Properties

Label 175.2.o.c.68.2
Level $175$
Weight $2$
Character 175.68
Analytic conductor $1.397$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,2,Mod(68,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([9, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.68");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 175.o (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39738203537\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 68.2
Root \(-0.965926 + 0.258819i\) of defining polynomial
Character \(\chi\) \(=\) 175.68
Dual form 175.2.o.c.157.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{2} +(1.67303 + 0.448288i) q^{3} +(0.866025 - 0.500000i) q^{4} +1.73205i q^{6} +(-2.38014 + 1.15539i) q^{7} +(2.12132 + 2.12132i) q^{8} +(-2.00000 - 3.46410i) q^{11} +(1.67303 - 0.448288i) q^{12} +(2.44949 - 2.44949i) q^{13} +(-1.73205 - 2.00000i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.896575 + 3.34607i) q^{17} +(-1.73205 + 3.00000i) q^{19} +(-4.50000 + 0.866025i) q^{21} +(2.82843 - 2.82843i) q^{22} +(-6.76148 + 1.81173i) q^{23} +(2.59808 + 4.50000i) q^{24} +(3.00000 + 1.73205i) q^{26} +(-3.67423 - 3.67423i) q^{27} +(-1.48356 + 2.19067i) q^{28} -1.00000i q^{29} +(9.00000 - 5.19615i) q^{31} +(4.82963 + 1.29410i) q^{32} +(-1.79315 - 6.69213i) q^{33} -3.46410 q^{34} +(-1.03528 - 3.86370i) q^{37} +(-3.34607 - 0.896575i) q^{38} +(5.19615 - 3.00000i) q^{39} +8.66025i q^{41} +(-2.00120 - 4.12252i) q^{42} +(-3.53553 - 3.53553i) q^{43} +(-3.46410 - 2.00000i) q^{44} +(-3.50000 - 6.06218i) q^{46} +(3.34607 - 0.896575i) q^{47} +(-1.22474 + 1.22474i) q^{48} +(4.33013 - 5.50000i) q^{49} +(-3.00000 + 5.19615i) q^{51} +(0.896575 - 3.34607i) q^{52} +(-0.517638 + 1.93185i) q^{53} +(2.59808 - 4.50000i) q^{54} +(-7.50000 - 2.59808i) q^{56} +(-4.24264 + 4.24264i) q^{57} +(0.965926 - 0.258819i) q^{58} +(1.73205 + 3.00000i) q^{59} +(1.50000 + 0.866025i) q^{61} +(7.34847 + 7.34847i) q^{62} +7.00000i q^{64} +(6.00000 - 3.46410i) q^{66} +(-8.69333 - 2.32937i) q^{67} +(0.896575 + 3.34607i) q^{68} -12.1244 q^{69} +2.00000 q^{71} +(10.0382 + 2.68973i) q^{73} +(3.46410 - 2.00000i) q^{74} +3.46410i q^{76} +(8.76268 + 5.93426i) q^{77} +(4.24264 + 4.24264i) q^{78} +(1.73205 + 1.00000i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(-8.36516 + 2.24144i) q^{82} +(-3.67423 + 3.67423i) q^{83} +(-3.46410 + 3.00000i) q^{84} +(2.50000 - 4.33013i) q^{86} +(0.448288 - 1.67303i) q^{87} +(3.10583 - 11.5911i) q^{88} +(-6.06218 + 10.5000i) q^{89} +(-3.00000 + 8.66025i) q^{91} +(-4.94975 + 4.94975i) q^{92} +(17.3867 - 4.65874i) q^{93} +(1.73205 + 3.00000i) q^{94} +(7.50000 + 4.33013i) q^{96} +(4.89898 + 4.89898i) q^{97} +(6.43331 + 2.75908i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{11} - 4 q^{16} - 36 q^{21} + 24 q^{26} + 72 q^{31} - 28 q^{46} - 24 q^{51} - 60 q^{56} + 12 q^{61} + 48 q^{66} + 16 q^{71} - 36 q^{81} + 20 q^{86} - 24 q^{91} + 60 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 + 0.965926i 0.183013 + 0.683013i 0.995047 + 0.0994033i \(0.0316934\pi\)
−0.812035 + 0.583609i \(0.801640\pi\)
\(3\) 1.67303 + 0.448288i 0.965926 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 0 0
\(6\) 1.73205i 0.707107i
\(7\) −2.38014 + 1.15539i −0.899608 + 0.436698i
\(8\) 2.12132 + 2.12132i 0.750000 + 0.750000i
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i \(-0.960630\pi\)
0.389338 0.921095i \(-0.372704\pi\)
\(12\) 1.67303 0.448288i 0.482963 0.129410i
\(13\) 2.44949 2.44949i 0.679366 0.679366i −0.280491 0.959857i \(-0.590497\pi\)
0.959857 + 0.280491i \(0.0904971\pi\)
\(14\) −1.73205 2.00000i −0.462910 0.534522i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.896575 + 3.34607i −0.217451 + 0.811540i 0.767838 + 0.640644i \(0.221333\pi\)
−0.985289 + 0.170896i \(0.945334\pi\)
\(18\) 0 0
\(19\) −1.73205 + 3.00000i −0.397360 + 0.688247i −0.993399 0.114708i \(-0.963407\pi\)
0.596040 + 0.802955i \(0.296740\pi\)
\(20\) 0 0
\(21\) −4.50000 + 0.866025i −0.981981 + 0.188982i
\(22\) 2.82843 2.82843i 0.603023 0.603023i
\(23\) −6.76148 + 1.81173i −1.40987 + 0.377773i −0.881877 0.471479i \(-0.843720\pi\)
−0.527989 + 0.849251i \(0.677054\pi\)
\(24\) 2.59808 + 4.50000i 0.530330 + 0.918559i
\(25\) 0 0
\(26\) 3.00000 + 1.73205i 0.588348 + 0.339683i
\(27\) −3.67423 3.67423i −0.707107 0.707107i
\(28\) −1.48356 + 2.19067i −0.280367 + 0.413998i
\(29\) 1.00000i 0.185695i −0.995680 0.0928477i \(-0.970403\pi\)
0.995680 0.0928477i \(-0.0295970\pi\)
\(30\) 0 0
\(31\) 9.00000 5.19615i 1.61645 0.933257i 0.628619 0.777714i \(-0.283621\pi\)
0.987829 0.155543i \(-0.0497126\pi\)
\(32\) 4.82963 + 1.29410i 0.853766 + 0.228766i
\(33\) −1.79315 6.69213i −0.312148 1.16495i
\(34\) −3.46410 −0.594089
\(35\) 0 0
\(36\) 0 0
\(37\) −1.03528 3.86370i −0.170198 0.635189i −0.997320 0.0731657i \(-0.976690\pi\)
0.827121 0.562023i \(-0.189977\pi\)
\(38\) −3.34607 0.896575i −0.542803 0.145444i
\(39\) 5.19615 3.00000i 0.832050 0.480384i
\(40\) 0 0
\(41\) 8.66025i 1.35250i 0.736670 + 0.676252i \(0.236397\pi\)
−0.736670 + 0.676252i \(0.763603\pi\)
\(42\) −2.00120 4.12252i −0.308792 0.636119i
\(43\) −3.53553 3.53553i −0.539164 0.539164i 0.384120 0.923283i \(-0.374505\pi\)
−0.923283 + 0.384120i \(0.874505\pi\)
\(44\) −3.46410 2.00000i −0.522233 0.301511i
\(45\) 0 0
\(46\) −3.50000 6.06218i −0.516047 0.893819i
\(47\) 3.34607 0.896575i 0.488074 0.130779i −0.00638578 0.999980i \(-0.502033\pi\)
0.494460 + 0.869201i \(0.335366\pi\)
\(48\) −1.22474 + 1.22474i −0.176777 + 0.176777i
\(49\) 4.33013 5.50000i 0.618590 0.785714i
\(50\) 0 0
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) 0.896575 3.34607i 0.124333 0.464016i
\(53\) −0.517638 + 1.93185i −0.0711031 + 0.265360i −0.992321 0.123686i \(-0.960529\pi\)
0.921218 + 0.389046i \(0.127195\pi\)
\(54\) 2.59808 4.50000i 0.353553 0.612372i
\(55\) 0 0
\(56\) −7.50000 2.59808i −1.00223 0.347183i
\(57\) −4.24264 + 4.24264i −0.561951 + 0.561951i
\(58\) 0.965926 0.258819i 0.126832 0.0339846i
\(59\) 1.73205 + 3.00000i 0.225494 + 0.390567i 0.956467 0.291839i \(-0.0942671\pi\)
−0.730974 + 0.682406i \(0.760934\pi\)
\(60\) 0 0
\(61\) 1.50000 + 0.866025i 0.192055 + 0.110883i 0.592944 0.805243i \(-0.297965\pi\)
−0.400889 + 0.916127i \(0.631299\pi\)
\(62\) 7.34847 + 7.34847i 0.933257 + 0.933257i
\(63\) 0 0
\(64\) 7.00000i 0.875000i
\(65\) 0 0
\(66\) 6.00000 3.46410i 0.738549 0.426401i
\(67\) −8.69333 2.32937i −1.06206 0.284578i −0.314833 0.949147i \(-0.601948\pi\)
−0.747227 + 0.664569i \(0.768615\pi\)
\(68\) 0.896575 + 3.34607i 0.108726 + 0.405770i
\(69\) −12.1244 −1.45960
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) 0 0
\(73\) 10.0382 + 2.68973i 1.17488 + 0.314809i 0.792895 0.609359i \(-0.208573\pi\)
0.381987 + 0.924168i \(0.375240\pi\)
\(74\) 3.46410 2.00000i 0.402694 0.232495i
\(75\) 0 0
\(76\) 3.46410i 0.397360i
\(77\) 8.76268 + 5.93426i 0.998600 + 0.676271i
\(78\) 4.24264 + 4.24264i 0.480384 + 0.480384i
\(79\) 1.73205 + 1.00000i 0.194871 + 0.112509i 0.594261 0.804272i \(-0.297445\pi\)
−0.399390 + 0.916781i \(0.630778\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −8.36516 + 2.24144i −0.923778 + 0.247525i
\(83\) −3.67423 + 3.67423i −0.403300 + 0.403300i −0.879394 0.476094i \(-0.842052\pi\)
0.476094 + 0.879394i \(0.342052\pi\)
\(84\) −3.46410 + 3.00000i −0.377964 + 0.327327i
\(85\) 0 0
\(86\) 2.50000 4.33013i 0.269582 0.466930i
\(87\) 0.448288 1.67303i 0.0480615 0.179368i
\(88\) 3.10583 11.5911i 0.331082 1.23562i
\(89\) −6.06218 + 10.5000i −0.642590 + 1.11300i 0.342263 + 0.939604i \(0.388807\pi\)
−0.984853 + 0.173394i \(0.944527\pi\)
\(90\) 0 0
\(91\) −3.00000 + 8.66025i −0.314485 + 0.907841i
\(92\) −4.94975 + 4.94975i −0.516047 + 0.516047i
\(93\) 17.3867 4.65874i 1.80291 0.483089i
\(94\) 1.73205 + 3.00000i 0.178647 + 0.309426i
\(95\) 0 0
\(96\) 7.50000 + 4.33013i 0.765466 + 0.441942i
\(97\) 4.89898 + 4.89898i 0.497416 + 0.497416i 0.910633 0.413217i \(-0.135595\pi\)
−0.413217 + 0.910633i \(0.635595\pi\)
\(98\) 6.43331 + 2.75908i 0.649863 + 0.278709i
\(99\) 0 0
\(100\) 0 0
\(101\) 1.50000 0.866025i 0.149256 0.0861727i −0.423512 0.905890i \(-0.639203\pi\)
0.572768 + 0.819718i \(0.305870\pi\)
\(102\) −5.79555 1.55291i −0.573845 0.153761i
\(103\) 4.03459 + 15.0573i 0.397540 + 1.48364i 0.817411 + 0.576055i \(0.195409\pi\)
−0.419871 + 0.907584i \(0.637925\pi\)
\(104\) 10.3923 1.01905
\(105\) 0 0
\(106\) −2.00000 −0.194257
\(107\) 0.258819 + 0.965926i 0.0250210 + 0.0933796i 0.977307 0.211827i \(-0.0679412\pi\)
−0.952286 + 0.305206i \(0.901275\pi\)
\(108\) −5.01910 1.34486i −0.482963 0.129410i
\(109\) 2.59808 1.50000i 0.248851 0.143674i −0.370387 0.928877i \(-0.620775\pi\)
0.619238 + 0.785203i \(0.287442\pi\)
\(110\) 0 0
\(111\) 6.92820i 0.657596i
\(112\) 0.189469 2.63896i 0.0179031 0.249358i
\(113\) −7.07107 7.07107i −0.665190 0.665190i 0.291409 0.956599i \(-0.405876\pi\)
−0.956599 + 0.291409i \(0.905876\pi\)
\(114\) −5.19615 3.00000i −0.486664 0.280976i
\(115\) 0 0
\(116\) −0.500000 0.866025i −0.0464238 0.0804084i
\(117\) 0 0
\(118\) −2.44949 + 2.44949i −0.225494 + 0.225494i
\(119\) −1.73205 9.00000i −0.158777 0.825029i
\(120\) 0 0
\(121\) −2.50000 + 4.33013i −0.227273 + 0.393648i
\(122\) −0.448288 + 1.67303i −0.0405861 + 0.151469i
\(123\) −3.88229 + 14.4889i −0.350054 + 1.30642i
\(124\) 5.19615 9.00000i 0.466628 0.808224i
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(128\) 2.89778 0.776457i 0.256130 0.0686298i
\(129\) −4.33013 7.50000i −0.381246 0.660338i
\(130\) 0 0
\(131\) −6.00000 3.46410i −0.524222 0.302660i 0.214438 0.976738i \(-0.431208\pi\)
−0.738661 + 0.674078i \(0.764541\pi\)
\(132\) −4.89898 4.89898i −0.426401 0.426401i
\(133\) 0.656339 9.14162i 0.0569118 0.792679i
\(134\) 9.00000i 0.777482i
\(135\) 0 0
\(136\) −9.00000 + 5.19615i −0.771744 + 0.445566i
\(137\) 15.4548 + 4.14110i 1.32039 + 0.353798i 0.849125 0.528191i \(-0.177130\pi\)
0.471268 + 0.881990i \(0.343796\pi\)
\(138\) −3.13801 11.7112i −0.267126 0.996926i
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 6.00000 0.505291
\(142\) 0.517638 + 1.93185i 0.0434392 + 0.162117i
\(143\) −13.3843 3.58630i −1.11925 0.299902i
\(144\) 0 0
\(145\) 0 0
\(146\) 10.3923i 0.860073i
\(147\) 9.71003 7.26054i 0.800869 0.598839i
\(148\) −2.82843 2.82843i −0.232495 0.232495i
\(149\) 14.7224 + 8.50000i 1.20611 + 0.696347i 0.961907 0.273377i \(-0.0881408\pi\)
0.244202 + 0.969724i \(0.421474\pi\)
\(150\) 0 0
\(151\) 3.00000 + 5.19615i 0.244137 + 0.422857i 0.961888 0.273442i \(-0.0881622\pi\)
−0.717752 + 0.696299i \(0.754829\pi\)
\(152\) −10.0382 + 2.68973i −0.814205 + 0.218166i
\(153\) 0 0
\(154\) −3.46410 + 10.0000i −0.279145 + 0.805823i
\(155\) 0 0
\(156\) 3.00000 5.19615i 0.240192 0.416025i
\(157\) 3.58630 13.3843i 0.286218 1.06818i −0.661727 0.749745i \(-0.730176\pi\)
0.947945 0.318435i \(-0.103157\pi\)
\(158\) −0.517638 + 1.93185i −0.0411811 + 0.153690i
\(159\) −1.73205 + 3.00000i −0.137361 + 0.237915i
\(160\) 0 0
\(161\) 14.0000 12.1244i 1.10335 0.955533i
\(162\) 6.36396 6.36396i 0.500000 0.500000i
\(163\) −11.5911 + 3.10583i −0.907886 + 0.243267i −0.682400 0.730979i \(-0.739064\pi\)
−0.225486 + 0.974246i \(0.572397\pi\)
\(164\) 4.33013 + 7.50000i 0.338126 + 0.585652i
\(165\) 0 0
\(166\) −4.50000 2.59808i −0.349268 0.201650i
\(167\) −13.4722 13.4722i −1.04251 1.04251i −0.999055 0.0434542i \(-0.986164\pi\)
−0.0434542 0.999055i \(-0.513836\pi\)
\(168\) −11.3831 7.70882i −0.878222 0.594749i
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) −4.82963 1.29410i −0.368256 0.0986738i
\(173\) 1.79315 + 6.69213i 0.136331 + 0.508793i 0.999989 + 0.00471527i \(0.00150092\pi\)
−0.863658 + 0.504078i \(0.831832\pi\)
\(174\) 1.73205 0.131306
\(175\) 0 0
\(176\) 4.00000 0.301511
\(177\) 1.55291 + 5.79555i 0.116724 + 0.435621i
\(178\) −11.7112 3.13801i −0.877794 0.235204i
\(179\) −19.0526 + 11.0000i −1.42406 + 0.822179i −0.996642 0.0818780i \(-0.973908\pi\)
−0.427413 + 0.904057i \(0.640575\pi\)
\(180\) 0 0
\(181\) 8.66025i 0.643712i −0.946789 0.321856i \(-0.895693\pi\)
0.946789 0.321856i \(-0.104307\pi\)
\(182\) −9.14162 0.656339i −0.677622 0.0486511i
\(183\) 2.12132 + 2.12132i 0.156813 + 0.156813i
\(184\) −18.1865 10.5000i −1.34073 0.774070i
\(185\) 0 0
\(186\) 9.00000 + 15.5885i 0.659912 + 1.14300i
\(187\) 13.3843 3.58630i 0.978754 0.262256i
\(188\) 2.44949 2.44949i 0.178647 0.178647i
\(189\) 12.9904 + 4.50000i 0.944911 + 0.327327i
\(190\) 0 0
\(191\) −2.00000 + 3.46410i −0.144715 + 0.250654i −0.929267 0.369410i \(-0.879560\pi\)
0.784552 + 0.620063i \(0.212893\pi\)
\(192\) −3.13801 + 11.7112i −0.226467 + 0.845185i
\(193\) 2.07055 7.72741i 0.149042 0.556231i −0.850501 0.525974i \(-0.823701\pi\)
0.999542 0.0302567i \(-0.00963249\pi\)
\(194\) −3.46410 + 6.00000i −0.248708 + 0.430775i
\(195\) 0 0
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) 14.1421 14.1421i 1.00759 1.00759i 0.00761443 0.999971i \(-0.497576\pi\)
0.999971 0.00761443i \(-0.00242377\pi\)
\(198\) 0 0
\(199\) −6.92820 12.0000i −0.491127 0.850657i 0.508821 0.860873i \(-0.330082\pi\)
−0.999948 + 0.0102152i \(0.996748\pi\)
\(200\) 0 0
\(201\) −13.5000 7.79423i −0.952217 0.549762i
\(202\) 1.22474 + 1.22474i 0.0861727 + 0.0861727i
\(203\) 1.15539 + 2.38014i 0.0810928 + 0.167053i
\(204\) 6.00000i 0.420084i
\(205\) 0 0
\(206\) −13.5000 + 7.79423i −0.940590 + 0.543050i
\(207\) 0 0
\(208\) 0.896575 + 3.34607i 0.0621663 + 0.232008i
\(209\) 13.8564 0.958468
\(210\) 0 0
\(211\) −18.0000 −1.23917 −0.619586 0.784929i \(-0.712699\pi\)
−0.619586 + 0.784929i \(0.712699\pi\)
\(212\) 0.517638 + 1.93185i 0.0355515 + 0.132680i
\(213\) 3.34607 + 0.896575i 0.229269 + 0.0614323i
\(214\) −0.866025 + 0.500000i −0.0592003 + 0.0341793i
\(215\) 0 0
\(216\) 15.5885i 1.06066i
\(217\) −15.4176 + 22.7661i −1.04662 + 1.54546i
\(218\) 2.12132 + 2.12132i 0.143674 + 0.143674i
\(219\) 15.5885 + 9.00000i 1.05337 + 0.608164i
\(220\) 0 0
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 6.69213 1.79315i 0.449146 0.120348i
\(223\) 2.44949 2.44949i 0.164030 0.164030i −0.620319 0.784349i \(-0.712997\pi\)
0.784349 + 0.620319i \(0.212997\pi\)
\(224\) −12.9904 + 2.50000i −0.867956 + 0.167038i
\(225\) 0 0
\(226\) 5.00000 8.66025i 0.332595 0.576072i
\(227\) −0.896575 + 3.34607i −0.0595078 + 0.222086i −0.989276 0.146060i \(-0.953341\pi\)
0.929768 + 0.368146i \(0.120007\pi\)
\(228\) −1.55291 + 5.79555i −0.102844 + 0.383820i
\(229\) 6.92820 12.0000i 0.457829 0.792982i −0.541017 0.841011i \(-0.681961\pi\)
0.998846 + 0.0480291i \(0.0152940\pi\)
\(230\) 0 0
\(231\) 12.0000 + 13.8564i 0.789542 + 0.911685i
\(232\) 2.12132 2.12132i 0.139272 0.139272i
\(233\) −1.93185 + 0.517638i −0.126560 + 0.0339116i −0.321543 0.946895i \(-0.604201\pi\)
0.194983 + 0.980807i \(0.437535\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 3.00000 + 1.73205i 0.195283 + 0.112747i
\(237\) 2.44949 + 2.44949i 0.159111 + 0.159111i
\(238\) 8.24504 4.00240i 0.534447 0.259437i
\(239\) 26.0000i 1.68180i −0.541190 0.840900i \(-0.682026\pi\)
0.541190 0.840900i \(-0.317974\pi\)
\(240\) 0 0
\(241\) −6.00000 + 3.46410i −0.386494 + 0.223142i −0.680640 0.732618i \(-0.738298\pi\)
0.294146 + 0.955761i \(0.404965\pi\)
\(242\) −4.82963 1.29410i −0.310460 0.0831876i
\(243\) 0 0
\(244\) 1.73205 0.110883
\(245\) 0 0
\(246\) −15.0000 −0.956365
\(247\) 3.10583 + 11.5911i 0.197619 + 0.737525i
\(248\) 30.1146 + 8.06918i 1.91228 + 0.512393i
\(249\) −7.79423 + 4.50000i −0.493939 + 0.285176i
\(250\) 0 0
\(251\) 17.3205i 1.09326i −0.837374 0.546630i \(-0.815910\pi\)
0.837374 0.546630i \(-0.184090\pi\)
\(252\) 0 0
\(253\) 19.7990 + 19.7990i 1.24475 + 1.24475i
\(254\) 0 0
\(255\) 0 0
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) −13.3843 + 3.58630i −0.834887 + 0.223707i −0.650845 0.759211i \(-0.725585\pi\)
−0.184043 + 0.982918i \(0.558918\pi\)
\(258\) 6.12372 6.12372i 0.381246 0.381246i
\(259\) 6.92820 + 8.00000i 0.430498 + 0.497096i
\(260\) 0 0
\(261\) 0 0
\(262\) 1.79315 6.69213i 0.110781 0.413441i
\(263\) 3.36465 12.5570i 0.207473 0.774300i −0.781208 0.624270i \(-0.785396\pi\)
0.988681 0.150030i \(-0.0479369\pi\)
\(264\) 10.3923 18.0000i 0.639602 1.10782i
\(265\) 0 0
\(266\) 9.00000 1.73205i 0.551825 0.106199i
\(267\) −14.8492 + 14.8492i −0.908759 + 0.908759i
\(268\) −8.69333 + 2.32937i −0.531030 + 0.142289i
\(269\) −11.2583 19.5000i −0.686433 1.18894i −0.972984 0.230871i \(-0.925842\pi\)
0.286552 0.958065i \(-0.407491\pi\)
\(270\) 0 0
\(271\) 9.00000 + 5.19615i 0.546711 + 0.315644i 0.747794 0.663930i \(-0.231113\pi\)
−0.201083 + 0.979574i \(0.564446\pi\)
\(272\) −2.44949 2.44949i −0.148522 0.148522i
\(273\) −8.90138 + 13.1440i −0.538736 + 0.795513i
\(274\) 16.0000i 0.966595i
\(275\) 0 0
\(276\) −10.5000 + 6.06218i −0.632026 + 0.364900i
\(277\) 5.79555 + 1.55291i 0.348221 + 0.0933056i 0.428690 0.903452i \(-0.358975\pi\)
−0.0804691 + 0.996757i \(0.525642\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 22.0000 1.31241 0.656205 0.754583i \(-0.272161\pi\)
0.656205 + 0.754583i \(0.272161\pi\)
\(282\) 1.55291 + 5.79555i 0.0924747 + 0.345120i
\(283\) 10.0382 + 2.68973i 0.596709 + 0.159888i 0.544518 0.838749i \(-0.316713\pi\)
0.0521913 + 0.998637i \(0.483379\pi\)
\(284\) 1.73205 1.00000i 0.102778 0.0593391i
\(285\) 0 0
\(286\) 13.8564i 0.819346i
\(287\) −10.0060 20.6126i −0.590636 1.21672i
\(288\) 0 0
\(289\) 4.33013 + 2.50000i 0.254713 + 0.147059i
\(290\) 0 0
\(291\) 6.00000 + 10.3923i 0.351726 + 0.609208i
\(292\) 10.0382 2.68973i 0.587441 0.157404i
\(293\) 14.6969 14.6969i 0.858604 0.858604i −0.132569 0.991174i \(-0.542323\pi\)
0.991174 + 0.132569i \(0.0423227\pi\)
\(294\) 9.52628 + 7.50000i 0.555584 + 0.437409i
\(295\) 0 0
\(296\) 6.00000 10.3923i 0.348743 0.604040i
\(297\) −5.37945 + 20.0764i −0.312148 + 1.16495i
\(298\) −4.39992 + 16.4207i −0.254881 + 0.951228i
\(299\) −12.1244 + 21.0000i −0.701170 + 1.21446i
\(300\) 0 0
\(301\) 12.5000 + 4.33013i 0.720488 + 0.249584i
\(302\) −4.24264 + 4.24264i −0.244137 + 0.244137i
\(303\) 2.89778 0.776457i 0.166473 0.0446063i
\(304\) −1.73205 3.00000i −0.0993399 0.172062i
\(305\) 0 0
\(306\) 0 0
\(307\) 11.0227 + 11.0227i 0.629099 + 0.629099i 0.947841 0.318742i \(-0.103260\pi\)
−0.318742 + 0.947841i \(0.603260\pi\)
\(308\) 10.5558 + 0.757875i 0.601474 + 0.0431839i
\(309\) 27.0000i 1.53598i
\(310\) 0 0
\(311\) −21.0000 + 12.1244i −1.19080 + 0.687509i −0.958488 0.285132i \(-0.907963\pi\)
−0.232313 + 0.972641i \(0.574629\pi\)
\(312\) 17.3867 + 4.65874i 0.984326 + 0.263749i
\(313\) −7.17260 26.7685i −0.405420 1.51305i −0.803281 0.595601i \(-0.796914\pi\)
0.397861 0.917446i \(-0.369753\pi\)
\(314\) 13.8564 0.781962
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) −8.79985 32.8415i −0.494249 1.84456i −0.534198 0.845359i \(-0.679386\pi\)
0.0399492 0.999202i \(-0.487280\pi\)
\(318\) −3.34607 0.896575i −0.187638 0.0502775i
\(319\) −3.46410 + 2.00000i −0.193952 + 0.111979i
\(320\) 0 0
\(321\) 1.73205i 0.0966736i
\(322\) 15.3347 + 10.3849i 0.854569 + 0.578730i
\(323\) −8.48528 8.48528i −0.472134 0.472134i
\(324\) −7.79423 4.50000i −0.433013 0.250000i
\(325\) 0 0
\(326\) −6.00000 10.3923i −0.332309 0.575577i
\(327\) 5.01910 1.34486i 0.277557 0.0743711i
\(328\) −18.3712 + 18.3712i −1.01438 + 1.01438i
\(329\) −6.92820 + 6.00000i −0.381964 + 0.330791i
\(330\) 0 0
\(331\) 3.00000 5.19615i 0.164895 0.285606i −0.771723 0.635959i \(-0.780605\pi\)
0.936618 + 0.350352i \(0.113938\pi\)
\(332\) −1.34486 + 5.01910i −0.0738090 + 0.275459i
\(333\) 0 0
\(334\) 9.52628 16.5000i 0.521255 0.902840i
\(335\) 0 0
\(336\) 1.50000 4.33013i 0.0818317 0.236228i
\(337\) −7.07107 + 7.07107i −0.385186 + 0.385186i −0.872966 0.487781i \(-0.837807\pi\)
0.487781 + 0.872966i \(0.337807\pi\)
\(338\) −0.965926 + 0.258819i −0.0525394 + 0.0140779i
\(339\) −8.66025 15.0000i −0.470360 0.814688i
\(340\) 0 0
\(341\) −36.0000 20.7846i −1.94951 1.12555i
\(342\) 0 0
\(343\) −3.95164 + 18.0938i −0.213368 + 0.976972i
\(344\) 15.0000i 0.808746i
\(345\) 0 0
\(346\) −6.00000 + 3.46410i −0.322562 + 0.186231i
\(347\) −18.3526 4.91756i −0.985219 0.263989i −0.269978 0.962867i \(-0.587016\pi\)
−0.715241 + 0.698878i \(0.753683\pi\)
\(348\) −0.448288 1.67303i −0.0240307 0.0896840i
\(349\) −25.9808 −1.39072 −0.695359 0.718662i \(-0.744755\pi\)
−0.695359 + 0.718662i \(0.744755\pi\)
\(350\) 0 0
\(351\) −18.0000 −0.960769
\(352\) −5.17638 19.3185i −0.275902 1.02968i
\(353\) −23.4225 6.27603i −1.24665 0.334039i −0.425609 0.904907i \(-0.639940\pi\)
−0.821042 + 0.570868i \(0.806607\pi\)
\(354\) −5.19615 + 3.00000i −0.276172 + 0.159448i
\(355\) 0 0
\(356\) 12.1244i 0.642590i
\(357\) 1.13681 15.8338i 0.0601665 0.838011i
\(358\) −15.5563 15.5563i −0.822179 0.822179i
\(359\) 1.73205 + 1.00000i 0.0914141 + 0.0527780i 0.545010 0.838429i \(-0.316526\pi\)
−0.453596 + 0.891207i \(0.649859\pi\)
\(360\) 0 0
\(361\) 3.50000 + 6.06218i 0.184211 + 0.319062i
\(362\) 8.36516 2.24144i 0.439663 0.117807i
\(363\) −6.12372 + 6.12372i −0.321412 + 0.321412i
\(364\) 1.73205 + 9.00000i 0.0907841 + 0.471728i
\(365\) 0 0
\(366\) −1.50000 + 2.59808i −0.0784063 + 0.135804i
\(367\) 1.34486 5.01910i 0.0702013 0.261995i −0.921901 0.387425i \(-0.873365\pi\)
0.992102 + 0.125430i \(0.0400312\pi\)
\(368\) 1.81173 6.76148i 0.0944431 0.352467i
\(369\) 0 0
\(370\) 0 0
\(371\) −1.00000 5.19615i −0.0519174 0.269771i
\(372\) 12.7279 12.7279i 0.659912 0.659912i
\(373\) −11.5911 + 3.10583i −0.600165 + 0.160814i −0.546095 0.837723i \(-0.683886\pi\)
−0.0540702 + 0.998537i \(0.517219\pi\)
\(374\) 6.92820 + 12.0000i 0.358249 + 0.620505i
\(375\) 0 0
\(376\) 9.00000 + 5.19615i 0.464140 + 0.267971i
\(377\) −2.44949 2.44949i −0.126155 0.126155i
\(378\) −0.984508 + 13.7124i −0.0506376 + 0.705291i
\(379\) 6.00000i 0.308199i −0.988055 0.154100i \(-0.950752\pi\)
0.988055 0.154100i \(-0.0492477\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −3.86370 1.03528i −0.197684 0.0529693i
\(383\) −4.93117 18.4034i −0.251971 0.940368i −0.969751 0.244098i \(-0.921508\pi\)
0.717780 0.696270i \(-0.245158\pi\)
\(384\) 5.19615 0.265165
\(385\) 0 0
\(386\) 8.00000 0.407189
\(387\) 0 0
\(388\) 6.69213 + 1.79315i 0.339741 + 0.0910334i
\(389\) −1.73205 + 1.00000i −0.0878185 + 0.0507020i −0.543266 0.839561i \(-0.682813\pi\)
0.455448 + 0.890263i \(0.349479\pi\)
\(390\) 0 0
\(391\) 24.2487i 1.22631i
\(392\) 20.8528 2.48168i 1.05323 0.125344i
\(393\) −8.48528 8.48528i −0.428026 0.428026i
\(394\) 17.3205 + 10.0000i 0.872595 + 0.503793i
\(395\) 0 0
\(396\) 0 0
\(397\) −13.3843 + 3.58630i −0.671737 + 0.179991i −0.578537 0.815656i \(-0.696376\pi\)
−0.0931997 + 0.995647i \(0.529710\pi\)
\(398\) 9.79796 9.79796i 0.491127 0.491127i
\(399\) 5.19615 15.0000i 0.260133 0.750939i
\(400\) 0 0
\(401\) −9.50000 + 16.4545i −0.474407 + 0.821698i −0.999571 0.0293039i \(-0.990671\pi\)
0.525163 + 0.851002i \(0.324004\pi\)
\(402\) 4.03459 15.0573i 0.201227 0.750990i
\(403\) 9.31749 34.7733i 0.464137 1.73218i
\(404\) 0.866025 1.50000i 0.0430864 0.0746278i
\(405\) 0 0
\(406\) −2.00000 + 1.73205i −0.0992583 + 0.0859602i
\(407\) −11.3137 + 11.3137i −0.560800 + 0.560800i
\(408\) −17.3867 + 4.65874i −0.860768 + 0.230642i
\(409\) 6.06218 + 10.5000i 0.299755 + 0.519192i 0.976080 0.217412i \(-0.0697616\pi\)
−0.676324 + 0.736604i \(0.736428\pi\)
\(410\) 0 0
\(411\) 24.0000 + 13.8564i 1.18383 + 0.683486i
\(412\) 11.0227 + 11.0227i 0.543050 + 0.543050i
\(413\) −7.58871 5.13922i −0.373416 0.252884i
\(414\) 0 0
\(415\) 0 0
\(416\) 15.0000 8.66025i 0.735436 0.424604i
\(417\) 0 0
\(418\) 3.58630 + 13.3843i 0.175412 + 0.654646i
\(419\) 34.6410 1.69232 0.846162 0.532925i \(-0.178907\pi\)
0.846162 + 0.532925i \(0.178907\pi\)
\(420\) 0 0
\(421\) 7.00000 0.341159 0.170580 0.985344i \(-0.445436\pi\)
0.170580 + 0.985344i \(0.445436\pi\)
\(422\) −4.65874 17.3867i −0.226784 0.846370i
\(423\) 0 0
\(424\) −5.19615 + 3.00000i −0.252347 + 0.145693i
\(425\) 0 0
\(426\) 3.46410i 0.167836i
\(427\) −4.57081 0.328169i −0.221197 0.0158812i
\(428\) 0.707107 + 0.707107i 0.0341793 + 0.0341793i
\(429\) −20.7846 12.0000i −1.00349 0.579365i
\(430\) 0 0
\(431\) 8.00000 + 13.8564i 0.385346 + 0.667440i 0.991817 0.127666i \(-0.0407486\pi\)
−0.606471 + 0.795106i \(0.707415\pi\)
\(432\) 5.01910 1.34486i 0.241481 0.0647048i
\(433\) −22.0454 + 22.0454i −1.05943 + 1.05943i −0.0613163 + 0.998118i \(0.519530\pi\)
−0.998118 + 0.0613163i \(0.980470\pi\)
\(434\) −25.9808 9.00000i −1.24712 0.432014i
\(435\) 0 0
\(436\) 1.50000 2.59808i 0.0718370 0.124425i
\(437\) 6.27603 23.4225i 0.300223 1.12045i
\(438\) −4.65874 + 17.3867i −0.222603 + 0.830767i
\(439\) −10.3923 + 18.0000i −0.495998 + 0.859093i −0.999989 0.00461537i \(-0.998531\pi\)
0.503992 + 0.863708i \(0.331864\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −8.48528 + 8.48528i −0.403604 + 0.403604i
\(443\) 12.5570 3.36465i 0.596603 0.159859i 0.0521336 0.998640i \(-0.483398\pi\)
0.544469 + 0.838781i \(0.316731\pi\)
\(444\) −3.46410 6.00000i −0.164399 0.284747i
\(445\) 0 0
\(446\) 3.00000 + 1.73205i 0.142054 + 0.0820150i
\(447\) 20.8207 + 20.8207i 0.984784 + 0.984784i
\(448\) −8.08776 16.6610i −0.382111 0.787157i
\(449\) 31.0000i 1.46298i −0.681852 0.731490i \(-0.738825\pi\)
0.681852 0.731490i \(-0.261175\pi\)
\(450\) 0 0
\(451\) 30.0000 17.3205i 1.41264 0.815591i
\(452\) −9.65926 2.58819i −0.454333 0.121738i
\(453\) 2.68973 + 10.0382i 0.126374 + 0.471636i
\(454\) −3.46410 −0.162578
\(455\) 0 0
\(456\) −18.0000 −0.842927
\(457\) 4.14110 + 15.4548i 0.193713 + 0.722946i 0.992596 + 0.121460i \(0.0387576\pi\)
−0.798884 + 0.601486i \(0.794576\pi\)
\(458\) 13.3843 + 3.58630i 0.625405 + 0.167577i
\(459\) 15.5885 9.00000i 0.727607 0.420084i
\(460\) 0 0
\(461\) 34.6410i 1.61339i 0.590966 + 0.806696i \(0.298747\pi\)
−0.590966 + 0.806696i \(0.701253\pi\)
\(462\) −10.2784 + 15.1774i −0.478196 + 0.706117i
\(463\) 10.6066 + 10.6066i 0.492931 + 0.492931i 0.909228 0.416298i \(-0.136673\pi\)
−0.416298 + 0.909228i \(0.636673\pi\)
\(464\) 0.866025 + 0.500000i 0.0402042 + 0.0232119i
\(465\) 0 0
\(466\) −1.00000 1.73205i −0.0463241 0.0802357i
\(467\) −5.01910 + 1.34486i −0.232256 + 0.0622328i −0.373070 0.927803i \(-0.621695\pi\)
0.140814 + 0.990036i \(0.455028\pi\)
\(468\) 0 0
\(469\) 23.3827 4.50000i 1.07971 0.207791i
\(470\) 0 0
\(471\) 12.0000 20.7846i 0.552931 0.957704i
\(472\) −2.68973 + 10.0382i −0.123805 + 0.462045i
\(473\) −5.17638 + 19.3185i −0.238010 + 0.888266i
\(474\) −1.73205 + 3.00000i −0.0795557 + 0.137795i
\(475\) 0 0
\(476\) −6.00000 6.92820i −0.275010 0.317554i
\(477\) 0 0
\(478\) 25.1141 6.72930i 1.14869 0.307791i
\(479\) 19.0526 + 33.0000i 0.870534 + 1.50781i 0.861446 + 0.507850i \(0.169560\pi\)
0.00908799 + 0.999959i \(0.497107\pi\)
\(480\) 0 0
\(481\) −12.0000 6.92820i −0.547153 0.315899i
\(482\) −4.89898 4.89898i −0.223142 0.223142i
\(483\) 28.8577 14.0084i 1.31307 0.637405i
\(484\) 5.00000i 0.227273i
\(485\) 0 0
\(486\) 0 0
\(487\) −3.86370 1.03528i −0.175081 0.0469128i 0.170213 0.985407i \(-0.445554\pi\)
−0.345294 + 0.938494i \(0.612221\pi\)
\(488\) 1.34486 + 5.01910i 0.0608791 + 0.227204i
\(489\) −20.7846 −0.939913
\(490\) 0 0
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) 3.88229 + 14.4889i 0.175027 + 0.653209i
\(493\) 3.34607 + 0.896575i 0.150699 + 0.0403797i
\(494\) −10.3923 + 6.00000i −0.467572 + 0.269953i
\(495\) 0 0
\(496\) 10.3923i 0.466628i
\(497\) −4.76028 + 2.31079i −0.213528 + 0.103653i
\(498\) −6.36396 6.36396i −0.285176 0.285176i
\(499\) 10.3923 + 6.00000i 0.465223 + 0.268597i 0.714238 0.699903i \(-0.246773\pi\)
−0.249015 + 0.968500i \(0.580107\pi\)
\(500\) 0 0
\(501\) −16.5000 28.5788i −0.737166 1.27681i
\(502\) 16.7303 4.48288i 0.746711 0.200081i
\(503\) 8.57321 8.57321i 0.382261 0.382261i −0.489655 0.871916i \(-0.662877\pi\)
0.871916 + 0.489655i \(0.162877\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −14.0000 + 24.2487i −0.622376 + 1.07799i
\(507\) −0.448288 + 1.67303i −0.0199092 + 0.0743020i
\(508\) 0 0
\(509\) 2.59808 4.50000i 0.115158 0.199459i −0.802685 0.596403i \(-0.796596\pi\)
0.917843 + 0.396944i \(0.129929\pi\)
\(510\) 0 0
\(511\) −27.0000 + 5.19615i −1.19441 + 0.229864i
\(512\) −7.77817 + 7.77817i −0.343750 + 0.343750i
\(513\) 17.3867 4.65874i 0.767640 0.205689i
\(514\) −6.92820 12.0000i −0.305590 0.529297i
\(515\) 0 0
\(516\) −7.50000 4.33013i −0.330169 0.190623i
\(517\) −9.79796 9.79796i −0.430914 0.430914i
\(518\) −5.93426 + 8.76268i −0.260736 + 0.385010i
\(519\) 12.0000i 0.526742i
\(520\) 0 0
\(521\) −6.00000 + 3.46410i −0.262865 + 0.151765i −0.625641 0.780111i \(-0.715162\pi\)
0.362776 + 0.931876i \(0.381829\pi\)
\(522\) 0 0
\(523\) 6.27603 + 23.4225i 0.274432 + 1.02419i 0.956221 + 0.292644i \(0.0945352\pi\)
−0.681790 + 0.731548i \(0.738798\pi\)
\(524\) −6.92820 −0.302660
\(525\) 0 0
\(526\) 13.0000 0.566827
\(527\) 9.31749 + 34.7733i 0.405876 + 1.51475i
\(528\) 6.69213 + 1.79315i 0.291238 + 0.0780369i
\(529\) 22.5167 13.0000i 0.978985 0.565217i
\(530\) 0 0
\(531\) 0 0
\(532\) −4.00240 8.24504i −0.173526 0.357468i
\(533\) 21.2132 + 21.2132i 0.918846 + 0.918846i
\(534\) −18.1865 10.5000i −0.787008 0.454379i
\(535\) 0 0
\(536\) −13.5000 23.3827i −0.583111 1.00998i
\(537\) −36.8067 + 9.86233i −1.58833 + 0.425591i
\(538\) 15.9217 15.9217i 0.686433 0.686433i
\(539\) −27.7128 4.00000i −1.19368 0.172292i
\(540\) 0 0
\(541\) −9.50000 + 16.4545i −0.408437 + 0.707433i −0.994715 0.102677i \(-0.967259\pi\)
0.586278 + 0.810110i \(0.300593\pi\)
\(542\) −2.68973 + 10.0382i −0.115534 + 0.431177i
\(543\) 3.88229 14.4889i 0.166605 0.621778i
\(544\) −8.66025 + 15.0000i −0.371305 + 0.643120i
\(545\) 0 0
\(546\) −15.0000 5.19615i −0.641941 0.222375i
\(547\) 31.8198 31.8198i 1.36052 1.36052i 0.487259 0.873257i \(-0.337997\pi\)
0.873257 0.487259i \(-0.162003\pi\)
\(548\) 15.4548 4.14110i 0.660197 0.176899i
\(549\) 0 0
\(550\) 0 0
\(551\) 3.00000 + 1.73205i 0.127804 + 0.0737878i
\(552\) −25.7196 25.7196i −1.09470 1.09470i
\(553\) −5.27792 0.378937i −0.224440 0.0161141i
\(554\) 6.00000i 0.254916i
\(555\) 0 0
\(556\) 0 0
\(557\) 15.4548 + 4.14110i 0.654841 + 0.175464i 0.570917 0.821008i \(-0.306588\pi\)
0.0839246 + 0.996472i \(0.473255\pi\)
\(558\) 0 0
\(559\) −17.3205 −0.732579
\(560\) 0 0
\(561\) 24.0000 1.01328
\(562\) 5.69402 + 21.2504i 0.240188 + 0.896393i
\(563\) −15.0573 4.03459i −0.634589 0.170038i −0.0728379 0.997344i \(-0.523206\pi\)
−0.561751 + 0.827306i \(0.689872\pi\)
\(564\) 5.19615 3.00000i 0.218797 0.126323i
\(565\) 0 0
\(566\) 10.3923i 0.436821i
\(567\) 19.7160 + 13.3521i 0.827996 + 0.560734i
\(568\) 4.24264 + 4.24264i 0.178017 + 0.178017i
\(569\) 1.73205 + 1.00000i 0.0726113 + 0.0419222i 0.535866 0.844303i \(-0.319985\pi\)
−0.463255 + 0.886225i \(0.653319\pi\)
\(570\) 0 0
\(571\) −17.0000 29.4449i −0.711428 1.23223i −0.964321 0.264735i \(-0.914716\pi\)
0.252893 0.967494i \(-0.418618\pi\)
\(572\) −13.3843 + 3.58630i −0.559624 + 0.149951i
\(573\) −4.89898 + 4.89898i −0.204658 + 0.204658i
\(574\) 17.3205 15.0000i 0.722944 0.626088i
\(575\) 0 0
\(576\) 0 0
\(577\) −5.37945 + 20.0764i −0.223950 + 0.835791i 0.758873 + 0.651239i \(0.225750\pi\)
−0.982823 + 0.184553i \(0.940916\pi\)
\(578\) −1.29410 + 4.82963i −0.0538273 + 0.200886i
\(579\) 6.92820 12.0000i 0.287926 0.498703i
\(580\) 0 0
\(581\) 4.50000 12.9904i 0.186691 0.538932i
\(582\) −8.48528 + 8.48528i −0.351726 + 0.351726i
\(583\) 7.72741 2.07055i 0.320036 0.0857535i
\(584\) 15.5885 + 27.0000i 0.645055 + 1.11727i
\(585\) 0 0
\(586\) 18.0000 + 10.3923i 0.743573 + 0.429302i
\(587\) −7.34847 7.34847i −0.303304 0.303304i 0.539001 0.842305i \(-0.318802\pi\)
−0.842305 + 0.539001i \(0.818802\pi\)
\(588\) 4.77886 11.1428i 0.197077 0.459522i
\(589\) 36.0000i 1.48335i
\(590\) 0 0
\(591\) 30.0000 17.3205i 1.23404 0.712470i
\(592\) 3.86370 + 1.03528i 0.158797 + 0.0425496i
\(593\) 6.27603 + 23.4225i 0.257726 + 0.961845i 0.966554 + 0.256464i \(0.0825575\pi\)
−0.708828 + 0.705381i \(0.750776\pi\)
\(594\) −20.7846 −0.852803
\(595\) 0 0
\(596\) 17.0000 0.696347
\(597\) −6.21166 23.1822i −0.254226 0.948785i
\(598\) −23.4225 6.27603i −0.957815 0.256646i
\(599\) 6.92820 4.00000i 0.283079 0.163436i −0.351738 0.936099i \(-0.614409\pi\)
0.634816 + 0.772663i \(0.281076\pi\)
\(600\) 0 0
\(601\) 34.6410i 1.41304i 0.707695 + 0.706518i \(0.249735\pi\)
−0.707695 + 0.706518i \(0.750265\pi\)
\(602\) −0.947343 + 13.1948i −0.0386108 + 0.537780i
\(603\) 0 0
\(604\) 5.19615 + 3.00000i 0.211428 + 0.122068i
\(605\) 0 0
\(606\) 1.50000 + 2.59808i 0.0609333 + 0.105540i
\(607\) 11.7112 3.13801i 0.475344 0.127368i −0.0131898 0.999913i \(-0.504199\pi\)
0.488534 + 0.872545i \(0.337532\pi\)
\(608\) −12.2474 + 12.2474i −0.496700 + 0.496700i
\(609\) 0.866025 + 4.50000i 0.0350931 + 0.182349i
\(610\) 0 0
\(611\) 6.00000 10.3923i 0.242734 0.420428i
\(612\) 0 0
\(613\) −10.8704 + 40.5689i −0.439051 + 1.63856i 0.292130 + 0.956379i \(0.405636\pi\)
−0.731181 + 0.682183i \(0.761031\pi\)
\(614\) −7.79423 + 13.5000i −0.314549 + 0.544816i
\(615\) 0 0
\(616\) 6.00000 + 31.1769i 0.241747 + 1.25615i
\(617\) 28.2843 28.2843i 1.13868 1.13868i 0.149995 0.988687i \(-0.452074\pi\)
0.988687 0.149995i \(-0.0479258\pi\)
\(618\) −26.0800 + 6.98811i −1.04909 + 0.281103i
\(619\) −6.92820 12.0000i −0.278468 0.482321i 0.692536 0.721383i \(-0.256493\pi\)
−0.971004 + 0.239062i \(0.923160\pi\)
\(620\) 0 0
\(621\) 31.5000 + 18.1865i 1.26405 + 0.729800i
\(622\) −17.1464 17.1464i −0.687509 0.687509i
\(623\) 2.29719 31.9957i 0.0920348 1.28188i
\(624\) 6.00000i 0.240192i
\(625\) 0 0
\(626\) 24.0000 13.8564i 0.959233 0.553813i
\(627\) 23.1822 + 6.21166i 0.925809 + 0.248070i
\(628\) −3.58630 13.3843i −0.143109 0.534090i
\(629\) 13.8564 0.552491
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 1.55291 + 5.79555i 0.0617716 + 0.230535i
\(633\) −30.1146 8.06918i −1.19695 0.320721i
\(634\) 29.4449 17.0000i 1.16940 0.675156i
\(635\) 0 0
\(636\) 3.46410i 0.137361i
\(637\) −2.86559 24.0788i −0.113539 0.954037i
\(638\) −2.82843 2.82843i −0.111979 0.111979i
\(639\) 0 0
\(640\) 0 0
\(641\) −14.5000 25.1147i −0.572716 0.991972i −0.996286 0.0861092i \(-0.972557\pi\)
0.423570 0.905863i \(-0.360777\pi\)
\(642\) −1.67303 + 0.448288i −0.0660293 + 0.0176925i
\(643\) 26.9444 26.9444i 1.06258 1.06258i 0.0646766 0.997906i \(-0.479398\pi\)
0.997906 0.0646766i \(-0.0206016\pi\)
\(644\) 6.06218 17.5000i 0.238883 0.689597i
\(645\) 0 0
\(646\) 6.00000 10.3923i 0.236067 0.408880i
\(647\) −3.13801 + 11.7112i −0.123368 + 0.460416i −0.999776 0.0211531i \(-0.993266\pi\)
0.876408 + 0.481569i \(0.159933\pi\)
\(648\) 6.98811 26.0800i 0.274519 1.02452i
\(649\) 6.92820 12.0000i 0.271956 0.471041i
\(650\) 0 0
\(651\) −36.0000 + 31.1769i −1.41095 + 1.22192i
\(652\) −8.48528 + 8.48528i −0.332309 + 0.332309i
\(653\) −21.2504 + 5.69402i −0.831591 + 0.222824i −0.649408 0.760440i \(-0.724983\pi\)
−0.182183 + 0.983265i \(0.558316\pi\)
\(654\) 2.59808 + 4.50000i 0.101593 + 0.175964i
\(655\) 0 0
\(656\) −7.50000 4.33013i −0.292826 0.169063i
\(657\) 0 0
\(658\) −7.58871 5.13922i −0.295839 0.200348i
\(659\) 26.0000i 1.01282i −0.862294 0.506408i \(-0.830973\pi\)
0.862294 0.506408i \(-0.169027\pi\)
\(660\) 0 0
\(661\) 1.50000 0.866025i 0.0583432 0.0336845i −0.470545 0.882376i \(-0.655943\pi\)
0.528888 + 0.848692i \(0.322609\pi\)
\(662\) 5.79555 + 1.55291i 0.225251 + 0.0603557i
\(663\) 5.37945 + 20.0764i 0.208921 + 0.779702i
\(664\) −15.5885 −0.604949
\(665\) 0 0
\(666\) 0 0
\(667\) 1.81173 + 6.76148i 0.0701506 + 0.261806i
\(668\) −18.4034 4.93117i −0.712047 0.190793i
\(669\) 5.19615 3.00000i 0.200895 0.115987i
\(670\) 0 0
\(671\) 6.92820i 0.267460i
\(672\) −22.8541 1.64085i −0.881614 0.0632970i
\(673\) −28.2843 28.2843i −1.09028 1.09028i −0.995498 0.0947803i \(-0.969785\pi\)
−0.0947803 0.995498i \(-0.530215\pi\)
\(674\) −8.66025 5.00000i −0.333581 0.192593i
\(675\) 0 0
\(676\) 0.500000 + 0.866025i 0.0192308 + 0.0333087i
\(677\) 36.8067 9.86233i 1.41460 0.379040i 0.531033 0.847351i \(-0.321804\pi\)
0.883564 + 0.468311i \(0.155137\pi\)
\(678\) 12.2474 12.2474i 0.470360 0.470360i
\(679\) −17.3205 6.00000i −0.664700 0.230259i
\(680\) 0 0
\(681\) −3.00000 + 5.19615i −0.114960 + 0.199117i
\(682\) 10.7589 40.1528i 0.411980 1.53753i
\(683\) −4.39992 + 16.4207i −0.168358 + 0.628322i 0.829230 + 0.558908i \(0.188780\pi\)
−0.997588 + 0.0694139i \(0.977887\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −18.5000 + 0.866025i −0.706333 + 0.0330650i
\(687\) 16.9706 16.9706i 0.647467 0.647467i
\(688\) 4.82963 1.29410i 0.184128 0.0493369i
\(689\) 3.46410 + 6.00000i 0.131972 + 0.228582i
\(690\) 0 0
\(691\) 24.0000 + 13.8564i 0.913003 + 0.527123i 0.881396 0.472378i \(-0.156604\pi\)
0.0316069 + 0.999500i \(0.489938\pi\)
\(692\) 4.89898 + 4.89898i 0.186231 + 0.186231i
\(693\) 0 0
\(694\) 19.0000i 0.721230i
\(695\) 0 0
\(696\) 4.50000 2.59808i 0.170572 0.0984798i
\(697\) −28.9778 7.76457i −1.09761 0.294104i
\(698\) −6.72432 25.0955i −0.254519 0.949878i
\(699\) −3.46410 −0.131024
\(700\) 0 0
\(701\) 17.0000 0.642081 0.321041 0.947065i \(-0.395967\pi\)
0.321041 + 0.947065i \(0.395967\pi\)
\(702\) −4.65874 17.3867i −0.175833 0.656217i
\(703\) 13.3843 + 3.58630i 0.504797 + 0.135260i
\(704\) 24.2487 14.0000i 0.913908 0.527645i
\(705\) 0 0
\(706\) 24.2487i 0.912612i
\(707\) −2.56961 + 3.79435i −0.0966401 + 0.142701i
\(708\) 4.24264 + 4.24264i 0.159448 + 0.159448i
\(709\) −28.5788 16.5000i −1.07330 0.619671i −0.144219 0.989546i \(-0.546067\pi\)
−0.929081 + 0.369875i \(0.879400\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −35.1337 + 9.41404i −1.31669 + 0.352806i
\(713\) −51.4393 + 51.4393i −1.92642 + 1.92642i
\(714\) 15.5885 3.00000i 0.583383 0.112272i
\(715\) 0 0
\(716\) −11.0000 + 19.0526i −0.411089 + 0.712028i
\(717\) 11.6555 43.4988i 0.435282 1.62449i
\(718\) −0.517638 + 1.93185i −0.0193181 + 0.0720961i
\(719\) −10.3923 + 18.0000i −0.387568 + 0.671287i −0.992122 0.125277i \(-0.960018\pi\)
0.604554 + 0.796564i \(0.293351\pi\)
\(720\) 0 0
\(721\) −27.0000 31.1769i −1.00553 1.16109i
\(722\) −4.94975 + 4.94975i −0.184211 + 0.184211i
\(723\) −11.5911 + 3.10583i −0.431078 + 0.115507i
\(724\) −4.33013 7.50000i −0.160928 0.278735i
\(725\) 0 0
\(726\) −7.50000 4.33013i −0.278351 0.160706i
\(727\) −1.22474 1.22474i −0.0454233 0.0454233i 0.684030 0.729454i \(-0.260226\pi\)
−0.729454 + 0.684030i \(0.760226\pi\)
\(728\) −24.7351 + 12.0072i −0.916745 + 0.445017i
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 15.0000 8.66025i 0.554795 0.320311i
\(732\) 2.89778 + 0.776457i 0.107105 + 0.0286987i
\(733\) −7.17260 26.7685i −0.264926 0.988718i −0.962296 0.272006i \(-0.912313\pi\)
0.697369 0.716712i \(-0.254354\pi\)
\(734\) 5.19615 0.191793
\(735\) 0 0
\(736\) −35.0000 −1.29012
\(737\) 9.31749 + 34.7733i 0.343214 + 1.28089i
\(738\) 0 0
\(739\) −27.7128 + 16.0000i −1.01943 + 0.588570i −0.913939 0.405851i \(-0.866975\pi\)
−0.105493 + 0.994420i \(0.533642\pi\)
\(740\) 0 0
\(741\) 20.7846i 0.763542i
\(742\) 4.76028 2.31079i 0.174755 0.0848317i
\(743\) 3.53553 + 3.53553i 0.129706 + 0.129706i 0.768980 0.639273i \(-0.220765\pi\)
−0.639273 + 0.768980i \(0.720765\pi\)
\(744\) 46.7654 + 27.0000i 1.71450 + 0.989868i
\(745\) 0 0
\(746\) −6.00000 10.3923i −0.219676 0.380489i
\(747\) 0 0
\(748\) 9.79796 9.79796i 0.358249 0.358249i
\(749\) −1.73205 2.00000i −0.0632878 0.0730784i
\(750\) 0 0
\(751\) −12.0000 + 20.7846i −0.437886 + 0.758441i −0.997526 0.0702946i \(-0.977606\pi\)
0.559640 + 0.828736i \(0.310939\pi\)
\(752\) −0.896575 + 3.34607i −0.0326947 + 0.122018i
\(753\) 7.76457 28.9778i 0.282957 1.05601i
\(754\) 1.73205 3.00000i 0.0630776 0.109254i
\(755\) 0 0
\(756\) 13.5000 2.59808i 0.490990 0.0944911i
\(757\) −7.07107 + 7.07107i −0.257002 + 0.257002i −0.823834 0.566831i \(-0.808169\pi\)
0.566831 + 0.823834i \(0.308169\pi\)
\(758\) 5.79555 1.55291i 0.210504 0.0564044i
\(759\) 24.2487 + 42.0000i 0.880172 + 1.52450i
\(760\) 0 0
\(761\) −6.00000 3.46410i −0.217500 0.125574i 0.387292 0.921957i \(-0.373410\pi\)
−0.604792 + 0.796383i \(0.706744\pi\)
\(762\) 0 0
\(763\) −4.45069 + 6.57201i −0.161126 + 0.237923i
\(764\) 4.00000i 0.144715i
\(765\) 0 0
\(766\) 16.5000 9.52628i 0.596169 0.344198i
\(767\) 11.5911 + 3.10583i 0.418531 + 0.112145i
\(768\) 7.62089 + 28.4416i 0.274995 + 1.02630i
\(769\) −34.6410 −1.24919 −0.624593 0.780950i \(-0.714735\pi\)
−0.624593 + 0.780950i \(0.714735\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) −2.07055 7.72741i −0.0745208 0.278115i
\(773\) 43.4988 + 11.6555i 1.56454 + 0.419219i 0.934099 0.357015i \(-0.116205\pi\)
0.630446 + 0.776233i \(0.282872\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 20.7846i 0.746124i
\(777\) 8.00481 + 16.4901i 0.287171 + 0.591579i
\(778\) −1.41421 1.41421i −0.0507020 0.0507020i
\(779\) −25.9808 15.0000i −0.930857 0.537431i
\(780\) 0 0
\(781\) −4.00000 6.92820i −0.143131 0.247911i
\(782\) 23.4225 6.27603i 0.837585 0.224430i
\(783\) −3.67423 + 3.67423i −0.131306 + 0.131306i
\(784\) 2.59808 + 6.50000i 0.0927884 + 0.232143i
\(785\) 0 0
\(786\) 6.00000 10.3923i 0.214013 0.370681i
\(787\) −7.62089 + 28.4416i −0.271655 + 1.01383i 0.686394 + 0.727230i \(0.259192\pi\)
−0.958050 + 0.286602i \(0.907474\pi\)
\(788\) 5.17638 19.3185i 0.184401 0.688194i
\(789\) 11.2583 19.5000i 0.400807 0.694218i
\(790\) 0 0
\(791\) 25.0000 + 8.66025i 0.888898 + 0.307923i
\(792\) 0 0
\(793\) 5.79555 1.55291i 0.205806 0.0551456i
\(794\) −6.92820 12.0000i −0.245873 0.425864i
\(795\) 0 0
\(796\) −12.0000 6.92820i −0.425329 0.245564i
\(797\) 29.3939 + 29.3939i 1.04118 + 1.04118i 0.999115 + 0.0420699i \(0.0133952\pi\)
0.0420699 + 0.999115i \(0.486605\pi\)
\(798\) 15.8338 + 1.13681i 0.560509 + 0.0402427i
\(799\) 12.0000i 0.424529i
\(800\) 0 0
\(801\) 0 0
\(802\) −18.3526 4.91756i −0.648053 0.173645i
\(803\) −10.7589 40.1528i −0.379674 1.41696i
\(804\) −15.5885 −0.549762
\(805\) 0 0
\(806\) 36.0000 1.26805
\(807\) −10.0939 37.6711i −0.355324 1.32609i
\(808\) 5.01910 + 1.34486i 0.176571 + 0.0473121i
\(809\) −14.7224 + 8.50000i −0.517613 + 0.298844i −0.735958 0.677028i \(-0.763268\pi\)
0.218344 + 0.975872i \(0.429934\pi\)
\(810\) 0 0
\(811\) 17.3205i 0.608205i 0.952639 + 0.304103i \(0.0983566\pi\)
−0.952639 + 0.304103i \(0.901643\pi\)
\(812\) 2.19067 + 1.48356i 0.0768775 + 0.0520629i
\(813\) 12.7279 + 12.7279i 0.446388 + 0.446388i
\(814\) −13.8564 8.00000i −0.485667 0.280400i
\(815\) 0 0
\(816\) −3.00000 5.19615i −0.105021 0.181902i
\(817\) 16.7303 4.48288i 0.585320 0.156836i
\(818\) −8.57321 + 8.57321i −0.299755 + 0.299755i
\(819\) 0 0
\(820\) 0 0
\(821\) 13.0000 22.5167i 0.453703 0.785837i −0.544909 0.838495i \(-0.683436\pi\)
0.998613 + 0.0526580i \(0.0167693\pi\)
\(822\) −7.17260 + 26.7685i −0.250173 + 0.933659i
\(823\) −6.98811 + 26.0800i −0.243590 + 0.909092i 0.730496 + 0.682917i \(0.239289\pi\)
−0.974087 + 0.226175i \(0.927378\pi\)
\(824\) −23.3827 + 40.5000i −0.814574 + 1.41088i
\(825\) 0 0
\(826\) 3.00000 8.66025i 0.104383 0.301329i
\(827\) −24.7487 + 24.7487i −0.860598 + 0.860598i −0.991408 0.130810i \(-0.958242\pi\)
0.130810 + 0.991408i \(0.458242\pi\)
\(828\) 0 0
\(829\) 10.3923 + 18.0000i 0.360940 + 0.625166i 0.988116 0.153712i \(-0.0491227\pi\)
−0.627176 + 0.778878i \(0.715789\pi\)
\(830\) 0 0
\(831\) 9.00000 + 5.19615i 0.312207 + 0.180253i
\(832\) 17.1464 + 17.1464i 0.594445 + 0.594445i
\(833\) 14.5211 + 19.4201i 0.503125 + 0.672865i
\(834\) 0 0
\(835\) 0 0
\(836\) 12.0000 6.92820i 0.415029 0.239617i
\(837\) −52.1600 13.9762i −1.80291 0.483089i
\(838\) 8.96575 + 33.4607i 0.309717 + 1.15588i
\(839\) 34.6410 1.19594 0.597970 0.801518i \(-0.295974\pi\)
0.597970 + 0.801518i \(0.295974\pi\)
\(840\) 0 0
\(841\) 28.0000 0.965517
\(842\) 1.81173 + 6.76148i 0.0624365 + 0.233016i
\(843\) 36.8067 + 9.86233i 1.26769 + 0.339677i
\(844\) −15.5885 + 9.00000i −0.536577 + 0.309793i
\(845\) 0 0
\(846\) 0 0
\(847\) 0.947343 13.1948i 0.0325511 0.453378i
\(848\) −1.41421 1.41421i −0.0485643 0.0485643i
\(849\) 15.5885 + 9.00000i 0.534994 + 0.308879i
\(850\) 0 0
\(851\) 14.0000 + 24.2487i 0.479914 + 0.831235i
\(852\) 3.34607 0.896575i 0.114634 0.0307162i
\(853\) 26.9444 26.9444i 0.922558 0.922558i −0.0746514 0.997210i \(-0.523784\pi\)
0.997210 + 0.0746514i \(0.0237844\pi\)
\(854\) −0.866025 4.50000i −0.0296348 0.153987i
\(855\) 0 0
\(856\) −1.50000 + 2.59808i −0.0512689 + 0.0888004i
\(857\) −5.37945 + 20.0764i −0.183759 + 0.685796i 0.811134 + 0.584860i \(0.198851\pi\)
−0.994893 + 0.100936i \(0.967816\pi\)
\(858\) 6.21166 23.1822i 0.212062 0.791428i
\(859\) 24.2487 42.0000i 0.827355 1.43302i −0.0727505 0.997350i \(-0.523178\pi\)
0.900106 0.435671i \(-0.143489\pi\)
\(860\) 0 0
\(861\) −7.50000 38.9711i −0.255599 1.32813i
\(862\) −11.3137 + 11.3137i −0.385346 + 0.385346i
\(863\) 12.5570 3.36465i 0.427446 0.114534i −0.0386808 0.999252i \(-0.512316\pi\)
0.466127 + 0.884718i \(0.345649\pi\)
\(864\) −12.9904 22.5000i −0.441942 0.765466i
\(865\) 0 0
\(866\) −27.0000 15.5885i −0.917497 0.529717i
\(867\) 6.12372 + 6.12372i 0.207973 + 0.207973i
\(868\) −1.96902 + 27.4249i −0.0668328 + 0.930860i
\(869\) 8.00000i 0.271381i
\(870\) 0 0
\(871\) −27.0000 + 15.5885i −0.914860 + 0.528195i
\(872\) 8.69333 + 2.32937i 0.294393 + 0.0788825i
\(873\) 0 0
\(874\) 24.2487 0.820225
\(875\) 0 0
\(876\) 18.0000 0.608164
\(877\) −13.9762 52.1600i −0.471944 1.76132i −0.632775 0.774336i \(-0.718084\pi\)
0.160831 0.986982i \(-0.448583\pi\)
\(878\) −20.0764 5.37945i −0.677545 0.181548i
\(879\) 31.1769 18.0000i 1.05157 0.607125i
\(880\) 0 0
\(881\) 8.66025i 0.291771i 0.989301 + 0.145886i \(0.0466032\pi\)
−0.989301 + 0.145886i \(0.953397\pi\)
\(882\) 0 0
\(883\) 14.1421 + 14.1421i 0.475921 + 0.475921i 0.903824 0.427904i \(-0.140748\pi\)
−0.427904 + 0.903824i \(0.640748\pi\)
\(884\) 10.3923 + 6.00000i 0.349531 + 0.201802i
\(885\) 0 0
\(886\) 6.50000 + 11.2583i 0.218372 + 0.378231i
\(887\) −21.7494 + 5.82774i −0.730274 + 0.195676i −0.604751 0.796414i \(-0.706728\pi\)
−0.125523 + 0.992091i \(0.540061\pi\)
\(888\) 14.6969 14.6969i 0.493197 0.493197i
\(889\) 0 0
\(890\) 0 0
\(891\) −18.0000 + 31.1769i −0.603023 + 1.04447i
\(892\) 0.896575 3.34607i 0.0300196 0.112035i
\(893\) −3.10583 + 11.5911i −0.103933 + 0.387882i
\(894\) −14.7224 + 25.5000i −0.492392 + 0.852848i
\(895\) 0 0
\(896\) −6.00000 + 5.19615i −0.200446 + 0.173591i
\(897\) −29.6985 + 29.6985i −0.991604 + 0.991604i
\(898\) 29.9437 8.02339i 0.999234 0.267744i
\(899\) −5.19615 9.00000i −0.173301 0.300167i
\(900\) 0 0
\(901\) −6.00000 3.46410i −0.199889 0.115406i
\(902\) 24.4949 + 24.4949i 0.815591 + 0.815591i
\(903\) 18.9718 + 12.8480i 0.631341 + 0.427556i
\(904\) 30.0000i 0.997785i
\(905\) 0 0
\(906\) −9.00000 + 5.19615i −0.299005 + 0.172631i
\(907\) 39.6030 + 10.6116i 1.31499 + 0.352352i 0.847100 0.531433i \(-0.178346\pi\)
0.467894 + 0.883784i \(0.345013\pi\)
\(908\) 0.896575 + 3.34607i 0.0297539 + 0.111043i
\(909\) 0 0
\(910\) 0 0
\(911\) −28.0000 −0.927681 −0.463841 0.885919i \(-0.653529\pi\)
−0.463841 + 0.885919i \(0.653529\pi\)
\(912\) −1.55291 5.79555i −0.0514221 0.191910i
\(913\) 20.0764 + 5.37945i 0.664432 + 0.178034i
\(914\) −13.8564 + 8.00000i −0.458329 + 0.264616i
\(915\) 0 0
\(916\) 13.8564i 0.457829i
\(917\) 18.2832 + 1.31268i 0.603766 + 0.0433484i
\(918\) 12.7279 + 12.7279i 0.420084 + 0.420084i
\(919\) −15.5885 9.00000i −0.514216 0.296883i 0.220349 0.975421i \(-0.429280\pi\)
−0.734565 + 0.678538i \(0.762614\pi\)
\(920\) 0 0
\(921\) 13.5000 + 23.3827i 0.444840 + 0.770486i
\(922\) −33.4607 + 8.96575i −1.10197 + 0.295271i
\(923\) 4.89898 4.89898i 0.161252 0.161252i
\(924\) 17.3205 + 6.00000i 0.569803 + 0.197386i
\(925\) 0 0
\(926\) −7.50000 + 12.9904i −0.246465 + 0.426890i
\(927\) 0 0
\(928\) 1.29410 4.82963i 0.0424808 0.158540i
\(929\) 11.2583 19.5000i 0.369374 0.639774i −0.620094 0.784528i \(-0.712906\pi\)
0.989468 + 0.144753i \(0.0462389\pi\)
\(930\) 0 0
\(931\) 9.00000 + 22.5167i 0.294963 + 0.737954i
\(932\) −1.41421 + 1.41421i −0.0463241 + 0.0463241i
\(933\) −40.5689 + 10.8704i −1.32817 + 0.355881i
\(934\) −2.59808 4.50000i −0.0850117 0.147244i
\(935\) 0 0
\(936\) 0 0
\(937\) −19.5959 19.5959i −0.640171 0.640171i 0.310427 0.950597i \(-0.399528\pi\)
−0.950597 + 0.310427i \(0.899528\pi\)
\(938\) 10.3986 + 21.4213i 0.339525 + 0.699429i
\(939\) 48.0000i 1.56642i
\(940\) 0 0
\(941\) −36.0000 + 20.7846i −1.17357 + 0.677559i −0.954517 0.298155i \(-0.903629\pi\)
−0.219049 + 0.975714i \(0.570295\pi\)
\(942\) 23.1822 + 6.21166i 0.755318 + 0.202387i
\(943\) −15.6901 58.5561i −0.510939 1.90685i
\(944\) −3.46410 −0.112747
\(945\) 0 0
\(946\) −20.0000 −0.650256
\(947\) 2.84701 + 10.6252i 0.0925154 + 0.345272i 0.996631 0.0820157i \(-0.0261358\pi\)
−0.904116 + 0.427288i \(0.859469\pi\)
\(948\) 3.34607 + 0.896575i 0.108675 + 0.0291194i
\(949\) 31.1769 18.0000i 1.01205 0.584305i
\(950\) 0 0
\(951\) 58.8897i 1.90963i
\(952\) 15.4176 22.7661i 0.499689 0.737854i
\(953\) −28.2843 28.2843i −0.916217 0.916217i 0.0805344 0.996752i \(-0.474337\pi\)
−0.996752 + 0.0805344i \(0.974337\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −13.0000 22.5167i −0.420450 0.728241i
\(957\) −6.69213 + 1.79315i −0.216326 + 0.0579643i
\(958\) −26.9444 + 26.9444i −0.870534 + 0.870534i
\(959\) −41.5692 + 8.00000i −1.34234 + 0.258333i
\(960\) 0 0
\(961\) 38.5000 66.6840i 1.24194 2.15110i
\(962\) 3.58630 13.3843i 0.115627 0.431526i
\(963\) 0 0
\(964\) −3.46410 + 6.00000i −0.111571 + 0.193247i
\(965\) 0 0
\(966\) 21.0000 + 24.2487i 0.675664 + 0.780189i
\(967\) −10.6066 + 10.6066i −0.341085 + 0.341085i −0.856775 0.515690i \(-0.827536\pi\)
0.515690 + 0.856775i \(0.327536\pi\)
\(968\) −14.4889 + 3.88229i −0.465690 + 0.124781i
\(969\) −10.3923 18.0000i −0.333849 0.578243i
\(970\) 0 0
\(971\) 24.0000 + 13.8564i 0.770197 + 0.444673i 0.832945 0.553356i \(-0.186653\pi\)
−0.0627481 + 0.998029i \(0.519986\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4.00000i 0.128168i
\(975\) 0 0
\(976\) −1.50000 + 0.866025i −0.0480138 + 0.0277208i
\(977\) −3.86370 1.03528i −0.123611 0.0331214i 0.196483 0.980507i \(-0.437048\pi\)
−0.320094 + 0.947386i \(0.603715\pi\)
\(978\) −5.37945 20.0764i −0.172016 0.641972i
\(979\) 48.4974 1.54998
\(980\) 0 0
\(981\) 0 0
\(982\) 0.517638 + 1.93185i 0.0165185 + 0.0616479i
\(983\) 18.4034 + 4.93117i 0.586976 + 0.157280i 0.540071 0.841620i \(-0.318397\pi\)
0.0469052 + 0.998899i \(0.485064\pi\)
\(984\) −38.9711 + 22.5000i −1.24235 + 0.717274i
\(985\) 0 0
\(986\) 3.46410i 0.110319i
\(987\) −14.2808 + 6.93237i −0.454564 + 0.220660i
\(988\) 8.48528 + 8.48528i 0.269953 + 0.269953i
\(989\) 30.3109 + 17.5000i 0.963830 + 0.556468i
\(990\) 0 0
\(991\) 3.00000 + 5.19615i 0.0952981 + 0.165061i 0.909733 0.415194i \(-0.136286\pi\)
−0.814435 + 0.580255i \(0.802953\pi\)
\(992\) 50.1910 13.4486i 1.59357 0.426994i
\(993\) 7.34847 7.34847i 0.233197 0.233197i
\(994\) −3.46410 4.00000i −0.109875 0.126872i
\(995\) 0 0
\(996\) −4.50000 + 7.79423i −0.142588 + 0.246970i
\(997\) −9.86233 + 36.8067i −0.312343 + 1.16568i 0.614095 + 0.789232i \(0.289521\pi\)
−0.926438 + 0.376448i \(0.877145\pi\)
\(998\) −3.10583 + 11.5911i −0.0983133 + 0.366910i
\(999\) −10.3923 + 18.0000i −0.328798 + 0.569495i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.2.o.c.68.2 yes 8
5.2 odd 4 inner 175.2.o.c.82.1 yes 8
5.3 odd 4 inner 175.2.o.c.82.2 yes 8
5.4 even 2 inner 175.2.o.c.68.1 8
7.3 odd 6 inner 175.2.o.c.143.1 yes 8
35.3 even 12 inner 175.2.o.c.157.1 yes 8
35.17 even 12 inner 175.2.o.c.157.2 yes 8
35.24 odd 6 inner 175.2.o.c.143.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.2.o.c.68.1 8 5.4 even 2 inner
175.2.o.c.68.2 yes 8 1.1 even 1 trivial
175.2.o.c.82.1 yes 8 5.2 odd 4 inner
175.2.o.c.82.2 yes 8 5.3 odd 4 inner
175.2.o.c.143.1 yes 8 7.3 odd 6 inner
175.2.o.c.143.2 yes 8 35.24 odd 6 inner
175.2.o.c.157.1 yes 8 35.3 even 12 inner
175.2.o.c.157.2 yes 8 35.17 even 12 inner