Properties

Label 1225.4.a.bl.1.7
Level $1225$
Weight $4$
Character 1225.1
Self dual yes
Analytic conductor $72.277$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1225,4,Mod(1,1225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1225.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1225 = 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(72.2773397570\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 45x^{6} + 26x^{5} + 566x^{4} - 137x^{3} - 2154x^{2} + 376x + 1224 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 175)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-2.92095\) of defining polynomial
Character \(\chi\) \(=\) 1225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.92095 q^{2} +10.0483 q^{3} +0.531934 q^{4} +29.3505 q^{6} -21.8138 q^{8} +73.9678 q^{9} +15.5936 q^{11} +5.34501 q^{12} +63.9123 q^{13} -67.9725 q^{16} -10.5777 q^{17} +216.056 q^{18} -38.7727 q^{19} +45.5481 q^{22} +24.1227 q^{23} -219.191 q^{24} +186.684 q^{26} +471.945 q^{27} +226.731 q^{29} -143.130 q^{31} -24.0335 q^{32} +156.689 q^{33} -30.8968 q^{34} +39.3460 q^{36} +285.253 q^{37} -113.253 q^{38} +642.208 q^{39} +32.0457 q^{41} +235.711 q^{43} +8.29477 q^{44} +70.4612 q^{46} -144.296 q^{47} -683.006 q^{48} -106.287 q^{51} +33.9971 q^{52} -318.581 q^{53} +1378.53 q^{54} -389.599 q^{57} +662.270 q^{58} +448.322 q^{59} +166.695 q^{61} -418.076 q^{62} +473.580 q^{64} +457.680 q^{66} -741.042 q^{67} -5.62662 q^{68} +242.392 q^{69} -373.652 q^{71} -1613.52 q^{72} -237.314 q^{73} +833.209 q^{74} -20.6245 q^{76} +1875.86 q^{78} -465.390 q^{79} +2745.10 q^{81} +93.6037 q^{82} -691.289 q^{83} +688.498 q^{86} +2278.26 q^{87} -340.156 q^{88} +1013.18 q^{89} +12.8317 q^{92} -1438.21 q^{93} -421.482 q^{94} -241.495 q^{96} +1151.67 q^{97} +1153.42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + 6 q^{3} + 27 q^{4} + 4 q^{6} - 42 q^{8} + 42 q^{9} + 103 q^{12} + 138 q^{13} + 191 q^{16} + 138 q^{17} + 81 q^{18} - 42 q^{19} + 127 q^{22} + 124 q^{23} - 292 q^{24} + 23 q^{26} + 204 q^{27}+ \cdots + 4086 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.92095 1.03271 0.516355 0.856374i \(-0.327288\pi\)
0.516355 + 0.856374i \(0.327288\pi\)
\(3\) 10.0483 1.93379 0.966895 0.255173i \(-0.0821324\pi\)
0.966895 + 0.255173i \(0.0821324\pi\)
\(4\) 0.531934 0.0664917
\(5\) 0 0
\(6\) 29.3505 1.99705
\(7\) 0 0
\(8\) −21.8138 −0.964044
\(9\) 73.9678 2.73955
\(10\) 0 0
\(11\) 15.5936 0.427423 0.213711 0.976897i \(-0.431445\pi\)
0.213711 + 0.976897i \(0.431445\pi\)
\(12\) 5.34501 0.128581
\(13\) 63.9123 1.36354 0.681772 0.731565i \(-0.261210\pi\)
0.681772 + 0.731565i \(0.261210\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −67.9725 −1.06207
\(17\) −10.5777 −0.150909 −0.0754547 0.997149i \(-0.524041\pi\)
−0.0754547 + 0.997149i \(0.524041\pi\)
\(18\) 216.056 2.82916
\(19\) −38.7727 −0.468162 −0.234081 0.972217i \(-0.575208\pi\)
−0.234081 + 0.972217i \(0.575208\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 45.5481 0.441404
\(23\) 24.1227 0.218693 0.109346 0.994004i \(-0.465124\pi\)
0.109346 + 0.994004i \(0.465124\pi\)
\(24\) −219.191 −1.86426
\(25\) 0 0
\(26\) 186.684 1.40815
\(27\) 471.945 3.36392
\(28\) 0 0
\(29\) 226.731 1.45182 0.725912 0.687787i \(-0.241418\pi\)
0.725912 + 0.687787i \(0.241418\pi\)
\(30\) 0 0
\(31\) −143.130 −0.829256 −0.414628 0.909991i \(-0.636088\pi\)
−0.414628 + 0.909991i \(0.636088\pi\)
\(32\) −24.0335 −0.132768
\(33\) 156.689 0.826546
\(34\) −30.8968 −0.155846
\(35\) 0 0
\(36\) 39.3460 0.182157
\(37\) 285.253 1.26744 0.633720 0.773562i \(-0.281527\pi\)
0.633720 + 0.773562i \(0.281527\pi\)
\(38\) −113.253 −0.483476
\(39\) 642.208 2.63681
\(40\) 0 0
\(41\) 32.0457 0.122066 0.0610328 0.998136i \(-0.480561\pi\)
0.0610328 + 0.998136i \(0.480561\pi\)
\(42\) 0 0
\(43\) 235.711 0.835942 0.417971 0.908460i \(-0.362741\pi\)
0.417971 + 0.908460i \(0.362741\pi\)
\(44\) 8.29477 0.0284201
\(45\) 0 0
\(46\) 70.4612 0.225846
\(47\) −144.296 −0.447825 −0.223912 0.974609i \(-0.571883\pi\)
−0.223912 + 0.974609i \(0.571883\pi\)
\(48\) −683.006 −2.05382
\(49\) 0 0
\(50\) 0 0
\(51\) −106.287 −0.291827
\(52\) 33.9971 0.0906644
\(53\) −318.581 −0.825670 −0.412835 0.910806i \(-0.635461\pi\)
−0.412835 + 0.910806i \(0.635461\pi\)
\(54\) 1378.53 3.47396
\(55\) 0 0
\(56\) 0 0
\(57\) −389.599 −0.905327
\(58\) 662.270 1.49931
\(59\) 448.322 0.989263 0.494632 0.869103i \(-0.335303\pi\)
0.494632 + 0.869103i \(0.335303\pi\)
\(60\) 0 0
\(61\) 166.695 0.349886 0.174943 0.984579i \(-0.444026\pi\)
0.174943 + 0.984579i \(0.444026\pi\)
\(62\) −418.076 −0.856382
\(63\) 0 0
\(64\) 473.580 0.924960
\(65\) 0 0
\(66\) 457.680 0.853583
\(67\) −741.042 −1.35123 −0.675617 0.737253i \(-0.736123\pi\)
−0.675617 + 0.737253i \(0.736123\pi\)
\(68\) −5.62662 −0.0100342
\(69\) 242.392 0.422906
\(70\) 0 0
\(71\) −373.652 −0.624567 −0.312284 0.949989i \(-0.601094\pi\)
−0.312284 + 0.949989i \(0.601094\pi\)
\(72\) −1613.52 −2.64104
\(73\) −237.314 −0.380486 −0.190243 0.981737i \(-0.560928\pi\)
−0.190243 + 0.981737i \(0.560928\pi\)
\(74\) 833.209 1.30890
\(75\) 0 0
\(76\) −20.6245 −0.0311289
\(77\) 0 0
\(78\) 1875.86 2.72306
\(79\) −465.390 −0.662791 −0.331396 0.943492i \(-0.607519\pi\)
−0.331396 + 0.943492i \(0.607519\pi\)
\(80\) 0 0
\(81\) 2745.10 3.76557
\(82\) 93.6037 0.126058
\(83\) −691.289 −0.914202 −0.457101 0.889415i \(-0.651112\pi\)
−0.457101 + 0.889415i \(0.651112\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 688.498 0.863287
\(87\) 2278.26 2.80753
\(88\) −340.156 −0.412054
\(89\) 1013.18 1.20671 0.603353 0.797474i \(-0.293831\pi\)
0.603353 + 0.797474i \(0.293831\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 12.8317 0.0145413
\(93\) −1438.21 −1.60361
\(94\) −421.482 −0.462474
\(95\) 0 0
\(96\) −241.495 −0.256745
\(97\) 1151.67 1.20551 0.602757 0.797925i \(-0.294069\pi\)
0.602757 + 0.797925i \(0.294069\pi\)
\(98\) 0 0
\(99\) 1153.42 1.17094
\(100\) 0 0
\(101\) −1201.03 −1.18324 −0.591618 0.806219i \(-0.701510\pi\)
−0.591618 + 0.806219i \(0.701510\pi\)
\(102\) −310.460 −0.301373
\(103\) 1029.05 0.984421 0.492211 0.870476i \(-0.336189\pi\)
0.492211 + 0.870476i \(0.336189\pi\)
\(104\) −1394.17 −1.31452
\(105\) 0 0
\(106\) −930.559 −0.852678
\(107\) −576.737 −0.521078 −0.260539 0.965463i \(-0.583900\pi\)
−0.260539 + 0.965463i \(0.583900\pi\)
\(108\) 251.043 0.223673
\(109\) −191.325 −0.168125 −0.0840623 0.996461i \(-0.526789\pi\)
−0.0840623 + 0.996461i \(0.526789\pi\)
\(110\) 0 0
\(111\) 2866.30 2.45096
\(112\) 0 0
\(113\) −2091.69 −1.74132 −0.870662 0.491882i \(-0.836309\pi\)
−0.870662 + 0.491882i \(0.836309\pi\)
\(114\) −1138.00 −0.934941
\(115\) 0 0
\(116\) 120.606 0.0965343
\(117\) 4727.45 3.73549
\(118\) 1309.52 1.02162
\(119\) 0 0
\(120\) 0 0
\(121\) −1087.84 −0.817310
\(122\) 486.906 0.361331
\(123\) 322.003 0.236049
\(124\) −76.1357 −0.0551386
\(125\) 0 0
\(126\) 0 0
\(127\) 498.841 0.348543 0.174271 0.984698i \(-0.444243\pi\)
0.174271 + 0.984698i \(0.444243\pi\)
\(128\) 1575.57 1.08798
\(129\) 2368.48 1.61654
\(130\) 0 0
\(131\) 311.650 0.207855 0.103928 0.994585i \(-0.466859\pi\)
0.103928 + 0.994585i \(0.466859\pi\)
\(132\) 83.3481 0.0549585
\(133\) 0 0
\(134\) −2164.55 −1.39543
\(135\) 0 0
\(136\) 230.739 0.145483
\(137\) 1022.69 0.637768 0.318884 0.947794i \(-0.396692\pi\)
0.318884 + 0.947794i \(0.396692\pi\)
\(138\) 708.013 0.436740
\(139\) 1141.29 0.696424 0.348212 0.937416i \(-0.386789\pi\)
0.348212 + 0.937416i \(0.386789\pi\)
\(140\) 0 0
\(141\) −1449.93 −0.866000
\(142\) −1091.42 −0.644997
\(143\) 996.623 0.582810
\(144\) −5027.78 −2.90959
\(145\) 0 0
\(146\) −693.182 −0.392932
\(147\) 0 0
\(148\) 151.736 0.0842743
\(149\) 1290.97 0.709801 0.354900 0.934904i \(-0.384515\pi\)
0.354900 + 0.934904i \(0.384515\pi\)
\(150\) 0 0
\(151\) −1149.95 −0.619745 −0.309873 0.950778i \(-0.600286\pi\)
−0.309873 + 0.950778i \(0.600286\pi\)
\(152\) 845.781 0.451329
\(153\) −782.407 −0.413424
\(154\) 0 0
\(155\) 0 0
\(156\) 341.612 0.175326
\(157\) −3622.34 −1.84136 −0.920681 0.390316i \(-0.872366\pi\)
−0.920681 + 0.390316i \(0.872366\pi\)
\(158\) −1359.38 −0.684472
\(159\) −3201.19 −1.59667
\(160\) 0 0
\(161\) 0 0
\(162\) 8018.30 3.88875
\(163\) −2705.71 −1.30017 −0.650086 0.759861i \(-0.725267\pi\)
−0.650086 + 0.759861i \(0.725267\pi\)
\(164\) 17.0462 0.00811635
\(165\) 0 0
\(166\) −2019.22 −0.944107
\(167\) 3397.98 1.57451 0.787256 0.616627i \(-0.211501\pi\)
0.787256 + 0.616627i \(0.211501\pi\)
\(168\) 0 0
\(169\) 1887.78 0.859253
\(170\) 0 0
\(171\) −2867.93 −1.28255
\(172\) 125.382 0.0555832
\(173\) −4186.81 −1.83998 −0.919991 0.391939i \(-0.871804\pi\)
−0.919991 + 0.391939i \(0.871804\pi\)
\(174\) 6654.67 2.89936
\(175\) 0 0
\(176\) −1059.94 −0.453953
\(177\) 4504.86 1.91303
\(178\) 2959.45 1.24618
\(179\) 917.853 0.383260 0.191630 0.981467i \(-0.438623\pi\)
0.191630 + 0.981467i \(0.438623\pi\)
\(180\) 0 0
\(181\) 262.339 0.107732 0.0538661 0.998548i \(-0.482846\pi\)
0.0538661 + 0.998548i \(0.482846\pi\)
\(182\) 0 0
\(183\) 1674.99 0.676607
\(184\) −526.209 −0.210830
\(185\) 0 0
\(186\) −4200.94 −1.65606
\(187\) −164.944 −0.0645021
\(188\) −76.7560 −0.0297766
\(189\) 0 0
\(190\) 0 0
\(191\) 1446.18 0.547864 0.273932 0.961749i \(-0.411676\pi\)
0.273932 + 0.961749i \(0.411676\pi\)
\(192\) 4758.66 1.78868
\(193\) −4065.85 −1.51641 −0.758204 0.652018i \(-0.773923\pi\)
−0.758204 + 0.652018i \(0.773923\pi\)
\(194\) 3363.98 1.24495
\(195\) 0 0
\(196\) 0 0
\(197\) 1073.07 0.388088 0.194044 0.980993i \(-0.437840\pi\)
0.194044 + 0.980993i \(0.437840\pi\)
\(198\) 3369.09 1.20925
\(199\) −2977.02 −1.06048 −0.530240 0.847848i \(-0.677898\pi\)
−0.530240 + 0.847848i \(0.677898\pi\)
\(200\) 0 0
\(201\) −7446.19 −2.61300
\(202\) −3508.14 −1.22194
\(203\) 0 0
\(204\) −56.5378 −0.0194041
\(205\) 0 0
\(206\) 3005.80 1.01662
\(207\) 1784.30 0.599119
\(208\) −4344.28 −1.44818
\(209\) −604.607 −0.200103
\(210\) 0 0
\(211\) −521.629 −0.170192 −0.0850958 0.996373i \(-0.527120\pi\)
−0.0850958 + 0.996373i \(0.527120\pi\)
\(212\) −169.464 −0.0549002
\(213\) −3754.55 −1.20778
\(214\) −1684.62 −0.538123
\(215\) 0 0
\(216\) −10294.9 −3.24297
\(217\) 0 0
\(218\) −558.849 −0.173624
\(219\) −2384.60 −0.735781
\(220\) 0 0
\(221\) −676.043 −0.205772
\(222\) 8372.31 2.53114
\(223\) 2381.79 0.715229 0.357615 0.933869i \(-0.383590\pi\)
0.357615 + 0.933869i \(0.383590\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6109.71 −1.79828
\(227\) −341.033 −0.0997144 −0.0498572 0.998756i \(-0.515877\pi\)
−0.0498572 + 0.998756i \(0.515877\pi\)
\(228\) −207.241 −0.0601967
\(229\) 775.044 0.223652 0.111826 0.993728i \(-0.464330\pi\)
0.111826 + 0.993728i \(0.464330\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −4945.87 −1.39962
\(233\) −2499.84 −0.702876 −0.351438 0.936211i \(-0.614307\pi\)
−0.351438 + 0.936211i \(0.614307\pi\)
\(234\) 13808.6 3.85769
\(235\) 0 0
\(236\) 238.478 0.0657778
\(237\) −4676.37 −1.28170
\(238\) 0 0
\(239\) −2181.70 −0.590470 −0.295235 0.955425i \(-0.595398\pi\)
−0.295235 + 0.955425i \(0.595398\pi\)
\(240\) 0 0
\(241\) −2270.14 −0.606774 −0.303387 0.952867i \(-0.598117\pi\)
−0.303387 + 0.952867i \(0.598117\pi\)
\(242\) −3177.52 −0.844045
\(243\) 14841.0 3.91791
\(244\) 88.6705 0.0232645
\(245\) 0 0
\(246\) 940.555 0.243771
\(247\) −2478.05 −0.638359
\(248\) 3122.22 0.799439
\(249\) −6946.26 −1.76788
\(250\) 0 0
\(251\) 2943.81 0.740286 0.370143 0.928975i \(-0.379309\pi\)
0.370143 + 0.928975i \(0.379309\pi\)
\(252\) 0 0
\(253\) 376.160 0.0934743
\(254\) 1457.09 0.359944
\(255\) 0 0
\(256\) 813.518 0.198613
\(257\) −3623.62 −0.879515 −0.439757 0.898117i \(-0.644936\pi\)
−0.439757 + 0.898117i \(0.644936\pi\)
\(258\) 6918.22 1.66942
\(259\) 0 0
\(260\) 0 0
\(261\) 16770.8 3.97734
\(262\) 910.314 0.214654
\(263\) −461.230 −0.108139 −0.0540696 0.998537i \(-0.517219\pi\)
−0.0540696 + 0.998537i \(0.517219\pi\)
\(264\) −3417.98 −0.796827
\(265\) 0 0
\(266\) 0 0
\(267\) 10180.7 2.33352
\(268\) −394.185 −0.0898459
\(269\) −5730.33 −1.29883 −0.649413 0.760436i \(-0.724985\pi\)
−0.649413 + 0.760436i \(0.724985\pi\)
\(270\) 0 0
\(271\) −435.216 −0.0975554 −0.0487777 0.998810i \(-0.515533\pi\)
−0.0487777 + 0.998810i \(0.515533\pi\)
\(272\) 718.991 0.160277
\(273\) 0 0
\(274\) 2987.22 0.658630
\(275\) 0 0
\(276\) 128.936 0.0281198
\(277\) 107.500 0.0233179 0.0116590 0.999932i \(-0.496289\pi\)
0.0116590 + 0.999932i \(0.496289\pi\)
\(278\) 3333.65 0.719204
\(279\) −10587.0 −2.27179
\(280\) 0 0
\(281\) −8058.94 −1.71088 −0.855438 0.517905i \(-0.826712\pi\)
−0.855438 + 0.517905i \(0.826712\pi\)
\(282\) −4235.16 −0.894327
\(283\) 5796.37 1.21752 0.608760 0.793354i \(-0.291667\pi\)
0.608760 + 0.793354i \(0.291667\pi\)
\(284\) −198.758 −0.0415285
\(285\) 0 0
\(286\) 2911.08 0.601874
\(287\) 0 0
\(288\) −1777.71 −0.363723
\(289\) −4801.11 −0.977226
\(290\) 0 0
\(291\) 11572.3 2.33121
\(292\) −126.235 −0.0252992
\(293\) 1250.96 0.249427 0.124713 0.992193i \(-0.460199\pi\)
0.124713 + 0.992193i \(0.460199\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −6222.46 −1.22187
\(297\) 7359.33 1.43782
\(298\) 3770.85 0.733019
\(299\) 1541.74 0.298197
\(300\) 0 0
\(301\) 0 0
\(302\) −3358.94 −0.640018
\(303\) −12068.3 −2.28813
\(304\) 2635.48 0.497221
\(305\) 0 0
\(306\) −2285.37 −0.426947
\(307\) −493.727 −0.0917865 −0.0458933 0.998946i \(-0.514613\pi\)
−0.0458933 + 0.998946i \(0.514613\pi\)
\(308\) 0 0
\(309\) 10340.2 1.90367
\(310\) 0 0
\(311\) −105.464 −0.0192293 −0.00961466 0.999954i \(-0.503060\pi\)
−0.00961466 + 0.999954i \(0.503060\pi\)
\(312\) −14009.0 −2.54200
\(313\) −3710.63 −0.670087 −0.335044 0.942203i \(-0.608751\pi\)
−0.335044 + 0.942203i \(0.608751\pi\)
\(314\) −10580.7 −1.90159
\(315\) 0 0
\(316\) −247.557 −0.0440701
\(317\) −6501.40 −1.15191 −0.575955 0.817482i \(-0.695370\pi\)
−0.575955 + 0.817482i \(0.695370\pi\)
\(318\) −9350.51 −1.64890
\(319\) 3535.56 0.620543
\(320\) 0 0
\(321\) −5795.21 −1.00766
\(322\) 0 0
\(323\) 410.125 0.0706500
\(324\) 1460.21 0.250379
\(325\) 0 0
\(326\) −7903.25 −1.34270
\(327\) −1922.48 −0.325118
\(328\) −699.038 −0.117677
\(329\) 0 0
\(330\) 0 0
\(331\) −108.688 −0.0180485 −0.00902424 0.999959i \(-0.502873\pi\)
−0.00902424 + 0.999959i \(0.502873\pi\)
\(332\) −367.720 −0.0607869
\(333\) 21099.5 3.47221
\(334\) 9925.31 1.62601
\(335\) 0 0
\(336\) 0 0
\(337\) −8207.88 −1.32674 −0.663370 0.748291i \(-0.730875\pi\)
−0.663370 + 0.748291i \(0.730875\pi\)
\(338\) 5514.10 0.887360
\(339\) −21017.9 −3.36735
\(340\) 0 0
\(341\) −2231.92 −0.354443
\(342\) −8377.08 −1.32450
\(343\) 0 0
\(344\) −5141.75 −0.805885
\(345\) 0 0
\(346\) −12229.4 −1.90017
\(347\) −9402.55 −1.45463 −0.727313 0.686306i \(-0.759231\pi\)
−0.727313 + 0.686306i \(0.759231\pi\)
\(348\) 1211.88 0.186677
\(349\) −690.530 −0.105912 −0.0529559 0.998597i \(-0.516864\pi\)
−0.0529559 + 0.998597i \(0.516864\pi\)
\(350\) 0 0
\(351\) 30163.1 4.58685
\(352\) −374.769 −0.0567479
\(353\) 3601.39 0.543010 0.271505 0.962437i \(-0.412479\pi\)
0.271505 + 0.962437i \(0.412479\pi\)
\(354\) 13158.5 1.97561
\(355\) 0 0
\(356\) 538.945 0.0802360
\(357\) 0 0
\(358\) 2681.00 0.395797
\(359\) 8063.90 1.18551 0.592753 0.805384i \(-0.298041\pi\)
0.592753 + 0.805384i \(0.298041\pi\)
\(360\) 0 0
\(361\) −5355.68 −0.780825
\(362\) 766.280 0.111256
\(363\) −10930.9 −1.58051
\(364\) 0 0
\(365\) 0 0
\(366\) 4892.57 0.698739
\(367\) 3389.62 0.482117 0.241059 0.970511i \(-0.422505\pi\)
0.241059 + 0.970511i \(0.422505\pi\)
\(368\) −1639.68 −0.232267
\(369\) 2370.35 0.334405
\(370\) 0 0
\(371\) 0 0
\(372\) −765.033 −0.106627
\(373\) 8841.24 1.22730 0.613649 0.789579i \(-0.289701\pi\)
0.613649 + 0.789579i \(0.289701\pi\)
\(374\) −481.793 −0.0666121
\(375\) 0 0
\(376\) 3147.65 0.431723
\(377\) 14490.9 1.97963
\(378\) 0 0
\(379\) 3038.06 0.411754 0.205877 0.978578i \(-0.433995\pi\)
0.205877 + 0.978578i \(0.433995\pi\)
\(380\) 0 0
\(381\) 5012.49 0.674009
\(382\) 4224.22 0.565785
\(383\) 2818.68 0.376052 0.188026 0.982164i \(-0.439791\pi\)
0.188026 + 0.982164i \(0.439791\pi\)
\(384\) 15831.7 2.10393
\(385\) 0 0
\(386\) −11876.1 −1.56601
\(387\) 17435.0 2.29010
\(388\) 612.614 0.0801567
\(389\) 12188.7 1.58867 0.794334 0.607481i \(-0.207820\pi\)
0.794334 + 0.607481i \(0.207820\pi\)
\(390\) 0 0
\(391\) −255.162 −0.0330028
\(392\) 0 0
\(393\) 3131.55 0.401948
\(394\) 3134.39 0.400782
\(395\) 0 0
\(396\) 613.545 0.0778581
\(397\) −10390.3 −1.31354 −0.656771 0.754090i \(-0.728078\pi\)
−0.656771 + 0.754090i \(0.728078\pi\)
\(398\) −8695.73 −1.09517
\(399\) 0 0
\(400\) 0 0
\(401\) 1502.28 0.187083 0.0935413 0.995615i \(-0.470181\pi\)
0.0935413 + 0.995615i \(0.470181\pi\)
\(402\) −21749.9 −2.69848
\(403\) −9147.77 −1.13073
\(404\) −638.867 −0.0786753
\(405\) 0 0
\(406\) 0 0
\(407\) 4448.12 0.541733
\(408\) 2318.53 0.281334
\(409\) 14097.2 1.70431 0.852155 0.523290i \(-0.175295\pi\)
0.852155 + 0.523290i \(0.175295\pi\)
\(410\) 0 0
\(411\) 10276.3 1.23331
\(412\) 547.387 0.0654559
\(413\) 0 0
\(414\) 5211.86 0.618717
\(415\) 0 0
\(416\) −1536.04 −0.181035
\(417\) 11468.0 1.34674
\(418\) −1766.02 −0.206648
\(419\) 11529.9 1.34433 0.672163 0.740403i \(-0.265365\pi\)
0.672163 + 0.740403i \(0.265365\pi\)
\(420\) 0 0
\(421\) −3370.05 −0.390134 −0.195067 0.980790i \(-0.562492\pi\)
−0.195067 + 0.980790i \(0.562492\pi\)
\(422\) −1523.65 −0.175759
\(423\) −10673.3 −1.22684
\(424\) 6949.48 0.795982
\(425\) 0 0
\(426\) −10966.9 −1.24729
\(427\) 0 0
\(428\) −306.786 −0.0346473
\(429\) 10014.3 1.12703
\(430\) 0 0
\(431\) −8327.07 −0.930628 −0.465314 0.885146i \(-0.654059\pi\)
−0.465314 + 0.885146i \(0.654059\pi\)
\(432\) −32079.3 −3.57272
\(433\) 818.149 0.0908031 0.0454015 0.998969i \(-0.485543\pi\)
0.0454015 + 0.998969i \(0.485543\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −101.772 −0.0111789
\(437\) −935.303 −0.102384
\(438\) −6965.28 −0.759849
\(439\) 8465.78 0.920386 0.460193 0.887819i \(-0.347780\pi\)
0.460193 + 0.887819i \(0.347780\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −1974.69 −0.212503
\(443\) 14568.9 1.56251 0.781254 0.624213i \(-0.214580\pi\)
0.781254 + 0.624213i \(0.214580\pi\)
\(444\) 1524.68 0.162969
\(445\) 0 0
\(446\) 6957.07 0.738625
\(447\) 12972.0 1.37261
\(448\) 0 0
\(449\) −841.211 −0.0884169 −0.0442084 0.999022i \(-0.514077\pi\)
−0.0442084 + 0.999022i \(0.514077\pi\)
\(450\) 0 0
\(451\) 499.707 0.0521736
\(452\) −1112.64 −0.115784
\(453\) −11555.0 −1.19846
\(454\) −996.140 −0.102976
\(455\) 0 0
\(456\) 8498.64 0.872775
\(457\) 13876.7 1.42040 0.710200 0.704000i \(-0.248604\pi\)
0.710200 + 0.704000i \(0.248604\pi\)
\(458\) 2263.86 0.230968
\(459\) −4992.08 −0.507648
\(460\) 0 0
\(461\) 3053.09 0.308452 0.154226 0.988036i \(-0.450712\pi\)
0.154226 + 0.988036i \(0.450712\pi\)
\(462\) 0 0
\(463\) 9935.80 0.997312 0.498656 0.866800i \(-0.333827\pi\)
0.498656 + 0.866800i \(0.333827\pi\)
\(464\) −15411.5 −1.54194
\(465\) 0 0
\(466\) −7301.91 −0.725868
\(467\) 9927.26 0.983681 0.491840 0.870685i \(-0.336324\pi\)
0.491840 + 0.870685i \(0.336324\pi\)
\(468\) 2514.69 0.248379
\(469\) 0 0
\(470\) 0 0
\(471\) −36398.2 −3.56081
\(472\) −9779.62 −0.953694
\(473\) 3675.58 0.357301
\(474\) −13659.4 −1.32363
\(475\) 0 0
\(476\) 0 0
\(477\) −23564.8 −2.26196
\(478\) −6372.63 −0.609785
\(479\) −13174.2 −1.25667 −0.628336 0.777942i \(-0.716264\pi\)
−0.628336 + 0.777942i \(0.716264\pi\)
\(480\) 0 0
\(481\) 18231.2 1.72821
\(482\) −6630.96 −0.626622
\(483\) 0 0
\(484\) −578.658 −0.0543443
\(485\) 0 0
\(486\) 43349.8 4.04607
\(487\) 8473.76 0.788466 0.394233 0.919011i \(-0.371010\pi\)
0.394233 + 0.919011i \(0.371010\pi\)
\(488\) −3636.25 −0.337306
\(489\) −27187.8 −2.51426
\(490\) 0 0
\(491\) −10831.1 −0.995523 −0.497762 0.867314i \(-0.665845\pi\)
−0.497762 + 0.867314i \(0.665845\pi\)
\(492\) 171.284 0.0156953
\(493\) −2398.29 −0.219094
\(494\) −7238.26 −0.659240
\(495\) 0 0
\(496\) 9728.92 0.880728
\(497\) 0 0
\(498\) −20289.7 −1.82571
\(499\) −12092.1 −1.08480 −0.542402 0.840119i \(-0.682485\pi\)
−0.542402 + 0.840119i \(0.682485\pi\)
\(500\) 0 0
\(501\) 34143.8 3.04478
\(502\) 8598.72 0.764501
\(503\) 18398.5 1.63091 0.815455 0.578821i \(-0.196487\pi\)
0.815455 + 0.578821i \(0.196487\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 1098.74 0.0965319
\(507\) 18968.9 1.66162
\(508\) 265.350 0.0231752
\(509\) −20702.7 −1.80281 −0.901406 0.432975i \(-0.857464\pi\)
−0.901406 + 0.432975i \(0.857464\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −10228.3 −0.882874
\(513\) −18298.6 −1.57486
\(514\) −10584.4 −0.908285
\(515\) 0 0
\(516\) 1259.88 0.107486
\(517\) −2250.10 −0.191411
\(518\) 0 0
\(519\) −42070.2 −3.55814
\(520\) 0 0
\(521\) −14473.1 −1.21704 −0.608518 0.793540i \(-0.708236\pi\)
−0.608518 + 0.793540i \(0.708236\pi\)
\(522\) 48986.6 4.10744
\(523\) 15917.9 1.33087 0.665433 0.746457i \(-0.268247\pi\)
0.665433 + 0.746457i \(0.268247\pi\)
\(524\) 165.777 0.0138206
\(525\) 0 0
\(526\) −1347.23 −0.111677
\(527\) 1513.98 0.125143
\(528\) −10650.5 −0.877850
\(529\) −11585.1 −0.952173
\(530\) 0 0
\(531\) 33161.4 2.71013
\(532\) 0 0
\(533\) 2048.11 0.166442
\(534\) 29737.3 2.40985
\(535\) 0 0
\(536\) 16165.0 1.30265
\(537\) 9222.83 0.741145
\(538\) −16738.0 −1.34131
\(539\) 0 0
\(540\) 0 0
\(541\) −8839.33 −0.702463 −0.351232 0.936289i \(-0.614237\pi\)
−0.351232 + 0.936289i \(0.614237\pi\)
\(542\) −1271.24 −0.100746
\(543\) 2636.06 0.208332
\(544\) 254.219 0.0200359
\(545\) 0 0
\(546\) 0 0
\(547\) −11349.6 −0.887155 −0.443577 0.896236i \(-0.646291\pi\)
−0.443577 + 0.896236i \(0.646291\pi\)
\(548\) 544.003 0.0424063
\(549\) 12330.0 0.958530
\(550\) 0 0
\(551\) −8790.98 −0.679689
\(552\) −5287.49 −0.407700
\(553\) 0 0
\(554\) 314.003 0.0240807
\(555\) 0 0
\(556\) 607.090 0.0463064
\(557\) 6610.86 0.502893 0.251446 0.967871i \(-0.419094\pi\)
0.251446 + 0.967871i \(0.419094\pi\)
\(558\) −30924.1 −2.34610
\(559\) 15064.8 1.13984
\(560\) 0 0
\(561\) −1657.40 −0.124734
\(562\) −23539.8 −1.76684
\(563\) 12849.9 0.961918 0.480959 0.876743i \(-0.340289\pi\)
0.480959 + 0.876743i \(0.340289\pi\)
\(564\) −771.266 −0.0575818
\(565\) 0 0
\(566\) 16930.9 1.25735
\(567\) 0 0
\(568\) 8150.77 0.602110
\(569\) −8973.04 −0.661106 −0.330553 0.943787i \(-0.607235\pi\)
−0.330553 + 0.943787i \(0.607235\pi\)
\(570\) 0 0
\(571\) 1322.04 0.0968923 0.0484461 0.998826i \(-0.484573\pi\)
0.0484461 + 0.998826i \(0.484573\pi\)
\(572\) 530.137 0.0387520
\(573\) 14531.6 1.05945
\(574\) 0 0
\(575\) 0 0
\(576\) 35029.6 2.53397
\(577\) −23232.6 −1.67623 −0.838116 0.545491i \(-0.816343\pi\)
−0.838116 + 0.545491i \(0.816343\pi\)
\(578\) −14023.8 −1.00919
\(579\) −40854.8 −2.93241
\(580\) 0 0
\(581\) 0 0
\(582\) 33802.2 2.40747
\(583\) −4967.83 −0.352910
\(584\) 5176.73 0.366806
\(585\) 0 0
\(586\) 3654.00 0.257586
\(587\) −13229.8 −0.930244 −0.465122 0.885247i \(-0.653990\pi\)
−0.465122 + 0.885247i \(0.653990\pi\)
\(588\) 0 0
\(589\) 5549.55 0.388226
\(590\) 0 0
\(591\) 10782.5 0.750480
\(592\) −19389.4 −1.34611
\(593\) −26345.3 −1.82440 −0.912201 0.409744i \(-0.865618\pi\)
−0.912201 + 0.409744i \(0.865618\pi\)
\(594\) 21496.2 1.48485
\(595\) 0 0
\(596\) 686.710 0.0471959
\(597\) −29913.9 −2.05075
\(598\) 4503.34 0.307952
\(599\) −12588.6 −0.858690 −0.429345 0.903141i \(-0.641255\pi\)
−0.429345 + 0.903141i \(0.641255\pi\)
\(600\) 0 0
\(601\) −5027.54 −0.341227 −0.170614 0.985338i \(-0.554575\pi\)
−0.170614 + 0.985338i \(0.554575\pi\)
\(602\) 0 0
\(603\) −54813.2 −3.70177
\(604\) −611.697 −0.0412079
\(605\) 0 0
\(606\) −35250.7 −2.36298
\(607\) −1961.59 −0.131167 −0.0655835 0.997847i \(-0.520891\pi\)
−0.0655835 + 0.997847i \(0.520891\pi\)
\(608\) 931.845 0.0621567
\(609\) 0 0
\(610\) 0 0
\(611\) −9222.30 −0.610629
\(612\) −416.188 −0.0274892
\(613\) −9314.66 −0.613728 −0.306864 0.951753i \(-0.599280\pi\)
−0.306864 + 0.951753i \(0.599280\pi\)
\(614\) −1442.15 −0.0947890
\(615\) 0 0
\(616\) 0 0
\(617\) −20829.3 −1.35909 −0.679544 0.733635i \(-0.737822\pi\)
−0.679544 + 0.733635i \(0.737822\pi\)
\(618\) 30203.1 1.96594
\(619\) 13364.8 0.867813 0.433906 0.900958i \(-0.357135\pi\)
0.433906 + 0.900958i \(0.357135\pi\)
\(620\) 0 0
\(621\) 11384.6 0.735665
\(622\) −308.055 −0.0198583
\(623\) 0 0
\(624\) −43652.5 −2.80048
\(625\) 0 0
\(626\) −10838.6 −0.692006
\(627\) −6075.25 −0.386957
\(628\) −1926.84 −0.122435
\(629\) −3017.31 −0.191269
\(630\) 0 0
\(631\) −29261.9 −1.84612 −0.923058 0.384661i \(-0.874318\pi\)
−0.923058 + 0.384661i \(0.874318\pi\)
\(632\) 10151.9 0.638960
\(633\) −5241.47 −0.329115
\(634\) −18990.3 −1.18959
\(635\) 0 0
\(636\) −1702.82 −0.106166
\(637\) 0 0
\(638\) 10327.2 0.640841
\(639\) −27638.2 −1.71103
\(640\) 0 0
\(641\) −12448.5 −0.767063 −0.383531 0.923528i \(-0.625292\pi\)
−0.383531 + 0.923528i \(0.625292\pi\)
\(642\) −16927.5 −1.04062
\(643\) −13458.0 −0.825397 −0.412698 0.910868i \(-0.635414\pi\)
−0.412698 + 0.910868i \(0.635414\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1197.95 0.0729611
\(647\) −1837.80 −0.111671 −0.0558356 0.998440i \(-0.517782\pi\)
−0.0558356 + 0.998440i \(0.517782\pi\)
\(648\) −59881.2 −3.63018
\(649\) 6990.96 0.422834
\(650\) 0 0
\(651\) 0 0
\(652\) −1439.26 −0.0864506
\(653\) 12128.4 0.726830 0.363415 0.931627i \(-0.381611\pi\)
0.363415 + 0.931627i \(0.381611\pi\)
\(654\) −5615.47 −0.335753
\(655\) 0 0
\(656\) −2178.22 −0.129642
\(657\) −17553.6 −1.04236
\(658\) 0 0
\(659\) 4131.14 0.244198 0.122099 0.992518i \(-0.461038\pi\)
0.122099 + 0.992518i \(0.461038\pi\)
\(660\) 0 0
\(661\) 21362.6 1.25705 0.628525 0.777790i \(-0.283659\pi\)
0.628525 + 0.777790i \(0.283659\pi\)
\(662\) −317.473 −0.0186389
\(663\) −6793.06 −0.397920
\(664\) 15079.7 0.881331
\(665\) 0 0
\(666\) 61630.6 3.58579
\(667\) 5469.37 0.317504
\(668\) 1807.50 0.104692
\(669\) 23932.8 1.38310
\(670\) 0 0
\(671\) 2599.37 0.149549
\(672\) 0 0
\(673\) 26260.3 1.50410 0.752052 0.659104i \(-0.229064\pi\)
0.752052 + 0.659104i \(0.229064\pi\)
\(674\) −23974.8 −1.37014
\(675\) 0 0
\(676\) 1004.17 0.0571332
\(677\) 30516.5 1.73242 0.866208 0.499684i \(-0.166551\pi\)
0.866208 + 0.499684i \(0.166551\pi\)
\(678\) −61392.1 −3.47750
\(679\) 0 0
\(680\) 0 0
\(681\) −3426.80 −0.192827
\(682\) −6519.31 −0.366037
\(683\) 29207.4 1.63629 0.818147 0.575009i \(-0.195002\pi\)
0.818147 + 0.575009i \(0.195002\pi\)
\(684\) −1525.55 −0.0852790
\(685\) 0 0
\(686\) 0 0
\(687\) 7787.85 0.432497
\(688\) −16021.8 −0.887830
\(689\) −20361.3 −1.12584
\(690\) 0 0
\(691\) 10624.8 0.584928 0.292464 0.956276i \(-0.405525\pi\)
0.292464 + 0.956276i \(0.405525\pi\)
\(692\) −2227.10 −0.122344
\(693\) 0 0
\(694\) −27464.4 −1.50221
\(695\) 0 0
\(696\) −49697.5 −2.70658
\(697\) −338.968 −0.0184209
\(698\) −2017.00 −0.109376
\(699\) −25119.1 −1.35922
\(700\) 0 0
\(701\) 22033.0 1.18712 0.593562 0.804788i \(-0.297721\pi\)
0.593562 + 0.804788i \(0.297721\pi\)
\(702\) 88104.8 4.73689
\(703\) −11060.0 −0.593367
\(704\) 7384.81 0.395349
\(705\) 0 0
\(706\) 10519.5 0.560772
\(707\) 0 0
\(708\) 2396.29 0.127201
\(709\) 24867.4 1.31723 0.658614 0.752481i \(-0.271143\pi\)
0.658614 + 0.752481i \(0.271143\pi\)
\(710\) 0 0
\(711\) −34423.9 −1.81575
\(712\) −22101.3 −1.16332
\(713\) −3452.69 −0.181352
\(714\) 0 0
\(715\) 0 0
\(716\) 488.237 0.0254836
\(717\) −21922.3 −1.14185
\(718\) 23554.2 1.22428
\(719\) −1404.96 −0.0728739 −0.0364370 0.999336i \(-0.511601\pi\)
−0.0364370 + 0.999336i \(0.511601\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −15643.6 −0.806366
\(723\) −22811.0 −1.17337
\(724\) 139.547 0.00716330
\(725\) 0 0
\(726\) −31928.6 −1.63221
\(727\) 28384.6 1.44804 0.724020 0.689779i \(-0.242292\pi\)
0.724020 + 0.689779i \(0.242292\pi\)
\(728\) 0 0
\(729\) 75008.8 3.81084
\(730\) 0 0
\(731\) −2493.27 −0.126152
\(732\) 890.985 0.0449887
\(733\) 20471.8 1.03157 0.515787 0.856717i \(-0.327500\pi\)
0.515787 + 0.856717i \(0.327500\pi\)
\(734\) 9900.91 0.497887
\(735\) 0 0
\(736\) −579.754 −0.0290353
\(737\) −11555.5 −0.577548
\(738\) 6923.65 0.345343
\(739\) −33181.0 −1.65167 −0.825834 0.563913i \(-0.809295\pi\)
−0.825834 + 0.563913i \(0.809295\pi\)
\(740\) 0 0
\(741\) −24900.1 −1.23445
\(742\) 0 0
\(743\) −30844.1 −1.52296 −0.761481 0.648188i \(-0.775527\pi\)
−0.761481 + 0.648188i \(0.775527\pi\)
\(744\) 31372.9 1.54595
\(745\) 0 0
\(746\) 25824.8 1.26744
\(747\) −51133.1 −2.50450
\(748\) −87.7393 −0.00428886
\(749\) 0 0
\(750\) 0 0
\(751\) −24693.0 −1.19981 −0.599906 0.800070i \(-0.704796\pi\)
−0.599906 + 0.800070i \(0.704796\pi\)
\(752\) 9808.18 0.475622
\(753\) 29580.2 1.43156
\(754\) 42327.2 2.04438
\(755\) 0 0
\(756\) 0 0
\(757\) 6870.57 0.329875 0.164937 0.986304i \(-0.447258\pi\)
0.164937 + 0.986304i \(0.447258\pi\)
\(758\) 8874.01 0.425222
\(759\) 3779.76 0.180760
\(760\) 0 0
\(761\) 30882.6 1.47108 0.735540 0.677481i \(-0.236928\pi\)
0.735540 + 0.677481i \(0.236928\pi\)
\(762\) 14641.2 0.696057
\(763\) 0 0
\(764\) 769.273 0.0364284
\(765\) 0 0
\(766\) 8233.23 0.388353
\(767\) 28653.3 1.34890
\(768\) 8174.45 0.384076
\(769\) −13536.3 −0.634761 −0.317380 0.948298i \(-0.602803\pi\)
−0.317380 + 0.948298i \(0.602803\pi\)
\(770\) 0 0
\(771\) −36411.1 −1.70080
\(772\) −2162.77 −0.100829
\(773\) 14285.7 0.664712 0.332356 0.943154i \(-0.392157\pi\)
0.332356 + 0.943154i \(0.392157\pi\)
\(774\) 50926.7 2.36502
\(775\) 0 0
\(776\) −25122.4 −1.16217
\(777\) 0 0
\(778\) 35602.6 1.64064
\(779\) −1242.50 −0.0571464
\(780\) 0 0
\(781\) −5826.58 −0.266954
\(782\) −745.315 −0.0340824
\(783\) 107005. 4.88382
\(784\) 0 0
\(785\) 0 0
\(786\) 9147.08 0.415096
\(787\) −8453.63 −0.382896 −0.191448 0.981503i \(-0.561318\pi\)
−0.191448 + 0.981503i \(0.561318\pi\)
\(788\) 570.803 0.0258046
\(789\) −4634.56 −0.209119
\(790\) 0 0
\(791\) 0 0
\(792\) −25160.6 −1.12884
\(793\) 10653.8 0.477085
\(794\) −30349.6 −1.35651
\(795\) 0 0
\(796\) −1583.58 −0.0705131
\(797\) 5465.35 0.242902 0.121451 0.992597i \(-0.461245\pi\)
0.121451 + 0.992597i \(0.461245\pi\)
\(798\) 0 0
\(799\) 1526.32 0.0675810
\(800\) 0 0
\(801\) 74942.7 3.30583
\(802\) 4388.07 0.193202
\(803\) −3700.58 −0.162628
\(804\) −3960.88 −0.173743
\(805\) 0 0
\(806\) −26720.2 −1.16771
\(807\) −57579.9 −2.51166
\(808\) 26199.0 1.14069
\(809\) 16601.1 0.721462 0.360731 0.932670i \(-0.382527\pi\)
0.360731 + 0.932670i \(0.382527\pi\)
\(810\) 0 0
\(811\) −24613.6 −1.06572 −0.532861 0.846203i \(-0.678883\pi\)
−0.532861 + 0.846203i \(0.678883\pi\)
\(812\) 0 0
\(813\) −4373.17 −0.188652
\(814\) 12992.7 0.559453
\(815\) 0 0
\(816\) 7224.61 0.309941
\(817\) −9139.14 −0.391356
\(818\) 41177.2 1.76006
\(819\) 0 0
\(820\) 0 0
\(821\) −17940.6 −0.762644 −0.381322 0.924442i \(-0.624531\pi\)
−0.381322 + 0.924442i \(0.624531\pi\)
\(822\) 30016.4 1.27365
\(823\) 45909.1 1.94446 0.972229 0.234030i \(-0.0751914\pi\)
0.972229 + 0.234030i \(0.0751914\pi\)
\(824\) −22447.5 −0.949026
\(825\) 0 0
\(826\) 0 0
\(827\) 36696.8 1.54301 0.771507 0.636221i \(-0.219503\pi\)
0.771507 + 0.636221i \(0.219503\pi\)
\(828\) 949.131 0.0398365
\(829\) 28920.5 1.21164 0.605820 0.795601i \(-0.292845\pi\)
0.605820 + 0.795601i \(0.292845\pi\)
\(830\) 0 0
\(831\) 1080.19 0.0450920
\(832\) 30267.5 1.26122
\(833\) 0 0
\(834\) 33497.4 1.39079
\(835\) 0 0
\(836\) −321.611 −0.0133052
\(837\) −67549.6 −2.78955
\(838\) 33678.2 1.38830
\(839\) 5852.41 0.240820 0.120410 0.992724i \(-0.461579\pi\)
0.120410 + 0.992724i \(0.461579\pi\)
\(840\) 0 0
\(841\) 27018.0 1.10779
\(842\) −9843.74 −0.402895
\(843\) −80978.5 −3.30848
\(844\) −277.472 −0.0113163
\(845\) 0 0
\(846\) −31176.1 −1.26697
\(847\) 0 0
\(848\) 21654.8 0.876920
\(849\) 58243.5 2.35443
\(850\) 0 0
\(851\) 6881.08 0.277180
\(852\) −1997.17 −0.0803075
\(853\) 18715.7 0.751245 0.375623 0.926773i \(-0.377429\pi\)
0.375623 + 0.926773i \(0.377429\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 12580.8 0.502342
\(857\) −17297.1 −0.689450 −0.344725 0.938704i \(-0.612028\pi\)
−0.344725 + 0.938704i \(0.612028\pi\)
\(858\) 29251.4 1.16390
\(859\) 30732.8 1.22071 0.610354 0.792129i \(-0.291027\pi\)
0.610354 + 0.792129i \(0.291027\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −24322.9 −0.961070
\(863\) −10793.0 −0.425722 −0.212861 0.977082i \(-0.568278\pi\)
−0.212861 + 0.977082i \(0.568278\pi\)
\(864\) −11342.5 −0.446620
\(865\) 0 0
\(866\) 2389.77 0.0937733
\(867\) −48242.9 −1.88975
\(868\) 0 0
\(869\) −7257.12 −0.283292
\(870\) 0 0
\(871\) −47361.7 −1.84247
\(872\) 4173.52 0.162080
\(873\) 85186.8 3.30256
\(874\) −2731.97 −0.105733
\(875\) 0 0
\(876\) −1268.45 −0.0489233
\(877\) 19566.7 0.753388 0.376694 0.926338i \(-0.377061\pi\)
0.376694 + 0.926338i \(0.377061\pi\)
\(878\) 24728.1 0.950492
\(879\) 12570.0 0.482339
\(880\) 0 0
\(881\) 27700.5 1.05931 0.529656 0.848213i \(-0.322321\pi\)
0.529656 + 0.848213i \(0.322321\pi\)
\(882\) 0 0
\(883\) −5071.61 −0.193288 −0.0966440 0.995319i \(-0.530811\pi\)
−0.0966440 + 0.995319i \(0.530811\pi\)
\(884\) −359.610 −0.0136821
\(885\) 0 0
\(886\) 42555.1 1.61362
\(887\) 22548.8 0.853569 0.426784 0.904353i \(-0.359646\pi\)
0.426784 + 0.904353i \(0.359646\pi\)
\(888\) −62525.0 −2.36284
\(889\) 0 0
\(890\) 0 0
\(891\) 42806.0 1.60949
\(892\) 1266.95 0.0475568
\(893\) 5594.76 0.209654
\(894\) 37890.6 1.41751
\(895\) 0 0
\(896\) 0 0
\(897\) 15491.8 0.576651
\(898\) −2457.13 −0.0913091
\(899\) −32452.1 −1.20393
\(900\) 0 0
\(901\) 3369.85 0.124601
\(902\) 1459.62 0.0538803
\(903\) 0 0
\(904\) 45627.7 1.67871
\(905\) 0 0
\(906\) −33751.5 −1.23766
\(907\) 24242.2 0.887484 0.443742 0.896155i \(-0.353651\pi\)
0.443742 + 0.896155i \(0.353651\pi\)
\(908\) −181.407 −0.00663018
\(909\) −88837.4 −3.24153
\(910\) 0 0
\(911\) 6574.69 0.239110 0.119555 0.992828i \(-0.461853\pi\)
0.119555 + 0.992828i \(0.461853\pi\)
\(912\) 26482.0 0.961521
\(913\) −10779.7 −0.390751
\(914\) 40533.0 1.46686
\(915\) 0 0
\(916\) 412.272 0.0148710
\(917\) 0 0
\(918\) −14581.6 −0.524253
\(919\) −41912.3 −1.50442 −0.752208 0.658925i \(-0.771011\pi\)
−0.752208 + 0.658925i \(0.771011\pi\)
\(920\) 0 0
\(921\) −4961.10 −0.177496
\(922\) 8917.91 0.318542
\(923\) −23880.9 −0.851625
\(924\) 0 0
\(925\) 0 0
\(926\) 29021.9 1.02994
\(927\) 76116.6 2.69687
\(928\) −5449.15 −0.192755
\(929\) −48171.4 −1.70124 −0.850621 0.525780i \(-0.823774\pi\)
−0.850621 + 0.525780i \(0.823774\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −1329.75 −0.0467355
\(933\) −1059.73 −0.0371855
\(934\) 28997.0 1.01586
\(935\) 0 0
\(936\) −103124. −3.60118
\(937\) −48696.8 −1.69782 −0.848909 0.528539i \(-0.822740\pi\)
−0.848909 + 0.528539i \(0.822740\pi\)
\(938\) 0 0
\(939\) −37285.4 −1.29581
\(940\) 0 0
\(941\) −2000.30 −0.0692964 −0.0346482 0.999400i \(-0.511031\pi\)
−0.0346482 + 0.999400i \(0.511031\pi\)
\(942\) −106317. −3.67729
\(943\) 773.028 0.0266949
\(944\) −30473.6 −1.05067
\(945\) 0 0
\(946\) 10736.2 0.368988
\(947\) 42495.4 1.45820 0.729101 0.684407i \(-0.239939\pi\)
0.729101 + 0.684407i \(0.239939\pi\)
\(948\) −2487.52 −0.0852224
\(949\) −15167.3 −0.518810
\(950\) 0 0
\(951\) −65327.9 −2.22755
\(952\) 0 0
\(953\) 51166.5 1.73919 0.869594 0.493768i \(-0.164381\pi\)
0.869594 + 0.493768i \(0.164381\pi\)
\(954\) −68831.4 −2.33595
\(955\) 0 0
\(956\) −1160.52 −0.0392614
\(957\) 35526.2 1.20000
\(958\) −38481.3 −1.29778
\(959\) 0 0
\(960\) 0 0
\(961\) −9304.76 −0.312335
\(962\) 53252.3 1.78474
\(963\) −42660.0 −1.42752
\(964\) −1207.56 −0.0403454
\(965\) 0 0
\(966\) 0 0
\(967\) −26324.2 −0.875418 −0.437709 0.899117i \(-0.644210\pi\)
−0.437709 + 0.899117i \(0.644210\pi\)
\(968\) 23729.9 0.787923
\(969\) 4121.05 0.136622
\(970\) 0 0
\(971\) −5234.57 −0.173002 −0.0865012 0.996252i \(-0.527569\pi\)
−0.0865012 + 0.996252i \(0.527569\pi\)
\(972\) 7894.44 0.260508
\(973\) 0 0
\(974\) 24751.4 0.814257
\(975\) 0 0
\(976\) −11330.7 −0.371604
\(977\) −44980.6 −1.47293 −0.736467 0.676474i \(-0.763507\pi\)
−0.736467 + 0.676474i \(0.763507\pi\)
\(978\) −79414.0 −2.59650
\(979\) 15799.1 0.515774
\(980\) 0 0
\(981\) −14151.9 −0.460585
\(982\) −31637.1 −1.02809
\(983\) 16393.3 0.531908 0.265954 0.963986i \(-0.414313\pi\)
0.265954 + 0.963986i \(0.414313\pi\)
\(984\) −7024.13 −0.227562
\(985\) 0 0
\(986\) −7005.27 −0.226261
\(987\) 0 0
\(988\) −1318.16 −0.0424456
\(989\) 5685.98 0.182815
\(990\) 0 0
\(991\) −3883.34 −0.124479 −0.0622393 0.998061i \(-0.519824\pi\)
−0.0622393 + 0.998061i \(0.519824\pi\)
\(992\) 3439.92 0.110098
\(993\) −1092.13 −0.0349020
\(994\) 0 0
\(995\) 0 0
\(996\) −3694.95 −0.117549
\(997\) −13963.6 −0.443563 −0.221781 0.975096i \(-0.571187\pi\)
−0.221781 + 0.975096i \(0.571187\pi\)
\(998\) −35320.4 −1.12029
\(999\) 134624. 4.26357
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1225.4.a.bl.1.7 8
5.4 even 2 1225.4.a.bn.1.2 8
7.2 even 3 175.4.e.f.151.2 yes 16
7.4 even 3 175.4.e.f.51.2 yes 16
7.6 odd 2 1225.4.a.bk.1.7 8
35.2 odd 12 175.4.k.e.74.13 32
35.4 even 6 175.4.e.e.51.7 16
35.9 even 6 175.4.e.e.151.7 yes 16
35.18 odd 12 175.4.k.e.149.13 32
35.23 odd 12 175.4.k.e.74.4 32
35.32 odd 12 175.4.k.e.149.4 32
35.34 odd 2 1225.4.a.bo.1.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.e.e.51.7 16 35.4 even 6
175.4.e.e.151.7 yes 16 35.9 even 6
175.4.e.f.51.2 yes 16 7.4 even 3
175.4.e.f.151.2 yes 16 7.2 even 3
175.4.k.e.74.4 32 35.23 odd 12
175.4.k.e.74.13 32 35.2 odd 12
175.4.k.e.149.4 32 35.32 odd 12
175.4.k.e.149.13 32 35.18 odd 12
1225.4.a.bk.1.7 8 7.6 odd 2
1225.4.a.bl.1.7 8 1.1 even 1 trivial
1225.4.a.bn.1.2 8 5.4 even 2
1225.4.a.bo.1.2 8 35.34 odd 2