Properties

Label 175.4.e.f.51.2
Level $175$
Weight $4$
Character 175.51
Analytic conductor $10.325$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(51,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.51");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} + 46 x^{14} - 7 x^{13} + 1485 x^{12} - 175 x^{11} + 21701 x^{10} + 4916 x^{9} + \cdots + 1498176 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 51.2
Root \(-1.46047 + 2.52961i\) of defining polynomial
Character \(\chi\) \(=\) 175.51
Dual form 175.4.e.f.151.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.46047 + 2.52961i) q^{2} +(-5.02414 - 8.70206i) q^{3} +(-0.265967 - 0.460668i) q^{4} +29.3505 q^{6} +(-18.3734 + 2.32782i) q^{7} -21.8138 q^{8} +(-36.9839 + 64.0580i) q^{9} +(-7.79680 - 13.5045i) q^{11} +(-2.67251 + 4.62892i) q^{12} +63.9123 q^{13} +(20.9454 - 49.8773i) q^{14} +(33.9863 - 58.8659i) q^{16} +(5.28883 + 9.16053i) q^{17} +(-108.028 - 187.110i) q^{18} +(19.3864 - 33.5782i) q^{19} +(112.567 + 148.191i) q^{21} +45.5481 q^{22} +(-12.0614 + 20.8909i) q^{23} +(109.596 + 189.825i) q^{24} +(-93.3422 + 161.673i) q^{26} +471.945 q^{27} +(5.95906 + 7.84491i) q^{28} +226.731 q^{29} +(71.5651 + 123.954i) q^{31} +(12.0168 + 20.8136i) q^{32} +(-78.3444 + 135.697i) q^{33} -30.8968 q^{34} +39.3460 q^{36} +(-142.626 + 247.036i) q^{37} +(56.6265 + 98.0800i) q^{38} +(-321.104 - 556.168i) q^{39} +32.0457 q^{41} +(-539.268 + 68.3225i) q^{42} +235.711 q^{43} +(-4.14738 + 7.18348i) q^{44} +(-35.2306 - 61.0212i) q^{46} +(72.1481 - 124.964i) q^{47} -683.006 q^{48} +(332.163 - 85.5397i) q^{49} +(53.1436 - 92.0475i) q^{51} +(-16.9985 - 29.4423i) q^{52} +(159.291 + 275.900i) q^{53} +(-689.263 + 1193.84i) q^{54} +(400.794 - 50.7786i) q^{56} -389.599 q^{57} +(-331.135 + 573.542i) q^{58} +(-224.161 - 388.258i) q^{59} +(-83.3473 + 144.362i) q^{61} -418.076 q^{62} +(530.404 - 1263.05i) q^{63} +473.580 q^{64} +(-228.840 - 396.362i) q^{66} +(370.521 + 641.761i) q^{67} +(2.81331 - 4.87279i) q^{68} +242.392 q^{69} -373.652 q^{71} +(806.760 - 1397.35i) q^{72} +(118.657 + 205.520i) q^{73} +(-416.604 - 721.580i) q^{74} -20.6245 q^{76} +(174.690 + 229.973i) q^{77} +1875.86 q^{78} +(232.695 - 403.040i) q^{79} +(-1372.55 - 2377.33i) q^{81} +(-46.8018 + 81.0631i) q^{82} -691.289 q^{83} +(38.3277 - 91.2700i) q^{84} +(-344.249 + 596.257i) q^{86} +(-1139.13 - 1973.03i) q^{87} +(170.078 + 294.584i) q^{88} +(-506.590 + 877.440i) q^{89} +(-1174.28 + 148.776i) q^{91} +12.8317 q^{92} +(719.105 - 1245.53i) q^{93} +(210.741 + 365.014i) q^{94} +(120.748 - 209.141i) q^{96} +1151.67 q^{97} +(-268.732 + 965.172i) q^{98} +1153.42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{2} - 6 q^{3} - 27 q^{4} + 8 q^{6} - 16 q^{7} - 84 q^{8} - 42 q^{9} - 103 q^{12} + 276 q^{13} - 65 q^{14} - 191 q^{16} - 138 q^{17} - 81 q^{18} + 42 q^{19} + 302 q^{21} + 254 q^{22} - 124 q^{23}+ \cdots + 8172 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.46047 + 2.52961i −0.516355 + 0.894354i 0.483464 + 0.875364i \(0.339378\pi\)
−0.999820 + 0.0189897i \(0.993955\pi\)
\(3\) −5.02414 8.70206i −0.966895 1.67471i −0.704434 0.709770i \(-0.748799\pi\)
−0.262462 0.964942i \(-0.584534\pi\)
\(4\) −0.265967 0.460668i −0.0332459 0.0575835i
\(5\) 0 0
\(6\) 29.3505 1.99705
\(7\) −18.3734 + 2.32782i −0.992070 + 0.125690i
\(8\) −21.8138 −0.964044
\(9\) −36.9839 + 64.0580i −1.36977 + 2.37252i
\(10\) 0 0
\(11\) −7.79680 13.5045i −0.213711 0.370159i 0.739162 0.673528i \(-0.235222\pi\)
−0.952873 + 0.303369i \(0.901889\pi\)
\(12\) −2.67251 + 4.62892i −0.0642905 + 0.111354i
\(13\) 63.9123 1.36354 0.681772 0.731565i \(-0.261210\pi\)
0.681772 + 0.731565i \(0.261210\pi\)
\(14\) 20.9454 49.8773i 0.399849 0.952162i
\(15\) 0 0
\(16\) 33.9863 58.8659i 0.531035 0.919780i
\(17\) 5.28883 + 9.16053i 0.0754547 + 0.130691i 0.901284 0.433229i \(-0.142626\pi\)
−0.825829 + 0.563920i \(0.809292\pi\)
\(18\) −108.028 187.110i −1.41458 2.45012i
\(19\) 19.3864 33.5782i 0.234081 0.405440i −0.724924 0.688829i \(-0.758125\pi\)
0.959005 + 0.283389i \(0.0914586\pi\)
\(20\) 0 0
\(21\) 112.567 + 148.191i 1.16972 + 1.53990i
\(22\) 45.5481 0.441404
\(23\) −12.0614 + 20.8909i −0.109346 + 0.189394i −0.915506 0.402305i \(-0.868209\pi\)
0.806159 + 0.591699i \(0.201542\pi\)
\(24\) 109.596 + 189.825i 0.932130 + 1.61450i
\(25\) 0 0
\(26\) −93.3422 + 161.673i −0.704073 + 1.21949i
\(27\) 471.945 3.36392
\(28\) 5.95906 + 7.84491i 0.0402199 + 0.0529482i
\(29\) 226.731 1.45182 0.725912 0.687787i \(-0.241418\pi\)
0.725912 + 0.687787i \(0.241418\pi\)
\(30\) 0 0
\(31\) 71.5651 + 123.954i 0.414628 + 0.718157i 0.995389 0.0959171i \(-0.0305784\pi\)
−0.580761 + 0.814074i \(0.697245\pi\)
\(32\) 12.0168 + 20.8136i 0.0663838 + 0.114980i
\(33\) −78.3444 + 135.697i −0.413273 + 0.715810i
\(34\) −30.8968 −0.155846
\(35\) 0 0
\(36\) 39.3460 0.182157
\(37\) −142.626 + 247.036i −0.633720 + 1.09764i 0.353065 + 0.935599i \(0.385140\pi\)
−0.986785 + 0.162036i \(0.948194\pi\)
\(38\) 56.6265 + 98.0800i 0.241738 + 0.418702i
\(39\) −321.104 556.168i −1.31840 2.28354i
\(40\) 0 0
\(41\) 32.0457 0.122066 0.0610328 0.998136i \(-0.480561\pi\)
0.0610328 + 0.998136i \(0.480561\pi\)
\(42\) −539.268 + 68.3225i −1.98121 + 0.251009i
\(43\) 235.711 0.835942 0.417971 0.908460i \(-0.362741\pi\)
0.417971 + 0.908460i \(0.362741\pi\)
\(44\) −4.14738 + 7.18348i −0.0142100 + 0.0246125i
\(45\) 0 0
\(46\) −35.2306 61.0212i −0.112923 0.195589i
\(47\) 72.1481 124.964i 0.223912 0.387828i −0.732080 0.681219i \(-0.761450\pi\)
0.955993 + 0.293391i \(0.0947837\pi\)
\(48\) −683.006 −2.05382
\(49\) 332.163 85.5397i 0.968404 0.249387i
\(50\) 0 0
\(51\) 53.1436 92.0475i 0.145914 0.252730i
\(52\) −16.9985 29.4423i −0.0453322 0.0785177i
\(53\) 159.291 + 275.900i 0.412835 + 0.715051i 0.995198 0.0978773i \(-0.0312053\pi\)
−0.582364 + 0.812928i \(0.697872\pi\)
\(54\) −689.263 + 1193.84i −1.73698 + 3.00854i
\(55\) 0 0
\(56\) 400.794 50.7786i 0.956399 0.121171i
\(57\) −389.599 −0.905327
\(58\) −331.135 + 573.542i −0.749657 + 1.29844i
\(59\) −224.161 388.258i −0.494632 0.856727i 0.505349 0.862915i \(-0.331364\pi\)
−0.999981 + 0.00618772i \(0.998030\pi\)
\(60\) 0 0
\(61\) −83.3473 + 144.362i −0.174943 + 0.303010i −0.940142 0.340784i \(-0.889307\pi\)
0.765198 + 0.643794i \(0.222641\pi\)
\(62\) −418.076 −0.856382
\(63\) 530.404 1263.05i 1.06071 2.52587i
\(64\) 473.580 0.924960
\(65\) 0 0
\(66\) −228.840 396.362i −0.426792 0.739225i
\(67\) 370.521 + 641.761i 0.675617 + 1.17020i 0.976288 + 0.216475i \(0.0694561\pi\)
−0.300671 + 0.953728i \(0.597211\pi\)
\(68\) 2.81331 4.87279i 0.00501711 0.00868990i
\(69\) 242.392 0.422906
\(70\) 0 0
\(71\) −373.652 −0.624567 −0.312284 0.949989i \(-0.601094\pi\)
−0.312284 + 0.949989i \(0.601094\pi\)
\(72\) 806.760 1397.35i 1.32052 2.28721i
\(73\) 118.657 + 205.520i 0.190243 + 0.329511i 0.945331 0.326113i \(-0.105739\pi\)
−0.755088 + 0.655624i \(0.772406\pi\)
\(74\) −416.604 721.580i −0.654450 1.13354i
\(75\) 0 0
\(76\) −20.6245 −0.0311289
\(77\) 174.690 + 229.973i 0.258542 + 0.340362i
\(78\) 1875.86 2.72306
\(79\) 232.695 403.040i 0.331396 0.573994i −0.651390 0.758743i \(-0.725814\pi\)
0.982786 + 0.184749i \(0.0591472\pi\)
\(80\) 0 0
\(81\) −1372.55 2377.33i −1.88279 3.26108i
\(82\) −46.8018 + 81.0631i −0.0630292 + 0.109170i
\(83\) −691.289 −0.914202 −0.457101 0.889415i \(-0.651112\pi\)
−0.457101 + 0.889415i \(0.651112\pi\)
\(84\) 38.3277 91.2700i 0.0497845 0.118552i
\(85\) 0 0
\(86\) −344.249 + 596.257i −0.431643 + 0.747628i
\(87\) −1139.13 1973.03i −1.40376 2.43139i
\(88\) 170.078 + 294.584i 0.206027 + 0.356850i
\(89\) −506.590 + 877.440i −0.603353 + 1.04504i 0.388956 + 0.921256i \(0.372836\pi\)
−0.992309 + 0.123782i \(0.960498\pi\)
\(90\) 0 0
\(91\) −1174.28 + 148.776i −1.35273 + 0.171384i
\(92\) 12.8317 0.0145413
\(93\) 719.105 1245.53i 0.801804 1.38876i
\(94\) 210.741 + 365.014i 0.231237 + 0.400514i
\(95\) 0 0
\(96\) 120.748 209.141i 0.128372 0.222348i
\(97\) 1151.67 1.20551 0.602757 0.797925i \(-0.294069\pi\)
0.602757 + 0.797925i \(0.294069\pi\)
\(98\) −268.732 + 965.172i −0.277000 + 0.994868i
\(99\) 1153.42 1.17094
\(100\) 0 0
\(101\) 600.514 + 1040.12i 0.591618 + 1.02471i 0.994015 + 0.109247i \(0.0348438\pi\)
−0.402397 + 0.915465i \(0.631823\pi\)
\(102\) 155.230 + 268.866i 0.150687 + 0.260997i
\(103\) −514.525 + 891.184i −0.492211 + 0.852534i −0.999960 0.00897107i \(-0.997144\pi\)
0.507749 + 0.861505i \(0.330478\pi\)
\(104\) −1394.17 −1.31452
\(105\) 0 0
\(106\) −930.559 −0.852678
\(107\) 288.369 499.469i 0.260539 0.451266i −0.705846 0.708365i \(-0.749433\pi\)
0.966385 + 0.257098i \(0.0827665\pi\)
\(108\) −125.522 217.410i −0.111836 0.193706i
\(109\) 95.6623 + 165.692i 0.0840623 + 0.145600i 0.904991 0.425430i \(-0.139877\pi\)
−0.820929 + 0.571030i \(0.806544\pi\)
\(110\) 0 0
\(111\) 2866.30 2.45096
\(112\) −487.414 + 1160.68i −0.411217 + 0.979232i
\(113\) −2091.69 −1.74132 −0.870662 0.491882i \(-0.836309\pi\)
−0.870662 + 0.491882i \(0.836309\pi\)
\(114\) 568.999 985.535i 0.467470 0.809682i
\(115\) 0 0
\(116\) −60.3030 104.448i −0.0482671 0.0836012i
\(117\) −2363.72 + 4094.09i −1.86775 + 3.23503i
\(118\) 1309.52 1.02162
\(119\) −118.498 155.998i −0.0912830 0.120171i
\(120\) 0 0
\(121\) 543.920 942.097i 0.408655 0.707811i
\(122\) −243.453 421.673i −0.180666 0.312922i
\(123\) −161.002 278.863i −0.118025 0.204425i
\(124\) 38.0679 65.9355i 0.0275693 0.0477515i
\(125\) 0 0
\(126\) 2420.40 + 3186.37i 1.71132 + 2.25290i
\(127\) 498.841 0.348543 0.174271 0.984698i \(-0.444243\pi\)
0.174271 + 0.984698i \(0.444243\pi\)
\(128\) −787.784 + 1364.48i −0.543992 + 0.942222i
\(129\) −1184.24 2051.17i −0.808269 1.39996i
\(130\) 0 0
\(131\) −155.825 + 269.897i −0.103928 + 0.180008i −0.913300 0.407289i \(-0.866474\pi\)
0.809372 + 0.587296i \(0.199808\pi\)
\(132\) 83.3481 0.0549585
\(133\) −278.029 + 662.072i −0.181265 + 0.431646i
\(134\) −2164.55 −1.39543
\(135\) 0 0
\(136\) −115.370 199.826i −0.0727417 0.125992i
\(137\) −511.345 885.675i −0.318884 0.552324i 0.661371 0.750059i \(-0.269975\pi\)
−0.980255 + 0.197735i \(0.936641\pi\)
\(138\) −354.007 + 613.157i −0.218370 + 0.378228i
\(139\) 1141.29 0.696424 0.348212 0.937416i \(-0.386789\pi\)
0.348212 + 0.937416i \(0.386789\pi\)
\(140\) 0 0
\(141\) −1449.93 −0.866000
\(142\) 545.708 945.194i 0.322499 0.558584i
\(143\) −498.311 863.101i −0.291405 0.504728i
\(144\) 2513.89 + 4354.18i 1.45480 + 2.51978i
\(145\) 0 0
\(146\) −693.182 −0.392932
\(147\) −2413.20 2460.73i −1.35400 1.38067i
\(148\) 151.736 0.0842743
\(149\) −645.485 + 1118.01i −0.354900 + 0.614705i −0.987101 0.160099i \(-0.948819\pi\)
0.632201 + 0.774805i \(0.282152\pi\)
\(150\) 0 0
\(151\) 574.974 + 995.885i 0.309873 + 0.536715i 0.978334 0.207032i \(-0.0663803\pi\)
−0.668462 + 0.743747i \(0.733047\pi\)
\(152\) −422.891 + 732.468i −0.225664 + 0.390862i
\(153\) −782.407 −0.413424
\(154\) −836.873 + 106.028i −0.437904 + 0.0554802i
\(155\) 0 0
\(156\) −170.806 + 295.845i −0.0876630 + 0.151837i
\(157\) 1811.17 + 3137.03i 0.920681 + 1.59467i 0.798364 + 0.602175i \(0.205699\pi\)
0.122317 + 0.992491i \(0.460968\pi\)
\(158\) 679.690 + 1177.26i 0.342236 + 0.592770i
\(159\) 1600.60 2772.31i 0.798337 1.38276i
\(160\) 0 0
\(161\) 172.978 411.913i 0.0846743 0.201635i
\(162\) 8018.30 3.88875
\(163\) 1352.86 2343.22i 0.650086 1.12598i −0.333016 0.942921i \(-0.608066\pi\)
0.983102 0.183060i \(-0.0586003\pi\)
\(164\) −8.52308 14.7624i −0.00405818 0.00702897i
\(165\) 0 0
\(166\) 1009.61 1748.69i 0.472053 0.817620i
\(167\) 3397.98 1.57451 0.787256 0.616627i \(-0.211501\pi\)
0.787256 + 0.616627i \(0.211501\pi\)
\(168\) −2455.52 3232.61i −1.12766 1.48453i
\(169\) 1887.78 0.859253
\(170\) 0 0
\(171\) 1433.97 + 2483.70i 0.641275 + 1.11072i
\(172\) −62.6912 108.584i −0.0277916 0.0481365i
\(173\) 2093.40 3625.88i 0.919991 1.59347i 0.120566 0.992705i \(-0.461529\pi\)
0.799425 0.600766i \(-0.205138\pi\)
\(174\) 6654.67 2.89936
\(175\) 0 0
\(176\) −1059.94 −0.453953
\(177\) −2252.43 + 3901.32i −0.956514 + 1.65673i
\(178\) −1479.72 2562.96i −0.623089 1.07922i
\(179\) −458.926 794.884i −0.191630 0.331913i 0.754161 0.656690i \(-0.228044\pi\)
−0.945791 + 0.324777i \(0.894711\pi\)
\(180\) 0 0
\(181\) 262.339 0.107732 0.0538661 0.998548i \(-0.482846\pi\)
0.0538661 + 0.998548i \(0.482846\pi\)
\(182\) 1338.67 3187.77i 0.545212 1.29832i
\(183\) 1674.99 0.676607
\(184\) 263.104 455.710i 0.105415 0.182584i
\(185\) 0 0
\(186\) 2100.47 + 3638.12i 0.828031 + 1.43419i
\(187\) 82.4720 142.846i 0.0322511 0.0558605i
\(188\) −76.7560 −0.0297766
\(189\) −8671.23 + 1098.60i −3.33724 + 0.422812i
\(190\) 0 0
\(191\) −723.091 + 1252.43i −0.273932 + 0.474464i −0.969865 0.243642i \(-0.921658\pi\)
0.695933 + 0.718107i \(0.254991\pi\)
\(192\) −2379.33 4121.12i −0.894340 1.54904i
\(193\) 2032.93 + 3521.13i 0.758204 + 1.31325i 0.943766 + 0.330615i \(0.107256\pi\)
−0.185562 + 0.982633i \(0.559411\pi\)
\(194\) −1681.99 + 2913.29i −0.622474 + 1.07816i
\(195\) 0 0
\(196\) −127.750 130.266i −0.0465560 0.0474730i
\(197\) 1073.07 0.388088 0.194044 0.980993i \(-0.437840\pi\)
0.194044 + 0.980993i \(0.437840\pi\)
\(198\) −1684.55 + 2917.72i −0.604624 + 1.04724i
\(199\) 1488.51 + 2578.18i 0.530240 + 0.918403i 0.999378 + 0.0352775i \(0.0112315\pi\)
−0.469138 + 0.883125i \(0.655435\pi\)
\(200\) 0 0
\(201\) 3723.10 6448.59i 1.30650 2.26293i
\(202\) −3508.14 −1.22194
\(203\) −4165.82 + 527.788i −1.44031 + 0.182480i
\(204\) −56.5378 −0.0194041
\(205\) 0 0
\(206\) −1502.90 2603.10i −0.508311 0.880421i
\(207\) −892.152 1545.25i −0.299560 0.518853i
\(208\) 2172.14 3762.26i 0.724090 1.25416i
\(209\) −604.607 −0.200103
\(210\) 0 0
\(211\) −521.629 −0.170192 −0.0850958 0.996373i \(-0.527120\pi\)
−0.0850958 + 0.996373i \(0.527120\pi\)
\(212\) 84.7321 146.760i 0.0274501 0.0475450i
\(213\) 1877.28 + 3251.54i 0.603891 + 1.04597i
\(214\) 842.310 + 1458.92i 0.269061 + 0.466028i
\(215\) 0 0
\(216\) −10294.9 −3.24297
\(217\) −1603.44 2110.87i −0.501605 0.660347i
\(218\) −558.849 −0.173624
\(219\) 1192.30 2065.12i 0.367890 0.637205i
\(220\) 0 0
\(221\) 338.021 + 585.470i 0.102886 + 0.178204i
\(222\) −4186.15 + 7250.63i −1.26557 + 2.19203i
\(223\) 2381.79 0.715229 0.357615 0.933869i \(-0.383590\pi\)
0.357615 + 0.933869i \(0.383590\pi\)
\(224\) −269.239 354.444i −0.0803093 0.105725i
\(225\) 0 0
\(226\) 3054.86 5291.17i 0.899142 1.55736i
\(227\) 170.517 + 295.343i 0.0498572 + 0.0863552i 0.889877 0.456201i \(-0.150790\pi\)
−0.840020 + 0.542556i \(0.817457\pi\)
\(228\) 103.620 + 179.476i 0.0300984 + 0.0521319i
\(229\) −387.522 + 671.208i −0.111826 + 0.193688i −0.916507 0.400020i \(-0.869003\pi\)
0.804680 + 0.593708i \(0.202337\pi\)
\(230\) 0 0
\(231\) 1123.58 2675.58i 0.320025 0.762078i
\(232\) −4945.87 −1.39962
\(233\) 1249.92 2164.93i 0.351438 0.608709i −0.635063 0.772460i \(-0.719026\pi\)
0.986502 + 0.163751i \(0.0523594\pi\)
\(234\) −6904.31 11958.6i −1.92884 3.34085i
\(235\) 0 0
\(236\) −119.239 + 206.528i −0.0328889 + 0.0569653i
\(237\) −4676.37 −1.28170
\(238\) 567.679 71.9221i 0.154610 0.0195883i
\(239\) −2181.70 −0.590470 −0.295235 0.955425i \(-0.595398\pi\)
−0.295235 + 0.955425i \(0.595398\pi\)
\(240\) 0 0
\(241\) 1135.07 + 1966.00i 0.303387 + 0.525481i 0.976901 0.213693i \(-0.0685492\pi\)
−0.673514 + 0.739174i \(0.735216\pi\)
\(242\) 1588.76 + 2751.81i 0.422022 + 0.730964i
\(243\) −7420.51 + 12852.7i −1.95895 + 3.39301i
\(244\) 88.6705 0.0232645
\(245\) 0 0
\(246\) 940.555 0.243771
\(247\) 1239.03 2146.06i 0.319180 0.552835i
\(248\) −1561.11 2703.92i −0.399720 0.692335i
\(249\) 3473.13 + 6015.64i 0.883938 + 1.53103i
\(250\) 0 0
\(251\) 2943.81 0.740286 0.370143 0.928975i \(-0.379309\pi\)
0.370143 + 0.928975i \(0.379309\pi\)
\(252\) −722.918 + 91.5901i −0.180713 + 0.0228954i
\(253\) 376.160 0.0934743
\(254\) −728.544 + 1261.87i −0.179972 + 0.311721i
\(255\) 0 0
\(256\) −406.759 704.527i −0.0993064 0.172004i
\(257\) 1811.81 3138.15i 0.439757 0.761682i −0.557913 0.829899i \(-0.688398\pi\)
0.997670 + 0.0682171i \(0.0217311\pi\)
\(258\) 6918.22 1.66942
\(259\) 2045.48 4870.90i 0.490732 1.16858i
\(260\) 0 0
\(261\) −8385.40 + 14523.9i −1.98867 + 3.44448i
\(262\) −455.157 788.355i −0.107327 0.185896i
\(263\) 230.615 + 399.436i 0.0540696 + 0.0936514i 0.891793 0.452443i \(-0.149447\pi\)
−0.837724 + 0.546094i \(0.816114\pi\)
\(264\) 1708.99 2960.06i 0.398413 0.690072i
\(265\) 0 0
\(266\) −1268.73 1670.25i −0.292447 0.384998i
\(267\) 10180.7 2.33352
\(268\) 197.093 341.374i 0.0449229 0.0778088i
\(269\) 2865.16 + 4962.61i 0.649413 + 1.12482i 0.983263 + 0.182190i \(0.0583186\pi\)
−0.333851 + 0.942626i \(0.608348\pi\)
\(270\) 0 0
\(271\) 217.608 376.908i 0.0487777 0.0844854i −0.840606 0.541648i \(-0.817801\pi\)
0.889383 + 0.457162i \(0.151134\pi\)
\(272\) 718.991 0.160277
\(273\) 7194.42 + 9471.22i 1.59497 + 2.09972i
\(274\) 2987.22 0.658630
\(275\) 0 0
\(276\) −64.4681 111.662i −0.0140599 0.0243524i
\(277\) −53.7502 93.0980i −0.0116590 0.0201939i 0.860137 0.510063i \(-0.170378\pi\)
−0.871796 + 0.489869i \(0.837045\pi\)
\(278\) −1666.82 + 2887.02i −0.359602 + 0.622849i
\(279\) −10587.0 −2.27179
\(280\) 0 0
\(281\) −8058.94 −1.71088 −0.855438 0.517905i \(-0.826712\pi\)
−0.855438 + 0.517905i \(0.826712\pi\)
\(282\) 2117.58 3667.76i 0.447164 0.774510i
\(283\) −2898.18 5019.80i −0.608760 1.05440i −0.991445 0.130525i \(-0.958334\pi\)
0.382685 0.923879i \(-0.374999\pi\)
\(284\) 99.3789 + 172.129i 0.0207643 + 0.0359648i
\(285\) 0 0
\(286\) 2911.08 0.601874
\(287\) −588.787 + 74.5964i −0.121098 + 0.0153425i
\(288\) −1777.71 −0.363723
\(289\) 2400.56 4157.89i 0.488613 0.846303i
\(290\) 0 0
\(291\) −5786.17 10021.9i −1.16561 2.01889i
\(292\) 63.1176 109.323i 0.0126496 0.0219097i
\(293\) 1250.96 0.249427 0.124713 0.992193i \(-0.460199\pi\)
0.124713 + 0.992193i \(0.460199\pi\)
\(294\) 9749.13 2510.63i 1.93395 0.498037i
\(295\) 0 0
\(296\) 3111.23 5388.81i 0.610934 1.05817i
\(297\) −3679.66 6373.36i −0.718908 1.24519i
\(298\) −1885.43 3265.65i −0.366509 0.634813i
\(299\) −770.869 + 1335.18i −0.149099 + 0.258246i
\(300\) 0 0
\(301\) −4330.80 + 548.691i −0.829313 + 0.105070i
\(302\) −3358.94 −0.640018
\(303\) 6034.13 10451.4i 1.14406 1.98158i
\(304\) −1317.74 2282.39i −0.248610 0.430606i
\(305\) 0 0
\(306\) 1142.68 1979.19i 0.213474 0.369747i
\(307\) −493.727 −0.0917865 −0.0458933 0.998946i \(-0.514613\pi\)
−0.0458933 + 0.998946i \(0.514613\pi\)
\(308\) 59.4796 141.639i 0.0110038 0.0262034i
\(309\) 10340.2 1.90367
\(310\) 0 0
\(311\) 52.7320 + 91.3345i 0.00961466 + 0.0166531i 0.870793 0.491650i \(-0.163606\pi\)
−0.861178 + 0.508303i \(0.830273\pi\)
\(312\) 7004.51 + 12132.2i 1.27100 + 2.20144i
\(313\) 1855.32 3213.50i 0.335044 0.580312i −0.648450 0.761258i \(-0.724582\pi\)
0.983493 + 0.180945i \(0.0579156\pi\)
\(314\) −10580.7 −1.90159
\(315\) 0 0
\(316\) −247.557 −0.0440701
\(317\) 3250.70 5630.38i 0.575955 0.997583i −0.419983 0.907532i \(-0.637964\pi\)
0.995937 0.0900506i \(-0.0287029\pi\)
\(318\) 4675.26 + 8097.78i 0.824451 + 1.42799i
\(319\) −1767.78 3061.88i −0.310271 0.537406i
\(320\) 0 0
\(321\) −5795.21 −1.00766
\(322\) 789.351 + 1039.16i 0.136611 + 0.179844i
\(323\) 410.125 0.0706500
\(324\) −730.106 + 1264.58i −0.125190 + 0.216835i
\(325\) 0 0
\(326\) 3951.62 + 6844.42i 0.671350 + 1.16281i
\(327\) 961.241 1664.92i 0.162559 0.281560i
\(328\) −699.038 −0.117677
\(329\) −1034.71 + 2463.96i −0.173391 + 0.412896i
\(330\) 0 0
\(331\) 54.3441 94.1268i 0.00902424 0.0156304i −0.861478 0.507795i \(-0.830461\pi\)
0.870502 + 0.492164i \(0.163794\pi\)
\(332\) 183.860 + 318.455i 0.0303934 + 0.0526430i
\(333\) −10549.8 18272.7i −1.73611 3.00702i
\(334\) −4962.66 + 8595.57i −0.813007 + 1.40817i
\(335\) 0 0
\(336\) 12549.1 1589.91i 2.03753 0.258145i
\(337\) −8207.88 −1.32674 −0.663370 0.748291i \(-0.730875\pi\)
−0.663370 + 0.748291i \(0.730875\pi\)
\(338\) −2757.05 + 4775.35i −0.443680 + 0.768476i
\(339\) 10508.9 + 18202.0i 1.68368 + 2.91621i
\(340\) 0 0
\(341\) 1115.96 1932.90i 0.177221 0.306956i
\(342\) −8377.08 −1.32450
\(343\) −5903.83 + 2344.87i −0.929379 + 0.369128i
\(344\) −5141.75 −0.805885
\(345\) 0 0
\(346\) 6114.72 + 10591.0i 0.950085 + 1.64560i
\(347\) 4701.28 + 8142.85i 0.727313 + 1.25974i 0.958015 + 0.286719i \(0.0925646\pi\)
−0.230701 + 0.973025i \(0.574102\pi\)
\(348\) −605.941 + 1049.52i −0.0933386 + 0.161667i
\(349\) −690.530 −0.105912 −0.0529559 0.998597i \(-0.516864\pi\)
−0.0529559 + 0.998597i \(0.516864\pi\)
\(350\) 0 0
\(351\) 30163.1 4.58685
\(352\) 187.385 324.560i 0.0283740 0.0491451i
\(353\) −1800.69 3118.89i −0.271505 0.470260i 0.697743 0.716349i \(-0.254188\pi\)
−0.969247 + 0.246088i \(0.920855\pi\)
\(354\) −6579.23 11395.6i −0.987803 1.71092i
\(355\) 0 0
\(356\) 538.945 0.0802360
\(357\) −762.159 + 1814.93i −0.112991 + 0.269066i
\(358\) 2681.00 0.395797
\(359\) −4031.95 + 6983.55i −0.592753 + 1.02668i 0.401107 + 0.916031i \(0.368626\pi\)
−0.993860 + 0.110647i \(0.964708\pi\)
\(360\) 0 0
\(361\) 2677.84 + 4638.15i 0.390412 + 0.676214i
\(362\) −383.140 + 663.618i −0.0556281 + 0.0963508i
\(363\) −10930.9 −1.58051
\(364\) 380.857 + 501.386i 0.0548416 + 0.0721972i
\(365\) 0 0
\(366\) −2446.28 + 4237.09i −0.349370 + 0.605126i
\(367\) −1694.81 2935.50i −0.241059 0.417526i 0.719958 0.694018i \(-0.244161\pi\)
−0.961016 + 0.276493i \(0.910828\pi\)
\(368\) 819.841 + 1420.01i 0.116134 + 0.201149i
\(369\) −1185.17 + 2052.78i −0.167202 + 0.289603i
\(370\) 0 0
\(371\) −3568.95 4698.41i −0.499436 0.657491i
\(372\) −765.033 −0.106627
\(373\) −4420.62 + 7656.74i −0.613649 + 1.06287i 0.376971 + 0.926225i \(0.376966\pi\)
−0.990620 + 0.136646i \(0.956368\pi\)
\(374\) 240.896 + 417.245i 0.0333060 + 0.0576877i
\(375\) 0 0
\(376\) −1573.83 + 2725.95i −0.215862 + 0.373883i
\(377\) 14490.9 1.97963
\(378\) 9885.06 23539.3i 1.34506 3.20300i
\(379\) 3038.06 0.411754 0.205877 0.978578i \(-0.433995\pi\)
0.205877 + 0.978578i \(0.433995\pi\)
\(380\) 0 0
\(381\) −2506.24 4340.94i −0.337005 0.583709i
\(382\) −2112.11 3658.28i −0.282893 0.489984i
\(383\) −1409.34 + 2441.05i −0.188026 + 0.325671i −0.944592 0.328247i \(-0.893542\pi\)
0.756566 + 0.653917i \(0.226876\pi\)
\(384\) 15831.7 2.10393
\(385\) 0 0
\(386\) −11876.1 −1.56601
\(387\) −8717.49 + 15099.1i −1.14505 + 1.98329i
\(388\) −306.307 530.540i −0.0400783 0.0694177i
\(389\) −6094.35 10555.7i −0.794334 1.37583i −0.923261 0.384173i \(-0.874487\pi\)
0.128927 0.991654i \(-0.458847\pi\)
\(390\) 0 0
\(391\) −255.162 −0.0330028
\(392\) −7245.74 + 1865.95i −0.933584 + 0.240420i
\(393\) 3131.55 0.401948
\(394\) −1567.19 + 2714.46i −0.200391 + 0.347088i
\(395\) 0 0
\(396\) −306.773 531.346i −0.0389291 0.0674271i
\(397\) 5195.17 8998.29i 0.656771 1.13756i −0.324676 0.945825i \(-0.605255\pi\)
0.981447 0.191735i \(-0.0614114\pi\)
\(398\) −8695.73 −1.09517
\(399\) 7158.25 906.914i 0.898147 0.113791i
\(400\) 0 0
\(401\) −751.138 + 1301.01i −0.0935413 + 0.162018i −0.908999 0.416799i \(-0.863152\pi\)
0.815458 + 0.578817i \(0.196485\pi\)
\(402\) 10875.0 + 18836.0i 1.34924 + 2.33695i
\(403\) 4573.89 + 7922.20i 0.565364 + 0.979238i
\(404\) 319.434 553.275i 0.0393377 0.0681348i
\(405\) 0 0
\(406\) 4748.97 11308.7i 0.580510 1.38237i
\(407\) 4448.12 0.541733
\(408\) −1159.27 + 2007.91i −0.140667 + 0.243643i
\(409\) −7048.61 12208.5i −0.852155 1.47598i −0.879260 0.476343i \(-0.841962\pi\)
0.0271048 0.999633i \(-0.491371\pi\)
\(410\) 0 0
\(411\) −5138.13 + 8899.50i −0.616655 + 1.06808i
\(412\) 547.387 0.0654559
\(413\) 5022.39 + 6611.81i 0.598391 + 0.787763i
\(414\) 5211.86 0.618717
\(415\) 0 0
\(416\) 768.018 + 1330.25i 0.0905173 + 0.156781i
\(417\) −5733.99 9931.57i −0.673369 1.16631i
\(418\) 883.012 1529.42i 0.103324 0.178963i
\(419\) 11529.9 1.34433 0.672163 0.740403i \(-0.265365\pi\)
0.672163 + 0.740403i \(0.265365\pi\)
\(420\) 0 0
\(421\) −3370.05 −0.390134 −0.195067 0.980790i \(-0.562492\pi\)
−0.195067 + 0.980790i \(0.562492\pi\)
\(422\) 761.826 1319.52i 0.0878794 0.152212i
\(423\) 5336.64 + 9243.33i 0.613419 + 1.06247i
\(424\) −3474.74 6018.42i −0.397991 0.689341i
\(425\) 0 0
\(426\) −10966.9 −1.24729
\(427\) 1195.32 2846.43i 0.135470 0.322596i
\(428\) −306.786 −0.0346473
\(429\) −5007.17 + 8672.67i −0.563516 + 0.976039i
\(430\) 0 0
\(431\) 4163.53 + 7211.45i 0.465314 + 0.805948i 0.999216 0.0395991i \(-0.0126081\pi\)
−0.533902 + 0.845547i \(0.679275\pi\)
\(432\) 16039.6 27781.5i 1.78636 3.09407i
\(433\) 818.149 0.0908031 0.0454015 0.998969i \(-0.485543\pi\)
0.0454015 + 0.998969i \(0.485543\pi\)
\(434\) 7681.46 973.203i 0.849590 0.107639i
\(435\) 0 0
\(436\) 50.8860 88.1372i 0.00558945 0.00968120i
\(437\) 467.652 + 809.997i 0.0511918 + 0.0886668i
\(438\) 3482.64 + 6032.11i 0.379924 + 0.658048i
\(439\) −4232.89 + 7331.58i −0.460193 + 0.797078i −0.998970 0.0453707i \(-0.985553\pi\)
0.538777 + 0.842448i \(0.318886\pi\)
\(440\) 0 0
\(441\) −6805.16 + 24441.3i −0.734819 + 2.63916i
\(442\) −1974.69 −0.212503
\(443\) −7284.47 + 12617.1i −0.781254 + 1.35317i 0.149957 + 0.988693i \(0.452086\pi\)
−0.931211 + 0.364480i \(0.881247\pi\)
\(444\) −762.340 1320.41i −0.0814844 0.141135i
\(445\) 0 0
\(446\) −3478.54 + 6025.00i −0.369313 + 0.639668i
\(447\) 12972.0 1.37261
\(448\) −8701.26 + 1102.41i −0.917625 + 0.116258i
\(449\) −841.211 −0.0884169 −0.0442084 0.999022i \(-0.514077\pi\)
−0.0442084 + 0.999022i \(0.514077\pi\)
\(450\) 0 0
\(451\) −249.854 432.759i −0.0260868 0.0451837i
\(452\) 556.320 + 963.574i 0.0578918 + 0.100272i
\(453\) 5777.50 10006.9i 0.599229 1.03789i
\(454\) −996.140 −0.102976
\(455\) 0 0
\(456\) 8498.64 0.872775
\(457\) −6938.33 + 12017.5i −0.710200 + 1.23010i 0.254581 + 0.967051i \(0.418062\pi\)
−0.964782 + 0.263052i \(0.915271\pi\)
\(458\) −1131.93 1960.56i −0.115484 0.200024i
\(459\) 2496.04 + 4323.27i 0.253824 + 0.439636i
\(460\) 0 0
\(461\) 3053.09 0.308452 0.154226 0.988036i \(-0.450712\pi\)
0.154226 + 0.988036i \(0.450712\pi\)
\(462\) 5127.22 + 6749.82i 0.516320 + 0.679719i
\(463\) 9935.80 0.997312 0.498656 0.866800i \(-0.333827\pi\)
0.498656 + 0.866800i \(0.333827\pi\)
\(464\) 7705.74 13346.7i 0.770970 1.33536i
\(465\) 0 0
\(466\) 3650.96 + 6323.64i 0.362934 + 0.628620i
\(467\) −4963.63 + 8597.26i −0.491840 + 0.851892i −0.999956 0.00939651i \(-0.997009\pi\)
0.508116 + 0.861289i \(0.330342\pi\)
\(468\) 2514.69 0.248379
\(469\) −8301.63 10928.8i −0.817342 1.07600i
\(470\) 0 0
\(471\) 18199.1 31521.8i 1.78040 3.08375i
\(472\) 4889.81 + 8469.40i 0.476847 + 0.825923i
\(473\) −1837.79 3183.14i −0.178650 0.309432i
\(474\) 6829.71 11829.4i 0.661813 1.14629i
\(475\) 0 0
\(476\) −40.3470 + 96.0786i −0.00388509 + 0.00925159i
\(477\) −23564.8 −2.26196
\(478\) 3186.32 5518.86i 0.304893 0.528089i
\(479\) 6587.12 + 11409.2i 0.628336 + 1.08831i 0.987886 + 0.155184i \(0.0495972\pi\)
−0.359549 + 0.933126i \(0.617069\pi\)
\(480\) 0 0
\(481\) −9115.58 + 15788.6i −0.864105 + 1.49667i
\(482\) −6630.96 −0.626622
\(483\) −4453.56 + 564.243i −0.419552 + 0.0531552i
\(484\) −578.658 −0.0543443
\(485\) 0 0
\(486\) −21674.9 37542.1i −2.02303 3.50400i
\(487\) −4236.88 7338.50i −0.394233 0.682832i 0.598770 0.800921i \(-0.295656\pi\)
−0.993003 + 0.118089i \(0.962323\pi\)
\(488\) 1818.12 3149.08i 0.168653 0.292115i
\(489\) −27187.8 −2.51426
\(490\) 0 0
\(491\) −10831.1 −0.995523 −0.497762 0.867314i \(-0.665845\pi\)
−0.497762 + 0.867314i \(0.665845\pi\)
\(492\) −85.6422 + 148.337i −0.00784766 + 0.0135926i
\(493\) 1199.14 + 2076.98i 0.109547 + 0.189741i
\(494\) 3619.13 + 6268.52i 0.329620 + 0.570919i
\(495\) 0 0
\(496\) 9728.92 0.880728
\(497\) 6865.24 869.792i 0.619614 0.0785020i
\(498\) −20289.7 −1.82571
\(499\) 6046.05 10472.1i 0.542402 0.939467i −0.456364 0.889793i \(-0.650848\pi\)
0.998765 0.0496738i \(-0.0158182\pi\)
\(500\) 0 0
\(501\) −17071.9 29569.4i −1.52239 2.63685i
\(502\) −4299.36 + 7446.71i −0.382251 + 0.662078i
\(503\) 18398.5 1.63091 0.815455 0.578821i \(-0.196487\pi\)
0.815455 + 0.578821i \(0.196487\pi\)
\(504\) −11570.1 + 27552.0i −1.02257 + 2.43505i
\(505\) 0 0
\(506\) −549.372 + 951.540i −0.0482660 + 0.0835991i
\(507\) −9484.46 16427.6i −0.830808 1.43900i
\(508\) −132.675 229.800i −0.0115876 0.0200703i
\(509\) 10351.4 17929.1i 0.901406 1.56128i 0.0757355 0.997128i \(-0.475870\pi\)
0.825670 0.564153i \(-0.190797\pi\)
\(510\) 0 0
\(511\) −2658.54 3499.88i −0.230151 0.302986i
\(512\) −10228.3 −0.882874
\(513\) 9149.30 15847.0i 0.787429 1.36387i
\(514\) 5292.20 + 9166.37i 0.454142 + 0.786598i
\(515\) 0 0
\(516\) −629.938 + 1091.08i −0.0537432 + 0.0930859i
\(517\) −2250.10 −0.191411
\(518\) 9334.14 + 12288.1i 0.791734 + 1.04229i
\(519\) −42070.2 −3.55814
\(520\) 0 0
\(521\) 7236.53 + 12534.0i 0.608518 + 1.05398i 0.991485 + 0.130222i \(0.0415691\pi\)
−0.382967 + 0.923762i \(0.625098\pi\)
\(522\) −24493.3 42423.7i −2.05372 3.55715i
\(523\) −7958.97 + 13785.3i −0.665433 + 1.15256i 0.313734 + 0.949511i \(0.398420\pi\)
−0.979168 + 0.203053i \(0.934914\pi\)
\(524\) 165.777 0.0138206
\(525\) 0 0
\(526\) −1347.23 −0.111677
\(527\) −756.992 + 1311.15i −0.0625713 + 0.108377i
\(528\) 5325.27 + 9223.63i 0.438925 + 0.760241i
\(529\) 5792.55 + 10033.0i 0.476087 + 0.824606i
\(530\) 0 0
\(531\) 33161.4 2.71013
\(532\) 378.942 48.0101i 0.0308820 0.00391260i
\(533\) 2048.11 0.166442
\(534\) −14868.7 + 25753.3i −1.20492 + 2.08699i
\(535\) 0 0
\(536\) −8082.48 13999.3i −0.651325 1.12813i
\(537\) −4611.42 + 7987.21i −0.370572 + 0.641850i
\(538\) −16738.0 −1.34131
\(539\) −3744.97 3818.74i −0.299272 0.305167i
\(540\) 0 0
\(541\) 4419.67 7655.09i 0.351232 0.608351i −0.635234 0.772320i \(-0.719096\pi\)
0.986466 + 0.163969i \(0.0524296\pi\)
\(542\) 635.622 + 1100.93i 0.0503732 + 0.0872490i
\(543\) −1318.03 2282.89i −0.104166 0.180421i
\(544\) −127.109 + 220.160i −0.0100179 + 0.0173516i
\(545\) 0 0
\(546\) −34465.8 + 4366.65i −2.70147 + 0.342262i
\(547\) −11349.6 −0.887155 −0.443577 0.896236i \(-0.646291\pi\)
−0.443577 + 0.896236i \(0.646291\pi\)
\(548\) −272.001 + 471.120i −0.0212032 + 0.0367249i
\(549\) −6165.02 10678.1i −0.479265 0.830111i
\(550\) 0 0
\(551\) 4395.49 7613.21i 0.339844 0.588628i
\(552\) −5287.49 −0.407700
\(553\) −3337.20 + 7946.88i −0.256622 + 0.611095i
\(554\) 314.003 0.0240807
\(555\) 0 0
\(556\) −303.545 525.756i −0.0231532 0.0401025i
\(557\) −3305.43 5725.18i −0.251446 0.435518i 0.712478 0.701695i \(-0.247573\pi\)
−0.963924 + 0.266177i \(0.914240\pi\)
\(558\) 15462.1 26781.1i 1.17305 2.03178i
\(559\) 15064.8 1.13984
\(560\) 0 0
\(561\) −1657.40 −0.124734
\(562\) 11769.9 20386.0i 0.883420 1.53013i
\(563\) −6424.96 11128.4i −0.480959 0.833045i 0.518802 0.854894i \(-0.326378\pi\)
−0.999761 + 0.0218488i \(0.993045\pi\)
\(564\) 385.633 + 667.936i 0.0287909 + 0.0498673i
\(565\) 0 0
\(566\) 16930.9 1.25735
\(567\) 30752.4 + 40484.5i 2.27774 + 2.99857i
\(568\) 8150.77 0.602110
\(569\) 4486.52 7770.88i 0.330553 0.572535i −0.652067 0.758161i \(-0.726098\pi\)
0.982620 + 0.185626i \(0.0594314\pi\)
\(570\) 0 0
\(571\) −661.018 1144.92i −0.0484461 0.0839112i 0.840785 0.541368i \(-0.182094\pi\)
−0.889232 + 0.457457i \(0.848760\pi\)
\(572\) −265.069 + 459.112i −0.0193760 + 0.0335602i
\(573\) 14531.6 1.05945
\(574\) 671.208 1598.35i 0.0488078 0.116226i
\(575\) 0 0
\(576\) −17514.8 + 30336.5i −1.26699 + 2.19448i
\(577\) 11616.3 + 20120.0i 0.838116 + 1.45166i 0.891468 + 0.453084i \(0.149676\pi\)
−0.0533512 + 0.998576i \(0.516990\pi\)
\(578\) 7011.90 + 12145.0i 0.504596 + 0.873986i
\(579\) 20427.4 35381.3i 1.46621 2.53955i
\(580\) 0 0
\(581\) 12701.3 1609.19i 0.906952 0.114906i
\(582\) 33802.2 2.40747
\(583\) 2483.92 4302.27i 0.176455 0.305629i
\(584\) −2588.36 4483.18i −0.183403 0.317663i
\(585\) 0 0
\(586\) −1827.00 + 3164.46i −0.128793 + 0.223076i
\(587\) −13229.8 −0.930244 −0.465122 0.885247i \(-0.653990\pi\)
−0.465122 + 0.885247i \(0.653990\pi\)
\(588\) −491.750 + 1766.16i −0.0344889 + 0.123869i
\(589\) 5549.55 0.388226
\(590\) 0 0
\(591\) −5391.26 9337.94i −0.375240 0.649935i
\(592\) 9694.68 + 16791.7i 0.673055 + 1.16577i
\(593\) 13172.6 22815.7i 0.912201 1.57998i 0.101252 0.994861i \(-0.467715\pi\)
0.810949 0.585117i \(-0.198951\pi\)
\(594\) 21496.2 1.48485
\(595\) 0 0
\(596\) 686.710 0.0471959
\(597\) 14957.0 25906.2i 1.02537 1.77600i
\(598\) −2251.67 3900.00i −0.153976 0.266694i
\(599\) 6294.29 + 10902.0i 0.429345 + 0.743647i 0.996815 0.0797468i \(-0.0254112\pi\)
−0.567470 + 0.823394i \(0.692078\pi\)
\(600\) 0 0
\(601\) −5027.54 −0.341227 −0.170614 0.985338i \(-0.554575\pi\)
−0.170614 + 0.985338i \(0.554575\pi\)
\(602\) 4937.04 11756.6i 0.334251 0.795953i
\(603\) −54813.2 −3.70177
\(604\) 305.848 529.745i 0.0206040 0.0356871i
\(605\) 0 0
\(606\) 17625.4 + 30528.0i 1.18149 + 2.04640i
\(607\) 980.794 1698.78i 0.0655835 0.113594i −0.831369 0.555721i \(-0.812442\pi\)
0.896953 + 0.442127i \(0.145776\pi\)
\(608\) 931.845 0.0621567
\(609\) 25522.5 + 33599.5i 1.69823 + 2.23567i
\(610\) 0 0
\(611\) 4611.15 7986.75i 0.305315 0.528820i
\(612\) 208.094 + 360.430i 0.0137446 + 0.0238064i
\(613\) 4657.33 + 8066.73i 0.306864 + 0.531504i 0.977675 0.210124i \(-0.0673869\pi\)
−0.670810 + 0.741629i \(0.734054\pi\)
\(614\) 721.075 1248.94i 0.0473945 0.0820896i
\(615\) 0 0
\(616\) −3810.65 5016.59i −0.249246 0.328124i
\(617\) −20829.3 −1.35909 −0.679544 0.733635i \(-0.737822\pi\)
−0.679544 + 0.733635i \(0.737822\pi\)
\(618\) −15101.6 + 26156.7i −0.982968 + 1.70255i
\(619\) −6682.39 11574.2i −0.433906 0.751548i 0.563299 0.826253i \(-0.309532\pi\)
−0.997206 + 0.0747050i \(0.976198\pi\)
\(620\) 0 0
\(621\) −5692.30 + 9859.35i −0.367833 + 0.637105i
\(622\) −308.055 −0.0198583
\(623\) 7265.26 17300.8i 0.467217 1.11259i
\(624\) −43652.5 −2.80048
\(625\) 0 0
\(626\) 5419.28 + 9386.47i 0.346003 + 0.599295i
\(627\) 3037.63 + 5261.32i 0.193479 + 0.335115i
\(628\) 963.421 1668.69i 0.0612176 0.106032i
\(629\) −3017.31 −0.191269
\(630\) 0 0
\(631\) −29261.9 −1.84612 −0.923058 0.384661i \(-0.874318\pi\)
−0.923058 + 0.384661i \(0.874318\pi\)
\(632\) −5075.97 + 8791.84i −0.319480 + 0.553356i
\(633\) 2620.74 + 4539.25i 0.164558 + 0.285022i
\(634\) 9495.13 + 16446.0i 0.594795 + 1.03021i
\(635\) 0 0
\(636\) −1702.82 −0.106166
\(637\) 21229.3 5467.04i 1.32046 0.340050i
\(638\) 10327.2 0.640841
\(639\) 13819.1 23935.4i 0.855516 1.48180i
\(640\) 0 0
\(641\) 6224.26 + 10780.7i 0.383531 + 0.664296i 0.991564 0.129616i \(-0.0413745\pi\)
−0.608033 + 0.793912i \(0.708041\pi\)
\(642\) 8463.76 14659.7i 0.520308 0.901200i
\(643\) −13458.0 −0.825397 −0.412698 0.910868i \(-0.635414\pi\)
−0.412698 + 0.910868i \(0.635414\pi\)
\(644\) −235.762 + 29.8698i −0.0144259 + 0.00182769i
\(645\) 0 0
\(646\) −598.977 + 1037.46i −0.0364805 + 0.0631861i
\(647\) 918.898 + 1591.58i 0.0558356 + 0.0967101i 0.892592 0.450865i \(-0.148884\pi\)
−0.836757 + 0.547575i \(0.815551\pi\)
\(648\) 29940.6 + 51858.6i 1.81509 + 3.14383i
\(649\) −3495.48 + 6054.35i −0.211417 + 0.366185i
\(650\) 0 0
\(651\) −10313.0 + 24558.5i −0.620891 + 1.47853i
\(652\) −1439.26 −0.0864506
\(653\) −6064.19 + 10503.5i −0.363415 + 0.629454i −0.988520 0.151087i \(-0.951723\pi\)
0.625105 + 0.780540i \(0.285056\pi\)
\(654\) 2807.73 + 4863.14i 0.167876 + 0.290770i
\(655\) 0 0
\(656\) 1089.11 1886.40i 0.0648211 0.112274i
\(657\) −17553.6 −1.04236
\(658\) −4721.71 6215.98i −0.279744 0.368273i
\(659\) 4131.14 0.244198 0.122099 0.992518i \(-0.461038\pi\)
0.122099 + 0.992518i \(0.461038\pi\)
\(660\) 0 0
\(661\) −10681.3 18500.6i −0.628525 1.08864i −0.987848 0.155424i \(-0.950326\pi\)
0.359323 0.933213i \(-0.383008\pi\)
\(662\) 158.736 + 274.939i 0.00931943 + 0.0161417i
\(663\) 3396.53 5882.96i 0.198960 0.344608i
\(664\) 15079.7 0.881331
\(665\) 0 0
\(666\) 61630.6 3.58579
\(667\) −2734.69 + 4736.61i −0.158752 + 0.274966i
\(668\) −903.749 1565.34i −0.0523460 0.0906659i
\(669\) −11966.4 20726.4i −0.691552 1.19780i
\(670\) 0 0
\(671\) 2599.37 0.149549
\(672\) −1731.70 + 4123.71i −0.0994075 + 0.236719i
\(673\) 26260.3 1.50410 0.752052 0.659104i \(-0.229064\pi\)
0.752052 + 0.659104i \(0.229064\pi\)
\(674\) 11987.4 20762.8i 0.685070 1.18658i
\(675\) 0 0
\(676\) −502.086 869.639i −0.0285666 0.0494788i
\(677\) −15258.3 + 26428.1i −0.866208 + 1.50032i −0.000364836 1.00000i \(0.500116\pi\)
−0.865843 + 0.500316i \(0.833217\pi\)
\(678\) −61392.1 −3.47750
\(679\) −21160.2 + 2680.89i −1.19595 + 0.151521i
\(680\) 0 0
\(681\) 1713.40 2967.69i 0.0964134 0.166993i
\(682\) 3259.65 + 5645.89i 0.183018 + 0.316997i
\(683\) −14603.7 25294.3i −0.818147 1.41707i −0.907046 0.421031i \(-0.861668\pi\)
0.0888993 0.996041i \(-0.471665\pi\)
\(684\) 762.775 1321.16i 0.0426395 0.0738538i
\(685\) 0 0
\(686\) 2690.78 18359.0i 0.149759 1.02179i
\(687\) 7787.85 0.432497
\(688\) 8010.92 13875.3i 0.443915 0.768883i
\(689\) 10180.6 + 17633.4i 0.562919 + 0.975004i
\(690\) 0 0
\(691\) −5312.39 + 9201.33i −0.292464 + 0.506563i −0.974392 0.224857i \(-0.927809\pi\)
0.681928 + 0.731420i \(0.261142\pi\)
\(692\) −2227.10 −0.122344
\(693\) −21192.3 + 2684.96i −1.16166 + 0.147176i
\(694\) −27464.4 −1.50221
\(695\) 0 0
\(696\) 24848.7 + 43039.3i 1.35329 + 2.34397i
\(697\) 169.484 + 293.555i 0.00921043 + 0.0159529i
\(698\) 1008.50 1746.78i 0.0546881 0.0947227i
\(699\) −25119.1 −1.35922
\(700\) 0 0
\(701\) 22033.0 1.18712 0.593562 0.804788i \(-0.297721\pi\)
0.593562 + 0.804788i \(0.297721\pi\)
\(702\) −44052.4 + 76301.0i −2.36845 + 4.10227i
\(703\) 5530.01 + 9578.27i 0.296683 + 0.513871i
\(704\) −3692.41 6395.44i −0.197674 0.342382i
\(705\) 0 0
\(706\) 10519.5 0.560772
\(707\) −13454.7 17712.7i −0.715722 0.942225i
\(708\) 2396.29 0.127201
\(709\) −12433.7 + 21535.8i −0.658614 + 1.14075i 0.322361 + 0.946617i \(0.395523\pi\)
−0.980975 + 0.194136i \(0.937810\pi\)
\(710\) 0 0
\(711\) 17211.9 + 29812.0i 0.907874 + 1.57248i
\(712\) 11050.7 19140.3i 0.581659 1.00746i
\(713\) −3452.69 −0.181352
\(714\) −3477.97 4578.63i −0.182296 0.239987i
\(715\) 0 0
\(716\) −244.118 + 422.825i −0.0127418 + 0.0220694i
\(717\) 10961.2 + 18985.3i 0.570923 + 0.988868i
\(718\) −11777.1 20398.6i −0.612142 1.06026i
\(719\) 702.482 1216.74i 0.0364370 0.0631107i −0.847232 0.531223i \(-0.821733\pi\)
0.883669 + 0.468113i \(0.155066\pi\)
\(720\) 0 0
\(721\) 7379.06 17571.8i 0.381152 0.907639i
\(722\) −15643.6 −0.806366
\(723\) 11405.5 19754.9i 0.586687 1.01617i
\(724\) −69.7736 120.851i −0.00358165 0.00620360i
\(725\) 0 0
\(726\) 15964.3 27651.0i 0.816103 1.41353i
\(727\) 28384.6 1.44804 0.724020 0.689779i \(-0.242292\pi\)
0.724020 + 0.689779i \(0.242292\pi\)
\(728\) 25615.6 3245.37i 1.30409 0.165222i
\(729\) 75008.8 3.81084
\(730\) 0 0
\(731\) 1246.63 + 2159.23i 0.0630758 + 0.109251i
\(732\) −445.493 771.616i −0.0224944 0.0389614i
\(733\) −10235.9 + 17729.1i −0.515787 + 0.893369i 0.484045 + 0.875043i \(0.339167\pi\)
−0.999832 + 0.0183260i \(0.994166\pi\)
\(734\) 9900.91 0.497887
\(735\) 0 0
\(736\) −579.754 −0.0290353
\(737\) 5777.76 10007.4i 0.288774 0.500171i
\(738\) −3461.83 5996.06i −0.172672 0.299076i
\(739\) 16590.5 + 28735.6i 0.825834 + 1.43039i 0.901280 + 0.433236i \(0.142628\pi\)
−0.0754464 + 0.997150i \(0.524038\pi\)
\(740\) 0 0
\(741\) −24900.1 −1.23445
\(742\) 17097.5 2166.17i 0.845916 0.107173i
\(743\) −30844.1 −1.52296 −0.761481 0.648188i \(-0.775527\pi\)
−0.761481 + 0.648188i \(0.775527\pi\)
\(744\) −15686.4 + 27169.7i −0.772974 + 1.33883i
\(745\) 0 0
\(746\) −12912.4 22364.9i −0.633722 1.09764i
\(747\) 25566.5 44282.6i 1.25225 2.16896i
\(748\) −87.7393 −0.00428886
\(749\) −4135.64 + 9848.21i −0.201753 + 0.480435i
\(750\) 0 0
\(751\) 12346.5 21384.7i 0.599906 1.03907i −0.392928 0.919569i \(-0.628538\pi\)
0.992834 0.119499i \(-0.0381289\pi\)
\(752\) −4904.09 8494.13i −0.237811 0.411900i
\(753\) −14790.1 25617.2i −0.715779 1.23977i
\(754\) −21163.6 + 36656.4i −1.02219 + 1.77049i
\(755\) 0 0
\(756\) 2812.35 + 3702.37i 0.135297 + 0.178113i
\(757\) 6870.57 0.329875 0.164937 0.986304i \(-0.447258\pi\)
0.164937 + 0.986304i \(0.447258\pi\)
\(758\) −4437.01 + 7685.12i −0.212611 + 0.368253i
\(759\) −1889.88 3273.37i −0.0903799 0.156542i
\(760\) 0 0
\(761\) −15441.3 + 26745.1i −0.735540 + 1.27399i 0.218946 + 0.975737i \(0.429738\pi\)
−0.954486 + 0.298256i \(0.903595\pi\)
\(762\) 14641.2 0.696057
\(763\) −2143.34 2821.64i −0.101696 0.133880i
\(764\) 769.273 0.0364284
\(765\) 0 0
\(766\) −4116.62 7130.19i −0.194177 0.336324i
\(767\) −14326.6 24814.5i −0.674452 1.16819i
\(768\) −4087.22 + 7079.28i −0.192038 + 0.332619i
\(769\) −13536.3 −0.634761 −0.317380 0.948298i \(-0.602803\pi\)
−0.317380 + 0.948298i \(0.602803\pi\)
\(770\) 0 0
\(771\) −36411.1 −1.70080
\(772\) 1081.38 1873.01i 0.0504143 0.0873201i
\(773\) −7142.87 12371.8i −0.332356 0.575657i 0.650617 0.759406i \(-0.274510\pi\)
−0.982973 + 0.183748i \(0.941177\pi\)
\(774\) −25463.3 44103.8i −1.18251 2.04816i
\(775\) 0 0
\(776\) −25122.4 −1.16217
\(777\) −52663.6 + 6672.22i −2.43153 + 0.308062i
\(778\) 35602.6 1.64064
\(779\) 621.249 1076.03i 0.0285732 0.0494903i
\(780\) 0 0
\(781\) 2913.29 + 5045.96i 0.133477 + 0.231189i
\(782\) 372.658 645.462i 0.0170412 0.0295162i
\(783\) 107005. 4.88382
\(784\) 6253.59 22460.2i 0.284876 1.02315i
\(785\) 0 0
\(786\) −4573.54 + 7921.61i −0.207548 + 0.359484i
\(787\) 4226.82 + 7321.06i 0.191448 + 0.331598i 0.945730 0.324952i \(-0.105348\pi\)
−0.754282 + 0.656550i \(0.772015\pi\)
\(788\) −285.402 494.330i −0.0129023 0.0223474i
\(789\) 2317.28 4013.65i 0.104559 0.181102i
\(790\) 0 0
\(791\) 38431.4 4869.07i 1.72751 0.218867i
\(792\) −25160.6 −1.12884
\(793\) −5326.92 + 9226.49i −0.238543 + 0.413168i
\(794\) 15174.8 + 26283.5i 0.678254 + 1.17477i
\(795\) 0 0
\(796\) 791.789 1371.42i 0.0352566 0.0610662i
\(797\) 5465.35 0.242902 0.121451 0.992597i \(-0.461245\pi\)
0.121451 + 0.992597i \(0.461245\pi\)
\(798\) −8160.29 + 19432.1i −0.361994 + 0.862018i
\(799\) 1526.32 0.0675810
\(800\) 0 0
\(801\) −37471.3 64902.3i −1.65291 2.86293i
\(802\) −2194.04 3800.18i −0.0966011 0.167318i
\(803\) 1850.29 3204.80i 0.0813142 0.140840i
\(804\) −3960.88 −0.173743
\(805\) 0 0
\(806\) −26720.2 −1.16771
\(807\) 28789.9 49865.6i 1.25583 2.17516i
\(808\) −13099.5 22689.0i −0.570346 0.987867i
\(809\) −8300.53 14376.9i −0.360731 0.624804i 0.627350 0.778737i \(-0.284139\pi\)
−0.988081 + 0.153933i \(0.950806\pi\)
\(810\) 0 0
\(811\) −24613.6 −1.06572 −0.532861 0.846203i \(-0.678883\pi\)
−0.532861 + 0.846203i \(0.678883\pi\)
\(812\) 1351.10 + 1778.69i 0.0583922 + 0.0768714i
\(813\) −4373.17 −0.188652
\(814\) −6496.37 + 11252.0i −0.279727 + 0.484501i
\(815\) 0 0
\(816\) −3612.31 6256.70i −0.154971 0.268417i
\(817\) 4569.57 7914.73i 0.195678 0.338924i
\(818\) 41177.2 1.76006
\(819\) 33899.3 80724.6i 1.44632 3.44413i
\(820\) 0 0
\(821\) 8970.29 15537.0i 0.381322 0.660469i −0.609930 0.792456i \(-0.708802\pi\)
0.991251 + 0.131987i \(0.0421357\pi\)
\(822\) −15008.2 25995.0i −0.636827 1.10302i
\(823\) −22954.5 39758.4i −0.972229 1.68395i −0.688791 0.724960i \(-0.741858\pi\)
−0.283439 0.958990i \(-0.591475\pi\)
\(824\) 11223.8 19440.1i 0.474513 0.821880i
\(825\) 0 0
\(826\) −24060.4 + 3048.33i −1.01352 + 0.128408i
\(827\) 36696.8 1.54301 0.771507 0.636221i \(-0.219503\pi\)
0.771507 + 0.636221i \(0.219503\pi\)
\(828\) −474.566 + 821.972i −0.0199182 + 0.0344994i
\(829\) −14460.2 25045.9i −0.605820 1.04931i −0.991921 0.126855i \(-0.959512\pi\)
0.386101 0.922457i \(-0.373822\pi\)
\(830\) 0 0
\(831\) −540.096 + 935.474i −0.0225460 + 0.0390508i
\(832\) 30267.5 1.26122
\(833\) 2540.34 + 2590.38i 0.105663 + 0.107745i
\(834\) 33497.4 1.39079
\(835\) 0 0
\(836\) 160.805 + 278.523i 0.00665259 + 0.0115226i
\(837\) 33774.8 + 58499.6i 1.39478 + 2.41582i
\(838\) −16839.1 + 29166.2i −0.694150 + 1.20230i
\(839\) 5852.41 0.240820 0.120410 0.992724i \(-0.461579\pi\)
0.120410 + 0.992724i \(0.461579\pi\)
\(840\) 0 0
\(841\) 27018.0 1.10779
\(842\) 4921.87 8524.93i 0.201448 0.348918i
\(843\) 40489.2 + 70129.4i 1.65424 + 2.86523i
\(844\) 138.736 + 240.298i 0.00565817 + 0.00980023i
\(845\) 0 0
\(846\) −31176.1 −1.26697
\(847\) −7800.62 + 18575.6i −0.316449 + 0.753562i
\(848\) 21654.8 0.876920
\(849\) −29121.7 + 50440.3i −1.17721 + 2.03900i
\(850\) 0 0
\(851\) −3440.54 5959.19i −0.138590 0.240045i
\(852\) 998.586 1729.60i 0.0401538 0.0695484i
\(853\) 18715.7 0.751245 0.375623 0.926773i \(-0.377429\pi\)
0.375623 + 0.926773i \(0.377429\pi\)
\(854\) 5454.64 + 7180.85i 0.218564 + 0.287733i
\(855\) 0 0
\(856\) −6290.42 + 10895.3i −0.251171 + 0.435041i
\(857\) 8648.57 + 14979.8i 0.344725 + 0.597081i 0.985304 0.170811i \(-0.0546388\pi\)
−0.640579 + 0.767893i \(0.721305\pi\)
\(858\) −14625.7 25332.4i −0.581949 1.00797i
\(859\) −15366.4 + 26615.3i −0.610354 + 1.05716i 0.380827 + 0.924646i \(0.375639\pi\)
−0.991181 + 0.132518i \(0.957694\pi\)
\(860\) 0 0
\(861\) 3607.29 + 4748.88i 0.142783 + 0.187969i
\(862\) −24322.9 −0.961070
\(863\) 5396.51 9347.02i 0.212861 0.368686i −0.739748 0.672884i \(-0.765055\pi\)
0.952609 + 0.304198i \(0.0983885\pi\)
\(864\) 5671.25 + 9822.89i 0.223310 + 0.386784i
\(865\) 0 0
\(866\) −1194.89 + 2069.60i −0.0468867 + 0.0812101i
\(867\) −48242.9 −1.88975
\(868\) −545.950 + 1300.07i −0.0213488 + 0.0508380i
\(869\) −7257.12 −0.283292
\(870\) 0 0
\(871\) 23680.8 + 41016.4i 0.921234 + 1.59562i
\(872\) −2086.76 3614.38i −0.0810398 0.140365i
\(873\) −42593.4 + 73773.9i −1.65128 + 2.86010i
\(874\) −2731.97 −0.105733
\(875\) 0 0
\(876\) −1268.45 −0.0489233
\(877\) −9783.36 + 16945.3i −0.376694 + 0.652453i −0.990579 0.136942i \(-0.956272\pi\)
0.613885 + 0.789395i \(0.289606\pi\)
\(878\) −12364.0 21415.1i −0.475246 0.823151i
\(879\) −6285.01 10886.0i −0.241170 0.417718i
\(880\) 0 0
\(881\) 27700.5 1.05931 0.529656 0.848213i \(-0.322321\pi\)
0.529656 + 0.848213i \(0.322321\pi\)
\(882\) −51888.2 52910.2i −1.98091 2.01993i
\(883\) −5071.61 −0.193288 −0.0966440 0.995319i \(-0.530811\pi\)
−0.0966440 + 0.995319i \(0.530811\pi\)
\(884\) 179.805 311.431i 0.00684106 0.0118491i
\(885\) 0 0
\(886\) −21277.6 36853.8i −0.806810 1.39744i
\(887\) −11274.4 + 19527.9i −0.426784 + 0.739212i −0.996585 0.0825707i \(-0.973687\pi\)
0.569801 + 0.821783i \(0.307020\pi\)
\(888\) −62525.0 −2.36284
\(889\) −9165.39 + 1161.21i −0.345779 + 0.0438084i
\(890\) 0 0
\(891\) −21403.0 + 37071.1i −0.804745 + 1.39386i
\(892\) −633.476 1097.21i −0.0237784 0.0411854i
\(893\) −2797.38 4845.20i −0.104827 0.181566i
\(894\) −18945.3 + 32814.2i −0.708753 + 1.22760i
\(895\) 0 0
\(896\) 11298.0 26904.0i 0.421250 1.00312i
\(897\) 15491.8 0.576651
\(898\) 1228.57 2127.94i 0.0456545 0.0790760i
\(899\) 16226.0 + 28104.3i 0.601967 + 1.04264i
\(900\) 0 0
\(901\) −1684.92 + 2918.37i −0.0623007 + 0.107908i
\(902\) 1459.62 0.0538803
\(903\) 26533.3 + 34930.2i 0.977821 + 1.28727i
\(904\) 45627.7 1.67871
\(905\) 0 0
\(906\) 16875.8 + 29229.7i 0.618830 + 1.07185i
\(907\) −12121.1 20994.3i −0.443742 0.768584i 0.554222 0.832369i \(-0.313016\pi\)
−0.997964 + 0.0637854i \(0.979683\pi\)
\(908\) 90.7035 157.103i 0.00331509 0.00574191i
\(909\) −88837.4 −3.24153
\(910\) 0 0
\(911\) 6574.69 0.239110 0.119555 0.992828i \(-0.461853\pi\)
0.119555 + 0.992828i \(0.461853\pi\)
\(912\) −13241.0 + 22934.1i −0.480760 + 0.832702i
\(913\) 5389.84 + 9335.48i 0.195375 + 0.338400i
\(914\) −20266.5 35102.6i −0.733432 1.27034i
\(915\) 0 0
\(916\) 412.272 0.0148710
\(917\) 2234.76 5321.66i 0.0804781 0.191643i
\(918\) −14581.6 −0.524253
\(919\) 20956.1 36297.1i 0.752208 1.30286i −0.194542 0.980894i \(-0.562322\pi\)
0.946750 0.321969i \(-0.104345\pi\)
\(920\) 0 0
\(921\) 2480.55 + 4296.44i 0.0887480 + 0.153716i
\(922\) −4458.95 + 7723.13i −0.159271 + 0.275865i
\(923\) −23880.9 −0.851625
\(924\) −1531.39 + 194.019i −0.0545226 + 0.00690774i
\(925\) 0 0
\(926\) −14511.0 + 25133.7i −0.514968 + 0.891950i
\(927\) −38058.3 65918.9i −1.34843 2.33556i
\(928\) 2724.57 + 4719.10i 0.0963777 + 0.166931i
\(929\) 24085.7 41717.7i 0.850621 1.47332i −0.0300283 0.999549i \(-0.509560\pi\)
0.880649 0.473769i \(-0.157107\pi\)
\(930\) 0 0
\(931\) 3567.16 12811.7i 0.125573 0.451006i
\(932\) −1329.75 −0.0467355
\(933\) 529.866 917.754i 0.0185927 0.0322036i
\(934\) −14498.5 25112.1i −0.507929 0.879759i
\(935\) 0 0
\(936\) 51561.9 89307.8i 1.80059 3.11871i
\(937\) −48696.8 −1.69782 −0.848909 0.528539i \(-0.822740\pi\)
−0.848909 + 0.528539i \(0.822740\pi\)
\(938\) 39770.0 5038.66i 1.38437 0.175392i
\(939\) −37285.4 −1.29581
\(940\) 0 0
\(941\) 1000.15 + 1732.31i 0.0346482 + 0.0600124i 0.882830 0.469694i \(-0.155636\pi\)
−0.848181 + 0.529706i \(0.822302\pi\)
\(942\) 53158.6 + 92073.4i 1.83864 + 3.18462i
\(943\) −386.514 + 669.462i −0.0133474 + 0.0231184i
\(944\) −30473.6 −1.05067
\(945\) 0 0
\(946\) 10736.2 0.368988
\(947\) −21247.7 + 36802.1i −0.729101 + 1.26284i 0.228163 + 0.973623i \(0.426728\pi\)
−0.957264 + 0.289216i \(0.906605\pi\)
\(948\) 1243.76 + 2154.25i 0.0426112 + 0.0738048i
\(949\) 7583.64 + 13135.2i 0.259405 + 0.449303i
\(950\) 0 0
\(951\) −65327.9 −2.22755
\(952\) 2584.89 + 3402.92i 0.0880008 + 0.115850i
\(953\) 51166.5 1.73919 0.869594 0.493768i \(-0.164381\pi\)
0.869594 + 0.493768i \(0.164381\pi\)
\(954\) 34415.7 59609.7i 1.16798 2.02299i
\(955\) 0 0
\(956\) 580.260 + 1005.04i 0.0196307 + 0.0340014i
\(957\) −17763.1 + 30766.6i −0.600000 + 1.03923i
\(958\) −38481.3 −1.29778
\(959\) 11456.8 + 15082.5i 0.385777 + 0.507863i
\(960\) 0 0
\(961\) 4652.38 8058.16i 0.156167 0.270490i
\(962\) −26626.1 46117.8i −0.892371 1.54563i
\(963\) 21330.0 + 36944.6i 0.713758 + 1.23627i
\(964\) 603.782 1045.78i 0.0201727 0.0349402i
\(965\) 0 0
\(966\) 5076.98 12089.8i 0.169099 0.402675i
\(967\) −26324.2 −0.875418 −0.437709 0.899117i \(-0.644210\pi\)
−0.437709 + 0.899117i \(0.644210\pi\)
\(968\) −11865.0 + 20550.7i −0.393961 + 0.682361i
\(969\) −2060.52 3568.93i −0.0683112 0.118318i
\(970\) 0 0
\(971\) 2617.28 4533.27i 0.0865012 0.149824i −0.819529 0.573038i \(-0.805765\pi\)
0.906030 + 0.423214i \(0.139098\pi\)
\(972\) 7894.44 0.260508
\(973\) −20969.3 + 2656.71i −0.690901 + 0.0875337i
\(974\) 24751.4 0.814257
\(975\) 0 0
\(976\) 5665.33 + 9812.63i 0.185802 + 0.321818i
\(977\) 22490.3 + 38954.3i 0.736467 + 1.27560i 0.954077 + 0.299562i \(0.0968406\pi\)
−0.217610 + 0.976036i \(0.569826\pi\)
\(978\) 39707.0 68774.5i 1.29825 2.24864i
\(979\) 15799.1 0.515774
\(980\) 0 0
\(981\) −14151.9 −0.460585
\(982\) 15818.6 27398.6i 0.514044 0.890350i
\(983\) −8196.66 14197.0i −0.265954 0.460646i 0.701859 0.712316i \(-0.252354\pi\)
−0.967813 + 0.251670i \(0.919020\pi\)
\(984\) 3512.06 + 6083.07i 0.113781 + 0.197074i
\(985\) 0 0
\(986\) −7005.27 −0.226261
\(987\) 26640.1 3375.17i 0.859132 0.108848i
\(988\) −1318.16 −0.0424456
\(989\) −2842.99 + 4924.20i −0.0914073 + 0.158322i
\(990\) 0 0
\(991\) 1941.67 + 3363.07i 0.0622393 + 0.107802i 0.895466 0.445130i \(-0.146842\pi\)
−0.833227 + 0.552931i \(0.813509\pi\)
\(992\) −1719.96 + 2979.06i −0.0550492 + 0.0953480i
\(993\) −1092.13 −0.0349020
\(994\) −7826.27 + 18636.7i −0.249733 + 0.594689i
\(995\) 0 0
\(996\) 1847.47 3199.92i 0.0587746 0.101801i
\(997\) 6981.81 + 12092.9i 0.221781 + 0.384137i 0.955349 0.295480i \(-0.0954795\pi\)
−0.733567 + 0.679617i \(0.762146\pi\)
\(998\) 17660.2 + 30588.4i 0.560144 + 0.970198i
\(999\) −67311.8 + 116588.i −2.13178 + 3.69236i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.e.f.51.2 yes 16
5.2 odd 4 175.4.k.e.149.4 32
5.3 odd 4 175.4.k.e.149.13 32
5.4 even 2 175.4.e.e.51.7 16
7.2 even 3 1225.4.a.bl.1.7 8
7.4 even 3 inner 175.4.e.f.151.2 yes 16
7.5 odd 6 1225.4.a.bk.1.7 8
35.4 even 6 175.4.e.e.151.7 yes 16
35.9 even 6 1225.4.a.bn.1.2 8
35.18 odd 12 175.4.k.e.74.4 32
35.19 odd 6 1225.4.a.bo.1.2 8
35.32 odd 12 175.4.k.e.74.13 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.e.e.51.7 16 5.4 even 2
175.4.e.e.151.7 yes 16 35.4 even 6
175.4.e.f.51.2 yes 16 1.1 even 1 trivial
175.4.e.f.151.2 yes 16 7.4 even 3 inner
175.4.k.e.74.4 32 35.18 odd 12
175.4.k.e.74.13 32 35.32 odd 12
175.4.k.e.149.4 32 5.2 odd 4
175.4.k.e.149.13 32 5.3 odd 4
1225.4.a.bk.1.7 8 7.5 odd 6
1225.4.a.bl.1.7 8 7.2 even 3
1225.4.a.bn.1.2 8 35.9 even 6
1225.4.a.bo.1.2 8 35.19 odd 6