000i −0.930857 + 0.537431i
\(780\) 0 0
\(781\) −4.00000 + 6.92820i −0.143131 + 0.247911i
\(782\) 23.4225 + 6.27603i 0.837585 + 0.224430i
\(783\) −3.67423 3.67423i −0.131306 0.131306i
\(784\) 2.59808 6.50000i 0.0927884 0.232143i
\(785\) 0 0
\(786\) 6.00000 + 10.3923i 0.214013 + 0.370681i
\(787\) −7.62089 28.4416i −0.271655 1.01383i −0.958050 0.286602i \(-0.907474\pi\)
0.686394 0.727230i \(-0.259192\pi\)
\(788\) 5.17638 + 19.3185i 0.184401 + 0.688194i
\(789\) 11.2583 + 19.5000i 0.400807 + 0.694218i
\(790\) 0 0
\(791\) 25.0000 8.66025i 0.888898 0.307923i
\(792\) 0 0
\(793\) 5.79555 + 1.55291i 0.205806 + 0.0551456i
\(794\) −6.92820 + 12.0000i −0.245873 + 0.425864i
\(795\) 0 0
\(796\) −12.0000 + 6.92820i −0.425329 + 0.245564i
\(797\) 29.3939 29.3939i 1.04118 1.04118i 0.0420699 0.999115i \(-0.486605\pi\)
0.999115 0.0420699i \(-0.0133952\pi\)
\(798\) 15.8338 1.13681i 0.560509 0.0402427i
\(799\) 12.0000i 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) −18.3526 + 4.91756i −0.648053 + 0.173645i
\(803\) −10.7589 + 40.1528i −0.379674 + 1.41696i
\(804\) −15.5885 −0.549762
\(805\) 0 0
\(806\) 36.0000 1.26805
\(807\) −10.0939 + 37.6711i −0.355324 + 1.32609i
\(808\) 5.01910 1.34486i 0.176571 0.0473121i
\(809\) −14.7224 8.50000i −0.517613 0.298844i 0.218344 0.975872i \(-0.429934\pi\)
−0.735958 + 0.677028i \(0.763268\pi\)
\(810\) 0 0
\(811\) 17.3205i 0.608205i −0.952639 0.304103i \(-0.901643\pi\)
0.952639 0.304103i \(-0.0983566\pi\)
\(812\) 2.19067 1.48356i 0.0768775 0.0520629i
\(813\) 12.7279 12.7279i 0.446388 0.446388i
\(814\) −13.8564 + 8.00000i −0.485667 + 0.280400i
\(815\) 0 0
\(816\) −3.00000 + 5.19615i −0.105021 + 0.181902i
\(817\) 16.7303 + 4.48288i 0.585320 + 0.156836i
\(818\) −8.57321 8.57321i −0.299755 0.299755i
\(819\) 0 0
\(820\) 0 0
\(821\) 13.0000 + 22.5167i 0.453703 + 0.785837i 0.998613 0.0526580i \(-0.0167693\pi\)
−0.544909 + 0.838495i \(0.683436\pi\)
\(822\) −7.17260 26.7685i −0.250173 0.933659i
\(823\) −6.98811 26.0800i −0.243590 0.909092i −0.974087 0.226175i \(-0.927378\pi\)
0.730496 0.682917i \(-0.239289\pi\)
\(824\) −23.3827 40.5000i −0.814574 1.41088i
\(825\) 0 0
\(826\) 3.00000 + 8.66025i 0.104383 + 0.301329i
\(827\) −24.7487 24.7487i −0.860598 0.860598i 0.130810 0.991408i \(-0.458242\pi\)
−0.991408 + 0.130810i \(0.958242\pi\)
\(828\) 0 0
\(829\) 10.3923 18.0000i 0.360940 0.625166i −0.627176 0.778878i \(-0.715789\pi\)
0.988116 + 0.153712i \(0.0491227\pi\)
\(830\) 0 0
\(831\) 9.00000 5.19615i 0.312207 0.180253i
\(832\) 17.1464 17.1464i 0.594445 0.594445i
\(833\) 14.5211 19.4201i 0.503125 0.672865i
\(834\) 0 0
\(835\) 0 0
\(836\) 12.0000 + 6.92820i 0.415029 + 0.239617i
\(837\) −52.1600 + 13.9762i −1.80291 + 0.483089i
\(838\) 8.96575 33.4607i 0.309717 1.15588i
\(839\) 34.6410 1.19594 0.597970 0.801518i \(-0.295974\pi\)
0.597970 + 0.801518i \(0.295974\pi\)
\(840\) 0 0
\(841\) 28.0000 0.965517
\(842\) 1.81173 6.76148i 0.0624365 0.233016i
\(843\) 36.8067 9.86233i 1.26769 0.339677i
\(844\) −15.5885 9.00000i −0.536577 0.309793i
\(845\) 0 0
\(846\) 0 0
\(847\) 0.947343 + 13.1948i 0.0325511 + 0.453378i
\(848\) −1.41421 + 1.41421i −0.0485643 + 0.0485643i
\(849\) 15.5885 9.00000i 0.534994 0.308879i
\(850\) 0 0
\(851\) 14.0000 24.2487i 0.479914 0.831235i
\(852\) 3.34607 + 0.896575i 0.114634 + 0.0307162i
\(853\) 26.9444 + 26.9444i 0.922558 + 0.922558i 0.997210 0.0746514i \(-0.0237844\pi\)
−0.0746514 + 0.997210i \(0.523784\pi\)
\(854\) −0.866025 + 4.50000i −0.0296348 + 0.153987i
\(855\) 0 0
\(856\) −1.50000 2.59808i −0.0512689 0.0888004i
\(857\) −5.37945 20.0764i −0.183759 0.685796i −0.994893 0.100936i \(-0.967816\pi\)
0.811134 0.584860i \(-0.198851\pi\)
\(858\) 6.21166 + 23.1822i 0.212062 + 0.791428i
\(859\) 24.2487 + 42.0000i 0.827355 + 1.43302i 0.900106 + 0.435671i \(0.143489\pi\)
−0.0727505 + 0.997350i \(0.523178\pi\)
\(860\) 0 0
\(861\) −7.50000 + 38.9711i −0.255599 + 1.32813i
\(862\) −11.3137 11.3137i −0.385346 0.385346i
\(863\) 12.5570 + 3.36465i 0.427446 + 0.114534i 0.466127 0.884718i \(-0.345649\pi\)
−0.0386808 + 0.999252i \(0.512316\pi\)
\(864\) −12.9904 + 22.5000i −0.441942 + 0.765466i
\(865\) 0 0
\(866\) −27.0000 + 15.5885i −0.917497 + 0.529717i
\(867\) 6.12372 6.12372i 0.207973 0.207973i
\(868\) −1.96902 27.4249i −0.0668328 0.930860i
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) −27.0000 15.5885i −0.914860 0.528195i
\(872\) 8.69333 2.32937i 0.294393 0.0788825i
\(873\) 0 0
\(874\) 24.2487 0.820225
\(875\) 0 0
\(876\) 18.0000 0.608164
\(877\) −13.9762 + 52.1600i −0.471944 + 1.76132i 0.160831 + 0.986982i \(0.448583\pi\)
−0.632775 + 0.774336i \(0.718084\pi\)
\(878\) −20.0764 + 5.37945i −0.677545 + 0.181548i
\(879\) 31.1769 + 18.0000i 1.05157 + 0.607125i
\(880\) 0 0
\(881\) 8.66025i 0.291771i −0.989301 0.145886i \(-0.953397\pi\)
0.989301 0.145886i \(-0.0466032\pi\)
\(882\) 0 0
\(883\) 14.1421 14.1421i 0.475921 0.475921i −0.427904 0.903824i \(-0.640748\pi\)
0.903824 + 0.427904i \(0.140748\pi\)
\(884\) 10.3923 6.00000i 0.349531 0.201802i
\(885\) 0 0
\(886\) 6.50000 11.2583i 0.218372 0.378231i
\(887\) −21.7494 5.82774i −0.730274 0.195676i −0.125523 0.992091i \(-0.540061\pi\)
−0.604751 + 0.796414i \(0.706728\pi\)
\(888\) 14.6969 + 14.6969i 0.493197 + 0.493197i
\(889\) 0 0
\(890\) 0 0
\(891\) −18.0000 31.1769i −0.603023 1.04447i
\(892\) 0.896575 + 3.34607i 0.0300196 + 0.112035i
\(893\) −3.10583 11.5911i −0.103933 0.387882i
\(894\) −14.7224 25.5000i −0.492392 0.852848i
\(895\) 0 0
\(896\) −6.00000 5.19615i −0.200446 0.173591i
\(897\) −29.6985 29.6985i −0.991604 0.991604i
\(898\) 29.9437 + 8.02339i 0.999234 + 0.267744i
\(899\) −5.19615 + 9.00000i −0.173301 + 0.300167i
\(900\) 0 0
\(901\) −6.00000 + 3.46410i −0.199889 + 0.115406i
\(902\) 24.4949 24.4949i 0.815591 0.815591i
\(903\) 18.9718 12.8480i 0.631341 0.427556i
\(904\) 30.0000i 0.997785i
\(905\) 0 0
\(906\) −9.00000 5.19615i −0.299005 0.172631i
\(907\) 39.6030 10.6116i 1.31499 0.352352i 0.467894 0.883784i \(-0.345013\pi\)
0.847100 + 0.531433i \(0.178346\pi\)
\(908\) 0.896575 3.34607i 0.0297539 0.111043i
\(909\) 0 0
\(910\) 0 0
\(911\) −28.0000 −0.927681 −0.463841 0.885919i \(-0.653529\pi\)
−0.463841 + 0.885919i \(0.653529\pi\)
\(912\) −1.55291 + 5.79555i −0.0514221 + 0.191910i
\(913\) 20.0764 5.37945i 0.664432 0.178034i
\(914\) −13.8564 8.00000i −0.458329 0.264616i
\(915\) 0 0
\(916\) 13.8564i 0.457829i
\(917\) 18.2832 1.31268i 0.603766 0.0433484i
\(918\) 12.7279 12.7279i 0.420084 0.420084i
\(919\) −15.5885 + 9.00000i −0.514216 + 0.296883i −0.734565 0.678538i \(-0.762614\pi\)
0.220349 + 0.975421i \(0.429280\pi\)
\(920\) 0 0
\(921\) 13.5000 23.3827i 0.444840 0.770486i
\(922\) −33.4607 8.96575i −1.10197 0.295271i
\(923\) 4.89898 + 4.89898i 0.161252 + 0.161252i
\(924\) 17.3205 6.00000i 0.569803 0.197386i
\(925\) 0 0
\(926\) −7.50000 12.9904i −0.246465 0.426890i
\(927\) 0 0
\(928\) 1.29410 + 4.82963i 0.0424808 + 0.158540i
\(929\) 11.2583 + 19.5000i 0.369374 + 0.639774i 0.989468 0.144753i \(-0.0462389\pi\)
−0.620094 + 0.784528i \(0.712906\pi\)
\(930\) 0 0
\(931\) 9.00000 22.5167i 0.294963 0.737954i
\(932\) −1.41421 1.41421i −0.0463241 0.0463241i
\(933\) −40.5689 10.8704i −1.32817 0.355881i
\(934\) −2.59808 + 4.50000i −0.0850117 + 0.147244i
\(935\) 0 0
\(936\) 0 0
\(937\) −19.5959 + 19.5959i −0.640171 + 0.640171i −0.950597 0.310427i \(-0.899528\pi\)
0.310427 + 0.950597i \(0.399528\pi\)
\(938\) 10.3986 21.4213i 0.339525 0.699429i
\(939\) 48.0000i 1.56642i
\(940\) 0 0
\(941\) −36.0000 20.7846i −1.17357 0.677559i −0.219049 0.975714i \(-0.570295\pi\)
−0.954517 + 0.298155i \(0.903629\pi\)
\(942\) 23.1822 6.21166i 0.755318 0.202387i
\(943\) −15.6901 + 58.5561i −0.510939 + 1.90685i
\(944\) −3.46410 −0.112747
\(945\) 0 0
\(946\) −20.0000 −0.650256
\(947\) 2.84701 10.6252i 0.0925154 0.345272i −0.904116 0.427288i \(-0.859469\pi\)
0.996631 + 0.0820157i \(0.0261358\pi\)
\(948\) 3.34607 0.896575i 0.108675 0.0291194i
\(949\) 31.1769 + 18.0000i 1.01205 + 0.584305i
\(950\) 0 0
\(951\) 58.8897i 1.90963i
\(952\) 15.4176 + 22.7661i 0.499689 + 0.737854i
\(953\) −28.2843 + 28.2843i −0.916217 + 0.916217i −0.996752 0.0805344i \(-0.974337\pi\)
0.0805344 + 0.996752i \(0.474337\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −13.0000 + 22.5167i −0.420450 + 0.728241i
\(957\) −6.69213 1.79315i −0.216326 0.0579643i
\(958\) −26.9444 26.9444i −0.870534 0.870534i
\(959\) −41.5692 8.00000i −1.34234 0.258333i
\(960\) 0 0
\(961\) 38.5000 + 66.6840i 1.24194 + 2.15110i
\(962\) 3.58630 + 13.3843i 0.115627 + 0.431526i
\(963\) 0 0
\(964\) −3.46410 6.00000i −0.111571 0.193247i
\(965\) 0 0
\(966\) 21.0000 24.2487i 0.675664 0.780189i
\(967\) −10.6066 10.6066i −0.341085 0.341085i 0.515690 0.856775i \(-0.327536\pi\)
−0.856775 + 0.515690i \(0.827536\pi\)
\(968\) −14.4889 3.88229i −0.465690 0.124781i
\(969\) −10.3923 + 18.0000i −0.333849 + 0.578243i
\(970\) 0 0
\(971\) 24.0000 13.8564i 0.770197 0.444673i −0.0627481 0.998029i \(-0.519986\pi\)
0.832945 + 0.553356i \(0.186653\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4.00000i 0.128168i
\(975\) 0 0
\(976\) −1.50000 0.866025i −0.0480138 0.0277208i
\(977\) −3.86370 + 1.03528i −0.123611 + 0.0331214i −0.320094 0.947386i \(-0.603715\pi\)
0.196483 + 0.980507i \(0.437048\pi\)
\(978\) −5.37945 + 20.0764i −0.172016 + 0.641972i
\(979\) 48.4974 1.54998
\(980\) 0 0
\(981\) 0 0
\(982\) 0.517638 1.93185i 0.0165185 0.0616479i
\(983\) 18.4034 4.93117i 0.586976 0.157280i 0.0469052 0.998899i \(-0.485064\pi\)
0.540071 + 0.841620i \(0.318397\pi\)
\(984\) −38.9711 22.5000i −1.24235 0.717274i
\(985\) 0 0
\(986\) 3.46410i 0.110319i
\(987\) −14.2808 6.93237i −0.454564 0.220660i
\(988\) 8.48528 8.48528i 0.269953 0.269953i
\(989\) 30.3109 17.5000i 0.963830 0.556468i
\(990\) 0 0
\(991\) 3.00000 5.19615i 0.0952981 0.165061i −0.814435 0.580255i \(-0.802953\pi\)
0.909733 + 0.415194i \(0.136286\pi\)
\(992\) 50.1910 + 13.4486i 1.59357 + 0.426994i
\(993\) 7.34847 + 7.34847i 0.233197 + 0.233197i
\(994\) −3.46410 + 4.00000i −0.109875 + 0.126872i
\(995\) 0 0
\(996\) −4.50000 7.79423i −0.142588 0.246970i
\(997\) −9.86233 36.8067i −0.312343 1.16568i −0.926438 0.376448i \(-0.877145\pi\)
0.614095 0.789232i \(-0.289521\pi\)
\(998\) −3.10583 11.5911i −0.0983133 0.366910i
\(999\) −10.3923 18.0000i −0.328798 0.569495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.2.o.c.157.2 yes 8
5.2 odd 4 inner 175.2.o.c.143.2 yes 8
5.3 odd 4 inner 175.2.o.c.143.1 yes 8
5.4 even 2 inner 175.2.o.c.157.1 yes 8
7.5 odd 6 inner 175.2.o.c.82.1 yes 8
35.12 even 12 inner 175.2.o.c.68.1 8
35.19 odd 6 inner 175.2.o.c.82.2 yes 8
35.33 even 12 inner 175.2.o.c.68.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.o.c.68.1 8 35.12 even 12 inner
175.2.o.c.68.2 yes 8 35.33 even 12 inner
175.2.o.c.82.1 yes 8 7.5 odd 6 inner
175.2.o.c.82.2 yes 8 35.19 odd 6 inner
175.2.o.c.143.1 yes 8 5.3 odd 4 inner
175.2.o.c.143.2 yes 8 5.2 odd 4 inner
175.2.o.c.157.1 yes 8 5.4 even 2 inner
175.2.o.c.157.2 yes 8 1.1 even 1 trivial