Properties

Label 175.4.k.e.149.4
Level $175$
Weight $4$
Character 175.149
Analytic conductor $10.325$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [175,4,Mod(74,175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(175, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 4]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("175.74");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 175 = 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 175.k (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.3253342510\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 149.4
Character \(\chi\) \(=\) 175.149
Dual form 175.4.k.e.74.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.52961 - 1.46047i) q^{2} +(-8.70206 + 5.02414i) q^{3} +(0.265967 + 0.460668i) q^{4} +29.3505 q^{6} +(-2.32782 - 18.3734i) q^{7} +21.8138i q^{8} +(36.9839 - 64.0580i) q^{9} +(-7.79680 - 13.5045i) q^{11} +(-4.62892 - 2.67251i) q^{12} -63.9123i q^{13} +(-20.9454 + 49.8773i) q^{14} +(33.9863 - 58.8659i) q^{16} +(-9.16053 + 5.28883i) q^{17} +(-187.110 + 108.028i) q^{18} +(-19.3864 + 33.5782i) q^{19} +(112.567 + 148.191i) q^{21} +45.5481i q^{22} +(20.8909 + 12.0614i) q^{23} +(-109.596 - 189.825i) q^{24} +(-93.3422 + 161.673i) q^{26} +471.945i q^{27} +(7.84491 - 5.95906i) q^{28} -226.731 q^{29} +(71.5651 + 123.954i) q^{31} +(-20.8136 + 12.0168i) q^{32} +(135.697 + 78.3444i) q^{33} +30.8968 q^{34} +39.3460 q^{36} +(-247.036 - 142.626i) q^{37} +(98.0800 - 56.6265i) q^{38} +(321.104 + 556.168i) q^{39} +32.0457 q^{41} +(-68.3225 - 539.268i) q^{42} -235.711i q^{43} +(4.14738 - 7.18348i) q^{44} +(-35.2306 - 61.0212i) q^{46} +(124.964 + 72.1481i) q^{47} +683.006i q^{48} +(-332.163 + 85.5397i) q^{49} +(53.1436 - 92.0475i) q^{51} +(29.4423 - 16.9985i) q^{52} +(275.900 - 159.291i) q^{53} +(689.263 - 1193.84i) q^{54} +(400.794 - 50.7786i) q^{56} -389.599i q^{57} +(573.542 + 331.135i) q^{58} +(224.161 + 388.258i) q^{59} +(-83.3473 + 144.362i) q^{61} -418.076i q^{62} +(-1263.05 - 530.404i) q^{63} -473.580 q^{64} +(-228.840 - 396.362i) q^{66} +(-641.761 + 370.521i) q^{67} +(-4.87279 - 2.81331i) q^{68} -242.392 q^{69} -373.652 q^{71} +(1397.35 + 806.760i) q^{72} +(205.520 - 118.657i) q^{73} +(416.604 + 721.580i) q^{74} -20.6245 q^{76} +(-229.973 + 174.690i) q^{77} -1875.86i q^{78} +(-232.695 + 403.040i) q^{79} +(-1372.55 - 2377.33i) q^{81} +(-81.0631 - 46.8018i) q^{82} +691.289i q^{83} +(-38.3277 + 91.2700i) q^{84} +(-344.249 + 596.257i) q^{86} +(1973.03 - 1139.13i) q^{87} +(294.584 - 170.078i) q^{88} +(506.590 - 877.440i) q^{89} +(-1174.28 + 148.776i) q^{91} +12.8317i q^{92} +(-1245.53 - 719.105i) q^{93} +(-210.741 - 365.014i) q^{94} +(120.748 - 209.141i) q^{96} +1151.67i q^{97} +(965.172 + 268.732i) q^{98} -1153.42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 54 q^{4} + 16 q^{6} + 84 q^{9} + 130 q^{14} - 382 q^{16} - 84 q^{19} + 604 q^{21} - 584 q^{24} - 46 q^{26} - 1152 q^{29} - 36 q^{31} + 1952 q^{34} - 2844 q^{36} + 44 q^{39} + 672 q^{41} - 1760 q^{44}+ \cdots - 16344 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/175\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.52961 1.46047i −0.894354 0.516355i −0.0189897 0.999820i \(-0.506045\pi\)
−0.875364 + 0.483464i \(0.839378\pi\)
\(3\) −8.70206 + 5.02414i −1.67471 + 0.966895i −0.709770 + 0.704434i \(0.751201\pi\)
−0.964942 + 0.262462i \(0.915466\pi\)
\(4\) 0.265967 + 0.460668i 0.0332459 + 0.0575835i
\(5\) 0 0
\(6\) 29.3505 1.99705
\(7\) −2.32782 18.3734i −0.125690 0.992070i
\(8\) 21.8138i 0.964044i
\(9\) 36.9839 64.0580i 1.36977 2.37252i
\(10\) 0 0
\(11\) −7.79680 13.5045i −0.213711 0.370159i 0.739162 0.673528i \(-0.235222\pi\)
−0.952873 + 0.303369i \(0.901889\pi\)
\(12\) −4.62892 2.67251i −0.111354 0.0642905i
\(13\) 63.9123i 1.36354i −0.731565 0.681772i \(-0.761210\pi\)
0.731565 0.681772i \(-0.238790\pi\)
\(14\) −20.9454 + 49.8773i −0.399849 + 0.952162i
\(15\) 0 0
\(16\) 33.9863 58.8659i 0.531035 0.919780i
\(17\) −9.16053 + 5.28883i −0.130691 + 0.0754547i −0.563920 0.825829i \(-0.690708\pi\)
0.433229 + 0.901284i \(0.357374\pi\)
\(18\) −187.110 + 108.028i −2.45012 + 1.41458i
\(19\) −19.3864 + 33.5782i −0.234081 + 0.405440i −0.959005 0.283389i \(-0.908541\pi\)
0.724924 + 0.688829i \(0.241875\pi\)
\(20\) 0 0
\(21\) 112.567 + 148.191i 1.16972 + 1.53990i
\(22\) 45.5481i 0.441404i
\(23\) 20.8909 + 12.0614i 0.189394 + 0.109346i 0.591699 0.806159i \(-0.298458\pi\)
−0.402305 + 0.915506i \(0.631791\pi\)
\(24\) −109.596 189.825i −0.932130 1.61450i
\(25\) 0 0
\(26\) −93.3422 + 161.673i −0.704073 + 1.21949i
\(27\) 471.945i 3.36392i
\(28\) 7.84491 5.95906i 0.0529482 0.0402199i
\(29\) −226.731 −1.45182 −0.725912 0.687787i \(-0.758582\pi\)
−0.725912 + 0.687787i \(0.758582\pi\)
\(30\) 0 0
\(31\) 71.5651 + 123.954i 0.414628 + 0.718157i 0.995389 0.0959171i \(-0.0305784\pi\)
−0.580761 + 0.814074i \(0.697245\pi\)
\(32\) −20.8136 + 12.0168i −0.114980 + 0.0663838i
\(33\) 135.697 + 78.3444i 0.715810 + 0.413273i
\(34\) 30.8968 0.155846
\(35\) 0 0
\(36\) 39.3460 0.182157
\(37\) −247.036 142.626i −1.09764 0.633720i −0.162036 0.986785i \(-0.551806\pi\)
−0.935599 + 0.353065i \(0.885140\pi\)
\(38\) 98.0800 56.6265i 0.418702 0.241738i
\(39\) 321.104 + 556.168i 1.31840 + 2.28354i
\(40\) 0 0
\(41\) 32.0457 0.122066 0.0610328 0.998136i \(-0.480561\pi\)
0.0610328 + 0.998136i \(0.480561\pi\)
\(42\) −68.3225 539.268i −0.251009 1.98121i
\(43\) 235.711i 0.835942i −0.908460 0.417971i \(-0.862741\pi\)
0.908460 0.417971i \(-0.137259\pi\)
\(44\) 4.14738 7.18348i 0.0142100 0.0246125i
\(45\) 0 0
\(46\) −35.2306 61.0212i −0.112923 0.195589i
\(47\) 124.964 + 72.1481i 0.387828 + 0.223912i 0.681219 0.732080i \(-0.261450\pi\)
−0.293391 + 0.955993i \(0.594784\pi\)
\(48\) 683.006i 2.05382i
\(49\) −332.163 + 85.5397i −0.968404 + 0.249387i
\(50\) 0 0
\(51\) 53.1436 92.0475i 0.145914 0.252730i
\(52\) 29.4423 16.9985i 0.0785177 0.0453322i
\(53\) 275.900 159.291i 0.715051 0.412835i −0.0978773 0.995198i \(-0.531205\pi\)
0.812928 + 0.582364i \(0.197872\pi\)
\(54\) 689.263 1193.84i 1.73698 3.00854i
\(55\) 0 0
\(56\) 400.794 50.7786i 0.956399 0.121171i
\(57\) 389.599i 0.905327i
\(58\) 573.542 + 331.135i 1.29844 + 0.749657i
\(59\) 224.161 + 388.258i 0.494632 + 0.856727i 0.999981 0.00618772i \(-0.00196963\pi\)
−0.505349 + 0.862915i \(0.668636\pi\)
\(60\) 0 0
\(61\) −83.3473 + 144.362i −0.174943 + 0.303010i −0.940142 0.340784i \(-0.889307\pi\)
0.765198 + 0.643794i \(0.222641\pi\)
\(62\) 418.076i 0.856382i
\(63\) −1263.05 530.404i −2.52587 1.06071i
\(64\) −473.580 −0.924960
\(65\) 0 0
\(66\) −228.840 396.362i −0.426792 0.739225i
\(67\) −641.761 + 370.521i −1.17020 + 0.675617i −0.953728 0.300671i \(-0.902789\pi\)
−0.216475 + 0.976288i \(0.569456\pi\)
\(68\) −4.87279 2.81331i −0.00868990 0.00501711i
\(69\) −242.392 −0.422906
\(70\) 0 0
\(71\) −373.652 −0.624567 −0.312284 0.949989i \(-0.601094\pi\)
−0.312284 + 0.949989i \(0.601094\pi\)
\(72\) 1397.35 + 806.760i 2.28721 + 1.32052i
\(73\) 205.520 118.657i 0.329511 0.190243i −0.326113 0.945331i \(-0.605739\pi\)
0.655624 + 0.755088i \(0.272406\pi\)
\(74\) 416.604 + 721.580i 0.654450 + 1.13354i
\(75\) 0 0
\(76\) −20.6245 −0.0311289
\(77\) −229.973 + 174.690i −0.340362 + 0.258542i
\(78\) 1875.86i 2.72306i
\(79\) −232.695 + 403.040i −0.331396 + 0.573994i −0.982786 0.184749i \(-0.940853\pi\)
0.651390 + 0.758743i \(0.274186\pi\)
\(80\) 0 0
\(81\) −1372.55 2377.33i −1.88279 3.26108i
\(82\) −81.0631 46.8018i −0.109170 0.0630292i
\(83\) 691.289i 0.914202i 0.889415 + 0.457101i \(0.151112\pi\)
−0.889415 + 0.457101i \(0.848888\pi\)
\(84\) −38.3277 + 91.2700i −0.0497845 + 0.118552i
\(85\) 0 0
\(86\) −344.249 + 596.257i −0.431643 + 0.747628i
\(87\) 1973.03 1139.13i 2.43139 1.40376i
\(88\) 294.584 170.078i 0.356850 0.206027i
\(89\) 506.590 877.440i 0.603353 1.04504i −0.388956 0.921256i \(-0.627164\pi\)
0.992309 0.123782i \(-0.0395024\pi\)
\(90\) 0 0
\(91\) −1174.28 + 148.776i −1.35273 + 0.171384i
\(92\) 12.8317i 0.0145413i
\(93\) −1245.53 719.105i −1.38876 0.801804i
\(94\) −210.741 365.014i −0.231237 0.400514i
\(95\) 0 0
\(96\) 120.748 209.141i 0.128372 0.222348i
\(97\) 1151.67i 1.20551i 0.797925 + 0.602757i \(0.205931\pi\)
−0.797925 + 0.602757i \(0.794069\pi\)
\(98\) 965.172 + 268.732i 0.994868 + 0.277000i
\(99\) −1153.42 −1.17094
\(100\) 0 0
\(101\) 600.514 + 1040.12i 0.591618 + 1.02471i 0.994015 + 0.109247i \(0.0348438\pi\)
−0.402397 + 0.915465i \(0.631823\pi\)
\(102\) −268.866 + 155.230i −0.260997 + 0.150687i
\(103\) 891.184 + 514.525i 0.852534 + 0.492211i 0.861505 0.507749i \(-0.169522\pi\)
−0.00897107 + 0.999960i \(0.502856\pi\)
\(104\) 1394.17 1.31452
\(105\) 0 0
\(106\) −930.559 −0.852678
\(107\) 499.469 + 288.369i 0.451266 + 0.260539i 0.708365 0.705846i \(-0.249433\pi\)
−0.257098 + 0.966385i \(0.582766\pi\)
\(108\) −217.410 + 125.522i −0.193706 + 0.111836i
\(109\) −95.6623 165.692i −0.0840623 0.145600i 0.820929 0.571030i \(-0.193456\pi\)
−0.904991 + 0.425430i \(0.860123\pi\)
\(110\) 0 0
\(111\) 2866.30 2.45096
\(112\) −1160.68 487.414i −0.979232 0.411217i
\(113\) 2091.69i 1.74132i 0.491882 + 0.870662i \(0.336309\pi\)
−0.491882 + 0.870662i \(0.663691\pi\)
\(114\) −568.999 + 985.535i −0.467470 + 0.809682i
\(115\) 0 0
\(116\) −60.3030 104.448i −0.0482671 0.0836012i
\(117\) −4094.09 2363.72i −3.23503 1.86775i
\(118\) 1309.52i 1.02162i
\(119\) 118.498 + 155.998i 0.0912830 + 0.120171i
\(120\) 0 0
\(121\) 543.920 942.097i 0.408655 0.707811i
\(122\) 421.673 243.453i 0.312922 0.180666i
\(123\) −278.863 + 161.002i −0.204425 + 0.118025i
\(124\) −38.0679 + 65.9355i −0.0275693 + 0.0477515i
\(125\) 0 0
\(126\) 2420.40 + 3186.37i 1.71132 + 2.25290i
\(127\) 498.841i 0.348543i 0.984698 + 0.174271i \(0.0557570\pi\)
−0.984698 + 0.174271i \(0.944243\pi\)
\(128\) 1364.48 + 787.784i 0.942222 + 0.543992i
\(129\) 1184.24 + 2051.17i 0.808269 + 1.39996i
\(130\) 0 0
\(131\) −155.825 + 269.897i −0.103928 + 0.180008i −0.913300 0.407289i \(-0.866474\pi\)
0.809372 + 0.587296i \(0.199808\pi\)
\(132\) 83.3481i 0.0549585i
\(133\) 662.072 + 278.029i 0.431646 + 0.181265i
\(134\) 2164.55 1.39543
\(135\) 0 0
\(136\) −115.370 199.826i −0.0727417 0.125992i
\(137\) 885.675 511.345i 0.552324 0.318884i −0.197735 0.980255i \(-0.563359\pi\)
0.750059 + 0.661371i \(0.230025\pi\)
\(138\) 613.157 + 354.007i 0.378228 + 0.218370i
\(139\) −1141.29 −0.696424 −0.348212 0.937416i \(-0.613211\pi\)
−0.348212 + 0.937416i \(0.613211\pi\)
\(140\) 0 0
\(141\) −1449.93 −0.866000
\(142\) 945.194 + 545.708i 0.558584 + 0.322499i
\(143\) −863.101 + 498.311i −0.504728 + 0.291405i
\(144\) −2513.89 4354.18i −1.45480 2.51978i
\(145\) 0 0
\(146\) −693.182 −0.392932
\(147\) 2460.73 2413.20i 1.38067 1.35400i
\(148\) 151.736i 0.0842743i
\(149\) 645.485 1118.01i 0.354900 0.614705i −0.632201 0.774805i \(-0.717848\pi\)
0.987101 + 0.160099i \(0.0511815\pi\)
\(150\) 0 0
\(151\) 574.974 + 995.885i 0.309873 + 0.536715i 0.978334 0.207032i \(-0.0663803\pi\)
−0.668462 + 0.743747i \(0.733047\pi\)
\(152\) −732.468 422.891i −0.390862 0.225664i
\(153\) 782.407i 0.413424i
\(154\) 836.873 106.028i 0.437904 0.0554802i
\(155\) 0 0
\(156\) −170.806 + 295.845i −0.0876630 + 0.151837i
\(157\) −3137.03 + 1811.17i −1.59467 + 0.920681i −0.602175 + 0.798364i \(0.705699\pi\)
−0.992491 + 0.122317i \(0.960968\pi\)
\(158\) 1177.26 679.690i 0.592770 0.342236i
\(159\) −1600.60 + 2772.31i −0.798337 + 1.38276i
\(160\) 0 0
\(161\) 172.978 411.913i 0.0846743 0.201635i
\(162\) 8018.30i 3.88875i
\(163\) −2343.22 1352.86i −1.12598 0.650086i −0.183060 0.983102i \(-0.558600\pi\)
−0.942921 + 0.333016i \(0.891934\pi\)
\(164\) 8.52308 + 14.7624i 0.00405818 + 0.00702897i
\(165\) 0 0
\(166\) 1009.61 1748.69i 0.472053 0.817620i
\(167\) 3397.98i 1.57451i 0.616627 + 0.787256i \(0.288499\pi\)
−0.616627 + 0.787256i \(0.711501\pi\)
\(168\) −3232.61 + 2455.52i −1.48453 + 1.12766i
\(169\) −1887.78 −0.859253
\(170\) 0 0
\(171\) 1433.97 + 2483.70i 0.641275 + 1.11072i
\(172\) 108.584 62.6912i 0.0481365 0.0277916i
\(173\) −3625.88 2093.40i −1.59347 0.919991i −0.992705 0.120566i \(-0.961529\pi\)
−0.600766 0.799425i \(-0.705138\pi\)
\(174\) −6654.67 −2.89936
\(175\) 0 0
\(176\) −1059.94 −0.453953
\(177\) −3901.32 2252.43i −1.65673 0.956514i
\(178\) −2562.96 + 1479.72i −1.07922 + 0.623089i
\(179\) 458.926 + 794.884i 0.191630 + 0.331913i 0.945791 0.324777i \(-0.105289\pi\)
−0.754161 + 0.656690i \(0.771956\pi\)
\(180\) 0 0
\(181\) 262.339 0.107732 0.0538661 0.998548i \(-0.482846\pi\)
0.0538661 + 0.998548i \(0.482846\pi\)
\(182\) 3187.77 + 1338.67i 1.29832 + 0.545212i
\(183\) 1674.99i 0.676607i
\(184\) −263.104 + 455.710i −0.105415 + 0.182584i
\(185\) 0 0
\(186\) 2100.47 + 3638.12i 0.828031 + 1.43419i
\(187\) 142.846 + 82.4720i 0.0558605 + 0.0322511i
\(188\) 76.7560i 0.0297766i
\(189\) 8671.23 1098.60i 3.33724 0.422812i
\(190\) 0 0
\(191\) −723.091 + 1252.43i −0.273932 + 0.474464i −0.969865 0.243642i \(-0.921658\pi\)
0.695933 + 0.718107i \(0.254991\pi\)
\(192\) 4121.12 2379.33i 1.54904 0.894340i
\(193\) 3521.13 2032.93i 1.31325 0.758204i 0.330615 0.943766i \(-0.392744\pi\)
0.982633 + 0.185562i \(0.0594106\pi\)
\(194\) 1681.99 2913.29i 0.622474 1.07816i
\(195\) 0 0
\(196\) −127.750 130.266i −0.0465560 0.0474730i
\(197\) 1073.07i 0.388088i 0.980993 + 0.194044i \(0.0621604\pi\)
−0.980993 + 0.194044i \(0.937840\pi\)
\(198\) 2917.72 + 1684.55i 1.04724 + 0.604624i
\(199\) −1488.51 2578.18i −0.530240 0.918403i −0.999378 0.0352775i \(-0.988769\pi\)
0.469138 0.883125i \(-0.344565\pi\)
\(200\) 0 0
\(201\) 3723.10 6448.59i 1.30650 2.26293i
\(202\) 3508.14i 1.22194i
\(203\) 527.788 + 4165.82i 0.182480 + 1.44031i
\(204\) 56.5378 0.0194041
\(205\) 0 0
\(206\) −1502.90 2603.10i −0.508311 0.880421i
\(207\) 1545.25 892.152i 0.518853 0.299560i
\(208\) −3762.26 2172.14i −1.25416 0.724090i
\(209\) 604.607 0.200103
\(210\) 0 0
\(211\) −521.629 −0.170192 −0.0850958 0.996373i \(-0.527120\pi\)
−0.0850958 + 0.996373i \(0.527120\pi\)
\(212\) 146.760 + 84.7321i 0.0475450 + 0.0274501i
\(213\) 3251.54 1877.28i 1.04597 0.603891i
\(214\) −842.310 1458.92i −0.269061 0.466028i
\(215\) 0 0
\(216\) −10294.9 −3.24297
\(217\) 2110.87 1603.44i 0.660347 0.501605i
\(218\) 558.849i 0.173624i
\(219\) −1192.30 + 2065.12i −0.367890 + 0.637205i
\(220\) 0 0
\(221\) 338.021 + 585.470i 0.102886 + 0.178204i
\(222\) −7250.63 4186.15i −2.19203 1.26557i
\(223\) 2381.79i 0.715229i −0.933869 0.357615i \(-0.883590\pi\)
0.933869 0.357615i \(-0.116410\pi\)
\(224\) 269.239 + 354.444i 0.0803093 + 0.105725i
\(225\) 0 0
\(226\) 3054.86 5291.17i 0.899142 1.55736i
\(227\) −295.343 + 170.517i −0.0863552 + 0.0498572i −0.542556 0.840020i \(-0.682543\pi\)
0.456201 + 0.889877i \(0.349210\pi\)
\(228\) 179.476 103.620i 0.0521319 0.0300984i
\(229\) 387.522 671.208i 0.111826 0.193688i −0.804680 0.593708i \(-0.797663\pi\)
0.916507 + 0.400020i \(0.130997\pi\)
\(230\) 0 0
\(231\) 1123.58 2675.58i 0.320025 0.762078i
\(232\) 4945.87i 1.39962i
\(233\) −2164.93 1249.92i −0.608709 0.351438i 0.163751 0.986502i \(-0.447641\pi\)
−0.772460 + 0.635063i \(0.780974\pi\)
\(234\) 6904.31 + 11958.6i 1.92884 + 3.34085i
\(235\) 0 0
\(236\) −119.239 + 206.528i −0.0328889 + 0.0569653i
\(237\) 4676.37i 1.28170i
\(238\) −71.9221 567.679i −0.0195883 0.154610i
\(239\) 2181.70 0.590470 0.295235 0.955425i \(-0.404602\pi\)
0.295235 + 0.955425i \(0.404602\pi\)
\(240\) 0 0
\(241\) 1135.07 + 1966.00i 0.303387 + 0.525481i 0.976901 0.213693i \(-0.0685492\pi\)
−0.673514 + 0.739174i \(0.735216\pi\)
\(242\) −2751.81 + 1588.76i −0.730964 + 0.422022i
\(243\) 12852.7 + 7420.51i 3.39301 + 1.95895i
\(244\) −88.6705 −0.0232645
\(245\) 0 0
\(246\) 940.555 0.243771
\(247\) 2146.06 + 1239.03i 0.552835 + 0.319180i
\(248\) −2703.92 + 1561.11i −0.692335 + 0.399720i
\(249\) −3473.13 6015.64i −0.883938 1.53103i
\(250\) 0 0
\(251\) 2943.81 0.740286 0.370143 0.928975i \(-0.379309\pi\)
0.370143 + 0.928975i \(0.379309\pi\)
\(252\) −91.5901 722.918i −0.0228954 0.180713i
\(253\) 376.160i 0.0934743i
\(254\) 728.544 1261.87i 0.179972 0.311721i
\(255\) 0 0
\(256\) −406.759 704.527i −0.0993064 0.172004i
\(257\) 3138.15 + 1811.81i 0.761682 + 0.439757i 0.829899 0.557913i \(-0.188398\pi\)
−0.0682171 + 0.997670i \(0.521731\pi\)
\(258\) 6918.22i 1.66942i
\(259\) −2045.48 + 4870.90i −0.490732 + 1.16858i
\(260\) 0 0
\(261\) −8385.40 + 14523.9i −1.98867 + 3.44448i
\(262\) 788.355 455.157i 0.185896 0.107327i
\(263\) 399.436 230.615i 0.0936514 0.0540696i −0.452443 0.891793i \(-0.649447\pi\)
0.546094 + 0.837724i \(0.316114\pi\)
\(264\) −1708.99 + 2960.06i −0.398413 + 0.690072i
\(265\) 0 0
\(266\) −1268.73 1670.25i −0.292447 0.384998i
\(267\) 10180.7i 2.33352i
\(268\) −341.374 197.093i −0.0778088 0.0449229i
\(269\) −2865.16 4962.61i −0.649413 1.12482i −0.983263 0.182190i \(-0.941681\pi\)
0.333851 0.942626i \(-0.391652\pi\)
\(270\) 0 0
\(271\) 217.608 376.908i 0.0487777 0.0844854i −0.840606 0.541648i \(-0.817801\pi\)
0.889383 + 0.457162i \(0.151134\pi\)
\(272\) 718.991i 0.160277i
\(273\) 9471.22 7194.42i 2.09972 1.59497i
\(274\) −2987.22 −0.658630
\(275\) 0 0
\(276\) −64.4681 111.662i −0.0140599 0.0243524i
\(277\) 93.0980 53.7502i 0.0201939 0.0116590i −0.489869 0.871796i \(-0.662955\pi\)
0.510063 + 0.860137i \(0.329622\pi\)
\(278\) 2887.02 + 1666.82i 0.622849 + 0.359602i
\(279\) 10587.0 2.27179
\(280\) 0 0
\(281\) −8058.94 −1.71088 −0.855438 0.517905i \(-0.826712\pi\)
−0.855438 + 0.517905i \(0.826712\pi\)
\(282\) 3667.76 + 2117.58i 0.774510 + 0.447164i
\(283\) −5019.80 + 2898.18i −1.05440 + 0.608760i −0.923879 0.382685i \(-0.874999\pi\)
−0.130525 + 0.991445i \(0.541666\pi\)
\(284\) −99.3789 172.129i −0.0207643 0.0359648i
\(285\) 0 0
\(286\) 2911.08 0.601874
\(287\) −74.5964 588.787i −0.0153425 0.121098i
\(288\) 1777.71i 0.363723i
\(289\) −2400.56 + 4157.89i −0.488613 + 0.846303i
\(290\) 0 0
\(291\) −5786.17 10021.9i −1.16561 2.01889i
\(292\) 109.323 + 63.1176i 0.0219097 + 0.0126496i
\(293\) 1250.96i 0.249427i −0.992193 0.124713i \(-0.960199\pi\)
0.992193 0.124713i \(-0.0398012\pi\)
\(294\) −9749.13 + 2510.63i −1.93395 + 0.498037i
\(295\) 0 0
\(296\) 3111.23 5388.81i 0.610934 1.05817i
\(297\) 6373.36 3679.66i 1.24519 0.718908i
\(298\) −3265.65 + 1885.43i −0.634813 + 0.366509i
\(299\) 770.869 1335.18i 0.149099 0.258246i
\(300\) 0 0
\(301\) −4330.80 + 548.691i −0.829313 + 0.105070i
\(302\) 3358.94i 0.640018i
\(303\) −10451.4 6034.13i −1.98158 1.14406i
\(304\) 1317.74 + 2282.39i 0.248610 + 0.430606i
\(305\) 0 0
\(306\) 1142.68 1979.19i 0.213474 0.369747i
\(307\) 493.727i 0.0917865i −0.998946 0.0458933i \(-0.985387\pi\)
0.998946 0.0458933i \(-0.0146134\pi\)
\(308\) −141.639 59.4796i −0.0262034 0.0110038i
\(309\) −10340.2 −1.90367
\(310\) 0 0
\(311\) 52.7320 + 91.3345i 0.00961466 + 0.0166531i 0.870793 0.491650i \(-0.163606\pi\)
−0.861178 + 0.508303i \(0.830273\pi\)
\(312\) −12132.2 + 7004.51i −2.20144 + 1.27100i
\(313\) −3213.50 1855.32i −0.580312 0.335044i 0.180945 0.983493i \(-0.442084\pi\)
−0.761258 + 0.648450i \(0.775418\pi\)
\(314\) 10580.7 1.90159
\(315\) 0 0
\(316\) −247.557 −0.0440701
\(317\) 5630.38 + 3250.70i 0.997583 + 0.575955i 0.907532 0.419983i \(-0.137964\pi\)
0.0900506 + 0.995937i \(0.471297\pi\)
\(318\) 8097.78 4675.26i 1.42799 0.824451i
\(319\) 1767.78 + 3061.88i 0.310271 + 0.537406i
\(320\) 0 0
\(321\) −5795.21 −1.00766
\(322\) −1039.16 + 789.351i −0.179844 + 0.136611i
\(323\) 410.125i 0.0706500i
\(324\) 730.106 1264.58i 0.125190 0.216835i
\(325\) 0 0
\(326\) 3951.62 + 6844.42i 0.671350 + 1.16281i
\(327\) 1664.92 + 961.241i 0.281560 + 0.162559i
\(328\) 699.038i 0.117677i
\(329\) 1034.71 2463.96i 0.173391 0.412896i
\(330\) 0 0
\(331\) 54.3441 94.1268i 0.00902424 0.0156304i −0.861478 0.507795i \(-0.830461\pi\)
0.870502 + 0.492164i \(0.163794\pi\)
\(332\) −318.455 + 183.860i −0.0526430 + 0.0303934i
\(333\) −18272.7 + 10549.8i −3.00702 + 1.73611i
\(334\) 4962.66 8595.57i 0.813007 1.40817i
\(335\) 0 0
\(336\) 12549.1 1589.91i 2.03753 0.258145i
\(337\) 8207.88i 1.32674i −0.748291 0.663370i \(-0.769125\pi\)
0.748291 0.663370i \(-0.230875\pi\)
\(338\) 4775.35 + 2757.05i 0.768476 + 0.443680i
\(339\) −10508.9 18202.0i −1.68368 2.91621i
\(340\) 0 0
\(341\) 1115.96 1932.90i 0.177221 0.306956i
\(342\) 8377.08i 1.32450i
\(343\) 2344.87 + 5903.83i 0.369128 + 0.929379i
\(344\) 5141.75 0.805885
\(345\) 0 0
\(346\) 6114.72 + 10591.0i 0.950085 + 1.64560i
\(347\) −8142.85 + 4701.28i −1.25974 + 0.727313i −0.973025 0.230701i \(-0.925898\pi\)
−0.286719 + 0.958015i \(0.592565\pi\)
\(348\) 1049.52 + 605.941i 0.161667 + 0.0933386i
\(349\) 690.530 0.105912 0.0529559 0.998597i \(-0.483136\pi\)
0.0529559 + 0.998597i \(0.483136\pi\)
\(350\) 0 0
\(351\) 30163.1 4.58685
\(352\) 324.560 + 187.385i 0.0491451 + 0.0283740i
\(353\) −3118.89 + 1800.69i −0.470260 + 0.271505i −0.716349 0.697743i \(-0.754188\pi\)
0.246088 + 0.969247i \(0.420855\pi\)
\(354\) 6579.23 + 11395.6i 0.987803 + 1.71092i
\(355\) 0 0
\(356\) 538.945 0.0802360
\(357\) −1814.93 762.159i −0.269066 0.112991i
\(358\) 2681.00i 0.395797i
\(359\) 4031.95 6983.55i 0.592753 1.02668i −0.401107 0.916031i \(-0.631374\pi\)
0.993860 0.110647i \(-0.0352922\pi\)
\(360\) 0 0
\(361\) 2677.84 + 4638.15i 0.390412 + 0.676214i
\(362\) −663.618 383.140i −0.0963508 0.0556281i
\(363\) 10930.9i 1.58051i
\(364\) −380.857 501.386i −0.0548416 0.0721972i
\(365\) 0 0
\(366\) −2446.28 + 4237.09i −0.349370 + 0.605126i
\(367\) 2935.50 1694.81i 0.417526 0.241059i −0.276493 0.961016i \(-0.589172\pi\)
0.694018 + 0.719958i \(0.255839\pi\)
\(368\) 1420.01 819.841i 0.201149 0.116134i
\(369\) 1185.17 2052.78i 0.167202 0.289603i
\(370\) 0 0
\(371\) −3568.95 4698.41i −0.499436 0.657491i
\(372\) 765.033i 0.106627i
\(373\) 7656.74 + 4420.62i 1.06287 + 0.613649i 0.926225 0.376971i \(-0.123034\pi\)
0.136646 + 0.990620i \(0.456368\pi\)
\(374\) −240.896 417.245i −0.0333060 0.0576877i
\(375\) 0 0
\(376\) −1573.83 + 2725.95i −0.215862 + 0.373883i
\(377\) 14490.9i 1.97963i
\(378\) −23539.3 9885.06i −3.20300 1.34506i
\(379\) −3038.06 −0.411754 −0.205877 0.978578i \(-0.566005\pi\)
−0.205877 + 0.978578i \(0.566005\pi\)
\(380\) 0 0
\(381\) −2506.24 4340.94i −0.337005 0.583709i
\(382\) 3658.28 2112.11i 0.489984 0.282893i
\(383\) 2441.05 + 1409.34i 0.325671 + 0.188026i 0.653917 0.756566i \(-0.273124\pi\)
−0.328247 + 0.944592i \(0.606458\pi\)
\(384\) −15831.7 −2.10393
\(385\) 0 0
\(386\) −11876.1 −1.56601
\(387\) −15099.1 8717.49i −1.98329 1.14505i
\(388\) −530.540 + 306.307i −0.0694177 + 0.0400783i
\(389\) 6094.35 + 10555.7i 0.794334 + 1.37583i 0.923261 + 0.384173i \(0.125513\pi\)
−0.128927 + 0.991654i \(0.541153\pi\)
\(390\) 0 0
\(391\) −255.162 −0.0330028
\(392\) −1865.95 7245.74i −0.240420 0.933584i
\(393\) 3131.55i 0.401948i
\(394\) 1567.19 2714.46i 0.200391 0.347088i
\(395\) 0 0
\(396\) −306.773 531.346i −0.0389291 0.0674271i
\(397\) 8998.29 + 5195.17i 1.13756 + 0.656771i 0.945825 0.324676i \(-0.105255\pi\)
0.191735 + 0.981447i \(0.438589\pi\)
\(398\) 8695.73i 1.09517i
\(399\) −7158.25 + 906.914i −0.898147 + 0.113791i
\(400\) 0 0
\(401\) −751.138 + 1301.01i −0.0935413 + 0.162018i −0.908999 0.416799i \(-0.863152\pi\)
0.815458 + 0.578817i \(0.196485\pi\)
\(402\) −18836.0 + 10875.0i −2.33695 + 1.34924i
\(403\) 7922.20 4573.89i 0.979238 0.565364i
\(404\) −319.434 + 553.275i −0.0393377 + 0.0681348i
\(405\) 0 0
\(406\) 4748.97 11308.7i 0.580510 1.38237i
\(407\) 4448.12i 0.541733i
\(408\) 2007.91 + 1159.27i 0.243643 + 0.140667i
\(409\) 7048.61 + 12208.5i 0.852155 + 1.47598i 0.879260 + 0.476343i \(0.158038\pi\)
−0.0271048 + 0.999633i \(0.508629\pi\)
\(410\) 0 0
\(411\) −5138.13 + 8899.50i −0.616655 + 1.06808i
\(412\) 547.387i 0.0654559i
\(413\) 6611.81 5022.39i 0.787763 0.598391i
\(414\) −5211.86 −0.618717
\(415\) 0 0
\(416\) 768.018 + 1330.25i 0.0905173 + 0.156781i
\(417\) 9931.57 5733.99i 1.16631 0.673369i
\(418\) −1529.42 883.012i −0.178963 0.103324i
\(419\) −11529.9 −1.34433 −0.672163 0.740403i \(-0.734635\pi\)
−0.672163 + 0.740403i \(0.734635\pi\)
\(420\) 0 0
\(421\) −3370.05 −0.390134 −0.195067 0.980790i \(-0.562492\pi\)
−0.195067 + 0.980790i \(0.562492\pi\)
\(422\) 1319.52 + 761.826i 0.152212 + 0.0878794i
\(423\) 9243.33 5336.64i 1.06247 0.613419i
\(424\) 3474.74 + 6018.42i 0.397991 + 0.689341i
\(425\) 0 0
\(426\) −10966.9 −1.24729
\(427\) 2846.43 + 1195.32i 0.322596 + 0.135470i
\(428\) 306.786i 0.0346473i
\(429\) 5007.17 8672.67i 0.563516 0.976039i
\(430\) 0 0
\(431\) 4163.53 + 7211.45i 0.465314 + 0.805948i 0.999216 0.0395991i \(-0.0126081\pi\)
−0.533902 + 0.845547i \(0.679275\pi\)
\(432\) 27781.5 + 16039.6i 3.09407 + 1.78636i
\(433\) 818.149i 0.0908031i −0.998969 0.0454015i \(-0.985543\pi\)
0.998969 0.0454015i \(-0.0144567\pi\)
\(434\) −7681.46 + 973.203i −0.849590 + 0.107639i
\(435\) 0 0
\(436\) 50.8860 88.1372i 0.00558945 0.00968120i
\(437\) −809.997 + 467.652i −0.0886668 + 0.0511918i
\(438\) 6032.11 3482.64i 0.658048 0.379924i
\(439\) 4232.89 7331.58i 0.460193 0.797078i −0.538777 0.842448i \(-0.681114\pi\)
0.998970 + 0.0453707i \(0.0144469\pi\)
\(440\) 0 0
\(441\) −6805.16 + 24441.3i −0.734819 + 2.63916i
\(442\) 1974.69i 0.212503i
\(443\) 12617.1 + 7284.47i 1.35317 + 0.781254i 0.988693 0.149957i \(-0.0479135\pi\)
0.364480 + 0.931211i \(0.381247\pi\)
\(444\) 762.340 + 1320.41i 0.0814844 + 0.141135i
\(445\) 0 0
\(446\) −3478.54 + 6025.00i −0.369313 + 0.639668i
\(447\) 12972.0i 1.37261i
\(448\) 1102.41 + 8701.26i 0.116258 + 0.917625i
\(449\) 841.211 0.0884169 0.0442084 0.999022i \(-0.485923\pi\)
0.0442084 + 0.999022i \(0.485923\pi\)
\(450\) 0 0
\(451\) −249.854 432.759i −0.0260868 0.0451837i
\(452\) −963.574 + 556.320i −0.100272 + 0.0578918i
\(453\) −10006.9 5777.50i −1.03789 0.599229i
\(454\) 996.140 0.102976
\(455\) 0 0
\(456\) 8498.64 0.872775
\(457\) −12017.5 6938.33i −1.23010 0.710200i −0.263052 0.964782i \(-0.584729\pi\)
−0.967051 + 0.254581i \(0.918062\pi\)
\(458\) −1960.56 + 1131.93i −0.200024 + 0.115484i
\(459\) −2496.04 4323.27i −0.253824 0.439636i
\(460\) 0 0
\(461\) 3053.09 0.308452 0.154226 0.988036i \(-0.450712\pi\)
0.154226 + 0.988036i \(0.450712\pi\)
\(462\) −6749.82 + 5127.22i −0.679719 + 0.516320i
\(463\) 9935.80i 0.997312i −0.866800 0.498656i \(-0.833827\pi\)
0.866800 0.498656i \(-0.166173\pi\)
\(464\) −7705.74 + 13346.7i −0.770970 + 1.33536i
\(465\) 0 0
\(466\) 3650.96 + 6323.64i 0.362934 + 0.628620i
\(467\) −8597.26 4963.63i −0.851892 0.491840i 0.00939651 0.999956i \(-0.497009\pi\)
−0.861289 + 0.508116i \(0.830342\pi\)
\(468\) 2514.69i 0.248379i
\(469\) 8301.63 + 10928.8i 0.817342 + 1.07600i
\(470\) 0 0
\(471\) 18199.1 31521.8i 1.78040 3.08375i
\(472\) −8469.40 + 4889.81i −0.825923 + 0.476847i
\(473\) −3183.14 + 1837.79i −0.309432 + 0.178650i
\(474\) −6829.71 + 11829.4i −0.661813 + 1.14629i
\(475\) 0 0
\(476\) −40.3470 + 96.0786i −0.00388509 + 0.00925159i
\(477\) 23564.8i 2.26196i
\(478\) −5518.86 3186.32i −0.528089 0.304893i
\(479\) −6587.12 11409.2i −0.628336 1.08831i −0.987886 0.155184i \(-0.950403\pi\)
0.359549 0.933126i \(-0.382931\pi\)
\(480\) 0 0
\(481\) −9115.58 + 15788.6i −0.864105 + 1.49667i
\(482\) 6630.96i 0.626622i
\(483\) 564.243 + 4453.56i 0.0531552 + 0.419552i
\(484\) 578.658 0.0543443
\(485\) 0 0
\(486\) −21674.9 37542.1i −2.02303 3.50400i
\(487\) 7338.50 4236.88i 0.682832 0.394233i −0.118089 0.993003i \(-0.537677\pi\)
0.800921 + 0.598770i \(0.204344\pi\)
\(488\) −3149.08 1818.12i −0.292115 0.168653i
\(489\) 27187.8 2.51426
\(490\) 0 0
\(491\) −10831.1 −0.995523 −0.497762 0.867314i \(-0.665845\pi\)
−0.497762 + 0.867314i \(0.665845\pi\)
\(492\) −148.337 85.6422i −0.0135926 0.00784766i
\(493\) 2076.98 1199.14i 0.189741 0.109547i
\(494\) −3619.13 6268.52i −0.329620 0.570919i
\(495\) 0 0
\(496\) 9728.92 0.880728
\(497\) 869.792 + 6865.24i 0.0785020 + 0.619614i
\(498\) 20289.7i 1.82571i
\(499\) −6046.05 + 10472.1i −0.542402 + 0.939467i 0.456364 + 0.889793i \(0.349152\pi\)
−0.998765 + 0.0496738i \(0.984182\pi\)
\(500\) 0 0
\(501\) −17071.9 29569.4i −1.52239 2.63685i
\(502\) −7446.71 4299.36i −0.662078 0.382251i
\(503\) 18398.5i 1.63091i −0.578821 0.815455i \(-0.696487\pi\)
0.578821 0.815455i \(-0.303513\pi\)
\(504\) 11570.1 27552.0i 1.02257 2.43505i
\(505\) 0 0
\(506\) −549.372 + 951.540i −0.0482660 + 0.0835991i
\(507\) 16427.6 9484.46i 1.43900 0.830808i
\(508\) −229.800 + 132.675i −0.0200703 + 0.0115876i
\(509\) −10351.4 + 17929.1i −0.901406 + 1.56128i −0.0757355 + 0.997128i \(0.524130\pi\)
−0.825670 + 0.564153i \(0.809203\pi\)
\(510\) 0 0
\(511\) −2658.54 3499.88i −0.230151 0.302986i
\(512\) 10228.3i 0.882874i
\(513\) −15847.0 9149.30i −1.36387 0.787429i
\(514\) −5292.20 9166.37i −0.454142 0.786598i
\(515\) 0 0
\(516\) −629.938 + 1091.08i −0.0537432 + 0.0930859i
\(517\) 2250.10i 0.191411i
\(518\) 12288.1 9334.14i 1.04229 0.791734i
\(519\) 42070.2 3.55814
\(520\) 0 0
\(521\) 7236.53 + 12534.0i 0.608518 + 1.05398i 0.991485 + 0.130222i \(0.0415691\pi\)
−0.382967 + 0.923762i \(0.625098\pi\)
\(522\) 42423.7 24493.3i 3.55715 2.05372i
\(523\) 13785.3 + 7958.97i 1.15256 + 0.665433i 0.949511 0.313734i \(-0.101580\pi\)
0.203053 + 0.979168i \(0.434914\pi\)
\(524\) −165.777 −0.0138206
\(525\) 0 0
\(526\) −1347.23 −0.111677
\(527\) −1311.15 756.992i −0.108377 0.0625713i
\(528\) 9223.63 5325.27i 0.760241 0.438925i
\(529\) −5792.55 10033.0i −0.476087 0.824606i
\(530\) 0 0
\(531\) 33161.4 2.71013
\(532\) 48.0101 + 378.942i 0.00391260 + 0.0308820i
\(533\) 2048.11i 0.166442i
\(534\) 14868.7 25753.3i 1.20492 2.08699i
\(535\) 0 0
\(536\) −8082.48 13999.3i −0.651325 1.12813i
\(537\) −7987.21 4611.42i −0.641850 0.370572i
\(538\) 16738.0i 1.34131i
\(539\) 3744.97 + 3818.74i 0.299272 + 0.305167i
\(540\) 0 0
\(541\) 4419.67 7655.09i 0.351232 0.608351i −0.635234 0.772320i \(-0.719096\pi\)
0.986466 + 0.163969i \(0.0524296\pi\)
\(542\) −1100.93 + 635.622i −0.0872490 + 0.0503732i
\(543\) −2282.89 + 1318.03i −0.180421 + 0.104166i
\(544\) 127.109 220.160i 0.0100179 0.0173516i
\(545\) 0 0
\(546\) −34465.8 + 4366.65i −2.70147 + 0.342262i
\(547\) 11349.6i 0.887155i −0.896236 0.443577i \(-0.853709\pi\)
0.896236 0.443577i \(-0.146291\pi\)
\(548\) 471.120 + 272.001i 0.0367249 + 0.0212032i
\(549\) 6165.02 + 10678.1i 0.479265 + 0.830111i
\(550\) 0 0
\(551\) 4395.49 7613.21i 0.339844 0.588628i
\(552\) 5287.49i 0.407700i
\(553\) 7946.88 + 3337.20i 0.611095 + 0.256622i
\(554\) −314.003 −0.0240807
\(555\) 0 0
\(556\) −303.545 525.756i −0.0231532 0.0401025i
\(557\) 5725.18 3305.43i 0.435518 0.251446i −0.266177 0.963924i \(-0.585760\pi\)
0.701695 + 0.712478i \(0.252427\pi\)
\(558\) −26781.1 15462.1i −2.03178 1.17305i
\(559\) −15064.8 −1.13984
\(560\) 0 0
\(561\) −1657.40 −0.124734
\(562\) 20386.0 + 11769.9i 1.53013 + 0.883420i
\(563\) −11128.4 + 6424.96i −0.833045 + 0.480959i −0.854894 0.518802i \(-0.826378\pi\)
0.0218488 + 0.999761i \(0.493045\pi\)
\(564\) −385.633 667.936i −0.0287909 0.0498673i
\(565\) 0 0
\(566\) 16930.9 1.25735
\(567\) −40484.5 + 30752.4i −2.99857 + 2.27774i
\(568\) 8150.77i 0.602110i
\(569\) −4486.52 + 7770.88i −0.330553 + 0.572535i −0.982620 0.185626i \(-0.940569\pi\)
0.652067 + 0.758161i \(0.273902\pi\)
\(570\) 0 0
\(571\) −661.018 1144.92i −0.0484461 0.0839112i 0.840785 0.541368i \(-0.182094\pi\)
−0.889232 + 0.457457i \(0.848760\pi\)
\(572\) −459.112 265.069i −0.0335602 0.0193760i
\(573\) 14531.6i 1.05945i
\(574\) −671.208 + 1598.35i −0.0488078 + 0.116226i
\(575\) 0 0
\(576\) −17514.8 + 30336.5i −1.26699 + 2.19448i
\(577\) −20120.0 + 11616.3i −1.45166 + 0.838116i −0.998576 0.0533512i \(-0.983010\pi\)
−0.453084 + 0.891468i \(0.649676\pi\)
\(578\) 12145.0 7011.90i 0.873986 0.504596i
\(579\) −20427.4 + 35381.3i −1.46621 + 2.53955i
\(580\) 0 0
\(581\) 12701.3 1609.19i 0.906952 0.114906i
\(582\) 33802.2i 2.40747i
\(583\) −4302.27 2483.92i −0.305629 0.176455i
\(584\) 2588.36 + 4483.18i 0.183403 + 0.317663i
\(585\) 0 0
\(586\) −1827.00 + 3164.46i −0.128793 + 0.223076i
\(587\) 13229.8i 0.930244i −0.885247 0.465122i \(-0.846010\pi\)
0.885247 0.465122i \(-0.153990\pi\)
\(588\) 1766.16 + 491.750i 0.123869 + 0.0344889i
\(589\) −5549.55 −0.388226
\(590\) 0 0
\(591\) −5391.26 9337.94i −0.375240 0.649935i
\(592\) −16791.7 + 9694.68i −1.16577 + 0.673055i
\(593\) −22815.7 13172.6i −1.57998 0.912201i −0.994861 0.101252i \(-0.967715\pi\)
−0.585117 0.810949i \(-0.698951\pi\)
\(594\) −21496.2 −1.48485
\(595\) 0 0
\(596\) 686.710 0.0471959
\(597\) 25906.2 + 14957.0i 1.77600 + 1.02537i
\(598\) −3900.00 + 2251.67i −0.266694 + 0.153976i
\(599\) −6294.29 10902.0i −0.429345 0.743647i 0.567470 0.823394i \(-0.307922\pi\)
−0.996815 + 0.0797468i \(0.974589\pi\)
\(600\) 0 0
\(601\) −5027.54 −0.341227 −0.170614 0.985338i \(-0.554575\pi\)
−0.170614 + 0.985338i \(0.554575\pi\)
\(602\) 11756.6 + 4937.04i 0.795953 + 0.334251i
\(603\) 54813.2i 3.70177i
\(604\) −305.848 + 529.745i −0.0206040 + 0.0356871i
\(605\) 0 0
\(606\) 17625.4 + 30528.0i 1.18149 + 2.04640i
\(607\) 1698.78 + 980.794i 0.113594 + 0.0655835i 0.555721 0.831369i \(-0.312442\pi\)
−0.442127 + 0.896953i \(0.645776\pi\)
\(608\) 931.845i 0.0621567i
\(609\) −25522.5 33599.5i −1.69823 2.23567i
\(610\) 0 0
\(611\) 4611.15 7986.75i 0.305315 0.528820i
\(612\) −360.430 + 208.094i −0.0238064 + 0.0137446i
\(613\) 8066.73 4657.33i 0.531504 0.306864i −0.210124 0.977675i \(-0.567387\pi\)
0.741629 + 0.670810i \(0.234054\pi\)
\(614\) −721.075 + 1248.94i −0.0473945 + 0.0820896i
\(615\) 0 0
\(616\) −3810.65 5016.59i −0.249246 0.328124i
\(617\) 20829.3i 1.35909i −0.733635 0.679544i \(-0.762178\pi\)
0.733635 0.679544i \(-0.237822\pi\)
\(618\) 26156.7 + 15101.6i 1.70255 + 0.982968i
\(619\) 6682.39 + 11574.2i 0.433906 + 0.751548i 0.997206 0.0747050i \(-0.0238015\pi\)
−0.563299 + 0.826253i \(0.690468\pi\)
\(620\) 0 0
\(621\) −5692.30 + 9859.35i −0.367833 + 0.637105i
\(622\) 308.055i 0.0198583i
\(623\) −17300.8 7265.26i −1.11259 0.467217i
\(624\) 43652.5 2.80048
\(625\) 0 0
\(626\) 5419.28 + 9386.47i 0.346003 + 0.599295i
\(627\) −5261.32 + 3037.63i −0.335115 + 0.193479i
\(628\) −1668.69 963.421i −0.106032 0.0612176i
\(629\) 3017.31 0.191269
\(630\) 0 0
\(631\) −29261.9 −1.84612 −0.923058 0.384661i \(-0.874318\pi\)
−0.923058 + 0.384661i \(0.874318\pi\)
\(632\) −8791.84 5075.97i −0.553356 0.319480i
\(633\) 4539.25 2620.74i 0.285022 0.164558i
\(634\) −9495.13 16446.0i −0.594795 1.03021i
\(635\) 0 0
\(636\) −1702.82 −0.106166
\(637\) 5467.04 + 21229.3i 0.340050 + 1.32046i
\(638\) 10327.2i 0.640841i
\(639\) −13819.1 + 23935.4i −0.855516 + 1.48180i
\(640\) 0 0
\(641\) 6224.26 + 10780.7i 0.383531 + 0.664296i 0.991564 0.129616i \(-0.0413745\pi\)
−0.608033 + 0.793912i \(0.708041\pi\)
\(642\) 14659.7 + 8463.76i 0.901200 + 0.520308i
\(643\) 13458.0i 0.825397i 0.910868 + 0.412698i \(0.135414\pi\)
−0.910868 + 0.412698i \(0.864586\pi\)
\(644\) 235.762 29.8698i 0.0144259 0.00182769i
\(645\) 0 0
\(646\) −598.977 + 1037.46i −0.0364805 + 0.0631861i
\(647\) −1591.58 + 918.898i −0.0967101 + 0.0558356i −0.547575 0.836757i \(-0.684449\pi\)
0.450865 + 0.892592i \(0.351116\pi\)
\(648\) 51858.6 29940.6i 3.14383 1.81509i
\(649\) 3495.48 6054.35i 0.211417 0.366185i
\(650\) 0 0
\(651\) −10313.0 + 24558.5i −0.620891 + 1.47853i
\(652\) 1439.26i 0.0864506i
\(653\) 10503.5 + 6064.19i 0.629454 + 0.363415i 0.780540 0.625105i \(-0.214944\pi\)
−0.151087 + 0.988520i \(0.548277\pi\)
\(654\) −2807.73 4863.14i −0.167876 0.290770i
\(655\) 0 0
\(656\) 1089.11 1886.40i 0.0648211 0.112274i
\(657\) 17553.6i 1.04236i
\(658\) −6215.98 + 4721.71i −0.368273 + 0.279744i
\(659\) −4131.14 −0.244198 −0.122099 0.992518i \(-0.538962\pi\)
−0.122099 + 0.992518i \(0.538962\pi\)
\(660\) 0 0
\(661\) −10681.3 18500.6i −0.628525 1.08864i −0.987848 0.155424i \(-0.950326\pi\)
0.359323 0.933213i \(-0.383008\pi\)
\(662\) −274.939 + 158.736i −0.0161417 + 0.00931943i
\(663\) −5882.96 3396.53i −0.344608 0.198960i
\(664\) −15079.7 −0.881331
\(665\) 0 0
\(666\) 61630.6 3.58579
\(667\) −4736.61 2734.69i −0.274966 0.158752i
\(668\) −1565.34 + 903.749i −0.0906659 + 0.0523460i
\(669\) 11966.4 + 20726.4i 0.691552 + 1.19780i
\(670\) 0 0
\(671\) 2599.37 0.149549
\(672\) −4123.71 1731.70i −0.236719 0.0994075i
\(673\) 26260.3i 1.50410i −0.659104 0.752052i \(-0.729064\pi\)
0.659104 0.752052i \(-0.270936\pi\)
\(674\) −11987.4 + 20762.8i −0.685070 + 1.18658i
\(675\) 0 0
\(676\) −502.086 869.639i −0.0285666 0.0494788i
\(677\) −26428.1 15258.3i −1.50032 0.866208i −1.00000 0.000364836i \(-0.999884\pi\)
−0.500316 0.865843i \(-0.666783\pi\)
\(678\) 61392.1i 3.47750i
\(679\) 21160.2 2680.89i 1.19595 0.151521i
\(680\) 0 0
\(681\) 1713.40 2967.69i 0.0964134 0.166993i
\(682\) −5645.89 + 3259.65i −0.316997 + 0.183018i
\(683\) −25294.3 + 14603.7i −1.41707 + 0.818147i −0.996041 0.0888993i \(-0.971665\pi\)
−0.421031 + 0.907046i \(0.638332\pi\)
\(684\) −762.775 + 1321.16i −0.0426395 + 0.0738538i
\(685\) 0 0
\(686\) 2690.78 18359.0i 0.149759 1.02179i
\(687\) 7787.85i 0.432497i
\(688\) −13875.3 8010.92i −0.768883 0.443915i
\(689\) −10180.6 17633.4i −0.562919 0.975004i
\(690\) 0 0
\(691\) −5312.39 + 9201.33i −0.292464 + 0.506563i −0.974392 0.224857i \(-0.927809\pi\)
0.681928 + 0.731420i \(0.261142\pi\)
\(692\) 2227.10i 0.122344i
\(693\) 2684.96 + 21192.3i 0.147176 + 1.16166i
\(694\) 27464.4 1.50221
\(695\) 0 0
\(696\) 24848.7 + 43039.3i 1.35329 + 2.34397i
\(697\) −293.555 + 169.484i −0.0159529 + 0.00921043i
\(698\) −1746.78 1008.50i −0.0947227 0.0546881i
\(699\) 25119.1 1.35922
\(700\) 0 0
\(701\) 22033.0 1.18712 0.593562 0.804788i \(-0.297721\pi\)
0.593562 + 0.804788i \(0.297721\pi\)
\(702\) −76301.0 44052.4i −4.10227 2.36845i
\(703\) 9578.27 5530.01i 0.513871 0.296683i
\(704\) 3692.41 + 6395.44i 0.197674 + 0.342382i
\(705\) 0 0
\(706\) 10519.5 0.560772
\(707\) 17712.7 13454.7i 0.942225 0.715722i
\(708\) 2396.29i 0.127201i
\(709\) 12433.7 21535.8i 0.658614 1.14075i −0.322361 0.946617i \(-0.604477\pi\)
0.980975 0.194136i \(-0.0621902\pi\)
\(710\) 0 0
\(711\) 17211.9 + 29812.0i 0.907874 + 1.57248i
\(712\) 19140.3 + 11050.7i 1.00746 + 0.581659i
\(713\) 3452.69i 0.181352i
\(714\) 3477.97 + 4578.63i 0.182296 + 0.239987i
\(715\) 0 0
\(716\) −244.118 + 422.825i −0.0127418 + 0.0220694i
\(717\) −18985.3 + 10961.2i −0.988868 + 0.570923i
\(718\) −20398.6 + 11777.1i −1.06026 + 0.612142i
\(719\) −702.482 + 1216.74i −0.0364370 + 0.0631107i −0.883669 0.468113i \(-0.844934\pi\)
0.847232 + 0.531223i \(0.178267\pi\)
\(720\) 0 0
\(721\) 7379.06 17571.8i 0.381152 0.907639i
\(722\) 15643.6i 0.806366i
\(723\) −19754.9 11405.5i −1.01617 0.586687i
\(724\) 69.7736 + 120.851i 0.00358165 + 0.00620360i
\(725\) 0 0
\(726\) 15964.3 27651.0i 0.816103 1.41353i
\(727\) 28384.6i 1.44804i 0.689779 + 0.724020i \(0.257708\pi\)
−0.689779 + 0.724020i \(0.742292\pi\)
\(728\) −3245.37 25615.6i −0.165222 1.30409i
\(729\) −75008.8 −3.81084
\(730\) 0 0
\(731\) 1246.63 + 2159.23i 0.0630758 + 0.109251i
\(732\) 771.616 445.493i 0.0389614 0.0224944i
\(733\) 17729.1 + 10235.9i 0.893369 + 0.515787i 0.875043 0.484045i \(-0.160833\pi\)
0.0183260 + 0.999832i \(0.494166\pi\)
\(734\) −9900.91 −0.497887
\(735\) 0 0
\(736\) −579.754 −0.0290353
\(737\) 10007.4 + 5777.76i 0.500171 + 0.288774i
\(738\) −5996.06 + 3461.83i −0.299076 + 0.172672i
\(739\) −16590.5 28735.6i −0.825834 1.43039i −0.901280 0.433236i \(-0.857372\pi\)
0.0754464 0.997150i \(-0.475962\pi\)
\(740\) 0 0
\(741\) −24900.1 −1.23445
\(742\) 2166.17 + 17097.5i 0.107173 + 0.845916i
\(743\) 30844.1i 1.52296i 0.648188 + 0.761481i \(0.275527\pi\)
−0.648188 + 0.761481i \(0.724473\pi\)
\(744\) 15686.4 27169.7i 0.772974 1.33883i
\(745\) 0 0
\(746\) −12912.4 22364.9i −0.633722 1.09764i
\(747\) 44282.6 + 25566.5i 2.16896 + 1.25225i
\(748\) 87.7393i 0.00428886i
\(749\) 4135.64 9848.21i 0.201753 0.480435i
\(750\) 0 0
\(751\) 12346.5 21384.7i 0.599906 1.03907i −0.392928 0.919569i \(-0.628538\pi\)
0.992834 0.119499i \(-0.0381289\pi\)
\(752\) 8494.13 4904.09i 0.411900 0.237811i
\(753\) −25617.2 + 14790.1i −1.23977 + 0.715779i
\(754\) 21163.6 36656.4i 1.02219 1.77049i
\(755\) 0 0
\(756\) 2812.35 + 3702.37i 0.135297 + 0.178113i
\(757\) 6870.57i 0.329875i 0.986304 + 0.164937i \(0.0527422\pi\)
−0.986304 + 0.164937i \(0.947258\pi\)
\(758\) 7685.12 + 4437.01i 0.368253 + 0.212611i
\(759\) 1889.88 + 3273.37i 0.0903799 + 0.156542i
\(760\) 0 0
\(761\) −15441.3 + 26745.1i −0.735540 + 1.27399i 0.218946 + 0.975737i \(0.429738\pi\)
−0.954486 + 0.298256i \(0.903595\pi\)
\(762\) 14641.2i 0.696057i
\(763\) −2821.64 + 2143.34i −0.133880 + 0.101696i
\(764\) −769.273 −0.0364284
\(765\) 0 0
\(766\) −4116.62 7130.19i −0.194177 0.336324i
\(767\) 24814.5 14326.6i 1.16819 0.674452i
\(768\) 7079.28 + 4087.22i 0.332619 + 0.192038i
\(769\) 13536.3 0.634761 0.317380 0.948298i \(-0.397197\pi\)
0.317380 + 0.948298i \(0.397197\pi\)
\(770\) 0 0
\(771\) −36411.1 −1.70080
\(772\) 1873.01 + 1081.38i 0.0873201 + 0.0504143i
\(773\) −12371.8 + 7142.87i −0.575657 + 0.332356i −0.759406 0.650617i \(-0.774510\pi\)
0.183748 + 0.982973i \(0.441177\pi\)
\(774\) 25463.3 + 44103.8i 1.18251 + 2.04816i
\(775\) 0 0
\(776\) −25122.4 −1.16217
\(777\) −6672.22 52663.6i −0.308062 2.43153i
\(778\) 35602.6i 1.64064i
\(779\) −621.249 + 1076.03i −0.0285732 + 0.0494903i
\(780\) 0 0
\(781\) 2913.29 + 5045.96i 0.133477 + 0.231189i
\(782\) 645.462 + 372.658i 0.0295162 + 0.0170412i
\(783\) 107005.i 4.88382i
\(784\) −6253.59 + 22460.2i −0.284876 + 1.02315i
\(785\) 0 0
\(786\) −4573.54 + 7921.61i −0.207548 + 0.359484i
\(787\) −7321.06 + 4226.82i −0.331598 + 0.191448i −0.656550 0.754282i \(-0.727985\pi\)
0.324952 + 0.945730i \(0.394652\pi\)
\(788\) −494.330 + 285.402i −0.0223474 + 0.0129023i
\(789\) −2317.28 + 4013.65i −0.104559 + 0.181102i
\(790\) 0 0
\(791\) 38431.4 4869.07i 1.72751 0.218867i
\(792\) 25160.6i 1.12884i
\(793\) 9226.49 + 5326.92i 0.413168 + 0.238543i
\(794\) −15174.8 26283.5i −0.678254 1.17477i
\(795\) 0 0
\(796\) 791.789 1371.42i 0.0352566 0.0610662i
\(797\) 5465.35i 0.242902i 0.992597 + 0.121451i \(0.0387547\pi\)
−0.992597 + 0.121451i \(0.961245\pi\)
\(798\) 19432.1 + 8160.29i 0.862018 + 0.361994i
\(799\) −1526.32 −0.0675810
\(800\) 0 0
\(801\) −37471.3 64902.3i −1.65291 2.86293i
\(802\) 3800.18 2194.04i 0.167318 0.0966011i
\(803\) −3204.80 1850.29i −0.140840 0.0813142i
\(804\) 3960.88 0.173743
\(805\) 0 0
\(806\) −26720.2 −1.16771
\(807\) 49865.6 + 28789.9i 2.17516 + 1.25583i
\(808\) −22689.0 + 13099.5i −0.987867 + 0.570346i
\(809\) 8300.53 + 14376.9i 0.360731 + 0.624804i 0.988081 0.153933i \(-0.0491940\pi\)
−0.627350 + 0.778737i \(0.715861\pi\)
\(810\) 0 0
\(811\) −24613.6 −1.06572 −0.532861 0.846203i \(-0.678883\pi\)
−0.532861 + 0.846203i \(0.678883\pi\)
\(812\) −1778.69 + 1351.10i −0.0768714 + 0.0583922i
\(813\) 4373.17i 0.188652i
\(814\) 6496.37 11252.0i 0.279727 0.484501i
\(815\) 0 0
\(816\) −3612.31 6256.70i −0.154971 0.268417i
\(817\) 7914.73 + 4569.57i 0.338924 + 0.195678i
\(818\) 41177.2i 1.76006i
\(819\) −33899.3 + 80724.6i −1.44632 + 3.44413i
\(820\) 0 0
\(821\) 8970.29 15537.0i 0.381322 0.660469i −0.609930 0.792456i \(-0.708802\pi\)
0.991251 + 0.131987i \(0.0421357\pi\)
\(822\) 25995.0 15008.2i 1.10302 0.636827i
\(823\) −39758.4 + 22954.5i −1.68395 + 0.972229i −0.724960 + 0.688791i \(0.758142\pi\)
−0.958990 + 0.283439i \(0.908525\pi\)
\(824\) −11223.8 + 19440.1i −0.474513 + 0.821880i
\(825\) 0 0
\(826\) −24060.4 + 3048.33i −1.01352 + 0.128408i
\(827\) 36696.8i 1.54301i 0.636221 + 0.771507i \(0.280497\pi\)
−0.636221 + 0.771507i \(0.719503\pi\)
\(828\) 821.972 + 474.566i 0.0344994 + 0.0199182i
\(829\) 14460.2 + 25045.9i 0.605820 + 1.04931i 0.991921 + 0.126855i \(0.0404883\pi\)
−0.386101 + 0.922457i \(0.626178\pi\)
\(830\) 0 0
\(831\) −540.096 + 935.474i −0.0225460 + 0.0390508i
\(832\) 30267.5i 1.26122i
\(833\) 2590.38 2540.34i 0.107745 0.105663i
\(834\) −33497.4 −1.39079
\(835\) 0 0
\(836\) 160.805 + 278.523i 0.00665259 + 0.0115226i
\(837\) −58499.6 + 33774.8i −2.41582 + 1.39478i
\(838\) 29166.2 + 16839.1i 1.20230 + 0.694150i
\(839\) −5852.41 −0.240820 −0.120410 0.992724i \(-0.538421\pi\)
−0.120410 + 0.992724i \(0.538421\pi\)
\(840\) 0 0
\(841\) 27018.0 1.10779
\(842\) 8524.93 + 4921.87i 0.348918 + 0.201448i
\(843\) 70129.4 40489.2i 2.86523 1.65424i
\(844\) −138.736 240.298i −0.00565817 0.00980023i
\(845\) 0 0
\(846\) −31176.1 −1.26697
\(847\) −18575.6 7800.62i −0.753562 0.316449i
\(848\) 21654.8i 0.876920i
\(849\) 29121.7 50440.3i 1.17721 2.03900i
\(850\) 0 0
\(851\) −3440.54 5959.19i −0.138590 0.240045i
\(852\) 1729.60 + 998.586i 0.0695484 + 0.0401538i
\(853\) 18715.7i 0.751245i −0.926773 0.375623i \(-0.877429\pi\)
0.926773 0.375623i \(-0.122571\pi\)
\(854\) −5454.64 7180.85i −0.218564 0.287733i
\(855\) 0 0
\(856\) −6290.42 + 10895.3i −0.251171 + 0.435041i
\(857\) −14979.8 + 8648.57i −0.597081 + 0.344725i −0.767893 0.640579i \(-0.778695\pi\)
0.170811 + 0.985304i \(0.445361\pi\)
\(858\) −25332.4 + 14625.7i −1.00797 + 0.581949i
\(859\) 15366.4 26615.3i 0.610354 1.05716i −0.380827 0.924646i \(-0.624361\pi\)
0.991181 0.132518i \(-0.0423061\pi\)
\(860\) 0 0
\(861\) 3607.29 + 4748.88i 0.142783 + 0.187969i
\(862\) 24322.9i 0.961070i
\(863\) −9347.02 5396.51i −0.368686 0.212861i 0.304198 0.952609i \(-0.401612\pi\)
−0.672884 + 0.739748i \(0.734945\pi\)
\(864\) −5671.25 9822.89i −0.223310 0.386784i
\(865\) 0 0
\(866\) −1194.89 + 2069.60i −0.0468867 + 0.0812101i
\(867\) 48242.9i 1.88975i
\(868\) 1300.07 + 545.950i 0.0508380 + 0.0213488i
\(869\) 7257.12 0.283292
\(870\) 0 0
\(871\) 23680.8 + 41016.4i 0.921234 + 1.59562i
\(872\) 3614.38 2086.76i 0.140365 0.0810398i
\(873\) 73773.9 + 42593.4i 2.86010 + 1.65128i
\(874\) 2731.97 0.105733
\(875\) 0 0
\(876\) −1268.45 −0.0489233
\(877\) −16945.3 9783.36i −0.652453 0.376694i 0.136942 0.990579i \(-0.456272\pi\)
−0.789395 + 0.613885i \(0.789606\pi\)
\(878\) −21415.1 + 12364.0i −0.823151 + 0.475246i
\(879\) 6285.01 + 10886.0i 0.241170 + 0.417718i
\(880\) 0 0
\(881\) 27700.5 1.05931 0.529656 0.848213i \(-0.322321\pi\)
0.529656 + 0.848213i \(0.322321\pi\)
\(882\) 52910.2 51888.2i 2.01993 1.98091i
\(883\) 5071.61i 0.193288i 0.995319 + 0.0966440i \(0.0308108\pi\)
−0.995319 + 0.0966440i \(0.969189\pi\)
\(884\) −179.805 + 311.431i −0.00684106 + 0.0118491i
\(885\) 0 0
\(886\) −21277.6 36853.8i −0.806810 1.39744i
\(887\) −19527.9 11274.4i −0.739212 0.426784i 0.0825707 0.996585i \(-0.473687\pi\)
−0.821783 + 0.569801i \(0.807020\pi\)
\(888\) 62525.0i 2.36284i
\(889\) 9165.39 1161.21i 0.345779 0.0438084i
\(890\) 0 0
\(891\) −21403.0 + 37071.1i −0.804745 + 1.39386i
\(892\) 1097.21 633.476i 0.0411854 0.0237784i
\(893\) −4845.20 + 2797.38i −0.181566 + 0.104827i
\(894\) 18945.3 32814.2i 0.708753 1.22760i
\(895\) 0 0
\(896\) 11298.0 26904.0i 0.421250 1.00312i
\(897\) 15491.8i 0.576651i
\(898\) −2127.94 1228.57i −0.0790760 0.0456545i
\(899\) −16226.0 28104.3i −0.601967 1.04264i
\(900\) 0 0
\(901\) −1684.92 + 2918.37i −0.0623007 + 0.107908i
\(902\) 1459.62i 0.0538803i
\(903\) 34930.2 26533.3i 1.28727 0.977821i
\(904\) −45627.7 −1.67871
\(905\) 0 0
\(906\) 16875.8 + 29229.7i 0.618830 + 1.07185i
\(907\) 20994.3 12121.1i 0.768584 0.443742i −0.0637854 0.997964i \(-0.520317\pi\)
0.832369 + 0.554222i \(0.186984\pi\)
\(908\) −157.103 90.7035i −0.00574191 0.00331509i
\(909\) 88837.4 3.24153
\(910\) 0 0
\(911\) 6574.69 0.239110 0.119555 0.992828i \(-0.461853\pi\)
0.119555 + 0.992828i \(0.461853\pi\)
\(912\) −22934.1 13241.0i −0.832702 0.480760i
\(913\) 9335.48 5389.84i 0.338400 0.195375i
\(914\) 20266.5 + 35102.6i 0.733432 + 1.27034i
\(915\) 0 0
\(916\) 412.272 0.0148710
\(917\) 5321.66 + 2234.76i 0.191643 + 0.0804781i
\(918\) 14581.6i 0.524253i
\(919\) −20956.1 + 36297.1i −0.752208 + 1.30286i 0.194542 + 0.980894i \(0.437678\pi\)
−0.946750 + 0.321969i \(0.895655\pi\)
\(920\) 0 0
\(921\) 2480.55 + 4296.44i 0.0887480 + 0.153716i
\(922\) −7723.13 4458.95i −0.275865 0.159271i
\(923\) 23880.9i 0.851625i
\(924\) 1531.39 194.019i 0.0545226 0.00690774i
\(925\) 0 0
\(926\) −14511.0 + 25133.7i −0.514968 + 0.891950i
\(927\) 65918.9 38058.3i 2.33556 1.34843i
\(928\) 4719.10 2724.57i 0.166931 0.0963777i
\(929\) −24085.7 + 41717.7i −0.850621 + 1.47332i 0.0300283 + 0.999549i \(0.490440\pi\)
−0.880649 + 0.473769i \(0.842893\pi\)
\(930\) 0 0
\(931\) 3567.16 12811.7i 0.125573 0.451006i
\(932\) 1329.75i 0.0467355i
\(933\) −917.754 529.866i −0.0322036 0.0185927i
\(934\) 14498.5 + 25112.1i 0.507929 + 0.879759i
\(935\) 0 0
\(936\) 51561.9 89307.8i 1.80059 3.11871i
\(937\) 48696.8i 1.69782i −0.528539 0.848909i \(-0.677260\pi\)
0.528539 0.848909i \(-0.322740\pi\)
\(938\) −5038.66 39770.0i −0.175392 1.38437i
\(939\) 37285.4 1.29581
\(940\) 0 0
\(941\) 1000.15 + 1732.31i 0.0346482 + 0.0600124i 0.882830 0.469694i \(-0.155636\pi\)
−0.848181 + 0.529706i \(0.822302\pi\)
\(942\) −92073.4 + 53158.6i −3.18462 + 1.83864i
\(943\) 669.462 + 386.514i 0.0231184 + 0.0133474i
\(944\) 30473.6 1.05067
\(945\) 0 0
\(946\) 10736.2 0.368988
\(947\) −36802.1 21247.7i −1.26284 0.729101i −0.289216 0.957264i \(-0.593395\pi\)
−0.973623 + 0.228163i \(0.926728\pi\)
\(948\) 2154.25 1243.76i 0.0738048 0.0426112i
\(949\) −7583.64 13135.2i −0.259405 0.449303i
\(950\) 0 0
\(951\) −65327.9 −2.22755
\(952\) −3402.92 + 2584.89i −0.115850 + 0.0880008i
\(953\) 51166.5i 1.73919i −0.493768 0.869594i \(-0.664381\pi\)
0.493768 0.869594i \(-0.335619\pi\)
\(954\) −34415.7 + 59609.7i −1.16798 + 2.02299i
\(955\) 0 0
\(956\) 580.260 + 1005.04i 0.0196307 + 0.0340014i
\(957\) −30766.6 17763.1i −1.03923 0.600000i
\(958\) 38481.3i 1.29778i
\(959\) −11456.8 15082.5i −0.385777 0.507863i
\(960\) 0 0
\(961\) 4652.38 8058.16i 0.156167 0.270490i
\(962\) 46117.8 26626.1i 1.54563 0.892371i
\(963\) 36944.6 21330.0i 1.23627 0.713758i
\(964\) −603.782 + 1045.78i −0.0201727 + 0.0349402i
\(965\) 0 0
\(966\) 5076.98 12089.8i 0.169099 0.402675i
\(967\) 26324.2i 0.875418i −0.899117 0.437709i \(-0.855790\pi\)
0.899117 0.437709i \(-0.144210\pi\)
\(968\) 20550.7 + 11865.0i 0.682361 + 0.393961i
\(969\) 2060.52 + 3568.93i 0.0683112 + 0.118318i
\(970\) 0 0
\(971\) 2617.28 4533.27i 0.0865012 0.149824i −0.819529 0.573038i \(-0.805765\pi\)
0.906030 + 0.423214i \(0.139098\pi\)
\(972\) 7894.44i 0.260508i
\(973\) 2656.71 + 20969.3i 0.0875337 + 0.690901i
\(974\) −24751.4 −0.814257
\(975\) 0 0
\(976\) 5665.33 + 9812.63i 0.185802 + 0.321818i
\(977\) −38954.3 + 22490.3i −1.27560 + 0.736467i −0.976036 0.217610i \(-0.930174\pi\)
−0.299562 + 0.954077i \(0.596841\pi\)
\(978\) −68774.5 39707.0i −2.24864 1.29825i
\(979\) −15799.1 −0.515774
\(980\) 0 0
\(981\) −14151.9 −0.460585
\(982\) 27398.6 + 15818.6i 0.890350 + 0.514044i
\(983\) −14197.0 + 8196.66i −0.460646 + 0.265954i −0.712316 0.701859i \(-0.752354\pi\)
0.251670 + 0.967813i \(0.419020\pi\)
\(984\) −3512.06 6083.07i −0.113781 0.197074i
\(985\) 0 0
\(986\) −7005.27 −0.226261
\(987\) 3375.17 + 26640.1i 0.108848 + 0.859132i
\(988\) 1318.16i 0.0424456i
\(989\) 2842.99 4924.20i 0.0914073 0.158322i
\(990\) 0 0
\(991\) 1941.67 + 3363.07i 0.0622393 + 0.107802i 0.895466 0.445130i \(-0.146842\pi\)
−0.833227 + 0.552931i \(0.813509\pi\)
\(992\) −2979.06 1719.96i −0.0953480 0.0550492i
\(993\) 1092.13i 0.0349020i
\(994\) 7826.27 18636.7i 0.249733 0.594689i
\(995\) 0 0
\(996\) 1847.47 3199.92i 0.0587746 0.101801i
\(997\) −12092.9 + 6981.81i −0.384137 + 0.221781i −0.679617 0.733567i \(-0.737854\pi\)
0.295480 + 0.955349i \(0.404521\pi\)
\(998\) 30588.4 17660.2i 0.970198 0.560144i
\(999\) 67311.8 116588.i 2.13178 3.69236i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 175.4.k.e.149.4 32
5.2 odd 4 175.4.e.e.51.7 16
5.3 odd 4 175.4.e.f.51.2 yes 16
5.4 even 2 inner 175.4.k.e.149.13 32
7.4 even 3 inner 175.4.k.e.74.13 32
35.2 odd 12 1225.4.a.bn.1.2 8
35.4 even 6 inner 175.4.k.e.74.4 32
35.12 even 12 1225.4.a.bo.1.2 8
35.18 odd 12 175.4.e.f.151.2 yes 16
35.23 odd 12 1225.4.a.bl.1.7 8
35.32 odd 12 175.4.e.e.151.7 yes 16
35.33 even 12 1225.4.a.bk.1.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
175.4.e.e.51.7 16 5.2 odd 4
175.4.e.e.151.7 yes 16 35.32 odd 12
175.4.e.f.51.2 yes 16 5.3 odd 4
175.4.e.f.151.2 yes 16 35.18 odd 12
175.4.k.e.74.4 32 35.4 even 6 inner
175.4.k.e.74.13 32 7.4 even 3 inner
175.4.k.e.149.4 32 1.1 even 1 trivial
175.4.k.e.149.13 32 5.4 even 2 inner
1225.4.a.bk.1.7 8 35.33 even 12
1225.4.a.bl.1.7 8 35.23 odd 12
1225.4.a.bn.1.2 8 35.2 odd 12
1225.4.a.bo.1.2 8 35.12 even 12