Properties

Label 175.4.e.f.151.2
Level $175$
Weight $4$
Character 175.151
Analytic conductor $10.325$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(51,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.51");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 46 x^{14} - 7 x^{13} + 1485 x^{12} - 175 x^{11} + 21701 x^{10} + 4916 x^{9} + \cdots + 1498176 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.2
Root \(-1.46047 - 2.52961i\) of defining polynomial
Character \(\chi\) \(=\) 175.151
Dual form 175.4.e.f.51.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.46047 - 2.52961i) q^{2} +(-5.02414 + 8.70206i) q^{3} +(-0.265967 + 0.460668i) q^{4} +29.3505 q^{6} +(-18.3734 - 2.32782i) q^{7} -21.8138 q^{8} +(-36.9839 - 64.0580i) q^{9} +(-7.79680 + 13.5045i) q^{11} +(-2.67251 - 4.62892i) q^{12} +63.9123 q^{13} +(20.9454 + 49.8773i) q^{14} +(33.9863 + 58.8659i) q^{16} +(5.28883 - 9.16053i) q^{17} +(-108.028 + 187.110i) q^{18} +(19.3864 + 33.5782i) q^{19} +(112.567 - 148.191i) q^{21} +45.5481 q^{22} +(-12.0614 - 20.8909i) q^{23} +(109.596 - 189.825i) q^{24} +(-93.3422 - 161.673i) q^{26} +471.945 q^{27} +(5.95906 - 7.84491i) q^{28} +226.731 q^{29} +(71.5651 - 123.954i) q^{31} +(12.0168 - 20.8136i) q^{32} +(-78.3444 - 135.697i) q^{33} -30.8968 q^{34} +39.3460 q^{36} +(-142.626 - 247.036i) q^{37} +(56.6265 - 98.0800i) q^{38} +(-321.104 + 556.168i) q^{39} +32.0457 q^{41} +(-539.268 - 68.3225i) q^{42} +235.711 q^{43} +(-4.14738 - 7.18348i) q^{44} +(-35.2306 + 61.0212i) q^{46} +(72.1481 + 124.964i) q^{47} -683.006 q^{48} +(332.163 + 85.5397i) q^{49} +(53.1436 + 92.0475i) q^{51} +(-16.9985 + 29.4423i) q^{52} +(159.291 - 275.900i) q^{53} +(-689.263 - 1193.84i) q^{54} +(400.794 + 50.7786i) q^{56} -389.599 q^{57} +(-331.135 - 573.542i) q^{58} +(-224.161 + 388.258i) q^{59} +(-83.3473 - 144.362i) q^{61} -418.076 q^{62} +(530.404 + 1263.05i) q^{63} +473.580 q^{64} +(-228.840 + 396.362i) q^{66} +(370.521 - 641.761i) q^{67} +(2.81331 + 4.87279i) q^{68} +242.392 q^{69} -373.652 q^{71} +(806.760 + 1397.35i) q^{72} +(118.657 - 205.520i) q^{73} +(-416.604 + 721.580i) q^{74} -20.6245 q^{76} +(174.690 - 229.973i) q^{77} +1875.86 q^{78} +(232.695 + 403.040i) q^{79} +(-1372.55 + 2377.33i) q^{81} +(-46.8018 - 81.0631i) q^{82} -691.289 q^{83} +(38.3277 + 91.2700i) q^{84} +(-344.249 - 596.257i) q^{86} +(-1139.13 + 1973.03i) q^{87} +(170.078 - 294.584i) q^{88} +(-506.590 - 877.440i) q^{89} +(-1174.28 - 148.776i) q^{91} +12.8317 q^{92} +(719.105 + 1245.53i) q^{93} +(210.741 - 365.014i) q^{94} +(120.748 + 209.141i) q^{96} +1151.67 q^{97} +(-268.732 - 965.172i) q^{98} +1153.42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{2} - 6 q^{3} - 27 q^{4} + 8 q^{6} - 16 q^{7} - 84 q^{8} - 42 q^{9} - 103 q^{12} + 276 q^{13} - 65 q^{14} - 191 q^{16} - 138 q^{17} - 81 q^{18} + 42 q^{19} + 302 q^{21} + 254 q^{22} - 124 q^{23}+ \cdots + 8172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46047 2.52961i −0.516355 0.894354i −0.999820 0.0189897i \(-0.993955\pi\)
0.483464 0.875364i \(-0.339378\pi\)
\(3\) −5.02414 + 8.70206i −0.966895 + 1.67471i −0.262462 + 0.964942i \(0.584534\pi\)
−0.704434 + 0.709770i \(0.748799\pi\)
\(4\) −0.265967 + 0.460668i −0.0332459 + 0.0575835i
\(5\) 0 0
\(6\) 29.3505 1.99705
\(7\) −18.3734 2.32782i −0.992070 0.125690i
\(8\) −21.8138 −0.964044
\(9\) −36.9839 64.0580i −1.36977 2.37252i
\(10\) 0 0
\(11\) −7.79680 + 13.5045i −0.213711 + 0.370159i −0.952873 0.303369i \(-0.901889\pi\)
0.739162 + 0.673528i \(0.235222\pi\)
\(12\) −2.67251 4.62892i −0.0642905 0.111354i
\(13\) 63.9123 1.36354 0.681772 0.731565i \(-0.261210\pi\)
0.681772 + 0.731565i \(0.261210\pi\)
\(14\) 20.9454 + 49.8773i 0.399849 + 0.952162i
\(15\) 0 0
\(16\) 33.9863 + 58.8659i 0.531035 + 0.919780i
\(17\) 5.28883 9.16053i 0.0754547 0.130691i −0.825829 0.563920i \(-0.809292\pi\)
0.901284 + 0.433229i \(0.142626\pi\)
\(18\) −108.028 + 187.110i −1.41458 + 2.45012i
\(19\) 19.3864 + 33.5782i 0.234081 + 0.405440i 0.959005 0.283389i \(-0.0914586\pi\)
−0.724924 + 0.688829i \(0.758125\pi\)
\(20\) 0 0
\(21\) 112.567 148.191i 1.16972 1.53990i
\(22\) 45.5481 0.441404
\(23\) −12.0614 20.8909i −0.109346 0.189394i 0.806159 0.591699i \(-0.201542\pi\)
−0.915506 + 0.402305i \(0.868209\pi\)
\(24\) 109.596 189.825i 0.932130 1.61450i
\(25\) 0 0
\(26\) −93.3422 161.673i −0.704073 1.21949i
\(27\) 471.945 3.36392
\(28\) 5.95906 7.84491i 0.0402199 0.0529482i
\(29\) 226.731 1.45182 0.725912 0.687787i \(-0.241418\pi\)
0.725912 + 0.687787i \(0.241418\pi\)
\(30\) 0 0
\(31\) 71.5651 123.954i 0.414628 0.718157i −0.580761 0.814074i \(-0.697245\pi\)
0.995389 + 0.0959171i \(0.0305784\pi\)
\(32\) 12.0168 20.8136i 0.0663838 0.114980i
\(33\) −78.3444 135.697i −0.413273 0.715810i
\(34\) −30.8968 −0.155846
\(35\) 0 0
\(36\) 39.3460 0.182157
\(37\) −142.626 247.036i −0.633720 1.09764i −0.986785 0.162036i \(-0.948194\pi\)
0.353065 0.935599i \(-0.385140\pi\)
\(38\) 56.6265 98.0800i 0.241738 0.418702i
\(39\) −321.104 + 556.168i −1.31840 + 2.28354i
\(40\) 0 0
\(41\) 32.0457 0.122066 0.0610328 0.998136i \(-0.480561\pi\)
0.0610328 + 0.998136i \(0.480561\pi\)
\(42\) −539.268 68.3225i −1.98121 0.251009i
\(43\) 235.711 0.835942 0.417971 0.908460i \(-0.362741\pi\)
0.417971 + 0.908460i \(0.362741\pi\)
\(44\) −4.14738 7.18348i −0.0142100 0.0246125i
\(45\) 0 0
\(46\) −35.2306 + 61.0212i −0.112923 + 0.195589i
\(47\) 72.1481 + 124.964i 0.223912 + 0.387828i 0.955993 0.293391i \(-0.0947837\pi\)
−0.732080 + 0.681219i \(0.761450\pi\)
\(48\) −683.006 −2.05382
\(49\) 332.163 + 85.5397i 0.968404 + 0.249387i
\(50\) 0 0
\(51\) 53.1436 + 92.0475i 0.145914 + 0.252730i
\(52\) −16.9985 + 29.4423i −0.0453322 + 0.0785177i
\(53\) 159.291 275.900i 0.412835 0.715051i −0.582364 0.812928i \(-0.697872\pi\)
0.995198 + 0.0978773i \(0.0312053\pi\)
\(54\) −689.263 1193.84i −1.73698 3.00854i
\(55\) 0 0
\(56\) 400.794 + 50.7786i 0.956399 + 0.121171i
\(57\) −389.599 −0.905327
\(58\) −331.135 573.542i −0.749657 1.29844i
\(59\) −224.161 + 388.258i −0.494632 + 0.856727i −0.999981 0.00618772i \(-0.998030\pi\)
0.505349 + 0.862915i \(0.331364\pi\)
\(60\) 0 0
\(61\) −83.3473 144.362i −0.174943 0.303010i 0.765198 0.643794i \(-0.222641\pi\)
−0.940142 + 0.340784i \(0.889307\pi\)
\(62\) −418.076 −0.856382
\(63\) 530.404 + 1263.05i 1.06071 + 2.52587i
\(64\) 473.580 0.924960
\(65\) 0 0
\(66\) −228.840 + 396.362i −0.426792 + 0.739225i
\(67\) 370.521 641.761i 0.675617 1.17020i −0.300671 0.953728i \(-0.597211\pi\)
0.976288 0.216475i \(-0.0694561\pi\)
\(68\) 2.81331 + 4.87279i 0.00501711 + 0.00868990i
\(69\) 242.392 0.422906
\(70\) 0 0
\(71\) −373.652 −0.624567 −0.312284 0.949989i \(-0.601094\pi\)
−0.312284 + 0.949989i \(0.601094\pi\)
\(72\) 806.760 + 1397.35i 1.32052 + 2.28721i
\(73\) 118.657 205.520i 0.190243 0.329511i −0.755088 0.655624i \(-0.772406\pi\)
0.945331 + 0.326113i \(0.105739\pi\)
\(74\) −416.604 + 721.580i −0.654450 + 1.13354i
\(75\) 0 0
\(76\) −20.6245 −0.0311289
\(77\) 174.690 229.973i 0.258542 0.340362i
\(78\) 1875.86 2.72306
\(79\) 232.695 + 403.040i 0.331396 + 0.573994i 0.982786 0.184749i \(-0.0591472\pi\)
−0.651390 + 0.758743i \(0.725814\pi\)
\(80\) 0 0
\(81\) −1372.55 + 2377.33i −1.88279 + 3.26108i
\(82\) −46.8018 81.0631i −0.0630292 0.109170i
\(83\) −691.289 −0.914202 −0.457101 0.889415i \(-0.651112\pi\)
−0.457101 + 0.889415i \(0.651112\pi\)
\(84\) 38.3277 + 91.2700i 0.0497845 + 0.118552i
\(85\) 0 0
\(86\) −344.249 596.257i −0.431643 0.747628i
\(87\) −1139.13 + 1973.03i −1.40376 + 2.43139i
\(88\) 170.078 294.584i 0.206027 0.356850i
\(89\) −506.590 877.440i −0.603353 1.04504i −0.992309 0.123782i \(-0.960498\pi\)
0.388956 0.921256i \(-0.372836\pi\)
\(90\) 0 0
\(91\) −1174.28 148.776i −1.35273 0.171384i
\(92\) 12.8317 0.0145413
\(93\) 719.105 + 1245.53i 0.801804 + 1.38876i
\(94\) 210.741 365.014i 0.231237 0.400514i
\(95\) 0 0
\(96\) 120.748 + 209.141i 0.128372 + 0.222348i
\(97\) 1151.67 1.20551 0.602757 0.797925i \(-0.294069\pi\)
0.602757 + 0.797925i \(0.294069\pi\)
\(98\) −268.732 965.172i −0.277000 0.994868i
\(99\) 1153.42 1.17094
\(100\) 0 0
\(101\) 600.514 1040.12i 0.591618 1.02471i −0.402397 0.915465i \(-0.631823\pi\)
0.994015 0.109247i \(-0.0348438\pi\)
\(102\) 155.230 268.866i 0.150687 0.260997i
\(103\) −514.525 891.184i −0.492211 0.852534i 0.507749 0.861505i \(-0.330478\pi\)
−0.999960 + 0.00897107i \(0.997144\pi\)
\(104\) −1394.17 −1.31452
\(105\) 0 0
\(106\) −930.559 −0.852678
\(107\) 288.369 + 499.469i 0.260539 + 0.451266i 0.966385 0.257098i \(-0.0827665\pi\)
−0.705846 + 0.708365i \(0.749433\pi\)
\(108\) −125.522 + 217.410i −0.111836 + 0.193706i
\(109\) 95.6623 165.692i 0.0840623 0.145600i −0.820929 0.571030i \(-0.806544\pi\)
0.904991 + 0.425430i \(0.139877\pi\)
\(110\) 0 0
\(111\) 2866.30 2.45096
\(112\) −487.414 1160.68i −0.411217 0.979232i
\(113\) −2091.69 −1.74132 −0.870662 0.491882i \(-0.836309\pi\)
−0.870662 + 0.491882i \(0.836309\pi\)
\(114\) 568.999 + 985.535i 0.467470 + 0.809682i
\(115\) 0 0
\(116\) −60.3030 + 104.448i −0.0482671 + 0.0836012i
\(117\) −2363.72 4094.09i −1.86775 3.23503i
\(118\) 1309.52 1.02162
\(119\) −118.498 + 155.998i −0.0912830 + 0.120171i
\(120\) 0 0
\(121\) 543.920 + 942.097i 0.408655 + 0.707811i
\(122\) −243.453 + 421.673i −0.180666 + 0.312922i
\(123\) −161.002 + 278.863i −0.118025 + 0.204425i
\(124\) 38.0679 + 65.9355i 0.0275693 + 0.0477515i
\(125\) 0 0
\(126\) 2420.40 3186.37i 1.71132 2.25290i
\(127\) 498.841 0.348543 0.174271 0.984698i \(-0.444243\pi\)
0.174271 + 0.984698i \(0.444243\pi\)
\(128\) −787.784 1364.48i −0.543992 0.942222i
\(129\) −1184.24 + 2051.17i −0.808269 + 1.39996i
\(130\) 0 0
\(131\) −155.825 269.897i −0.103928 0.180008i 0.809372 0.587296i \(-0.199808\pi\)
−0.913300 + 0.407289i \(0.866474\pi\)
\(132\) 83.3481 0.0549585
\(133\) −278.029 662.072i −0.181265 0.431646i
\(134\) −2164.55 −1.39543
\(135\) 0 0
\(136\) −115.370 + 199.826i −0.0727417 + 0.125992i
\(137\) −511.345 + 885.675i −0.318884 + 0.552324i −0.980255 0.197735i \(-0.936641\pi\)
0.661371 + 0.750059i \(0.269975\pi\)
\(138\) −354.007 613.157i −0.218370 0.378228i
\(139\) 1141.29 0.696424 0.348212 0.937416i \(-0.386789\pi\)
0.348212 + 0.937416i \(0.386789\pi\)
\(140\) 0 0
\(141\) −1449.93 −0.866000
\(142\) 545.708 + 945.194i 0.322499 + 0.558584i
\(143\) −498.311 + 863.101i −0.291405 + 0.504728i
\(144\) 2513.89 4354.18i 1.45480 2.51978i
\(145\) 0 0
\(146\) −693.182 −0.392932
\(147\) −2413.20 + 2460.73i −1.35400 + 1.38067i
\(148\) 151.736 0.0842743
\(149\) −645.485 1118.01i −0.354900 0.614705i 0.632201 0.774805i \(-0.282152\pi\)
−0.987101 + 0.160099i \(0.948819\pi\)
\(150\) 0 0
\(151\) 574.974 995.885i 0.309873 0.536715i −0.668462 0.743747i \(-0.733047\pi\)
0.978334 + 0.207032i \(0.0663803\pi\)
\(152\) −422.891 732.468i −0.225664 0.390862i
\(153\) −782.407 −0.413424
\(154\) −836.873 106.028i −0.437904 0.0554802i
\(155\) 0 0
\(156\) −170.806 295.845i −0.0876630 0.151837i
\(157\) 1811.17 3137.03i 0.920681 1.59467i 0.122317 0.992491i \(-0.460968\pi\)
0.798364 0.602175i \(-0.205699\pi\)
\(158\) 679.690 1177.26i 0.342236 0.592770i
\(159\) 1600.60 + 2772.31i 0.798337 + 1.38276i
\(160\) 0 0
\(161\) 172.978 + 411.913i 0.0846743 + 0.201635i
\(162\) 8018.30 3.88875
\(163\) 1352.86 + 2343.22i 0.650086 + 1.12598i 0.983102 + 0.183060i \(0.0586003\pi\)
−0.333016 + 0.942921i \(0.608066\pi\)
\(164\) −8.52308 + 14.7624i −0.00405818 + 0.00702897i
\(165\) 0 0
\(166\) 1009.61 + 1748.69i 0.472053 + 0.817620i
\(167\) 3397.98 1.57451 0.787256 0.616627i \(-0.211501\pi\)
0.787256 + 0.616627i \(0.211501\pi\)
\(168\) −2455.52 + 3232.61i −1.12766 + 1.48453i
\(169\) 1887.78 0.859253
\(170\) 0 0
\(171\) 1433.97 2483.70i 0.641275 1.11072i
\(172\) −62.6912 + 108.584i −0.0277916 + 0.0481365i
\(173\) 2093.40 + 3625.88i 0.919991 + 1.59347i 0.799425 + 0.600766i \(0.205138\pi\)
0.120566 + 0.992705i \(0.461529\pi\)
\(174\) 6654.67 2.89936
\(175\) 0 0
\(176\) −1059.94 −0.453953
\(177\) −2252.43 3901.32i −0.956514 1.65673i
\(178\) −1479.72 + 2562.96i −0.623089 + 1.07922i
\(179\) −458.926 + 794.884i −0.191630 + 0.331913i −0.945791 0.324777i \(-0.894711\pi\)
0.754161 + 0.656690i \(0.228044\pi\)
\(180\) 0 0
\(181\) 262.339 0.107732 0.0538661 0.998548i \(-0.482846\pi\)
0.0538661 + 0.998548i \(0.482846\pi\)
\(182\) 1338.67 + 3187.77i 0.545212 + 1.29832i
\(183\) 1674.99 0.676607
\(184\) 263.104 + 455.710i 0.105415 + 0.182584i
\(185\) 0 0
\(186\) 2100.47 3638.12i 0.828031 1.43419i
\(187\) 82.4720 + 142.846i 0.0322511 + 0.0558605i
\(188\) −76.7560 −0.0297766
\(189\) −8671.23 1098.60i −3.33724 0.422812i
\(190\) 0 0
\(191\) −723.091 1252.43i −0.273932 0.474464i 0.695933 0.718107i \(-0.254991\pi\)
−0.969865 + 0.243642i \(0.921658\pi\)
\(192\) −2379.33 + 4121.12i −0.894340 + 1.54904i
\(193\) 2032.93 3521.13i 0.758204 1.31325i −0.185562 0.982633i \(-0.559411\pi\)
0.943766 0.330615i \(-0.107256\pi\)
\(194\) −1681.99 2913.29i −0.622474 1.07816i
\(195\) 0 0
\(196\) −127.750 + 130.266i −0.0465560 + 0.0474730i
\(197\) 1073.07 0.388088 0.194044 0.980993i \(-0.437840\pi\)
0.194044 + 0.980993i \(0.437840\pi\)
\(198\) −1684.55 2917.72i −0.604624 1.04724i
\(199\) 1488.51 2578.18i 0.530240 0.918403i −0.469138 0.883125i \(-0.655435\pi\)
0.999378 0.0352775i \(-0.0112315\pi\)
\(200\) 0 0
\(201\) 3723.10 + 6448.59i 1.30650 + 2.26293i
\(202\) −3508.14 −1.22194
\(203\) −4165.82 527.788i −1.44031 0.182480i
\(204\) −56.5378 −0.0194041
\(205\) 0 0
\(206\) −1502.90 + 2603.10i −0.508311 + 0.880421i
\(207\) −892.152 + 1545.25i −0.299560 + 0.518853i
\(208\) 2172.14 + 3762.26i 0.724090 + 1.25416i
\(209\) −604.607 −0.200103
\(210\) 0 0
\(211\) −521.629 −0.170192 −0.0850958 0.996373i \(-0.527120\pi\)
−0.0850958 + 0.996373i \(0.527120\pi\)
\(212\) 84.7321 + 146.760i 0.0274501 + 0.0475450i
\(213\) 1877.28 3251.54i 0.603891 1.04597i
\(214\) 842.310 1458.92i 0.269061 0.466028i
\(215\) 0 0
\(216\) −10294.9 −3.24297
\(217\) −1603.44 + 2110.87i −0.501605 + 0.660347i
\(218\) −558.849 −0.173624
\(219\) 1192.30 + 2065.12i 0.367890 + 0.637205i
\(220\) 0 0
\(221\) 338.021 585.470i 0.102886 0.178204i
\(222\) −4186.15 7250.63i −1.26557 2.19203i
\(223\) 2381.79 0.715229 0.357615 0.933869i \(-0.383590\pi\)
0.357615 + 0.933869i \(0.383590\pi\)
\(224\) −269.239 + 354.444i −0.0803093 + 0.105725i
\(225\) 0 0
\(226\) 3054.86 + 5291.17i 0.899142 + 1.55736i
\(227\) 170.517 295.343i 0.0498572 0.0863552i −0.840020 0.542556i \(-0.817457\pi\)
0.889877 + 0.456201i \(0.150790\pi\)
\(228\) 103.620 179.476i 0.0300984 0.0521319i
\(229\) −387.522 671.208i −0.111826 0.193688i 0.804680 0.593708i \(-0.202337\pi\)
−0.916507 + 0.400020i \(0.869003\pi\)
\(230\) 0 0
\(231\) 1123.58 + 2675.58i 0.320025 + 0.762078i
\(232\) −4945.87 −1.39962
\(233\) 1249.92 + 2164.93i 0.351438 + 0.608709i 0.986502 0.163751i \(-0.0523594\pi\)
−0.635063 + 0.772460i \(0.719026\pi\)
\(234\) −6904.31 + 11958.6i −1.92884 + 3.34085i
\(235\) 0 0
\(236\) −119.239 206.528i −0.0328889 0.0569653i
\(237\) −4676.37 −1.28170
\(238\) 567.679 + 71.9221i 0.154610 + 0.0195883i
\(239\) −2181.70 −0.590470 −0.295235 0.955425i \(-0.595398\pi\)
−0.295235 + 0.955425i \(0.595398\pi\)
\(240\) 0 0
\(241\) 1135.07 1966.00i 0.303387 0.525481i −0.673514 0.739174i \(-0.735216\pi\)
0.976901 + 0.213693i \(0.0685492\pi\)
\(242\) 1588.76 2751.81i 0.422022 0.730964i
\(243\) −7420.51 12852.7i −1.95895 3.39301i
\(244\) 88.6705 0.0232645
\(245\) 0 0
\(246\) 940.555 0.243771
\(247\) 1239.03 + 2146.06i 0.319180 + 0.552835i
\(248\) −1561.11 + 2703.92i −0.399720 + 0.692335i
\(249\) 3473.13 6015.64i 0.883938 1.53103i
\(250\) 0 0
\(251\) 2943.81 0.740286 0.370143 0.928975i \(-0.379309\pi\)
0.370143 + 0.928975i \(0.379309\pi\)
\(252\) −722.918 91.5901i −0.180713 0.0228954i
\(253\) 376.160 0.0934743
\(254\) −728.544 1261.87i −0.179972 0.311721i
\(255\) 0 0
\(256\) −406.759 + 704.527i −0.0993064 + 0.172004i
\(257\) 1811.81 + 3138.15i 0.439757 + 0.761682i 0.997670 0.0682171i \(-0.0217311\pi\)
−0.557913 + 0.829899i \(0.688398\pi\)
\(258\) 6918.22 1.66942
\(259\) 2045.48 + 4870.90i 0.490732 + 1.16858i
\(260\) 0 0
\(261\) −8385.40 14523.9i −1.98867 3.44448i
\(262\) −455.157 + 788.355i −0.107327 + 0.185896i
\(263\) 230.615 399.436i 0.0540696 0.0936514i −0.837724 0.546094i \(-0.816114\pi\)
0.891793 + 0.452443i \(0.149447\pi\)
\(264\) 1708.99 + 2960.06i 0.398413 + 0.690072i
\(265\) 0 0
\(266\) −1268.73 + 1670.25i −0.292447 + 0.384998i
\(267\) 10180.7 2.33352
\(268\) 197.093 + 341.374i 0.0449229 + 0.0778088i
\(269\) 2865.16 4962.61i 0.649413 1.12482i −0.333851 0.942626i \(-0.608348\pi\)
0.983263 0.182190i \(-0.0583186\pi\)
\(270\) 0 0
\(271\) 217.608 + 376.908i 0.0487777 + 0.0844854i 0.889383 0.457162i \(-0.151134\pi\)
−0.840606 + 0.541648i \(0.817801\pi\)
\(272\) 718.991 0.160277
\(273\) 7194.42 9471.22i 1.59497 2.09972i
\(274\) 2987.22 0.658630
\(275\) 0 0
\(276\) −64.4681 + 111.662i −0.0140599 + 0.0243524i
\(277\) −53.7502 + 93.0980i −0.0116590 + 0.0201939i −0.871796 0.489869i \(-0.837045\pi\)
0.860137 + 0.510063i \(0.170378\pi\)
\(278\) −1666.82 2887.02i −0.359602 0.622849i
\(279\) −10587.0 −2.27179
\(280\) 0 0
\(281\) −8058.94 −1.71088 −0.855438 0.517905i \(-0.826712\pi\)
−0.855438 + 0.517905i \(0.826712\pi\)
\(282\) 2117.58 + 3667.76i 0.447164 + 0.774510i
\(283\) −2898.18 + 5019.80i −0.608760 + 1.05440i 0.382685 + 0.923879i \(0.374999\pi\)
−0.991445 + 0.130525i \(0.958334\pi\)
\(284\) 99.3789 172.129i 0.0207643 0.0359648i
\(285\) 0 0
\(286\) 2911.08 0.601874
\(287\) −588.787 74.5964i −0.121098 0.0153425i
\(288\) −1777.71 −0.363723
\(289\) 2400.56 + 4157.89i 0.488613 + 0.846303i
\(290\) 0 0
\(291\) −5786.17 + 10021.9i −1.16561 + 2.01889i
\(292\) 63.1176 + 109.323i 0.0126496 + 0.0219097i
\(293\) 1250.96 0.249427 0.124713 0.992193i \(-0.460199\pi\)
0.124713 + 0.992193i \(0.460199\pi\)
\(294\) 9749.13 + 2510.63i 1.93395 + 0.498037i
\(295\) 0 0
\(296\) 3111.23 + 5388.81i 0.610934 + 1.05817i
\(297\) −3679.66 + 6373.36i −0.718908 + 1.24519i
\(298\) −1885.43 + 3265.65i −0.366509 + 0.634813i
\(299\) −770.869 1335.18i −0.149099 0.258246i
\(300\) 0 0
\(301\) −4330.80 548.691i −0.829313 0.105070i
\(302\) −3358.94 −0.640018
\(303\) 6034.13 + 10451.4i 1.14406 + 1.98158i
\(304\) −1317.74 + 2282.39i −0.248610 + 0.430606i
\(305\) 0 0
\(306\) 1142.68 + 1979.19i 0.213474 + 0.369747i
\(307\) −493.727 −0.0917865 −0.0458933 0.998946i \(-0.514613\pi\)
−0.0458933 + 0.998946i \(0.514613\pi\)
\(308\) 59.4796 + 141.639i 0.0110038 + 0.0262034i
\(309\) 10340.2 1.90367
\(310\) 0 0
\(311\) 52.7320 91.3345i 0.00961466 0.0166531i −0.861178 0.508303i \(-0.830273\pi\)
0.870793 + 0.491650i \(0.163606\pi\)
\(312\) 7004.51 12132.2i 1.27100 2.20144i
\(313\) 1855.32 + 3213.50i 0.335044 + 0.580312i 0.983493 0.180945i \(-0.0579156\pi\)
−0.648450 + 0.761258i \(0.724582\pi\)
\(314\) −10580.7 −1.90159
\(315\) 0 0
\(316\) −247.557 −0.0440701
\(317\) 3250.70 + 5630.38i 0.575955 + 0.997583i 0.995937 + 0.0900506i \(0.0287029\pi\)
−0.419983 + 0.907532i \(0.637964\pi\)
\(318\) 4675.26 8097.78i 0.824451 1.42799i
\(319\) −1767.78 + 3061.88i −0.310271 + 0.537406i
\(320\) 0 0
\(321\) −5795.21 −1.00766
\(322\) 789.351 1039.16i 0.136611 0.179844i
\(323\) 410.125 0.0706500
\(324\) −730.106 1264.58i −0.125190 0.216835i
\(325\) 0 0
\(326\) 3951.62 6844.42i 0.671350 1.16281i
\(327\) 961.241 + 1664.92i 0.162559 + 0.281560i
\(328\) −699.038 −0.117677
\(329\) −1034.71 2463.96i −0.173391 0.412896i
\(330\) 0 0
\(331\) 54.3441 + 94.1268i 0.00902424 + 0.0156304i 0.870502 0.492164i \(-0.163794\pi\)
−0.861478 + 0.507795i \(0.830461\pi\)
\(332\) 183.860 318.455i 0.0303934 0.0526430i
\(333\) −10549.8 + 18272.7i −1.73611 + 3.00702i
\(334\) −4962.66 8595.57i −0.813007 1.40817i
\(335\) 0 0
\(336\) 12549.1 + 1589.91i 2.03753 + 0.258145i
\(337\) −8207.88 −1.32674 −0.663370 0.748291i \(-0.730875\pi\)
−0.663370 + 0.748291i \(0.730875\pi\)
\(338\) −2757.05 4775.35i −0.443680 0.768476i
\(339\) 10508.9 18202.0i 1.68368 2.91621i
\(340\) 0 0
\(341\) 1115.96 + 1932.90i 0.177221 + 0.306956i
\(342\) −8377.08 −1.32450
\(343\) −5903.83 2344.87i −0.929379 0.369128i
\(344\) −5141.75 −0.805885
\(345\) 0 0
\(346\) 6114.72 10591.0i 0.950085 1.64560i
\(347\) 4701.28 8142.85i 0.727313 1.25974i −0.230701 0.973025i \(-0.574102\pi\)
0.958015 0.286719i \(-0.0925646\pi\)
\(348\) −605.941 1049.52i −0.0933386 0.161667i
\(349\) −690.530 −0.105912 −0.0529559 0.998597i \(-0.516864\pi\)
−0.0529559 + 0.998597i \(0.516864\pi\)
\(350\) 0 0
\(351\) 30163.1 4.58685
\(352\) 187.385 + 324.560i 0.0283740 + 0.0491451i
\(353\) −1800.69 + 3118.89i −0.271505 + 0.470260i −0.969247 0.246088i \(-0.920855\pi\)
0.697743 + 0.716349i \(0.254188\pi\)
\(354\) −6579.23 + 11395.6i −0.987803 + 1.71092i
\(355\) 0 0
\(356\) 538.945 0.0802360
\(357\) −762.159 1814.93i −0.112991 0.269066i
\(358\) 2681.00 0.395797
\(359\) −4031.95 6983.55i −0.592753 1.02668i −0.993860 0.110647i \(-0.964708\pi\)
0.401107 0.916031i \(-0.368626\pi\)
\(360\) 0 0
\(361\) 2677.84 4638.15i 0.390412 0.676214i
\(362\) −383.140 663.618i −0.0556281 0.0963508i
\(363\) −10930.9 −1.58051
\(364\) 380.857 501.386i 0.0548416 0.0721972i
\(365\) 0 0
\(366\) −2446.28 4237.09i −0.349370 0.605126i
\(367\) −1694.81 + 2935.50i −0.241059 + 0.417526i −0.961016 0.276493i \(-0.910828\pi\)
0.719958 + 0.694018i \(0.244161\pi\)
\(368\) 819.841 1420.01i 0.116134 0.201149i
\(369\) −1185.17 2052.78i −0.167202 0.289603i
\(370\) 0 0
\(371\) −3568.95 + 4698.41i −0.499436 + 0.657491i
\(372\) −765.033 −0.106627
\(373\) −4420.62 7656.74i −0.613649 1.06287i −0.990620 0.136646i \(-0.956368\pi\)
0.376971 0.926225i \(-0.376966\pi\)
\(374\) 240.896 417.245i 0.0333060 0.0576877i
\(375\) 0 0
\(376\) −1573.83 2725.95i −0.215862 0.373883i
\(377\) 14490.9 1.97963
\(378\) 9885.06 + 23539.3i 1.34506 + 3.20300i
\(379\) 3038.06 0.411754 0.205877 0.978578i \(-0.433995\pi\)
0.205877 + 0.978578i \(0.433995\pi\)
\(380\) 0 0
\(381\) −2506.24 + 4340.94i −0.337005 + 0.583709i
\(382\) −2112.11 + 3658.28i −0.282893 + 0.489984i
\(383\) −1409.34 2441.05i −0.188026 0.325671i 0.756566 0.653917i \(-0.226876\pi\)
−0.944592 + 0.328247i \(0.893542\pi\)
\(384\) 15831.7 2.10393
\(385\) 0 0
\(386\) −11876.1 −1.56601
\(387\) −8717.49 15099.1i −1.14505 1.98329i
\(388\) −306.307 + 530.540i −0.0400783 + 0.0694177i
\(389\) −6094.35 + 10555.7i −0.794334 + 1.37583i 0.128927 + 0.991654i \(0.458847\pi\)
−0.923261 + 0.384173i \(0.874487\pi\)
\(390\) 0 0
\(391\) −255.162 −0.0330028
\(392\) −7245.74 1865.95i −0.933584 0.240420i
\(393\) 3131.55 0.401948
\(394\) −1567.19 2714.46i −0.200391 0.347088i
\(395\) 0 0
\(396\) −306.773 + 531.346i −0.0389291 + 0.0674271i
\(397\) 5195.17 + 8998.29i 0.656771 + 1.13756i 0.981447 + 0.191735i \(0.0614114\pi\)
−0.324676 + 0.945825i \(0.605255\pi\)
\(398\) −8695.73 −1.09517
\(399\) 7158.25 + 906.914i 0.898147 + 0.113791i
\(400\) 0 0
\(401\) −751.138 1301.01i −0.0935413 0.162018i 0.815458 0.578817i \(-0.196485\pi\)
−0.908999 + 0.416799i \(0.863152\pi\)
\(402\) 10875.0 18836.0i 1.34924 2.33695i
\(403\) 4573.89 7922.20i 0.565364 0.979238i
\(404\) 319.434 + 553.275i 0.0393377 + 0.0681348i
\(405\) 0 0
\(406\) 4748.97 + 11308.7i 0.580510 + 1.38237i
\(407\) 4448.12 0.541733
\(408\) −1159.27 2007.91i −0.140667 0.243643i
\(409\) −7048.61 + 12208.5i −0.852155 + 1.47598i 0.0271048 + 0.999633i \(0.491371\pi\)
−0.879260 + 0.476343i \(0.841962\pi\)
\(410\) 0 0
\(411\) −5138.13 8899.50i −0.616655 1.06808i
\(412\) 547.387 0.0654559
\(413\) 5022.39 6611.81i 0.598391 0.787763i
\(414\) 5211.86 0.618717
\(415\) 0 0
\(416\) 768.018 1330.25i 0.0905173 0.156781i
\(417\) −5733.99 + 9931.57i −0.673369 + 1.16631i
\(418\) 883.012 + 1529.42i 0.103324 + 0.178963i
\(419\) 11529.9 1.34433 0.672163 0.740403i \(-0.265365\pi\)
0.672163 + 0.740403i \(0.265365\pi\)
\(420\) 0 0
\(421\) −3370.05 −0.390134 −0.195067 0.980790i \(-0.562492\pi\)
−0.195067 + 0.980790i \(0.562492\pi\)
\(422\) 761.826 + 1319.52i 0.0878794 + 0.152212i
\(423\) 5336.64 9243.33i 0.613419 1.06247i
\(424\) −3474.74 + 6018.42i −0.397991 + 0.689341i
\(425\) 0 0
\(426\) −10966.9 −1.24729
\(427\) 1195.32 + 2846.43i 0.135470 + 0.322596i
\(428\) −306.786 −0.0346473
\(429\) −5007.17 8672.67i −0.563516 0.976039i
\(430\) 0 0
\(431\) 4163.53 7211.45i 0.465314 0.805948i −0.533902 0.845547i \(-0.679275\pi\)
0.999216 + 0.0395991i \(0.0126081\pi\)
\(432\) 16039.6 + 27781.5i 1.78636 + 3.09407i
\(433\) 818.149 0.0908031 0.0454015 0.998969i \(-0.485543\pi\)
0.0454015 + 0.998969i \(0.485543\pi\)
\(434\) 7681.46 + 973.203i 0.849590 + 0.107639i
\(435\) 0 0
\(436\) 50.8860 + 88.1372i 0.00558945 + 0.00968120i
\(437\) 467.652 809.997i 0.0511918 0.0886668i
\(438\) 3482.64 6032.11i 0.379924 0.658048i
\(439\) −4232.89 7331.58i −0.460193 0.797078i 0.538777 0.842448i \(-0.318886\pi\)
−0.998970 + 0.0453707i \(0.985553\pi\)
\(440\) 0 0
\(441\) −6805.16 24441.3i −0.734819 2.63916i
\(442\) −1974.69 −0.212503
\(443\) −7284.47 12617.1i −0.781254 1.35317i −0.931211 0.364480i \(-0.881247\pi\)
0.149957 0.988693i \(-0.452086\pi\)
\(444\) −762.340 + 1320.41i −0.0814844 + 0.141135i
\(445\) 0 0
\(446\) −3478.54 6025.00i −0.369313 0.639668i
\(447\) 12972.0 1.37261
\(448\) −8701.26 1102.41i −0.917625 0.116258i
\(449\) −841.211 −0.0884169 −0.0442084 0.999022i \(-0.514077\pi\)
−0.0442084 + 0.999022i \(0.514077\pi\)
\(450\) 0 0
\(451\) −249.854 + 432.759i −0.0260868 + 0.0451837i
\(452\) 556.320 963.574i 0.0578918 0.100272i
\(453\) 5777.50 + 10006.9i 0.599229 + 1.03789i
\(454\) −996.140 −0.102976
\(455\) 0 0
\(456\) 8498.64 0.872775
\(457\) −6938.33 12017.5i −0.710200 1.23010i −0.964782 0.263052i \(-0.915271\pi\)
0.254581 0.967051i \(-0.418062\pi\)
\(458\) −1131.93 + 1960.56i −0.115484 + 0.200024i
\(459\) 2496.04 4323.27i 0.253824 0.439636i
\(460\) 0 0
\(461\) 3053.09 0.308452 0.154226 0.988036i \(-0.450712\pi\)
0.154226 + 0.988036i \(0.450712\pi\)
\(462\) 5127.22 6749.82i 0.516320 0.679719i
\(463\) 9935.80 0.997312 0.498656 0.866800i \(-0.333827\pi\)
0.498656 + 0.866800i \(0.333827\pi\)
\(464\) 7705.74 + 13346.7i 0.770970 + 1.33536i
\(465\) 0 0
\(466\) 3650.96 6323.64i 0.362934 0.628620i
\(467\) −4963.63 8597.26i −0.491840 0.851892i 0.508116 0.861289i \(-0.330342\pi\)
−0.999956 + 0.00939651i \(0.997009\pi\)
\(468\) 2514.69 0.248379
\(469\) −8301.63 + 10928.8i −0.817342 + 1.07600i
\(470\) 0 0
\(471\) 18199.1 + 31521.8i 1.78040 + 3.08375i
\(472\) 4889.81 8469.40i 0.476847 0.825923i
\(473\) −1837.79 + 3183.14i −0.178650 + 0.309432i
\(474\) 6829.71 + 11829.4i 0.661813 + 1.14629i
\(475\) 0 0
\(476\) −40.3470 96.0786i −0.00388509 0.00925159i
\(477\) −23564.8 −2.26196
\(478\) 3186.32 + 5518.86i 0.304893 + 0.528089i
\(479\) 6587.12 11409.2i 0.628336 1.08831i −0.359549 0.933126i \(-0.617069\pi\)
0.987886 0.155184i \(-0.0495972\pi\)
\(480\) 0 0
\(481\) −9115.58 15788.6i −0.864105 1.49667i
\(482\) −6630.96 −0.626622
\(483\) −4453.56 564.243i −0.419552 0.0531552i
\(484\) −578.658 −0.0543443
\(485\) 0 0
\(486\) −21674.9 + 37542.1i −2.02303 + 3.50400i
\(487\) −4236.88 + 7338.50i −0.394233 + 0.682832i −0.993003 0.118089i \(-0.962323\pi\)
0.598770 + 0.800921i \(0.295656\pi\)
\(488\) 1818.12 + 3149.08i 0.168653 + 0.292115i
\(489\) −27187.8 −2.51426
\(490\) 0 0
\(491\) −10831.1 −0.995523 −0.497762 0.867314i \(-0.665845\pi\)
−0.497762 + 0.867314i \(0.665845\pi\)
\(492\) −85.6422 148.337i −0.00784766 0.0135926i
\(493\) 1199.14 2076.98i 0.109547 0.189741i
\(494\) 3619.13 6268.52i 0.329620 0.570919i
\(495\) 0 0
\(496\) 9728.92 0.880728
\(497\) 6865.24 + 869.792i 0.619614 + 0.0785020i
\(498\) −20289.7 −1.82571
\(499\) 6046.05 + 10472.1i 0.542402 + 0.939467i 0.998765 + 0.0496738i \(0.0158182\pi\)
−0.456364 + 0.889793i \(0.650848\pi\)
\(500\) 0 0
\(501\) −17071.9 + 29569.4i −1.52239 + 2.63685i
\(502\) −4299.36 7446.71i −0.382251 0.662078i
\(503\) 18398.5 1.63091 0.815455 0.578821i \(-0.196487\pi\)
0.815455 + 0.578821i \(0.196487\pi\)
\(504\) −11570.1 27552.0i −1.02257 2.43505i
\(505\) 0 0
\(506\) −549.372 951.540i −0.0482660 0.0835991i
\(507\) −9484.46 + 16427.6i −0.830808 + 1.43900i
\(508\) −132.675 + 229.800i −0.0115876 + 0.0200703i
\(509\) 10351.4 + 17929.1i 0.901406 + 1.56128i 0.825670 + 0.564153i \(0.190797\pi\)
0.0757355 + 0.997128i \(0.475870\pi\)
\(510\) 0 0
\(511\) −2658.54 + 3499.88i −0.230151 + 0.302986i
\(512\) −10228.3 −0.882874
\(513\) 9149.30 + 15847.0i 0.787429 + 1.36387i
\(514\) 5292.20 9166.37i 0.454142 0.786598i
\(515\) 0 0
\(516\) −629.938 1091.08i −0.0537432 0.0930859i
\(517\) −2250.10 −0.191411
\(518\) 9334.14 12288.1i 0.791734 1.04229i
\(519\) −42070.2 −3.55814
\(520\) 0 0
\(521\) 7236.53 12534.0i 0.608518 1.05398i −0.382967 0.923762i \(-0.625098\pi\)
0.991485 0.130222i \(-0.0415691\pi\)
\(522\) −24493.3 + 42423.7i −2.05372 + 3.55715i
\(523\) −7958.97 13785.3i −0.665433 1.15256i −0.979168 0.203053i \(-0.934914\pi\)
0.313734 0.949511i \(-0.398420\pi\)
\(524\) 165.777 0.0138206
\(525\) 0 0
\(526\) −1347.23 −0.111677
\(527\) −756.992 1311.15i −0.0625713 0.108377i
\(528\) 5325.27 9223.63i 0.438925 0.760241i
\(529\) 5792.55 10033.0i 0.476087 0.824606i
\(530\) 0 0
\(531\) 33161.4 2.71013
\(532\) 378.942 + 48.0101i 0.0308820 + 0.00391260i
\(533\) 2048.11 0.166442
\(534\) −14868.7 25753.3i −1.20492 2.08699i
\(535\) 0 0
\(536\) −8082.48 + 13999.3i −0.651325 + 1.12813i
\(537\) −4611.42 7987.21i −0.370572 0.641850i
\(538\) −16738.0 −1.34131
\(539\) −3744.97 + 3818.74i −0.299272 + 0.305167i
\(540\) 0 0
\(541\) 4419.67 + 7655.09i 0.351232 + 0.608351i 0.986466 0.163969i \(-0.0524296\pi\)
−0.635234 + 0.772320i \(0.719096\pi\)
\(542\) 635.622 1100.93i 0.0503732 0.0872490i
\(543\) −1318.03 + 2282.89i −0.104166 + 0.180421i
\(544\) −127.109 220.160i −0.0100179 0.0173516i
\(545\) 0 0
\(546\) −34465.8 4366.65i −2.70147 0.342262i
\(547\) −11349.6 −0.887155 −0.443577 0.896236i \(-0.646291\pi\)
−0.443577 + 0.896236i \(0.646291\pi\)
\(548\) −272.001 471.120i −0.0212032 0.0367249i
\(549\) −6165.02 + 10678.1i −0.479265 + 0.830111i
\(550\) 0 0
\(551\) 4395.49 + 7613.21i 0.339844 + 0.588628i
\(552\) −5287.49 −0.407700
\(553\) −3337.20 7946.88i −0.256622 0.611095i
\(554\) 314.003 0.0240807
\(555\) 0 0
\(556\) −303.545 + 525.756i −0.0231532 + 0.0401025i
\(557\) −3305.43 + 5725.18i −0.251446 + 0.435518i −0.963924 0.266177i \(-0.914240\pi\)
0.712478 + 0.701695i \(0.247573\pi\)
\(558\) 15462.1 + 26781.1i 1.17305 + 2.03178i
\(559\) 15064.8 1.13984
\(560\) 0 0
\(561\) −1657.40 −0.124734
\(562\) 11769.9 + 20386.0i 0.883420 + 1.53013i
\(563\) −6424.96 + 11128.4i −0.480959 + 0.833045i −0.999761 0.0218488i \(-0.993045\pi\)
0.518802 + 0.854894i \(0.326378\pi\)
\(564\) 385.633 667.936i 0.0287909 0.0498673i
\(565\) 0 0
\(566\) 16930.9 1.25735
\(567\) 30752.4 40484.5i 2.27774 2.99857i
\(568\) 8150.77 0.602110
\(569\) 4486.52 + 7770.88i 0.330553 + 0.572535i 0.982620 0.185626i \(-0.0594314\pi\)
−0.652067 + 0.758161i \(0.726098\pi\)
\(570\) 0 0
\(571\) −661.018 + 1144.92i −0.0484461 + 0.0839112i −0.889232 0.457457i \(-0.848760\pi\)
0.840785 + 0.541368i \(0.182094\pi\)
\(572\) −265.069 459.112i −0.0193760 0.0335602i
\(573\) 14531.6 1.05945
\(574\) 671.208 + 1598.35i 0.0488078 + 0.116226i
\(575\) 0 0
\(576\) −17514.8 30336.5i −1.26699 2.19448i
\(577\) 11616.3 20120.0i 0.838116 1.45166i −0.0533512 0.998576i \(-0.516990\pi\)
0.891468 0.453084i \(-0.149676\pi\)
\(578\) 7011.90 12145.0i 0.504596 0.873986i
\(579\) 20427.4 + 35381.3i 1.46621 + 2.53955i
\(580\) 0 0
\(581\) 12701.3 + 1609.19i 0.906952 + 0.114906i
\(582\) 33802.2 2.40747
\(583\) 2483.92 + 4302.27i 0.176455 + 0.305629i
\(584\) −2588.36 + 4483.18i −0.183403 + 0.317663i
\(585\) 0 0
\(586\) −1827.00 3164.46i −0.128793 0.223076i
\(587\) −13229.8 −0.930244 −0.465122 0.885247i \(-0.653990\pi\)
−0.465122 + 0.885247i \(0.653990\pi\)
\(588\) −491.750 1766.16i −0.0344889 0.123869i
\(589\) 5549.55 0.388226
\(590\) 0 0
\(591\) −5391.26 + 9337.94i −0.375240 + 0.649935i
\(592\) 9694.68 16791.7i 0.673055 1.16577i
\(593\) 13172.6 + 22815.7i 0.912201 + 1.57998i 0.810949 + 0.585117i \(0.198951\pi\)
0.101252 + 0.994861i \(0.467715\pi\)
\(594\) 21496.2 1.48485
\(595\) 0 0
\(596\) 686.710 0.0471959
\(597\) 14957.0 + 25906.2i 1.02537 + 1.77600i
\(598\) −2251.67 + 3900.00i −0.153976 + 0.266694i
\(599\) 6294.29 10902.0i 0.429345 0.743647i −0.567470 0.823394i \(-0.692078\pi\)
0.996815 + 0.0797468i \(0.0254112\pi\)
\(600\) 0 0
\(601\) −5027.54 −0.341227 −0.170614 0.985338i \(-0.554575\pi\)
−0.170614 + 0.985338i \(0.554575\pi\)
\(602\) 4937.04 + 11756.6i 0.334251 + 0.795953i
\(603\) −54813.2 −3.70177
\(604\) 305.848 + 529.745i 0.0206040 + 0.0356871i
\(605\) 0 0
\(606\) 17625.4 30528.0i 1.18149 2.04640i
\(607\) 980.794 + 1698.78i 0.0655835 + 0.113594i 0.896953 0.442127i \(-0.145776\pi\)
−0.831369 + 0.555721i \(0.812442\pi\)
\(608\) 931.845 0.0621567
\(609\) 25522.5 33599.5i 1.69823 2.23567i
\(610\) 0 0
\(611\) 4611.15 + 7986.75i 0.305315 + 0.528820i
\(612\) 208.094 360.430i 0.0137446 0.0238064i
\(613\) 4657.33 8066.73i 0.306864 0.531504i −0.670810 0.741629i \(-0.734054\pi\)
0.977675 + 0.210124i \(0.0673869\pi\)
\(614\) 721.075 + 1248.94i 0.0473945 + 0.0820896i
\(615\) 0 0
\(616\) −3810.65 + 5016.59i −0.249246 + 0.328124i
\(617\) −20829.3 −1.35909 −0.679544 0.733635i \(-0.737822\pi\)
−0.679544 + 0.733635i \(0.737822\pi\)
\(618\) −15101.6 26156.7i −0.982968 1.70255i
\(619\) −6682.39 + 11574.2i −0.433906 + 0.751548i −0.997206 0.0747050i \(-0.976198\pi\)
0.563299 + 0.826253i \(0.309532\pi\)
\(620\) 0 0
\(621\) −5692.30 9859.35i −0.367833 0.637105i
\(622\) −308.055 −0.0198583
\(623\) 7265.26 + 17300.8i 0.467217 + 1.11259i
\(624\) −43652.5 −2.80048
\(625\) 0 0
\(626\) 5419.28 9386.47i 0.346003 0.599295i
\(627\) 3037.63 5261.32i 0.193479 0.335115i
\(628\) 963.421 + 1668.69i 0.0612176 + 0.106032i
\(629\) −3017.31 −0.191269
\(630\) 0 0
\(631\) −29261.9 −1.84612 −0.923058 0.384661i \(-0.874318\pi\)
−0.923058 + 0.384661i \(0.874318\pi\)
\(632\) −5075.97 8791.84i −0.319480 0.553356i
\(633\) 2620.74 4539.25i 0.164558 0.285022i
\(634\) 9495.13 16446.0i 0.594795 1.03021i
\(635\) 0 0
\(636\) −1702.82 −0.106166
\(637\) 21229.3 + 5467.04i 1.32046 + 0.340050i
\(638\) 10327.2 0.640841
\(639\) 13819.1 + 23935.4i 0.855516 + 1.48180i
\(640\) 0 0
\(641\) 6224.26 10780.7i 0.383531 0.664296i −0.608033 0.793912i \(-0.708041\pi\)
0.991564 + 0.129616i \(0.0413745\pi\)
\(642\) 8463.76 + 14659.7i 0.520308 + 0.901200i
\(643\) −13458.0 −0.825397 −0.412698 0.910868i \(-0.635414\pi\)
−0.412698 + 0.910868i \(0.635414\pi\)
\(644\) −235.762 29.8698i −0.0144259 0.00182769i
\(645\) 0 0
\(646\) −598.977 1037.46i −0.0364805 0.0631861i
\(647\) 918.898 1591.58i 0.0558356 0.0967101i −0.836757 0.547575i \(-0.815551\pi\)
0.892592 + 0.450865i \(0.148884\pi\)
\(648\) 29940.6 51858.6i 1.81509 3.14383i
\(649\) −3495.48 6054.35i −0.211417 0.366185i
\(650\) 0 0
\(651\) −10313.0 24558.5i −0.620891 1.47853i
\(652\) −1439.26 −0.0864506
\(653\) −6064.19 10503.5i −0.363415 0.629454i 0.625105 0.780540i \(-0.285056\pi\)
−0.988520 + 0.151087i \(0.951723\pi\)
\(654\) 2807.73 4863.14i 0.167876 0.290770i
\(655\) 0 0
\(656\) 1089.11 + 1886.40i 0.0648211 + 0.112274i
\(657\) −17553.6 −1.04236
\(658\) −4721.71 + 6215.98i −0.279744 + 0.368273i
\(659\) 4131.14 0.244198 0.122099 0.992518i \(-0.461038\pi\)
0.122099 + 0.992518i \(0.461038\pi\)
\(660\) 0 0
\(661\) −10681.3 + 18500.6i −0.628525 + 1.08864i 0.359323 + 0.933213i \(0.383008\pi\)
−0.987848 + 0.155424i \(0.950326\pi\)
\(662\) 158.736 274.939i 0.00931943 0.0161417i
\(663\) 3396.53 + 5882.96i 0.198960 + 0.344608i
\(664\) 15079.7 0.881331
\(665\) 0 0
\(666\) 61630.6 3.58579
\(667\) −2734.69 4736.61i −0.158752 0.274966i
\(668\) −903.749 + 1565.34i −0.0523460 + 0.0906659i
\(669\) −11966.4 + 20726.4i −0.691552 + 1.19780i
\(670\) 0 0
\(671\) 2599.37 0.149549
\(672\) −1731.70 4123.71i −0.0994075 0.236719i
\(673\) 26260.3 1.50410 0.752052 0.659104i \(-0.229064\pi\)
0.752052 + 0.659104i \(0.229064\pi\)
\(674\) 11987.4 + 20762.8i 0.685070 + 1.18658i
\(675\) 0 0
\(676\) −502.086 + 869.639i −0.0285666 + 0.0494788i
\(677\) −15258.3 26428.1i −0.866208 1.50032i −0.865843 0.500316i \(-0.833217\pi\)
−0.000364836 1.00000i \(-0.500116\pi\)
\(678\) −61392.1 −3.47750
\(679\) −21160.2 2680.89i −1.19595 0.151521i
\(680\) 0 0
\(681\) 1713.40 + 2967.69i 0.0964134 + 0.166993i
\(682\) 3259.65 5645.89i 0.183018 0.316997i
\(683\) −14603.7 + 25294.3i −0.818147 + 1.41707i 0.0888993 + 0.996041i \(0.471665\pi\)
−0.907046 + 0.421031i \(0.861668\pi\)
\(684\) 762.775 + 1321.16i 0.0426395 + 0.0738538i
\(685\) 0 0
\(686\) 2690.78 + 18359.0i 0.149759 + 1.02179i
\(687\) 7787.85 0.432497
\(688\) 8010.92 + 13875.3i 0.443915 + 0.768883i
\(689\) 10180.6 17633.4i 0.562919 0.975004i
\(690\) 0 0
\(691\) −5312.39 9201.33i −0.292464 0.506563i 0.681928 0.731420i \(-0.261142\pi\)
−0.974392 + 0.224857i \(0.927809\pi\)
\(692\) −2227.10 −0.122344
\(693\) −21192.3 2684.96i −1.16166 0.147176i
\(694\) −27464.4 −1.50221
\(695\) 0 0
\(696\) 24848.7 43039.3i 1.35329 2.34397i
\(697\) 169.484 293.555i 0.00921043 0.0159529i
\(698\) 1008.50 + 1746.78i 0.0546881 + 0.0947227i
\(699\) −25119.1 −1.35922
\(700\) 0 0
\(701\) 22033.0 1.18712 0.593562 0.804788i \(-0.297721\pi\)
0.593562 + 0.804788i \(0.297721\pi\)
\(702\) −44052.4 76301.0i −2.36845 4.10227i
\(703\) 5530.01 9578.27i 0.296683 0.513871i
\(704\) −3692.41 + 6395.44i −0.197674 + 0.342382i
\(705\) 0 0
\(706\) 10519.5 0.560772
\(707\) −13454.7 + 17712.7i −0.715722 + 0.942225i
\(708\) 2396.29 0.127201
\(709\) −12433.7 21535.8i −0.658614 1.14075i −0.980975 0.194136i \(-0.937810\pi\)
0.322361 0.946617i \(-0.395523\pi\)
\(710\) 0 0
\(711\) 17211.9 29812.0i 0.907874 1.57248i
\(712\) 11050.7 + 19140.3i 0.581659 + 1.00746i
\(713\) −3452.69 −0.181352
\(714\) −3477.97 + 4578.63i −0.182296 + 0.239987i
\(715\) 0 0
\(716\) −244.118 422.825i −0.0127418 0.0220694i
\(717\) 10961.2 18985.3i 0.570923 0.988868i
\(718\) −11777.1 + 20398.6i −0.612142 + 1.06026i
\(719\) 702.482 + 1216.74i 0.0364370 + 0.0631107i 0.883669 0.468113i \(-0.155066\pi\)
−0.847232 + 0.531223i \(0.821733\pi\)
\(720\) 0 0
\(721\) 7379.06 + 17571.8i 0.381152 + 0.907639i
\(722\) −15643.6 −0.806366
\(723\) 11405.5 + 19754.9i 0.586687 + 1.01617i
\(724\) −69.7736 + 120.851i −0.00358165 + 0.00620360i
\(725\) 0 0
\(726\) 15964.3 + 27651.0i 0.816103 + 1.41353i
\(727\) 28384.6 1.44804 0.724020 0.689779i \(-0.242292\pi\)
0.724020 + 0.689779i \(0.242292\pi\)
\(728\) 25615.6 + 3245.37i 1.30409 + 0.165222i
\(729\) 75008.8 3.81084
\(730\) 0 0
\(731\) 1246.63 2159.23i 0.0630758 0.109251i
\(732\) −445.493 + 771.616i −0.0224944 + 0.0389614i
\(733\) −10235.9 17729.1i −0.515787 0.893369i −0.999832 0.0183260i \(-0.994166\pi\)
0.484045 0.875043i \(-0.339167\pi\)
\(734\) 9900.91 0.497887
\(735\) 0 0
\(736\) −579.754 −0.0290353
\(737\) 5777.76 + 10007.4i 0.288774 + 0.500171i
\(738\) −3461.83 + 5996.06i −0.172672 + 0.299076i
\(739\) 16590.5 28735.6i 0.825834 1.43039i −0.0754464 0.997150i \(-0.524038\pi\)
0.901280 0.433236i \(-0.142628\pi\)
\(740\) 0 0
\(741\) −24900.1 −1.23445
\(742\) 17097.5 + 2166.17i 0.845916 + 0.107173i
\(743\) −30844.1 −1.52296 −0.761481 0.648188i \(-0.775527\pi\)
−0.761481 + 0.648188i \(0.775527\pi\)
\(744\) −15686.4 27169.7i −0.772974 1.33883i
\(745\) 0 0
\(746\) −12912.4 + 22364.9i −0.633722 + 1.09764i
\(747\) 25566.5 + 44282.6i 1.25225 + 2.16896i
\(748\) −87.7393 −0.00428886
\(749\) −4135.64 9848.21i −0.201753 0.480435i
\(750\) 0 0
\(751\) 12346.5 + 21384.7i 0.599906 + 1.03907i 0.992834 + 0.119499i \(0.0381289\pi\)
−0.392928 + 0.919569i \(0.628538\pi\)
\(752\) −4904.09 + 8494.13i −0.237811 + 0.411900i
\(753\) −14790.1 + 25617.2i −0.715779 + 1.23977i
\(754\) −21163.6 36656.4i −1.02219 1.77049i
\(755\) 0 0
\(756\) 2812.35 3702.37i 0.135297 0.178113i
\(757\) 6870.57 0.329875 0.164937 0.986304i \(-0.447258\pi\)
0.164937 + 0.986304i \(0.447258\pi\)
\(758\) −4437.01 7685.12i −0.212611 0.368253i
\(759\) −1889.88 + 3273.37i −0.0903799 + 0.156542i
\(760\) 0 0
\(761\) −15441.3 26745.1i −0.735540 1.27399i −0.954486 0.298256i \(-0.903595\pi\)
0.218946 0.975737i \(-0.429738\pi\)
\(762\) 14641.2 0.696057
\(763\) −2143.34 + 2821.64i −0.101696 + 0.133880i
\(764\) 769.273 0.0364284
\(765\) 0 0
\(766\) −4116.62 + 7130.19i −0.194177 + 0.336324i
\(767\) −14326.6 + 24814.5i −0.674452 + 1.16819i
\(768\) −4087.22 7079.28i −0.192038 0.332619i
\(769\) −13536.3 −0.634761 −0.317380 0.948298i \(-0.602803\pi\)
−0.317380 + 0.948298i \(0.602803\pi\)
\(770\) 0 0
\(771\) −36411.1 −1.70080
\(772\) 1081.38 + 1873.01i 0.0504143 + 0.0873201i
\(773\) −7142.87 + 12371.8i −0.332356 + 0.575657i −0.982973 0.183748i \(-0.941177\pi\)
0.650617 + 0.759406i \(0.274510\pi\)
\(774\) −25463.3 + 44103.8i −1.18251 + 2.04816i
\(775\) 0 0
\(776\) −25122.4 −1.16217
\(777\) −52663.6 6672.22i −2.43153 0.308062i
\(778\) 35602.6 1.64064
\(779\) 621.249 + 1076.03i 0.0285732 + 0.0494903i
\(780\) 0 0
\(781\) 2913.29 5045.96i 0.133477 0.231189i
\(782\) 372.658 + 645.462i 0.0170412 + 0.0295162i
\(783\) 107005. 4.88382
\(784\) 6253.59 + 22460.2i 0.284876 + 1.02315i
\(785\) 0 0
\(786\) −4573.54 7921.61i −0.207548 0.359484i
\(787\) 4226.82 7321.06i 0.191448 0.331598i −0.754282 0.656550i \(-0.772015\pi\)
0.945730 + 0.324952i \(0.105348\pi\)
\(788\) −285.402 + 494.330i −0.0129023 + 0.0223474i
\(789\) 2317.28 + 4013.65i 0.104559 + 0.181102i
\(790\) 0 0
\(791\) 38431.4 + 4869.07i 1.72751 + 0.218867i
\(792\) −25160.6 −1.12884
\(793\) −5326.92 9226.49i −0.238543 0.413168i
\(794\) 15174.8 26283.5i 0.678254 1.17477i
\(795\) 0 0
\(796\) 791.789 + 1371.42i 0.0352566 + 0.0610662i
\(797\) 5465.35 0.242902 0.121451 0.992597i \(-0.461245\pi\)
0.121451 + 0.992597i \(0.461245\pi\)
\(798\) −8160.29 19432.1i −0.361994 0.862018i
\(799\) 1526.32 0.0675810
\(800\) 0 0
\(801\) −37471.3 + 64902.3i −1.65291 + 2.86293i
\(802\) −2194.04 + 3800.18i −0.0966011 + 0.167318i
\(803\) 1850.29 + 3204.80i 0.0813142 + 0.140840i
\(804\) −3960.88 −0.173743
\(805\) 0 0
\(806\) −26720.2 −1.16771
\(807\) 28789.9 + 49865.6i 1.25583 + 2.17516i
\(808\) −13099.5 + 22689.0i −0.570346 + 0.987867i
\(809\) −8300.53 + 14376.9i −0.360731 + 0.624804i −0.988081 0.153933i \(-0.950806\pi\)
0.627350 + 0.778737i \(0.284139\pi\)
\(810\) 0 0
\(811\) −24613.6 −1.06572 −0.532861 0.846203i \(-0.678883\pi\)
−0.532861 + 0.846203i \(0.678883\pi\)
\(812\) 1351.10 1778.69i 0.0583922 0.0768714i
\(813\) −4373.17 −0.188652
\(814\) −6496.37 11252.0i −0.279727 0.484501i
\(815\) 0 0
\(816\) −3612.31 + 6256.70i −0.154971 + 0.268417i
\(817\) 4569.57 + 7914.73i 0.195678 + 0.338924i
\(818\) 41177.2 1.76006
\(819\) 33899.3 + 80724.6i 1.44632 + 3.44413i
\(820\) 0 0
\(821\) 8970.29 + 15537.0i 0.381322 + 0.660469i 0.991251 0.131987i \(-0.0421357\pi\)
−0.609930 + 0.792456i \(0.708802\pi\)
\(822\) −15008.2 + 25995.0i −0.636827 + 1.10302i
\(823\) −22954.5 + 39758.4i −0.972229 + 1.68395i −0.283439 + 0.958990i \(0.591475\pi\)
−0.688791 + 0.724960i \(0.741858\pi\)
\(824\) 11223.8 + 19440.1i 0.474513 + 0.821880i
\(825\) 0 0
\(826\) −24060.4 3048.33i −1.01352 0.128408i
\(827\) 36696.8 1.54301 0.771507 0.636221i \(-0.219503\pi\)
0.771507 + 0.636221i \(0.219503\pi\)
\(828\) −474.566 821.972i −0.0199182 0.0344994i
\(829\) −14460.2 + 25045.9i −0.605820 + 1.04931i 0.386101 + 0.922457i \(0.373822\pi\)
−0.991921 + 0.126855i \(0.959512\pi\)
\(830\) 0 0
\(831\) −540.096 935.474i −0.0225460 0.0390508i
\(832\) 30267.5 1.26122
\(833\) 2540.34 2590.38i 0.105663 0.107745i
\(834\) 33497.4 1.39079
\(835\) 0 0
\(836\) 160.805 278.523i 0.00665259 0.0115226i
\(837\) 33774.8 58499.6i 1.39478 2.41582i
\(838\) −16839.1 29166.2i −0.694150 1.20230i
\(839\) 5852.41 0.240820 0.120410 0.992724i \(-0.461579\pi\)
0.120410 + 0.992724i \(0.461579\pi\)
\(840\) 0 0
\(841\) 27018.0 1.10779
\(842\) 4921.87 + 8524.93i 0.201448 + 0.348918i
\(843\) 40489.2 70129.4i 1.65424 2.86523i
\(844\) 138.736 240.298i 0.00565817 0.00980023i
\(845\) 0 0
\(846\) −31176.1 −1.26697
\(847\) −7800.62 18575.6i −0.316449 0.753562i
\(848\) 21654.8 0.876920
\(849\) −29121.7 50440.3i −1.17721 2.03900i
\(850\) 0 0
\(851\) −3440.54 + 5959.19i −0.138590 + 0.240045i
\(852\) 998.586 + 1729.60i 0.0401538 + 0.0695484i
\(853\) 18715.7 0.751245 0.375623 0.926773i \(-0.377429\pi\)
0.375623 + 0.926773i \(0.377429\pi\)
\(854\) 5454.64 7180.85i 0.218564 0.287733i
\(855\) 0 0
\(856\) −6290.42 10895.3i −0.251171 0.435041i
\(857\) 8648.57 14979.8i 0.344725 0.597081i −0.640579 0.767893i \(-0.721305\pi\)
0.985304 + 0.170811i \(0.0546388\pi\)
\(858\) −14625.7 + 25332.4i −0.581949 + 1.00797i
\(859\) −15366.4 26615.3i −0.610354 1.05716i −0.991181 0.132518i \(-0.957694\pi\)
0.380827 0.924646i \(-0.375639\pi\)
\(860\) 0 0
\(861\) 3607.29 4748.88i 0.142783 0.187969i
\(862\) −24322.9 −0.961070
\(863\) 5396.51 + 9347.02i 0.212861 + 0.368686i 0.952609 0.304198i \(-0.0983885\pi\)
−0.739748 + 0.672884i \(0.765055\pi\)
\(864\) 5671.25 9822.89i 0.223310 0.386784i
\(865\) 0 0
\(866\) −1194.89 2069.60i −0.0468867 0.0812101i
\(867\) −48242.9 −1.88975
\(868\) −545.950 1300.07i −0.0213488 0.0508380i
\(869\) −7257.12 −0.283292
\(870\) 0 0
\(871\) 23680.8 41016.4i 0.921234 1.59562i
\(872\) −2086.76 + 3614.38i −0.0810398 + 0.140365i
\(873\) −42593.4 73773.9i −1.65128 2.86010i
\(874\) −2731.97 −0.105733
\(875\) 0 0
\(876\) −1268.45 −0.0489233
\(877\) −9783.36 16945.3i −0.376694 0.652453i 0.613885 0.789395i \(-0.289606\pi\)
−0.990579 + 0.136942i \(0.956272\pi\)
\(878\) −12364.0 + 21415.1i −0.475246 + 0.823151i
\(879\) −6285.01 + 10886.0i −0.241170 + 0.417718i
\(880\) 0 0
\(881\) 27700.5 1.05931 0.529656 0.848213i \(-0.322321\pi\)
0.529656 + 0.848213i \(0.322321\pi\)
\(882\) −51888.2 + 52910.2i −1.98091 + 2.01993i
\(883\) −5071.61 −0.193288 −0.0966440 0.995319i \(-0.530811\pi\)
−0.0966440 + 0.995319i \(0.530811\pi\)
\(884\) 179.805 + 311.431i 0.00684106 + 0.0118491i
\(885\) 0 0
\(886\) −21277.6 + 36853.8i −0.806810 + 1.39744i
\(887\) −11274.4 19527.9i −0.426784 0.739212i 0.569801 0.821783i \(-0.307020\pi\)
−0.996585 + 0.0825707i \(0.973687\pi\)
\(888\) −62525.0 −2.36284
\(889\) −9165.39 1161.21i −0.345779 0.0438084i
\(890\) 0 0
\(891\) −21403.0 37071.1i −0.804745 1.39386i
\(892\) −633.476 + 1097.21i −0.0237784 + 0.0411854i
\(893\) −2797.38 + 4845.20i −0.104827 + 0.181566i
\(894\) −18945.3 32814.2i −0.708753 1.22760i
\(895\) 0 0
\(896\) 11298.0 + 26904.0i 0.421250 + 1.00312i
\(897\) 15491.8 0.576651
\(898\) 1228.57 + 2127.94i 0.0456545 + 0.0790760i
\(899\) 16226.0 28104.3i 0.601967 1.04264i
\(900\) 0 0
\(901\) −1684.92 2918.37i −0.0623007 0.107908i
\(902\) 1459.62 0.0538803
\(903\) 26533.3 34930.2i 0.977821 1.28727i
\(904\) 45627.7 1.67871
\(905\) 0 0
\(906\) 16875.8 29229.7i 0.618830 1.07185i
\(907\) −12121.1 + 20994.3i −0.443742 + 0.768584i −0.997964 0.0637854i \(-0.979683\pi\)
0.554222 + 0.832369i \(0.313016\pi\)
\(908\) 90.7035 + 157.103i 0.00331509 + 0.00574191i
\(909\) −88837.4 −3.24153
\(910\) 0 0
\(911\) 6574.69 0.239110 0.119555 0.992828i \(-0.461853\pi\)
0.119555 + 0.992828i \(0.461853\pi\)
\(912\) −13241.0 22934.1i −0.480760 0.832702i
\(913\) 5389.84 9335.48i 0.195375 0.338400i
\(914\) −20266.5 + 35102.6i −0.733432 + 1.27034i
\(915\) 0 0
\(916\) 412.272 0.0148710
\(917\) 2234.76 + 5321.66i 0.0804781 + 0.191643i
\(918\) −14581.6 −0.524253
\(919\) 20956.1 + 36297.1i 0.752208 + 1.30286i 0.946750 + 0.321969i \(0.104345\pi\)
−0.194542 + 0.980894i \(0.562322\pi\)
\(920\) 0 0
\(921\) 2480.55 4296.44i 0.0887480 0.153716i
\(922\) −4458.95 7723.13i −0.159271 0.275865i
\(923\) −23880.9 −0.851625
\(924\) −1531.39 194.019i −0.0545226 0.00690774i
\(925\) 0 0
\(926\) −14511.0 25133.7i −0.514968 0.891950i
\(927\) −38058.3 + 65918.9i −1.34843 + 2.33556i
\(928\) 2724.57 4719.10i 0.0963777 0.166931i
\(929\) 24085.7 + 41717.7i 0.850621 + 1.47332i 0.880649 + 0.473769i \(0.157107\pi\)
−0.0300283 + 0.999549i \(0.509560\pi\)
\(930\) 0 0
\(931\) 3567.16 + 12811.7i 0.125573 + 0.451006i
\(932\) −1329.75 −0.0467355
\(933\) 529.866 + 917.754i 0.0185927 + 0.0322036i
\(934\) −14498.5 + 25112.1i −0.507929 + 0.879759i
\(935\) 0 0
\(936\) 51561.9 + 89307.8i 1.80059 + 3.11871i
\(937\) −48696.8 −1.69782 −0.848909 0.528539i \(-0.822740\pi\)
−0.848909 + 0.528539i \(0.822740\pi\)
\(938\) 39770.0 + 5038.66i 1.38437 + 0.175392i
\(939\) −37285.4 −1.29581
\(940\) 0 0
\(941\) 1000.15 1732.31i 0.0346482 0.0600124i −0.848181 0.529706i \(-0.822302\pi\)
0.882830 + 0.469694i \(0.155636\pi\)
\(942\) 53158.6 92073.4i 1.83864 3.18462i
\(943\) −386.514 669.462i −0.0133474 0.0231184i
\(944\) −30473.6 −1.05067
\(945\) 0 0
\(946\) 10736.2 0.368988
\(947\) −21247.7 36802.1i −0.729101 1.26284i −0.957264 0.289216i \(-0.906605\pi\)
0.228163 0.973623i \(-0.426728\pi\)
\(948\) 1243.76 2154.25i 0.0426112 0.0738048i
\(949\) 7583.64 13135.2i 0.259405 0.449303i
\(950\) 0 0
\(951\) −65327.9 −2.22755
\(952\) 2584.89 3402.92i 0.0880008 0.115850i
\(953\) 51166.5 1.73919 0.869594 0.493768i \(-0.164381\pi\)
0.869594 + 0.493768i \(0.164381\pi\)
\(954\) 34415.7 + 59609.7i 1.16798 + 2.02299i
\(955\) 0 0
\(956\) 580.260 1005.04i 0.0196307 0.0340014i
\(957\) −17763.1 30766.6i −0.600000 1.03923i
\(958\) −38481.3 −1.29778
\(959\) 11456.8 15082.5i 0.385777 0.507863i
\(960\) 0 0
\(961\) 4652.38 + 8058.16i 0.156167 + 0.270490i
\(962\) −26626.1 + 46117.8i −0.892371 + 1.54563i
\(963\) 21330.0 36944.6i 0.713758 1.23627i
\(964\) 603.782 + 1045.78i 0.0201727 + 0.0349402i
\(965\) 0 0
\(966\) 5076.98 + 12089.8i 0.169099 + 0.402675i
\(967\) −26324.2 −0.875418 −0.437709 0.899117i \(-0.644210\pi\)
−0.437709 + 0.899117i \(0.644210\pi\)
\(968\) −11865.0 20550.7i −0.393961 0.682361i
\(969\) −2060.52 + 3568.93i −0.0683112 + 0.118318i
\(970\) 0 0
\(971\) 2617.28 + 4533.27i 0.0865012 + 0.149824i 0.906030 0.423214i \(-0.139098\pi\)
−0.819529 + 0.573038i \(0.805765\pi\)
\(972\) 7894.44 0.260508
\(973\) −20969.3 2656.71i −0.690901 0.0875337i
\(974\) 24751.4 0.814257
\(975\) 0 0
\(976\) 5665.33 9812.63i 0.185802 0.321818i
\(977\) 22490.3 38954.3i 0.736467 1.27560i −0.217610 0.976036i \(-0.569826\pi\)
0.954077 0.299562i \(-0.0968406\pi\)
\(978\) 39707.0 + 68774.5i 1.29825 + 2.24864i
\(979\) 15799.1 0.515774
\(980\) 0 0
\(981\) −14151.9 −0.460585
\(982\) 15818.6 + 27398.6i 0.514044 + 0.890350i
\(983\) −8196.66 + 14197.0i −0.265954 + 0.460646i −0.967813 0.251670i \(-0.919020\pi\)
0.701859 + 0.712316i \(0.252354\pi\)
\(984\) 3512.06 6083.07i 0.113781 0.197074i
\(985\) 0 0
\(986\) −7005.27 −0.226261
\(987\) 26640.1 + 3375.17i 0.859132 + 0.108848i
\(988\) −1318.16 −0.0424456
\(989\) −2842.99 4924.20i −0.0914073 0.158322i
\(990\) 0 0
\(991\) 1941.67 3363.07i 0.0622393 0.107802i −0.833227 0.552931i \(-0.813509\pi\)
0.895466 + 0.445130i \(0.146842\pi\)
\(992\) −1719.96 2979.06i −0.0550492 0.0953480i
\(993\) −1092.13 −0.0349020
\(994\) −7826.27 18636.7i −0.249733 0.594689i
\(995\) 0 0
\(996\) 1847.47 + 3199.92i 0.0587746 + 0.101801i
\(997\) 6981.81 12092.9i 0.221781 0.384137i −0.733567 0.679617i \(-0.762146\pi\)
0.955349 + 0.295480i \(0.0954795\pi\)
\(998\) 17660.2 30588.4i 0.560144 0.970198i
\(999\) −67311.8 116588.i −2.13178 3.69236i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.e.f.151.2 yes 16
5.2 odd 4 175.4.k.e.74.13 32
5.3 odd 4 175.4.k.e.74.4 32
5.4 even 2 175.4.e.e.151.7 yes 16
7.2 even 3 inner 175.4.e.f.51.2 yes 16
7.3 odd 6 1225.4.a.bk.1.7 8
7.4 even 3 1225.4.a.bl.1.7 8
35.2 odd 12 175.4.k.e.149.4 32
35.4 even 6 1225.4.a.bn.1.2 8
35.9 even 6 175.4.e.e.51.7 16
35.23 odd 12 175.4.k.e.149.13 32
35.24 odd 6 1225.4.a.bo.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.e.e.51.7 16 35.9 even 6
175.4.e.e.151.7 yes 16 5.4 even 2
175.4.e.f.51.2 yes 16 7.2 even 3 inner
175.4.e.f.151.2 yes 16 1.1 even 1 trivial
175.4.k.e.74.4 32 5.3 odd 4
175.4.k.e.74.13 32 5.2 odd 4
175.4.k.e.149.4 32 35.2 odd 12
175.4.k.e.149.13 32 35.23 odd 12
1225.4.a.bk.1.7 8 7.3 odd 6
1225.4.a.bl.1.7 8 7.4 even 3
1225.4.a.bn.1.2 8 35.4 even 6
1225.4.a.bo.1.2 8 35.24 odd 6