Properties

Label 1764.2.l.j.949.12
Level $1764$
Weight $2$
Character 1764.949
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(949,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.949");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 949.12
Character \(\chi\) \(=\) 1764.949
Dual form 1764.2.l.j.961.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73160 - 0.0393104i) q^{3} -2.38486 q^{5} +(2.99691 - 0.136140i) q^{9} +O(q^{10})\) \(q+(1.73160 - 0.0393104i) q^{3} -2.38486 q^{5} +(2.99691 - 0.136140i) q^{9} -2.25956 q^{11} +(2.37884 - 4.12027i) q^{13} +(-4.12964 + 0.0937498i) q^{15} +(2.15202 - 3.72740i) q^{17} +(4.29815 + 7.44461i) q^{19} +1.32910 q^{23} +0.687562 q^{25} +(5.18411 - 0.353550i) q^{27} +(-3.87886 - 6.71839i) q^{29} +(-0.405320 - 0.702036i) q^{31} +(-3.91267 + 0.0888242i) q^{33} +(2.31613 + 4.01166i) q^{37} +(3.95723 - 7.22818i) q^{39} +(5.00426 - 8.66764i) q^{41} +(-1.74292 - 3.01883i) q^{43} +(-7.14721 + 0.324675i) q^{45} +(2.18338 - 3.78173i) q^{47} +(3.57992 - 6.53899i) q^{51} +(5.83934 - 10.1140i) q^{53} +5.38874 q^{55} +(7.73534 + 12.7222i) q^{57} +(2.40463 + 4.16495i) q^{59} +(0.575967 - 0.997604i) q^{61} +(-5.67319 + 9.82626i) q^{65} +(2.06381 + 3.57463i) q^{67} +(2.30148 - 0.0522474i) q^{69} -4.41593 q^{71} +(6.05590 - 10.4891i) q^{73} +(1.19059 - 0.0270283i) q^{75} +(4.23312 - 7.33198i) q^{79} +(8.96293 - 0.815999i) q^{81} +(0.817808 + 1.41648i) q^{83} +(-5.13226 + 8.88934i) q^{85} +(-6.98076 - 11.4811i) q^{87} +(3.17155 + 5.49329i) q^{89} +(-0.729452 - 1.19971i) q^{93} +(-10.2505 - 17.7543i) q^{95} +(5.98278 + 10.3625i) q^{97} +(-6.77170 + 0.307617i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 4 q^{9} + 8 q^{11} - 28 q^{15} + 16 q^{23} + 24 q^{25} - 32 q^{29} - 12 q^{37} + 32 q^{51} - 16 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} - 8 q^{81} + 12 q^{85} + 32 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73160 0.0393104i 0.999742 0.0226958i
\(4\) 0 0
\(5\) −2.38486 −1.06654 −0.533271 0.845944i \(-0.679037\pi\)
−0.533271 + 0.845944i \(0.679037\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.99691 0.136140i 0.998970 0.0453800i
\(10\) 0 0
\(11\) −2.25956 −0.681283 −0.340642 0.940193i \(-0.610644\pi\)
−0.340642 + 0.940193i \(0.610644\pi\)
\(12\) 0 0
\(13\) 2.37884 4.12027i 0.659770 1.14276i −0.320904 0.947112i \(-0.603987\pi\)
0.980675 0.195644i \(-0.0626798\pi\)
\(14\) 0 0
\(15\) −4.12964 + 0.0937498i −1.06627 + 0.0242061i
\(16\) 0 0
\(17\) 2.15202 3.72740i 0.521941 0.904028i −0.477733 0.878505i \(-0.658541\pi\)
0.999674 0.0255234i \(-0.00812524\pi\)
\(18\) 0 0
\(19\) 4.29815 + 7.44461i 0.986062 + 1.70791i 0.637118 + 0.770766i \(0.280126\pi\)
0.348944 + 0.937144i \(0.386540\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.32910 0.277137 0.138568 0.990353i \(-0.455750\pi\)
0.138568 + 0.990353i \(0.455750\pi\)
\(24\) 0 0
\(25\) 0.687562 0.137512
\(26\) 0 0
\(27\) 5.18411 0.353550i 0.997683 0.0680408i
\(28\) 0 0
\(29\) −3.87886 6.71839i −0.720287 1.24757i −0.960885 0.276948i \(-0.910677\pi\)
0.240598 0.970625i \(-0.422656\pi\)
\(30\) 0 0
\(31\) −0.405320 0.702036i −0.0727977 0.126089i 0.827329 0.561718i \(-0.189859\pi\)
−0.900126 + 0.435629i \(0.856526\pi\)
\(32\) 0 0
\(33\) −3.91267 + 0.0888242i −0.681108 + 0.0154623i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.31613 + 4.01166i 0.380770 + 0.659513i 0.991172 0.132579i \(-0.0423257\pi\)
−0.610403 + 0.792091i \(0.708992\pi\)
\(38\) 0 0
\(39\) 3.95723 7.22818i 0.633665 1.15744i
\(40\) 0 0
\(41\) 5.00426 8.66764i 0.781534 1.35366i −0.149513 0.988760i \(-0.547771\pi\)
0.931048 0.364898i \(-0.118896\pi\)
\(42\) 0 0
\(43\) −1.74292 3.01883i −0.265793 0.460367i 0.701978 0.712199i \(-0.252300\pi\)
−0.967771 + 0.251831i \(0.918967\pi\)
\(44\) 0 0
\(45\) −7.14721 + 0.324675i −1.06544 + 0.0483997i
\(46\) 0 0
\(47\) 2.18338 3.78173i 0.318479 0.551622i −0.661692 0.749776i \(-0.730161\pi\)
0.980171 + 0.198154i \(0.0634946\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.57992 6.53899i 0.501289 0.915641i
\(52\) 0 0
\(53\) 5.83934 10.1140i 0.802094 1.38927i −0.116141 0.993233i \(-0.537052\pi\)
0.918235 0.396036i \(-0.129614\pi\)
\(54\) 0 0
\(55\) 5.38874 0.726617
\(56\) 0 0
\(57\) 7.73534 + 12.7222i 1.02457 + 1.68509i
\(58\) 0 0
\(59\) 2.40463 + 4.16495i 0.313056 + 0.542230i 0.979022 0.203752i \(-0.0653137\pi\)
−0.665966 + 0.745982i \(0.731980\pi\)
\(60\) 0 0
\(61\) 0.575967 0.997604i 0.0737450 0.127730i −0.826795 0.562504i \(-0.809838\pi\)
0.900540 + 0.434774i \(0.143172\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.67319 + 9.82626i −0.703673 + 1.21880i
\(66\) 0 0
\(67\) 2.06381 + 3.57463i 0.252135 + 0.436710i 0.964113 0.265491i \(-0.0855341\pi\)
−0.711979 + 0.702201i \(0.752201\pi\)
\(68\) 0 0
\(69\) 2.30148 0.0522474i 0.277065 0.00628985i
\(70\) 0 0
\(71\) −4.41593 −0.524074 −0.262037 0.965058i \(-0.584394\pi\)
−0.262037 + 0.965058i \(0.584394\pi\)
\(72\) 0 0
\(73\) 6.05590 10.4891i 0.708790 1.22766i −0.256517 0.966540i \(-0.582575\pi\)
0.965306 0.261120i \(-0.0840919\pi\)
\(74\) 0 0
\(75\) 1.19059 0.0270283i 0.137477 0.00312096i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.23312 7.33198i 0.476263 0.824913i −0.523367 0.852108i \(-0.675324\pi\)
0.999630 + 0.0271950i \(0.00865752\pi\)
\(80\) 0 0
\(81\) 8.96293 0.815999i 0.995881 0.0906665i
\(82\) 0 0
\(83\) 0.817808 + 1.41648i 0.0897661 + 0.155479i 0.907412 0.420242i \(-0.138055\pi\)
−0.817646 + 0.575721i \(0.804721\pi\)
\(84\) 0 0
\(85\) −5.13226 + 8.88934i −0.556672 + 0.964184i
\(86\) 0 0
\(87\) −6.98076 11.4811i −0.748416 1.23090i
\(88\) 0 0
\(89\) 3.17155 + 5.49329i 0.336184 + 0.582287i 0.983711 0.179755i \(-0.0575304\pi\)
−0.647528 + 0.762042i \(0.724197\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.729452 1.19971i −0.0756407 0.124405i
\(94\) 0 0
\(95\) −10.2505 17.7543i −1.05168 1.82156i
\(96\) 0 0
\(97\) 5.98278 + 10.3625i 0.607459 + 1.05215i 0.991658 + 0.128900i \(0.0411445\pi\)
−0.384198 + 0.923251i \(0.625522\pi\)
\(98\) 0 0
\(99\) −6.77170 + 0.307617i −0.680581 + 0.0309166i
\(100\) 0 0
\(101\) 10.8470 1.07931 0.539656 0.841885i \(-0.318554\pi\)
0.539656 + 0.841885i \(0.318554\pi\)
\(102\) 0 0
\(103\) 18.3445 1.80754 0.903769 0.428020i \(-0.140789\pi\)
0.903769 + 0.428020i \(0.140789\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.91706 3.32044i −0.185329 0.321000i 0.758358 0.651838i \(-0.226002\pi\)
−0.943687 + 0.330838i \(0.892668\pi\)
\(108\) 0 0
\(109\) −1.32248 + 2.29060i −0.126671 + 0.219400i −0.922385 0.386272i \(-0.873762\pi\)
0.795714 + 0.605672i \(0.207096\pi\)
\(110\) 0 0
\(111\) 4.16832 + 6.85556i 0.395640 + 0.650701i
\(112\) 0 0
\(113\) −2.64275 + 4.57738i −0.248609 + 0.430603i −0.963140 0.269000i \(-0.913307\pi\)
0.714531 + 0.699604i \(0.246640\pi\)
\(114\) 0 0
\(115\) −3.16972 −0.295578
\(116\) 0 0
\(117\) 6.56822 12.6719i 0.607232 1.17152i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.89438 −0.535853
\(122\) 0 0
\(123\) 8.32468 15.2056i 0.750611 1.37105i
\(124\) 0 0
\(125\) 10.2846 0.919880
\(126\) 0 0
\(127\) −7.67115 −0.680704 −0.340352 0.940298i \(-0.610546\pi\)
−0.340352 + 0.940298i \(0.610546\pi\)
\(128\) 0 0
\(129\) −3.13672 5.15890i −0.276173 0.454216i
\(130\) 0 0
\(131\) −19.3801 −1.69325 −0.846625 0.532189i \(-0.821369\pi\)
−0.846625 + 0.532189i \(0.821369\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −12.3634 + 0.843168i −1.06407 + 0.0725684i
\(136\) 0 0
\(137\) −9.68997 −0.827870 −0.413935 0.910306i \(-0.635846\pi\)
−0.413935 + 0.910306i \(0.635846\pi\)
\(138\) 0 0
\(139\) 3.81197 6.60252i 0.323327 0.560018i −0.657846 0.753153i \(-0.728532\pi\)
0.981172 + 0.193135i \(0.0618654\pi\)
\(140\) 0 0
\(141\) 3.63210 6.63429i 0.305878 0.558708i
\(142\) 0 0
\(143\) −5.37513 + 9.30999i −0.449491 + 0.778541i
\(144\) 0 0
\(145\) 9.25055 + 16.0224i 0.768216 + 1.33059i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −9.09179 −0.744829 −0.372414 0.928067i \(-0.621470\pi\)
−0.372414 + 0.928067i \(0.621470\pi\)
\(150\) 0 0
\(151\) −20.2582 −1.64859 −0.824294 0.566162i \(-0.808428\pi\)
−0.824294 + 0.566162i \(0.808428\pi\)
\(152\) 0 0
\(153\) 5.94195 11.4637i 0.480379 0.926783i
\(154\) 0 0
\(155\) 0.966633 + 1.67426i 0.0776418 + 0.134480i
\(156\) 0 0
\(157\) −4.18075 7.24127i −0.333660 0.577917i 0.649566 0.760305i \(-0.274951\pi\)
−0.983227 + 0.182388i \(0.941617\pi\)
\(158\) 0 0
\(159\) 9.71383 17.7430i 0.770357 1.40711i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.69195 + 16.7869i 0.759132 + 1.31486i 0.943294 + 0.331959i \(0.107710\pi\)
−0.184162 + 0.982896i \(0.558957\pi\)
\(164\) 0 0
\(165\) 9.33117 0.211833i 0.726430 0.0164912i
\(166\) 0 0
\(167\) −8.84158 + 15.3141i −0.684182 + 1.18504i 0.289511 + 0.957175i \(0.406507\pi\)
−0.973693 + 0.227864i \(0.926826\pi\)
\(168\) 0 0
\(169\) −4.81772 8.34454i −0.370594 0.641888i
\(170\) 0 0
\(171\) 13.8947 + 21.7257i 1.06255 + 1.66140i
\(172\) 0 0
\(173\) −10.5928 + 18.3473i −0.805356 + 1.39492i 0.110695 + 0.993854i \(0.464692\pi\)
−0.916051 + 0.401063i \(0.868641\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.32760 + 7.11751i 0.325282 + 0.534985i
\(178\) 0 0
\(179\) −6.49389 + 11.2478i −0.485376 + 0.840697i −0.999859 0.0168043i \(-0.994651\pi\)
0.514482 + 0.857501i \(0.327984\pi\)
\(180\) 0 0
\(181\) −16.8238 −1.25050 −0.625251 0.780423i \(-0.715004\pi\)
−0.625251 + 0.780423i \(0.715004\pi\)
\(182\) 0 0
\(183\) 0.958131 1.75010i 0.0708271 0.129371i
\(184\) 0 0
\(185\) −5.52365 9.56725i −0.406107 0.703398i
\(186\) 0 0
\(187\) −4.86262 + 8.42230i −0.355590 + 0.615899i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.58561 + 7.94251i −0.331803 + 0.574700i −0.982865 0.184324i \(-0.940990\pi\)
0.651062 + 0.759024i \(0.274324\pi\)
\(192\) 0 0
\(193\) 12.8153 + 22.1968i 0.922466 + 1.59776i 0.795586 + 0.605840i \(0.207163\pi\)
0.126880 + 0.991918i \(0.459504\pi\)
\(194\) 0 0
\(195\) −9.43745 + 17.2382i −0.675830 + 1.23445i
\(196\) 0 0
\(197\) 16.1036 1.14734 0.573668 0.819088i \(-0.305520\pi\)
0.573668 + 0.819088i \(0.305520\pi\)
\(198\) 0 0
\(199\) 9.61411 16.6521i 0.681526 1.18044i −0.292989 0.956116i \(-0.594650\pi\)
0.974515 0.224322i \(-0.0720168\pi\)
\(200\) 0 0
\(201\) 3.71423 + 6.10871i 0.261981 + 0.430875i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −11.9345 + 20.6711i −0.833540 + 1.44373i
\(206\) 0 0
\(207\) 3.98319 0.180944i 0.276851 0.0125765i
\(208\) 0 0
\(209\) −9.71192 16.8215i −0.671788 1.16357i
\(210\) 0 0
\(211\) −12.3251 + 21.3477i −0.848496 + 1.46964i 0.0340549 + 0.999420i \(0.489158\pi\)
−0.882551 + 0.470218i \(0.844175\pi\)
\(212\) 0 0
\(213\) −7.64664 + 0.173592i −0.523939 + 0.0118943i
\(214\) 0 0
\(215\) 4.15663 + 7.19949i 0.283480 + 0.491001i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 10.0741 18.4011i 0.680744 1.24343i
\(220\) 0 0
\(221\) −10.2386 17.7338i −0.688723 1.19290i
\(222\) 0 0
\(223\) −7.41074 12.8358i −0.496260 0.859547i 0.503731 0.863861i \(-0.331960\pi\)
−0.999991 + 0.00431335i \(0.998627\pi\)
\(224\) 0 0
\(225\) 2.06056 0.0936047i 0.137371 0.00624031i
\(226\) 0 0
\(227\) 18.1550 1.20499 0.602496 0.798122i \(-0.294173\pi\)
0.602496 + 0.798122i \(0.294173\pi\)
\(228\) 0 0
\(229\) −9.50691 −0.628235 −0.314117 0.949384i \(-0.601709\pi\)
−0.314117 + 0.949384i \(0.601709\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.1715 17.6176i −0.666360 1.15417i −0.978915 0.204270i \(-0.934518\pi\)
0.312554 0.949900i \(-0.398815\pi\)
\(234\) 0 0
\(235\) −5.20707 + 9.01890i −0.339671 + 0.588328i
\(236\) 0 0
\(237\) 7.04187 12.8625i 0.457419 0.835509i
\(238\) 0 0
\(239\) 8.90544 15.4247i 0.576045 0.997739i −0.419882 0.907579i \(-0.637929\pi\)
0.995927 0.0901607i \(-0.0287381\pi\)
\(240\) 0 0
\(241\) −6.28873 −0.405093 −0.202546 0.979273i \(-0.564922\pi\)
−0.202546 + 0.979273i \(0.564922\pi\)
\(242\) 0 0
\(243\) 15.4882 1.76532i 0.993567 0.113246i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 40.8983 2.60230
\(248\) 0 0
\(249\) 1.47180 + 2.42064i 0.0932717 + 0.153402i
\(250\) 0 0
\(251\) 25.1868 1.58978 0.794889 0.606755i \(-0.207529\pi\)
0.794889 + 0.606755i \(0.207529\pi\)
\(252\) 0 0
\(253\) −3.00318 −0.188809
\(254\) 0 0
\(255\) −8.53761 + 15.5946i −0.534646 + 0.976570i
\(256\) 0 0
\(257\) −28.6803 −1.78903 −0.894514 0.447040i \(-0.852478\pi\)
−0.894514 + 0.447040i \(0.852478\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −12.5392 19.6063i −0.776160 1.21360i
\(262\) 0 0
\(263\) −14.4168 −0.888977 −0.444489 0.895784i \(-0.646615\pi\)
−0.444489 + 0.895784i \(0.646615\pi\)
\(264\) 0 0
\(265\) −13.9260 + 24.1205i −0.855468 + 1.48171i
\(266\) 0 0
\(267\) 5.70782 + 9.38753i 0.349313 + 0.574507i
\(268\) 0 0
\(269\) −6.44997 + 11.1717i −0.393262 + 0.681150i −0.992878 0.119138i \(-0.961987\pi\)
0.599616 + 0.800288i \(0.295320\pi\)
\(270\) 0 0
\(271\) −9.73110 16.8548i −0.591122 1.02385i −0.994082 0.108636i \(-0.965352\pi\)
0.402959 0.915218i \(-0.367982\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.55359 −0.0936849
\(276\) 0 0
\(277\) 15.9124 0.956084 0.478042 0.878337i \(-0.341347\pi\)
0.478042 + 0.878337i \(0.341347\pi\)
\(278\) 0 0
\(279\) −1.31028 2.04876i −0.0784446 0.122656i
\(280\) 0 0
\(281\) −13.9998 24.2484i −0.835158 1.44654i −0.893901 0.448263i \(-0.852043\pi\)
0.0587432 0.998273i \(-0.481291\pi\)
\(282\) 0 0
\(283\) 2.62345 + 4.54394i 0.155948 + 0.270109i 0.933404 0.358828i \(-0.116824\pi\)
−0.777456 + 0.628937i \(0.783490\pi\)
\(284\) 0 0
\(285\) −18.4477 30.3406i −1.09275 1.79722i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.762363 1.32045i −0.0448449 0.0776736i
\(290\) 0 0
\(291\) 10.7672 + 17.7085i 0.631182 + 1.03809i
\(292\) 0 0
\(293\) −1.65939 + 2.87415i −0.0969428 + 0.167910i −0.910418 0.413690i \(-0.864240\pi\)
0.813475 + 0.581600i \(0.197573\pi\)
\(294\) 0 0
\(295\) −5.73471 9.93282i −0.333888 0.578311i
\(296\) 0 0
\(297\) −11.7138 + 0.798868i −0.679704 + 0.0463551i
\(298\) 0 0
\(299\) 3.16171 5.47625i 0.182847 0.316700i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 18.7826 0.426398i 1.07903 0.0244959i
\(304\) 0 0
\(305\) −1.37360 + 2.37915i −0.0786521 + 0.136230i
\(306\) 0 0
\(307\) −12.4703 −0.711715 −0.355857 0.934540i \(-0.615811\pi\)
−0.355857 + 0.934540i \(0.615811\pi\)
\(308\) 0 0
\(309\) 31.7654 0.721130i 1.80707 0.0410236i
\(310\) 0 0
\(311\) 11.3383 + 19.6385i 0.642936 + 1.11360i 0.984774 + 0.173840i \(0.0556174\pi\)
−0.341838 + 0.939759i \(0.611049\pi\)
\(312\) 0 0
\(313\) 3.16108 5.47515i 0.178675 0.309474i −0.762752 0.646691i \(-0.776152\pi\)
0.941427 + 0.337217i \(0.109486\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.79041 13.4934i 0.437553 0.757864i −0.559947 0.828528i \(-0.689179\pi\)
0.997500 + 0.0706643i \(0.0225119\pi\)
\(318\) 0 0
\(319\) 8.76453 + 15.1806i 0.490719 + 0.849951i
\(320\) 0 0
\(321\) −3.45012 5.67434i −0.192567 0.316711i
\(322\) 0 0
\(323\) 36.9987 2.05867
\(324\) 0 0
\(325\) 1.63560 2.83294i 0.0907266 0.157143i
\(326\) 0 0
\(327\) −2.19997 + 4.01841i −0.121659 + 0.222219i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.8634 18.8159i 0.597104 1.03422i −0.396142 0.918189i \(-0.629651\pi\)
0.993246 0.116026i \(-0.0370155\pi\)
\(332\) 0 0
\(333\) 7.48738 + 11.7073i 0.410306 + 0.641554i
\(334\) 0 0
\(335\) −4.92190 8.52499i −0.268912 0.465770i
\(336\) 0 0
\(337\) 4.04329 7.00319i 0.220252 0.381488i −0.734632 0.678465i \(-0.762645\pi\)
0.954884 + 0.296977i \(0.0959786\pi\)
\(338\) 0 0
\(339\) −4.39626 + 8.03009i −0.238772 + 0.436135i
\(340\) 0 0
\(341\) 0.915846 + 1.58629i 0.0495959 + 0.0859026i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −5.48870 + 0.124603i −0.295502 + 0.00670839i
\(346\) 0 0
\(347\) 0.466877 + 0.808654i 0.0250632 + 0.0434108i 0.878285 0.478138i \(-0.158688\pi\)
−0.853222 + 0.521548i \(0.825355\pi\)
\(348\) 0 0
\(349\) −1.90264 3.29548i −0.101846 0.176403i 0.810599 0.585601i \(-0.199142\pi\)
−0.912445 + 0.409199i \(0.865808\pi\)
\(350\) 0 0
\(351\) 10.8754 22.2009i 0.580487 1.18500i
\(352\) 0 0
\(353\) −13.1195 −0.698280 −0.349140 0.937071i \(-0.613526\pi\)
−0.349140 + 0.937071i \(0.613526\pi\)
\(354\) 0 0
\(355\) 10.5314 0.558947
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.7829 + 18.6765i 0.569100 + 0.985710i 0.996655 + 0.0817206i \(0.0260415\pi\)
−0.427556 + 0.903989i \(0.640625\pi\)
\(360\) 0 0
\(361\) −27.4481 + 47.5415i −1.44464 + 2.50218i
\(362\) 0 0
\(363\) −10.2067 + 0.231710i −0.535715 + 0.0121616i
\(364\) 0 0
\(365\) −14.4425 + 25.0151i −0.755954 + 1.30935i
\(366\) 0 0
\(367\) 18.6619 0.974143 0.487072 0.873362i \(-0.338065\pi\)
0.487072 + 0.873362i \(0.338065\pi\)
\(368\) 0 0
\(369\) 13.8173 26.6574i 0.719300 1.38773i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −20.1707 −1.04440 −0.522201 0.852823i \(-0.674889\pi\)
−0.522201 + 0.852823i \(0.674889\pi\)
\(374\) 0 0
\(375\) 17.8088 0.404290i 0.919643 0.0208774i
\(376\) 0 0
\(377\) −36.9087 −1.90090
\(378\) 0 0
\(379\) 18.2436 0.937110 0.468555 0.883434i \(-0.344775\pi\)
0.468555 + 0.883434i \(0.344775\pi\)
\(380\) 0 0
\(381\) −13.2834 + 0.301556i −0.680529 + 0.0154492i
\(382\) 0 0
\(383\) −22.8563 −1.16790 −0.583952 0.811788i \(-0.698494\pi\)
−0.583952 + 0.811788i \(0.698494\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −5.63436 8.80988i −0.286411 0.447831i
\(388\) 0 0
\(389\) 12.3429 0.625811 0.312905 0.949784i \(-0.398698\pi\)
0.312905 + 0.949784i \(0.398698\pi\)
\(390\) 0 0
\(391\) 2.86025 4.95410i 0.144649 0.250539i
\(392\) 0 0
\(393\) −33.5587 + 0.761840i −1.69281 + 0.0384298i
\(394\) 0 0
\(395\) −10.0954 + 17.4858i −0.507955 + 0.879804i
\(396\) 0 0
\(397\) 13.1016 + 22.6927i 0.657551 + 1.13891i 0.981248 + 0.192751i \(0.0617410\pi\)
−0.323696 + 0.946161i \(0.604926\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.91118 0.195315 0.0976575 0.995220i \(-0.468865\pi\)
0.0976575 + 0.995220i \(0.468865\pi\)
\(402\) 0 0
\(403\) −3.85676 −0.192119
\(404\) 0 0
\(405\) −21.3753 + 1.94604i −1.06215 + 0.0966997i
\(406\) 0 0
\(407\) −5.23344 9.06459i −0.259412 0.449315i
\(408\) 0 0
\(409\) −1.05065 1.81978i −0.0519513 0.0899823i 0.838880 0.544316i \(-0.183211\pi\)
−0.890832 + 0.454334i \(0.849877\pi\)
\(410\) 0 0
\(411\) −16.7792 + 0.380916i −0.827657 + 0.0187892i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.95036 3.37812i −0.0957393 0.165825i
\(416\) 0 0
\(417\) 6.34127 11.5828i 0.310533 0.567212i
\(418\) 0 0
\(419\) −11.7017 + 20.2679i −0.571664 + 0.990150i 0.424732 + 0.905319i \(0.360368\pi\)
−0.996395 + 0.0848311i \(0.972965\pi\)
\(420\) 0 0
\(421\) 9.78341 + 16.9454i 0.476814 + 0.825866i 0.999647 0.0265688i \(-0.00845812\pi\)
−0.522833 + 0.852435i \(0.675125\pi\)
\(422\) 0 0
\(423\) 6.02856 11.6307i 0.293118 0.565506i
\(424\) 0 0
\(425\) 1.47965 2.56282i 0.0717733 0.124315i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −8.94161 + 16.3325i −0.431705 + 0.788542i
\(430\) 0 0
\(431\) −3.35438 + 5.80996i −0.161575 + 0.279856i −0.935434 0.353502i \(-0.884991\pi\)
0.773859 + 0.633358i \(0.218324\pi\)
\(432\) 0 0
\(433\) 9.46607 0.454910 0.227455 0.973789i \(-0.426959\pi\)
0.227455 + 0.973789i \(0.426959\pi\)
\(434\) 0 0
\(435\) 16.6481 + 27.3809i 0.798217 + 1.31281i
\(436\) 0 0
\(437\) 5.71267 + 9.89463i 0.273274 + 0.473324i
\(438\) 0 0
\(439\) −3.82386 + 6.62312i −0.182503 + 0.316104i −0.942732 0.333550i \(-0.891753\pi\)
0.760229 + 0.649655i \(0.225087\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.0763 + 31.3091i −0.858833 + 1.48754i 0.0142102 + 0.999899i \(0.495477\pi\)
−0.873043 + 0.487643i \(0.837857\pi\)
\(444\) 0 0
\(445\) −7.56371 13.1007i −0.358554 0.621034i
\(446\) 0 0
\(447\) −15.7434 + 0.357402i −0.744637 + 0.0169045i
\(448\) 0 0
\(449\) 13.7337 0.648132 0.324066 0.946034i \(-0.394950\pi\)
0.324066 + 0.946034i \(0.394950\pi\)
\(450\) 0 0
\(451\) −11.3074 + 19.5851i −0.532446 + 0.922224i
\(452\) 0 0
\(453\) −35.0792 + 0.796357i −1.64816 + 0.0374161i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.213109 0.369115i 0.00996881 0.0172665i −0.860998 0.508608i \(-0.830160\pi\)
0.870967 + 0.491342i \(0.163493\pi\)
\(458\) 0 0
\(459\) 9.83847 20.0841i 0.459221 0.937447i
\(460\) 0 0
\(461\) −2.26453 3.92228i −0.105470 0.182679i 0.808460 0.588551i \(-0.200301\pi\)
−0.913930 + 0.405872i \(0.866968\pi\)
\(462\) 0 0
\(463\) 16.5598 28.6825i 0.769600 1.33299i −0.168179 0.985756i \(-0.553789\pi\)
0.937780 0.347230i \(-0.112878\pi\)
\(464\) 0 0
\(465\) 1.73964 + 2.86115i 0.0806740 + 0.132683i
\(466\) 0 0
\(467\) 0.756660 + 1.31057i 0.0350140 + 0.0606461i 0.883001 0.469370i \(-0.155519\pi\)
−0.847987 + 0.530016i \(0.822186\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −7.52407 12.3747i −0.346691 0.570195i
\(472\) 0 0
\(473\) 3.93824 + 6.82123i 0.181080 + 0.313640i
\(474\) 0 0
\(475\) 2.95524 + 5.11863i 0.135596 + 0.234859i
\(476\) 0 0
\(477\) 16.1230 31.1058i 0.738223 1.42424i
\(478\) 0 0
\(479\) 22.2926 1.01858 0.509288 0.860596i \(-0.329909\pi\)
0.509288 + 0.860596i \(0.329909\pi\)
\(480\) 0 0
\(481\) 22.0388 1.00488
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −14.2681 24.7131i −0.647881 1.12216i
\(486\) 0 0
\(487\) −2.31676 + 4.01275i −0.104983 + 0.181835i −0.913731 0.406319i \(-0.866812\pi\)
0.808749 + 0.588155i \(0.200145\pi\)
\(488\) 0 0
\(489\) 17.4425 + 28.6874i 0.788778 + 1.29729i
\(490\) 0 0
\(491\) −12.5858 + 21.7993i −0.567990 + 0.983788i 0.428774 + 0.903412i \(0.358946\pi\)
−0.996765 + 0.0803766i \(0.974388\pi\)
\(492\) 0 0
\(493\) −33.3895 −1.50379
\(494\) 0 0
\(495\) 16.1496 0.733623i 0.725869 0.0329739i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.27455 −0.101823 −0.0509114 0.998703i \(-0.516213\pi\)
−0.0509114 + 0.998703i \(0.516213\pi\)
\(500\) 0 0
\(501\) −14.7081 + 26.8655i −0.657111 + 1.20026i
\(502\) 0 0
\(503\) −8.94793 −0.398968 −0.199484 0.979901i \(-0.563927\pi\)
−0.199484 + 0.979901i \(0.563927\pi\)
\(504\) 0 0
\(505\) −25.8685 −1.15113
\(506\) 0 0
\(507\) −8.67042 14.2601i −0.385067 0.633312i
\(508\) 0 0
\(509\) −33.2687 −1.47461 −0.737304 0.675561i \(-0.763901\pi\)
−0.737304 + 0.675561i \(0.763901\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 24.9141 + 37.0740i 1.09998 + 1.63686i
\(514\) 0 0
\(515\) −43.7491 −1.92782
\(516\) 0 0
\(517\) −4.93349 + 8.54505i −0.216975 + 0.375811i
\(518\) 0 0
\(519\) −17.6213 + 32.1866i −0.773490 + 1.41284i
\(520\) 0 0
\(521\) 7.57396 13.1185i 0.331821 0.574731i −0.651048 0.759037i \(-0.725670\pi\)
0.982869 + 0.184306i \(0.0590036\pi\)
\(522\) 0 0
\(523\) 5.23952 + 9.07512i 0.229108 + 0.396827i 0.957544 0.288287i \(-0.0930856\pi\)
−0.728436 + 0.685114i \(0.759752\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.48903 −0.151984
\(528\) 0 0
\(529\) −21.2335 −0.923195
\(530\) 0 0
\(531\) 7.77348 + 12.1546i 0.337340 + 0.527465i
\(532\) 0 0
\(533\) −23.8086 41.2378i −1.03127 1.78621i
\(534\) 0 0
\(535\) 4.57192 + 7.91880i 0.197661 + 0.342360i
\(536\) 0 0
\(537\) −10.8027 + 19.7319i −0.466171 + 0.851496i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.43874 4.22402i −0.104850 0.181605i 0.808827 0.588047i \(-0.200103\pi\)
−0.913677 + 0.406442i \(0.866769\pi\)
\(542\) 0 0
\(543\) −29.1322 + 0.661349i −1.25018 + 0.0283812i
\(544\) 0 0
\(545\) 3.15393 5.46277i 0.135100 0.234000i
\(546\) 0 0
\(547\) 9.62179 + 16.6654i 0.411398 + 0.712562i 0.995043 0.0994468i \(-0.0317073\pi\)
−0.583645 + 0.812009i \(0.698374\pi\)
\(548\) 0 0
\(549\) 1.59031 3.06814i 0.0678726 0.130945i
\(550\) 0 0
\(551\) 33.3438 57.7532i 1.42049 2.46037i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −9.94087 16.3496i −0.421967 0.694000i
\(556\) 0 0
\(557\) −7.32388 + 12.6853i −0.310323 + 0.537495i −0.978432 0.206568i \(-0.933771\pi\)
0.668109 + 0.744063i \(0.267104\pi\)
\(558\) 0 0
\(559\) −16.5845 −0.701450
\(560\) 0 0
\(561\) −8.08905 + 14.7752i −0.341520 + 0.623811i
\(562\) 0 0
\(563\) −1.85335 3.21010i −0.0781095 0.135290i 0.824325 0.566117i \(-0.191555\pi\)
−0.902434 + 0.430828i \(0.858222\pi\)
\(564\) 0 0
\(565\) 6.30259 10.9164i 0.265152 0.459257i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.1768 + 26.2871i −0.636246 + 1.10201i 0.350004 + 0.936748i \(0.386180\pi\)
−0.986250 + 0.165262i \(0.947153\pi\)
\(570\) 0 0
\(571\) 5.88458 + 10.1924i 0.246262 + 0.426539i 0.962486 0.271332i \(-0.0874642\pi\)
−0.716224 + 0.697871i \(0.754131\pi\)
\(572\) 0 0
\(573\) −7.62825 + 13.9336i −0.318675 + 0.582083i
\(574\) 0 0
\(575\) 0.913839 0.0381097
\(576\) 0 0
\(577\) 1.79640 3.11146i 0.0747852 0.129532i −0.826208 0.563366i \(-0.809506\pi\)
0.900993 + 0.433834i \(0.142840\pi\)
\(578\) 0 0
\(579\) 23.0636 + 37.9323i 0.958491 + 1.57641i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −13.1943 + 22.8533i −0.546454 + 0.946485i
\(584\) 0 0
\(585\) −15.6643 + 30.2208i −0.647639 + 1.24947i
\(586\) 0 0
\(587\) −4.62298 8.00724i −0.190811 0.330494i 0.754708 0.656060i \(-0.227778\pi\)
−0.945519 + 0.325566i \(0.894445\pi\)
\(588\) 0 0
\(589\) 3.48425 6.03490i 0.143566 0.248664i
\(590\) 0 0
\(591\) 27.8851 0.633039i 1.14704 0.0260398i
\(592\) 0 0
\(593\) 17.0396 + 29.5135i 0.699735 + 1.21198i 0.968558 + 0.248786i \(0.0800317\pi\)
−0.268824 + 0.963189i \(0.586635\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 15.9932 29.2128i 0.654560 1.19560i
\(598\) 0 0
\(599\) 3.51340 + 6.08539i 0.143554 + 0.248642i 0.928832 0.370500i \(-0.120814\pi\)
−0.785279 + 0.619142i \(0.787480\pi\)
\(600\) 0 0
\(601\) 2.31218 + 4.00481i 0.0943158 + 0.163360i 0.909323 0.416091i \(-0.136600\pi\)
−0.815007 + 0.579451i \(0.803267\pi\)
\(602\) 0 0
\(603\) 6.67171 + 10.4319i 0.271693 + 0.424818i
\(604\) 0 0
\(605\) 14.0573 0.571510
\(606\) 0 0
\(607\) −20.2081 −0.820222 −0.410111 0.912036i \(-0.634510\pi\)
−0.410111 + 0.912036i \(0.634510\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −10.3878 17.9922i −0.420246 0.727888i
\(612\) 0 0
\(613\) 8.91037 15.4332i 0.359887 0.623342i −0.628055 0.778169i \(-0.716149\pi\)
0.987942 + 0.154827i \(0.0494820\pi\)
\(614\) 0 0
\(615\) −19.8532 + 36.2633i −0.800558 + 1.46228i
\(616\) 0 0
\(617\) 15.0671 26.0969i 0.606577 1.05062i −0.385223 0.922824i \(-0.625875\pi\)
0.991800 0.127799i \(-0.0407913\pi\)
\(618\) 0 0
\(619\) 31.9116 1.28264 0.641318 0.767275i \(-0.278388\pi\)
0.641318 + 0.767275i \(0.278388\pi\)
\(620\) 0 0
\(621\) 6.89020 0.469904i 0.276494 0.0188566i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −27.9651 −1.11860
\(626\) 0 0
\(627\) −17.4785 28.7465i −0.698023 1.14802i
\(628\) 0 0
\(629\) 19.9374 0.794957
\(630\) 0 0
\(631\) −10.1430 −0.403788 −0.201894 0.979407i \(-0.564710\pi\)
−0.201894 + 0.979407i \(0.564710\pi\)
\(632\) 0 0
\(633\) −20.5030 + 37.4503i −0.814922 + 1.48852i
\(634\) 0 0
\(635\) 18.2946 0.726000
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −13.2341 + 0.601184i −0.523534 + 0.0237825i
\(640\) 0 0
\(641\) 43.8512 1.73202 0.866009 0.500028i \(-0.166677\pi\)
0.866009 + 0.500028i \(0.166677\pi\)
\(642\) 0 0
\(643\) −1.10737 + 1.91802i −0.0436704 + 0.0756394i −0.887034 0.461703i \(-0.847238\pi\)
0.843364 + 0.537343i \(0.180572\pi\)
\(644\) 0 0
\(645\) 7.48065 + 12.3033i 0.294550 + 0.484441i
\(646\) 0 0
\(647\) 10.4633 18.1230i 0.411355 0.712488i −0.583683 0.811981i \(-0.698389\pi\)
0.995038 + 0.0994938i \(0.0317224\pi\)
\(648\) 0 0
\(649\) −5.43341 9.41095i −0.213280 0.369412i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.02883 0.314193 0.157096 0.987583i \(-0.449787\pi\)
0.157096 + 0.987583i \(0.449787\pi\)
\(654\) 0 0
\(655\) 46.2189 1.80592
\(656\) 0 0
\(657\) 16.7210 32.2594i 0.652348 1.25856i
\(658\) 0 0
\(659\) 9.25793 + 16.0352i 0.360638 + 0.624643i 0.988066 0.154031i \(-0.0492257\pi\)
−0.627428 + 0.778675i \(0.715892\pi\)
\(660\) 0 0
\(661\) −10.4273 18.0606i −0.405574 0.702474i 0.588814 0.808268i \(-0.299595\pi\)
−0.994388 + 0.105794i \(0.966262\pi\)
\(662\) 0 0
\(663\) −18.4263 30.3054i −0.715619 1.17696i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.15540 8.92941i −0.199618 0.345748i
\(668\) 0 0
\(669\) −13.3371 21.9352i −0.515640 0.848063i
\(670\) 0 0
\(671\) −1.30143 + 2.25415i −0.0502412 + 0.0870204i
\(672\) 0 0
\(673\) 11.4484 + 19.8292i 0.441303 + 0.764360i 0.997786 0.0664992i \(-0.0211830\pi\)
−0.556483 + 0.830859i \(0.687850\pi\)
\(674\) 0 0
\(675\) 3.56440 0.243088i 0.137194 0.00935645i
\(676\) 0 0
\(677\) 23.3119 40.3774i 0.895948 1.55183i 0.0633218 0.997993i \(-0.479831\pi\)
0.832627 0.553835i \(-0.186836\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 31.4373 0.713681i 1.20468 0.0273483i
\(682\) 0 0
\(683\) 18.3102 31.7141i 0.700618 1.21351i −0.267631 0.963521i \(-0.586241\pi\)
0.968250 0.249985i \(-0.0804258\pi\)
\(684\) 0 0
\(685\) 23.1092 0.882958
\(686\) 0 0
\(687\) −16.4622 + 0.373720i −0.628073 + 0.0142583i
\(688\) 0 0
\(689\) −27.7816 48.1192i −1.05840 1.83320i
\(690\) 0 0
\(691\) −13.2586 + 22.9645i −0.504380 + 0.873611i 0.495607 + 0.868547i \(0.334945\pi\)
−0.999987 + 0.00506472i \(0.998388\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.09101 + 15.7461i −0.344842 + 0.597283i
\(696\) 0 0
\(697\) −21.5385 37.3058i −0.815830 1.41306i
\(698\) 0 0
\(699\) −18.3057 30.1069i −0.692383 1.13875i
\(700\) 0 0
\(701\) −29.9931 −1.13282 −0.566411 0.824123i \(-0.691669\pi\)
−0.566411 + 0.824123i \(0.691669\pi\)
\(702\) 0 0
\(703\) −19.9101 + 34.4854i −0.750925 + 1.30064i
\(704\) 0 0
\(705\) −8.66204 + 15.8219i −0.326231 + 0.595886i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.48805 + 9.50558i −0.206108 + 0.356990i −0.950485 0.310770i \(-0.899413\pi\)
0.744377 + 0.667759i \(0.232746\pi\)
\(710\) 0 0
\(711\) 11.6881 22.5496i 0.438338 0.845676i
\(712\) 0 0
\(713\) −0.538712 0.933076i −0.0201749 0.0349440i
\(714\) 0 0
\(715\) 12.8189 22.2030i 0.479401 0.830346i
\(716\) 0 0
\(717\) 14.8144 27.0595i 0.553252 1.01056i
\(718\) 0 0
\(719\) 6.55211 + 11.3486i 0.244352 + 0.423231i 0.961949 0.273228i \(-0.0880913\pi\)
−0.717597 + 0.696459i \(0.754758\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −10.8896 + 0.247212i −0.404988 + 0.00919392i
\(724\) 0 0
\(725\) −2.66696 4.61931i −0.0990483 0.171557i
\(726\) 0 0
\(727\) −8.96026 15.5196i −0.332318 0.575591i 0.650648 0.759379i \(-0.274497\pi\)
−0.982966 + 0.183788i \(0.941164\pi\)
\(728\) 0 0
\(729\) 26.7500 3.66569i 0.990741 0.135766i
\(730\) 0 0
\(731\) −15.0032 −0.554913
\(732\) 0 0
\(733\) 5.91320 0.218409 0.109204 0.994019i \(-0.465170\pi\)
0.109204 + 0.994019i \(0.465170\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.66331 8.07709i −0.171775 0.297523i
\(738\) 0 0
\(739\) 14.5887 25.2683i 0.536653 0.929511i −0.462428 0.886657i \(-0.653022\pi\)
0.999081 0.0428538i \(-0.0136450\pi\)
\(740\) 0 0
\(741\) 70.8197 1.60773i 2.60163 0.0590614i
\(742\) 0 0
\(743\) −18.8512 + 32.6513i −0.691584 + 1.19786i 0.279735 + 0.960077i \(0.409753\pi\)
−0.971319 + 0.237781i \(0.923580\pi\)
\(744\) 0 0
\(745\) 21.6827 0.794391
\(746\) 0 0
\(747\) 2.64374 + 4.13374i 0.0967292 + 0.151246i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 40.6553 1.48353 0.741767 0.670658i \(-0.233988\pi\)
0.741767 + 0.670658i \(0.233988\pi\)
\(752\) 0 0
\(753\) 43.6136 0.990103i 1.58937 0.0360814i
\(754\) 0 0
\(755\) 48.3130 1.75829
\(756\) 0 0
\(757\) 17.6704 0.642241 0.321120 0.947038i \(-0.395941\pi\)
0.321120 + 0.947038i \(0.395941\pi\)
\(758\) 0 0
\(759\) −5.20033 + 0.118056i −0.188760 + 0.00428517i
\(760\) 0 0
\(761\) −1.28837 −0.0467033 −0.0233516 0.999727i \(-0.507434\pi\)
−0.0233516 + 0.999727i \(0.507434\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −14.1707 + 27.3393i −0.512344 + 0.988453i
\(766\) 0 0
\(767\) 22.8809 0.826182
\(768\) 0 0
\(769\) 4.19275 7.26205i 0.151194 0.261876i −0.780472 0.625190i \(-0.785021\pi\)
0.931667 + 0.363314i \(0.118355\pi\)
\(770\) 0 0
\(771\) −49.6629 + 1.12743i −1.78857 + 0.0406035i
\(772\) 0 0
\(773\) −25.1530 + 43.5663i −0.904691 + 1.56697i −0.0833598 + 0.996520i \(0.526565\pi\)
−0.821331 + 0.570451i \(0.806768\pi\)
\(774\) 0 0
\(775\) −0.278683 0.482693i −0.0100106 0.0173388i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 86.0362 3.08257
\(780\) 0 0
\(781\) 9.97806 0.357043
\(782\) 0 0
\(783\) −22.4837 33.4575i −0.803503 1.19567i
\(784\) 0 0
\(785\) 9.97051 + 17.2694i 0.355863 + 0.616373i
\(786\) 0 0
\(787\) −11.1922 19.3855i −0.398960 0.691020i 0.594638 0.803994i \(-0.297296\pi\)
−0.993598 + 0.112974i \(0.963962\pi\)
\(788\) 0 0
\(789\) −24.9642 + 0.566729i −0.888748 + 0.0201761i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.74026 4.74627i −0.0973095 0.168545i
\(794\) 0 0
\(795\) −23.1661 + 42.3147i −0.821618 + 1.50075i
\(796\) 0 0
\(797\) −0.706182 + 1.22314i −0.0250143 + 0.0433260i −0.878262 0.478181i \(-0.841296\pi\)
0.853247 + 0.521507i \(0.174630\pi\)
\(798\) 0 0
\(799\) −9.39736 16.2767i −0.332455 0.575828i
\(800\) 0 0
\(801\) 10.2527 + 16.0311i 0.362262 + 0.566431i
\(802\) 0 0
\(803\) −13.6837 + 23.7008i −0.482887 + 0.836384i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −10.7296 + 19.5985i −0.377701 + 0.689900i
\(808\) 0 0
\(809\) −10.0424 + 17.3939i −0.353071 + 0.611537i −0.986786 0.162030i \(-0.948196\pi\)
0.633715 + 0.773567i \(0.281529\pi\)
\(810\) 0 0
\(811\) 55.7821 1.95878 0.979388 0.201988i \(-0.0647401\pi\)
0.979388 + 0.201988i \(0.0647401\pi\)
\(812\) 0 0
\(813\) −17.5130 28.8033i −0.614207 1.01017i
\(814\) 0 0
\(815\) −23.1140 40.0345i −0.809646 1.40235i
\(816\) 0 0
\(817\) 14.9827 25.9507i 0.524177 0.907901i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.4346 42.3219i 0.852772 1.47704i −0.0259249 0.999664i \(-0.508253\pi\)
0.878697 0.477380i \(-0.158414\pi\)
\(822\) 0 0
\(823\) 0.266319 + 0.461277i 0.00928328 + 0.0160791i 0.870630 0.491939i \(-0.163712\pi\)
−0.861346 + 0.508018i \(0.830378\pi\)
\(824\) 0 0
\(825\) −2.69020 + 0.0610721i −0.0936607 + 0.00212626i
\(826\) 0 0
\(827\) 10.1951 0.354518 0.177259 0.984164i \(-0.443277\pi\)
0.177259 + 0.984164i \(0.443277\pi\)
\(828\) 0 0
\(829\) −10.6346 + 18.4197i −0.369355 + 0.639742i −0.989465 0.144773i \(-0.953755\pi\)
0.620110 + 0.784515i \(0.287088\pi\)
\(830\) 0 0
\(831\) 27.5540 0.625522i 0.955837 0.0216991i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 21.0859 36.5219i 0.729709 1.26389i
\(836\) 0 0
\(837\) −2.34943 3.49613i −0.0812082 0.120844i
\(838\) 0 0
\(839\) 9.47717 + 16.4149i 0.327188 + 0.566707i 0.981953 0.189126i \(-0.0605655\pi\)
−0.654765 + 0.755833i \(0.727232\pi\)
\(840\) 0 0
\(841\) −15.5912 + 27.0047i −0.537626 + 0.931196i
\(842\) 0 0
\(843\) −25.1953 41.4383i −0.867774 1.42721i
\(844\) 0 0
\(845\) 11.4896 + 19.9006i 0.395254 + 0.684601i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 4.72140 + 7.76518i 0.162038 + 0.266500i
\(850\) 0 0
\(851\) 3.07837 + 5.33190i 0.105525 + 0.182775i
\(852\) 0 0
\(853\) −2.75811 4.77718i −0.0944358 0.163568i 0.814937 0.579549i \(-0.196771\pi\)
−0.909373 + 0.415982i \(0.863438\pi\)
\(854\) 0 0
\(855\) −33.1368 51.8127i −1.13326 1.77196i
\(856\) 0 0
\(857\) 15.8494 0.541406 0.270703 0.962663i \(-0.412744\pi\)
0.270703 + 0.962663i \(0.412744\pi\)
\(858\) 0 0
\(859\) −21.4009 −0.730189 −0.365095 0.930970i \(-0.618963\pi\)
−0.365095 + 0.930970i \(0.618963\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.01860 + 3.49632i 0.0687140 + 0.119016i 0.898335 0.439310i \(-0.144777\pi\)
−0.829621 + 0.558326i \(0.811444\pi\)
\(864\) 0 0
\(865\) 25.2624 43.7557i 0.858946 1.48774i
\(866\) 0 0
\(867\) −1.37202 2.25653i −0.0465962 0.0766358i
\(868\) 0 0
\(869\) −9.56500 + 16.5671i −0.324470 + 0.561999i
\(870\) 0 0
\(871\) 19.6379 0.665404
\(872\) 0 0
\(873\) 19.3406 + 30.2409i 0.654580 + 1.02350i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −25.3810 −0.857057 −0.428529 0.903528i \(-0.640968\pi\)
−0.428529 + 0.903528i \(0.640968\pi\)
\(878\) 0 0
\(879\) −2.76043 + 5.04213i −0.0931070 + 0.170067i
\(880\) 0 0
\(881\) −18.7755 −0.632561 −0.316281 0.948666i \(-0.602434\pi\)
−0.316281 + 0.948666i \(0.602434\pi\)
\(882\) 0 0
\(883\) 8.52167 0.286777 0.143388 0.989666i \(-0.454200\pi\)
0.143388 + 0.989666i \(0.454200\pi\)
\(884\) 0 0
\(885\) −10.3207 16.9743i −0.346927 0.570584i
\(886\) 0 0
\(887\) −10.1008 −0.339152 −0.169576 0.985517i \(-0.554240\pi\)
−0.169576 + 0.985517i \(0.554240\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −20.2523 + 1.84380i −0.678477 + 0.0617696i
\(892\) 0 0
\(893\) 37.5380 1.25616
\(894\) 0 0
\(895\) 15.4870 26.8243i 0.517674 0.896638i
\(896\) 0 0
\(897\) 5.25956 9.60698i 0.175612 0.320768i
\(898\) 0 0
\(899\) −3.14437 + 5.44620i −0.104870 + 0.181641i
\(900\) 0 0
\(901\) −25.1327 43.5311i −0.837292 1.45023i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 40.1224 1.33371
\(906\) 0 0
\(907\) −21.2176 −0.704519 −0.352260 0.935902i \(-0.614587\pi\)
−0.352260 + 0.935902i \(0.614587\pi\)
\(908\) 0 0
\(909\) 32.5073 1.47670i 1.07820 0.0489792i
\(910\) 0 0
\(911\) −4.46609 7.73550i −0.147968 0.256289i 0.782508 0.622640i \(-0.213940\pi\)
−0.930476 + 0.366352i \(0.880607\pi\)
\(912\) 0 0
\(913\) −1.84789 3.20063i −0.0611561 0.105925i
\(914\) 0 0
\(915\) −2.28501 + 4.17374i −0.0755400 + 0.137980i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −17.4564 30.2354i −0.575834 0.997374i −0.995950 0.0899041i \(-0.971344\pi\)
0.420116 0.907470i \(-0.361989\pi\)
\(920\) 0 0
\(921\) −21.5935 + 0.490210i −0.711532 + 0.0161530i
\(922\) 0 0
\(923\) −10.5048 + 18.1948i −0.345769 + 0.598889i
\(924\) 0 0
\(925\) 1.59248 + 2.75826i 0.0523605 + 0.0906911i
\(926\) 0 0
\(927\) 54.9768 2.49742i 1.80568 0.0820261i
\(928\) 0 0
\(929\) −5.51692 + 9.55559i −0.181004 + 0.313509i −0.942223 0.334987i \(-0.891268\pi\)
0.761218 + 0.648496i \(0.224601\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 20.4055 + 33.5604i 0.668045 + 1.09872i
\(934\) 0 0
\(935\) 11.5967 20.0860i 0.379251 0.656883i
\(936\) 0 0
\(937\) 13.6426 0.445686 0.222843 0.974854i \(-0.428466\pi\)
0.222843 + 0.974854i \(0.428466\pi\)
\(938\) 0 0
\(939\) 5.25851 9.60506i 0.171605 0.313449i
\(940\) 0 0
\(941\) 12.0278 + 20.8328i 0.392095 + 0.679129i 0.992726 0.120398i \(-0.0384170\pi\)
−0.600630 + 0.799527i \(0.705084\pi\)
\(942\) 0 0
\(943\) 6.65117 11.5202i 0.216592 0.375148i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.69602 + 11.5978i −0.217591 + 0.376879i −0.954071 0.299580i \(-0.903153\pi\)
0.736480 + 0.676460i \(0.236487\pi\)
\(948\) 0 0
\(949\) −28.8120 49.9038i −0.935277 1.61995i
\(950\) 0 0
\(951\) 12.9595 23.6715i 0.420240 0.767600i
\(952\) 0 0
\(953\) 36.3444 1.17731 0.588655 0.808384i \(-0.299658\pi\)
0.588655 + 0.808384i \(0.299658\pi\)
\(954\) 0 0
\(955\) 10.9360 18.9418i 0.353882 0.612942i
\(956\) 0 0
\(957\) 15.7735 + 25.9423i 0.509883 + 0.838595i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.1714 26.2777i 0.489401 0.847667i
\(962\) 0 0
\(963\) −6.19730 9.69008i −0.199705 0.312259i
\(964\) 0 0
\(965\) −30.5627 52.9362i −0.983849 1.70408i
\(966\) 0 0
\(967\) 4.82455 8.35637i 0.155147 0.268723i −0.777965 0.628307i \(-0.783748\pi\)
0.933113 + 0.359584i \(0.117082\pi\)
\(968\) 0 0
\(969\) 64.0672 1.45443i 2.05813 0.0467232i
\(970\) 0 0
\(971\) 21.6888 + 37.5660i 0.696025 + 1.20555i 0.969834 + 0.243767i \(0.0783832\pi\)
−0.273809 + 0.961784i \(0.588283\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.72084 4.96982i 0.0871367 0.159162i
\(976\) 0 0
\(977\) −2.60004 4.50340i −0.0831826 0.144076i 0.821433 0.570305i \(-0.193175\pi\)
−0.904615 + 0.426229i \(0.859842\pi\)
\(978\) 0 0
\(979\) −7.16631 12.4124i −0.229036 0.396703i
\(980\) 0 0
\(981\) −3.65151 + 7.04478i −0.116584 + 0.224922i
\(982\) 0 0
\(983\) −23.2697 −0.742190 −0.371095 0.928595i \(-0.621018\pi\)
−0.371095 + 0.928595i \(0.621018\pi\)
\(984\) 0 0
\(985\) −38.4049 −1.22368
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.31652 4.01233i −0.0736610 0.127585i
\(990\) 0 0
\(991\) 19.5191 33.8080i 0.620044 1.07395i −0.369433 0.929257i \(-0.620448\pi\)
0.989477 0.144691i \(-0.0462187\pi\)
\(992\) 0 0
\(993\) 18.0714 33.0087i 0.573478 1.04750i
\(994\) 0 0
\(995\) −22.9283 + 39.7130i −0.726877 + 1.25899i
\(996\) 0 0
\(997\) 24.1809 0.765818 0.382909 0.923786i \(-0.374922\pi\)
0.382909 + 0.923786i \(0.374922\pi\)
\(998\) 0 0
\(999\) 13.4254 + 19.9780i 0.424761 + 0.632076i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.l.j.949.12 24
3.2 odd 2 5292.2.l.j.361.10 24
7.2 even 3 1764.2.i.j.373.5 24
7.3 odd 6 1764.2.j.i.589.8 yes 24
7.4 even 3 1764.2.j.i.589.5 24
7.5 odd 6 1764.2.i.j.373.8 24
7.6 odd 2 inner 1764.2.l.j.949.1 24
9.2 odd 6 5292.2.i.j.2125.3 24
9.7 even 3 1764.2.i.j.1537.5 24
21.2 odd 6 5292.2.i.j.1549.3 24
21.5 even 6 5292.2.i.j.1549.10 24
21.11 odd 6 5292.2.j.i.1765.3 24
21.17 even 6 5292.2.j.i.1765.10 24
21.20 even 2 5292.2.l.j.361.3 24
63.2 odd 6 5292.2.l.j.3313.10 24
63.11 odd 6 5292.2.j.i.3529.3 24
63.16 even 3 inner 1764.2.l.j.961.12 24
63.20 even 6 5292.2.i.j.2125.10 24
63.25 even 3 1764.2.j.i.1177.5 yes 24
63.34 odd 6 1764.2.i.j.1537.8 24
63.38 even 6 5292.2.j.i.3529.10 24
63.47 even 6 5292.2.l.j.3313.3 24
63.52 odd 6 1764.2.j.i.1177.8 yes 24
63.61 odd 6 inner 1764.2.l.j.961.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.5 24 7.2 even 3
1764.2.i.j.373.8 24 7.5 odd 6
1764.2.i.j.1537.5 24 9.7 even 3
1764.2.i.j.1537.8 24 63.34 odd 6
1764.2.j.i.589.5 24 7.4 even 3
1764.2.j.i.589.8 yes 24 7.3 odd 6
1764.2.j.i.1177.5 yes 24 63.25 even 3
1764.2.j.i.1177.8 yes 24 63.52 odd 6
1764.2.l.j.949.1 24 7.6 odd 2 inner
1764.2.l.j.949.12 24 1.1 even 1 trivial
1764.2.l.j.961.1 24 63.61 odd 6 inner
1764.2.l.j.961.12 24 63.16 even 3 inner
5292.2.i.j.1549.3 24 21.2 odd 6
5292.2.i.j.1549.10 24 21.5 even 6
5292.2.i.j.2125.3 24 9.2 odd 6
5292.2.i.j.2125.10 24 63.20 even 6
5292.2.j.i.1765.3 24 21.11 odd 6
5292.2.j.i.1765.10 24 21.17 even 6
5292.2.j.i.3529.3 24 63.11 odd 6
5292.2.j.i.3529.10 24 63.38 even 6
5292.2.l.j.361.3 24 21.20 even 2
5292.2.l.j.361.10 24 3.2 odd 2
5292.2.l.j.3313.3 24 63.47 even 6
5292.2.l.j.3313.10 24 63.2 odd 6