Properties

Label 5292.2.l.j.361.3
Level $5292$
Weight $2$
Character 5292.361
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(361,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.3
Character \(\chi\) \(=\) 5292.361
Dual form 5292.2.l.j.3313.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.38486 q^{5} +O(q^{10})\) \(q-2.38486 q^{5} +2.25956 q^{11} +(-2.37884 + 4.12027i) q^{13} +(2.15202 - 3.72740i) q^{17} +(-4.29815 - 7.44461i) q^{19} -1.32910 q^{23} +0.687562 q^{25} +(3.87886 + 6.71839i) q^{29} +(0.405320 + 0.702036i) q^{31} +(2.31613 + 4.01166i) q^{37} +(5.00426 - 8.66764i) q^{41} +(-1.74292 - 3.01883i) q^{43} +(2.18338 - 3.78173i) q^{47} +(-5.83934 + 10.1140i) q^{53} -5.38874 q^{55} +(2.40463 + 4.16495i) q^{59} +(-0.575967 + 0.997604i) q^{61} +(5.67319 - 9.82626i) q^{65} +(2.06381 + 3.57463i) q^{67} +4.41593 q^{71} +(-6.05590 + 10.4891i) q^{73} +(4.23312 - 7.33198i) q^{79} +(0.817808 + 1.41648i) q^{83} +(-5.13226 + 8.88934i) q^{85} +(3.17155 + 5.49329i) q^{89} +(10.2505 + 17.7543i) q^{95} +(-5.98278 - 10.3625i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 8 q^{11} - 16 q^{23} + 24 q^{25} + 32 q^{29} - 12 q^{37} + 16 q^{53} + 36 q^{65} + 12 q^{67} - 48 q^{71} + 12 q^{79} + 12 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.38486 −1.06654 −0.533271 0.845944i \(-0.679037\pi\)
−0.533271 + 0.845944i \(0.679037\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.25956 0.681283 0.340642 0.940193i \(-0.389356\pi\)
0.340642 + 0.940193i \(0.389356\pi\)
\(12\) 0 0
\(13\) −2.37884 + 4.12027i −0.659770 + 1.14276i 0.320904 + 0.947112i \(0.396013\pi\)
−0.980675 + 0.195644i \(0.937320\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.15202 3.72740i 0.521941 0.904028i −0.477733 0.878505i \(-0.658541\pi\)
0.999674 0.0255234i \(-0.00812524\pi\)
\(18\) 0 0
\(19\) −4.29815 7.44461i −0.986062 1.70791i −0.637118 0.770766i \(-0.719874\pi\)
−0.348944 0.937144i \(-0.613460\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.32910 −0.277137 −0.138568 0.990353i \(-0.544250\pi\)
−0.138568 + 0.990353i \(0.544250\pi\)
\(24\) 0 0
\(25\) 0.687562 0.137512
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.87886 + 6.71839i 0.720287 + 1.24757i 0.960885 + 0.276948i \(0.0893231\pi\)
−0.240598 + 0.970625i \(0.577344\pi\)
\(30\) 0 0
\(31\) 0.405320 + 0.702036i 0.0727977 + 0.126089i 0.900126 0.435629i \(-0.143474\pi\)
−0.827329 + 0.561718i \(0.810141\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.31613 + 4.01166i 0.380770 + 0.659513i 0.991172 0.132579i \(-0.0423257\pi\)
−0.610403 + 0.792091i \(0.708992\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.00426 8.66764i 0.781534 1.35366i −0.149513 0.988760i \(-0.547771\pi\)
0.931048 0.364898i \(-0.118896\pi\)
\(42\) 0 0
\(43\) −1.74292 3.01883i −0.265793 0.460367i 0.701978 0.712199i \(-0.252300\pi\)
−0.967771 + 0.251831i \(0.918967\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.18338 3.78173i 0.318479 0.551622i −0.661692 0.749776i \(-0.730161\pi\)
0.980171 + 0.198154i \(0.0634946\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.83934 + 10.1140i −0.802094 + 1.38927i 0.116141 + 0.993233i \(0.462948\pi\)
−0.918235 + 0.396036i \(0.870386\pi\)
\(54\) 0 0
\(55\) −5.38874 −0.726617
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.40463 + 4.16495i 0.313056 + 0.542230i 0.979022 0.203752i \(-0.0653137\pi\)
−0.665966 + 0.745982i \(0.731980\pi\)
\(60\) 0 0
\(61\) −0.575967 + 0.997604i −0.0737450 + 0.127730i −0.900540 0.434774i \(-0.856828\pi\)
0.826795 + 0.562504i \(0.190162\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.67319 9.82626i 0.703673 1.21880i
\(66\) 0 0
\(67\) 2.06381 + 3.57463i 0.252135 + 0.436710i 0.964113 0.265491i \(-0.0855341\pi\)
−0.711979 + 0.702201i \(0.752201\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.41593 0.524074 0.262037 0.965058i \(-0.415606\pi\)
0.262037 + 0.965058i \(0.415606\pi\)
\(72\) 0 0
\(73\) −6.05590 + 10.4891i −0.708790 + 1.22766i 0.256517 + 0.966540i \(0.417425\pi\)
−0.965306 + 0.261120i \(0.915908\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.23312 7.33198i 0.476263 0.824913i −0.523367 0.852108i \(-0.675324\pi\)
0.999630 + 0.0271950i \(0.00865752\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0.817808 + 1.41648i 0.0897661 + 0.155479i 0.907412 0.420242i \(-0.138055\pi\)
−0.817646 + 0.575721i \(0.804721\pi\)
\(84\) 0 0
\(85\) −5.13226 + 8.88934i −0.556672 + 0.964184i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.17155 + 5.49329i 0.336184 + 0.582287i 0.983711 0.179755i \(-0.0575304\pi\)
−0.647528 + 0.762042i \(0.724197\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.2505 + 17.7543i 1.05168 + 1.82156i
\(96\) 0 0
\(97\) −5.98278 10.3625i −0.607459 1.05215i −0.991658 0.128900i \(-0.958855\pi\)
0.384198 0.923251i \(-0.374478\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.8470 1.07931 0.539656 0.841885i \(-0.318554\pi\)
0.539656 + 0.841885i \(0.318554\pi\)
\(102\) 0 0
\(103\) −18.3445 −1.80754 −0.903769 0.428020i \(-0.859211\pi\)
−0.903769 + 0.428020i \(0.859211\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.91706 + 3.32044i 0.185329 + 0.321000i 0.943687 0.330838i \(-0.107332\pi\)
−0.758358 + 0.651838i \(0.773998\pi\)
\(108\) 0 0
\(109\) −1.32248 + 2.29060i −0.126671 + 0.219400i −0.922385 0.386272i \(-0.873762\pi\)
0.795714 + 0.605672i \(0.207096\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.64275 4.57738i 0.248609 0.430603i −0.714531 0.699604i \(-0.753360\pi\)
0.963140 + 0.269000i \(0.0866933\pi\)
\(114\) 0 0
\(115\) 3.16972 0.295578
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.89438 −0.535853
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.2846 0.919880
\(126\) 0 0
\(127\) −7.67115 −0.680704 −0.340352 0.940298i \(-0.610546\pi\)
−0.340352 + 0.940298i \(0.610546\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.3801 −1.69325 −0.846625 0.532189i \(-0.821369\pi\)
−0.846625 + 0.532189i \(0.821369\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.68997 0.827870 0.413935 0.910306i \(-0.364154\pi\)
0.413935 + 0.910306i \(0.364154\pi\)
\(138\) 0 0
\(139\) −3.81197 + 6.60252i −0.323327 + 0.560018i −0.981172 0.193135i \(-0.938135\pi\)
0.657846 + 0.753153i \(0.271468\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.37513 + 9.30999i −0.449491 + 0.778541i
\(144\) 0 0
\(145\) −9.25055 16.0224i −0.768216 1.33059i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.09179 0.744829 0.372414 0.928067i \(-0.378530\pi\)
0.372414 + 0.928067i \(0.378530\pi\)
\(150\) 0 0
\(151\) −20.2582 −1.64859 −0.824294 0.566162i \(-0.808428\pi\)
−0.824294 + 0.566162i \(0.808428\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.966633 1.67426i −0.0776418 0.134480i
\(156\) 0 0
\(157\) 4.18075 + 7.24127i 0.333660 + 0.577917i 0.983227 0.182388i \(-0.0583828\pi\)
−0.649566 + 0.760305i \(0.725049\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.69195 + 16.7869i 0.759132 + 1.31486i 0.943294 + 0.331959i \(0.107710\pi\)
−0.184162 + 0.982896i \(0.558957\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.84158 + 15.3141i −0.684182 + 1.18504i 0.289511 + 0.957175i \(0.406507\pi\)
−0.973693 + 0.227864i \(0.926826\pi\)
\(168\) 0 0
\(169\) −4.81772 8.34454i −0.370594 0.641888i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.5928 + 18.3473i −0.805356 + 1.39492i 0.110695 + 0.993854i \(0.464692\pi\)
−0.916051 + 0.401063i \(0.868641\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 6.49389 11.2478i 0.485376 0.840697i −0.514482 0.857501i \(-0.672016\pi\)
0.999859 + 0.0168043i \(0.00534924\pi\)
\(180\) 0 0
\(181\) 16.8238 1.25050 0.625251 0.780423i \(-0.284996\pi\)
0.625251 + 0.780423i \(0.284996\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.52365 9.56725i −0.406107 0.703398i
\(186\) 0 0
\(187\) 4.86262 8.42230i 0.355590 0.615899i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.58561 7.94251i 0.331803 0.574700i −0.651062 0.759024i \(-0.725676\pi\)
0.982865 + 0.184324i \(0.0590096\pi\)
\(192\) 0 0
\(193\) 12.8153 + 22.1968i 0.922466 + 1.59776i 0.795586 + 0.605840i \(0.207163\pi\)
0.126880 + 0.991918i \(0.459504\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.1036 −1.14734 −0.573668 0.819088i \(-0.694480\pi\)
−0.573668 + 0.819088i \(0.694480\pi\)
\(198\) 0 0
\(199\) −9.61411 + 16.6521i −0.681526 + 1.18044i 0.292989 + 0.956116i \(0.405350\pi\)
−0.974515 + 0.224322i \(0.927983\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −11.9345 + 20.6711i −0.833540 + 1.44373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.71192 16.8215i −0.671788 1.16357i
\(210\) 0 0
\(211\) −12.3251 + 21.3477i −0.848496 + 1.46964i 0.0340549 + 0.999420i \(0.489158\pi\)
−0.882551 + 0.470218i \(0.844175\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.15663 + 7.19949i 0.283480 + 0.491001i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.2386 + 17.7338i 0.688723 + 1.19290i
\(222\) 0 0
\(223\) 7.41074 + 12.8358i 0.496260 + 0.859547i 0.999991 0.00431335i \(-0.00137299\pi\)
−0.503731 + 0.863861i \(0.668040\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.1550 1.20499 0.602496 0.798122i \(-0.294173\pi\)
0.602496 + 0.798122i \(0.294173\pi\)
\(228\) 0 0
\(229\) 9.50691 0.628235 0.314117 0.949384i \(-0.398291\pi\)
0.314117 + 0.949384i \(0.398291\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.1715 + 17.6176i 0.666360 + 1.15417i 0.978915 + 0.204270i \(0.0654820\pi\)
−0.312554 + 0.949900i \(0.601185\pi\)
\(234\) 0 0
\(235\) −5.20707 + 9.01890i −0.339671 + 0.588328i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.90544 + 15.4247i −0.576045 + 0.997739i 0.419882 + 0.907579i \(0.362071\pi\)
−0.995927 + 0.0901607i \(0.971262\pi\)
\(240\) 0 0
\(241\) 6.28873 0.405093 0.202546 0.979273i \(-0.435078\pi\)
0.202546 + 0.979273i \(0.435078\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 40.8983 2.60230
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25.1868 1.58978 0.794889 0.606755i \(-0.207529\pi\)
0.794889 + 0.606755i \(0.207529\pi\)
\(252\) 0 0
\(253\) −3.00318 −0.188809
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −28.6803 −1.78903 −0.894514 0.447040i \(-0.852478\pi\)
−0.894514 + 0.447040i \(0.852478\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 14.4168 0.888977 0.444489 0.895784i \(-0.353385\pi\)
0.444489 + 0.895784i \(0.353385\pi\)
\(264\) 0 0
\(265\) 13.9260 24.1205i 0.855468 1.48171i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.44997 + 11.1717i −0.393262 + 0.681150i −0.992878 0.119138i \(-0.961987\pi\)
0.599616 + 0.800288i \(0.295320\pi\)
\(270\) 0 0
\(271\) 9.73110 + 16.8548i 0.591122 + 1.02385i 0.994082 + 0.108636i \(0.0346483\pi\)
−0.402959 + 0.915218i \(0.632018\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.55359 0.0936849
\(276\) 0 0
\(277\) 15.9124 0.956084 0.478042 0.878337i \(-0.341347\pi\)
0.478042 + 0.878337i \(0.341347\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.9998 + 24.2484i 0.835158 + 1.44654i 0.893901 + 0.448263i \(0.147957\pi\)
−0.0587432 + 0.998273i \(0.518709\pi\)
\(282\) 0 0
\(283\) −2.62345 4.54394i −0.155948 0.270109i 0.777456 0.628937i \(-0.216510\pi\)
−0.933404 + 0.358828i \(0.883176\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −0.762363 1.32045i −0.0448449 0.0776736i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.65939 + 2.87415i −0.0969428 + 0.167910i −0.910418 0.413690i \(-0.864240\pi\)
0.813475 + 0.581600i \(0.197573\pi\)
\(294\) 0 0
\(295\) −5.73471 9.93282i −0.333888 0.578311i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.16171 5.47625i 0.182847 0.316700i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.37360 2.37915i 0.0786521 0.136230i
\(306\) 0 0
\(307\) 12.4703 0.711715 0.355857 0.934540i \(-0.384189\pi\)
0.355857 + 0.934540i \(0.384189\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.3383 + 19.6385i 0.642936 + 1.11360i 0.984774 + 0.173840i \(0.0556174\pi\)
−0.341838 + 0.939759i \(0.611049\pi\)
\(312\) 0 0
\(313\) −3.16108 + 5.47515i −0.178675 + 0.309474i −0.941427 0.337217i \(-0.890514\pi\)
0.762752 + 0.646691i \(0.223848\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.79041 + 13.4934i −0.437553 + 0.757864i −0.997500 0.0706643i \(-0.977488\pi\)
0.559947 + 0.828528i \(0.310821\pi\)
\(318\) 0 0
\(319\) 8.76453 + 15.1806i 0.490719 + 0.849951i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −36.9987 −2.05867
\(324\) 0 0
\(325\) −1.63560 + 2.83294i −0.0907266 + 0.157143i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.8634 18.8159i 0.597104 1.03422i −0.396142 0.918189i \(-0.629651\pi\)
0.993246 0.116026i \(-0.0370155\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −4.92190 8.52499i −0.268912 0.465770i
\(336\) 0 0
\(337\) 4.04329 7.00319i 0.220252 0.381488i −0.734632 0.678465i \(-0.762645\pi\)
0.954884 + 0.296977i \(0.0959786\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.915846 + 1.58629i 0.0495959 + 0.0859026i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.466877 0.808654i −0.0250632 0.0434108i 0.853222 0.521548i \(-0.174645\pi\)
−0.878285 + 0.478138i \(0.841312\pi\)
\(348\) 0 0
\(349\) 1.90264 + 3.29548i 0.101846 + 0.176403i 0.912445 0.409199i \(-0.134192\pi\)
−0.810599 + 0.585601i \(0.800858\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −13.1195 −0.698280 −0.349140 0.937071i \(-0.613526\pi\)
−0.349140 + 0.937071i \(0.613526\pi\)
\(354\) 0 0
\(355\) −10.5314 −0.558947
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −10.7829 18.6765i −0.569100 0.985710i −0.996655 0.0817206i \(-0.973958\pi\)
0.427556 0.903989i \(-0.359375\pi\)
\(360\) 0 0
\(361\) −27.4481 + 47.5415i −1.44464 + 2.50218i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.4425 25.0151i 0.755954 1.30935i
\(366\) 0 0
\(367\) −18.6619 −0.974143 −0.487072 0.873362i \(-0.661935\pi\)
−0.487072 + 0.873362i \(0.661935\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −20.1707 −1.04440 −0.522201 0.852823i \(-0.674889\pi\)
−0.522201 + 0.852823i \(0.674889\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −36.9087 −1.90090
\(378\) 0 0
\(379\) 18.2436 0.937110 0.468555 0.883434i \(-0.344775\pi\)
0.468555 + 0.883434i \(0.344775\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −22.8563 −1.16790 −0.583952 0.811788i \(-0.698494\pi\)
−0.583952 + 0.811788i \(0.698494\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.3429 −0.625811 −0.312905 0.949784i \(-0.601302\pi\)
−0.312905 + 0.949784i \(0.601302\pi\)
\(390\) 0 0
\(391\) −2.86025 + 4.95410i −0.144649 + 0.250539i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −10.0954 + 17.4858i −0.507955 + 0.879804i
\(396\) 0 0
\(397\) −13.1016 22.6927i −0.657551 1.13891i −0.981248 0.192751i \(-0.938259\pi\)
0.323696 0.946161i \(-0.395074\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.91118 −0.195315 −0.0976575 0.995220i \(-0.531135\pi\)
−0.0976575 + 0.995220i \(0.531135\pi\)
\(402\) 0 0
\(403\) −3.85676 −0.192119
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.23344 + 9.06459i 0.259412 + 0.449315i
\(408\) 0 0
\(409\) 1.05065 + 1.81978i 0.0519513 + 0.0899823i 0.890832 0.454334i \(-0.150123\pi\)
−0.838880 + 0.544316i \(0.816789\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.95036 3.37812i −0.0957393 0.165825i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.7017 + 20.2679i −0.571664 + 0.990150i 0.424732 + 0.905319i \(0.360368\pi\)
−0.996395 + 0.0848311i \(0.972965\pi\)
\(420\) 0 0
\(421\) 9.78341 + 16.9454i 0.476814 + 0.825866i 0.999647 0.0265688i \(-0.00845812\pi\)
−0.522833 + 0.852435i \(0.675125\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.47965 2.56282i 0.0717733 0.124315i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.35438 5.80996i 0.161575 0.279856i −0.773859 0.633358i \(-0.781676\pi\)
0.935434 + 0.353502i \(0.115009\pi\)
\(432\) 0 0
\(433\) −9.46607 −0.454910 −0.227455 0.973789i \(-0.573041\pi\)
−0.227455 + 0.973789i \(0.573041\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.71267 + 9.89463i 0.273274 + 0.473324i
\(438\) 0 0
\(439\) 3.82386 6.62312i 0.182503 0.316104i −0.760229 0.649655i \(-0.774913\pi\)
0.942732 + 0.333550i \(0.108247\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.0763 31.3091i 0.858833 1.48754i −0.0142102 0.999899i \(-0.504523\pi\)
0.873043 0.487643i \(-0.162143\pi\)
\(444\) 0 0
\(445\) −7.56371 13.1007i −0.358554 0.621034i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −13.7337 −0.648132 −0.324066 0.946034i \(-0.605050\pi\)
−0.324066 + 0.946034i \(0.605050\pi\)
\(450\) 0 0
\(451\) 11.3074 19.5851i 0.532446 0.922224i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.213109 0.369115i 0.00996881 0.0172665i −0.860998 0.508608i \(-0.830160\pi\)
0.870967 + 0.491342i \(0.163493\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.26453 3.92228i −0.105470 0.182679i 0.808460 0.588551i \(-0.200301\pi\)
−0.913930 + 0.405872i \(0.866968\pi\)
\(462\) 0 0
\(463\) 16.5598 28.6825i 0.769600 1.33299i −0.168179 0.985756i \(-0.553789\pi\)
0.937780 0.347230i \(-0.112878\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0.756660 + 1.31057i 0.0350140 + 0.0606461i 0.883001 0.469370i \(-0.155519\pi\)
−0.847987 + 0.530016i \(0.822186\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.93824 6.82123i −0.181080 0.313640i
\(474\) 0 0
\(475\) −2.95524 5.11863i −0.135596 0.234859i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.2926 1.01858 0.509288 0.860596i \(-0.329909\pi\)
0.509288 + 0.860596i \(0.329909\pi\)
\(480\) 0 0
\(481\) −22.0388 −1.00488
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.2681 + 24.7131i 0.647881 + 1.12216i
\(486\) 0 0
\(487\) −2.31676 + 4.01275i −0.104983 + 0.181835i −0.913731 0.406319i \(-0.866812\pi\)
0.808749 + 0.588155i \(0.200145\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.5858 21.7993i 0.567990 0.983788i −0.428774 0.903412i \(-0.641054\pi\)
0.996765 0.0803766i \(-0.0256123\pi\)
\(492\) 0 0
\(493\) 33.3895 1.50379
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.27455 −0.101823 −0.0509114 0.998703i \(-0.516213\pi\)
−0.0509114 + 0.998703i \(0.516213\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.94793 −0.398968 −0.199484 0.979901i \(-0.563927\pi\)
−0.199484 + 0.979901i \(0.563927\pi\)
\(504\) 0 0
\(505\) −25.8685 −1.15113
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −33.2687 −1.47461 −0.737304 0.675561i \(-0.763901\pi\)
−0.737304 + 0.675561i \(0.763901\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 43.7491 1.92782
\(516\) 0 0
\(517\) 4.93349 8.54505i 0.216975 0.375811i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.57396 13.1185i 0.331821 0.574731i −0.651048 0.759037i \(-0.725670\pi\)
0.982869 + 0.184306i \(0.0590036\pi\)
\(522\) 0 0
\(523\) −5.23952 9.07512i −0.229108 0.396827i 0.728436 0.685114i \(-0.240248\pi\)
−0.957544 + 0.288287i \(0.906914\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.48903 0.151984
\(528\) 0 0
\(529\) −21.2335 −0.923195
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 23.8086 + 41.2378i 1.03127 + 1.78621i
\(534\) 0 0
\(535\) −4.57192 7.91880i −0.197661 0.342360i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −2.43874 4.22402i −0.104850 0.181605i 0.808827 0.588047i \(-0.200103\pi\)
−0.913677 + 0.406442i \(0.866769\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.15393 5.46277i 0.135100 0.234000i
\(546\) 0 0
\(547\) 9.62179 + 16.6654i 0.411398 + 0.712562i 0.995043 0.0994468i \(-0.0317073\pi\)
−0.583645 + 0.812009i \(0.698374\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 33.3438 57.7532i 1.42049 2.46037i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.32388 12.6853i 0.310323 0.537495i −0.668109 0.744063i \(-0.732896\pi\)
0.978432 + 0.206568i \(0.0662295\pi\)
\(558\) 0 0
\(559\) 16.5845 0.701450
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.85335 3.21010i −0.0781095 0.135290i 0.824325 0.566117i \(-0.191555\pi\)
−0.902434 + 0.430828i \(0.858222\pi\)
\(564\) 0 0
\(565\) −6.30259 + 10.9164i −0.265152 + 0.459257i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.1768 26.2871i 0.636246 1.10201i −0.350004 0.936748i \(-0.613820\pi\)
0.986250 0.165262i \(-0.0528470\pi\)
\(570\) 0 0
\(571\) 5.88458 + 10.1924i 0.246262 + 0.426539i 0.962486 0.271332i \(-0.0874642\pi\)
−0.716224 + 0.697871i \(0.754131\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.913839 −0.0381097
\(576\) 0 0
\(577\) −1.79640 + 3.11146i −0.0747852 + 0.129532i −0.900993 0.433834i \(-0.857160\pi\)
0.826208 + 0.563366i \(0.190494\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −13.1943 + 22.8533i −0.546454 + 0.946485i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.62298 8.00724i −0.190811 0.330494i 0.754708 0.656060i \(-0.227778\pi\)
−0.945519 + 0.325566i \(0.894445\pi\)
\(588\) 0 0
\(589\) 3.48425 6.03490i 0.143566 0.248664i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.0396 + 29.5135i 0.699735 + 1.21198i 0.968558 + 0.248786i \(0.0800317\pi\)
−0.268824 + 0.963189i \(0.586635\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.51340 6.08539i −0.143554 0.248642i 0.785279 0.619142i \(-0.212520\pi\)
−0.928832 + 0.370500i \(0.879186\pi\)
\(600\) 0 0
\(601\) −2.31218 4.00481i −0.0943158 0.163360i 0.815007 0.579451i \(-0.196733\pi\)
−0.909323 + 0.416091i \(0.863400\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 14.0573 0.571510
\(606\) 0 0
\(607\) 20.2081 0.820222 0.410111 0.912036i \(-0.365490\pi\)
0.410111 + 0.912036i \(0.365490\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.3878 + 17.9922i 0.420246 + 0.727888i
\(612\) 0 0
\(613\) 8.91037 15.4332i 0.359887 0.623342i −0.628055 0.778169i \(-0.716149\pi\)
0.987942 + 0.154827i \(0.0494820\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.0671 + 26.0969i −0.606577 + 1.05062i 0.385223 + 0.922824i \(0.374125\pi\)
−0.991800 + 0.127799i \(0.959209\pi\)
\(618\) 0 0
\(619\) −31.9116 −1.28264 −0.641318 0.767275i \(-0.721612\pi\)
−0.641318 + 0.767275i \(0.721612\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −27.9651 −1.11860
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.9374 0.794957
\(630\) 0 0
\(631\) −10.1430 −0.403788 −0.201894 0.979407i \(-0.564710\pi\)
−0.201894 + 0.979407i \(0.564710\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 18.2946 0.726000
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −43.8512 −1.73202 −0.866009 0.500028i \(-0.833323\pi\)
−0.866009 + 0.500028i \(0.833323\pi\)
\(642\) 0 0
\(643\) 1.10737 1.91802i 0.0436704 0.0756394i −0.843364 0.537343i \(-0.819428\pi\)
0.887034 + 0.461703i \(0.152762\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.4633 18.1230i 0.411355 0.712488i −0.583683 0.811981i \(-0.698389\pi\)
0.995038 + 0.0994938i \(0.0317224\pi\)
\(648\) 0 0
\(649\) 5.43341 + 9.41095i 0.213280 + 0.369412i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.02883 −0.314193 −0.157096 0.987583i \(-0.550213\pi\)
−0.157096 + 0.987583i \(0.550213\pi\)
\(654\) 0 0
\(655\) 46.2189 1.80592
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.25793 16.0352i −0.360638 0.624643i 0.627428 0.778675i \(-0.284108\pi\)
−0.988066 + 0.154031i \(0.950774\pi\)
\(660\) 0 0
\(661\) 10.4273 + 18.0606i 0.405574 + 0.702474i 0.994388 0.105794i \(-0.0337385\pi\)
−0.588814 + 0.808268i \(0.700405\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.15540 8.92941i −0.199618 0.345748i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.30143 + 2.25415i −0.0502412 + 0.0870204i
\(672\) 0 0
\(673\) 11.4484 + 19.8292i 0.441303 + 0.764360i 0.997786 0.0664992i \(-0.0211830\pi\)
−0.556483 + 0.830859i \(0.687850\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 23.3119 40.3774i 0.895948 1.55183i 0.0633218 0.997993i \(-0.479831\pi\)
0.832627 0.553835i \(-0.186836\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −18.3102 + 31.7141i −0.700618 + 1.21351i 0.267631 + 0.963521i \(0.413759\pi\)
−0.968250 + 0.249985i \(0.919574\pi\)
\(684\) 0 0
\(685\) −23.1092 −0.882958
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −27.7816 48.1192i −1.05840 1.83320i
\(690\) 0 0
\(691\) 13.2586 22.9645i 0.504380 0.873611i −0.495607 0.868547i \(-0.665055\pi\)
0.999987 0.00506472i \(-0.00161216\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.09101 15.7461i 0.344842 0.597283i
\(696\) 0 0
\(697\) −21.5385 37.3058i −0.815830 1.41306i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29.9931 1.13282 0.566411 0.824123i \(-0.308331\pi\)
0.566411 + 0.824123i \(0.308331\pi\)
\(702\) 0 0
\(703\) 19.9101 34.4854i 0.750925 1.30064i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.48805 + 9.50558i −0.206108 + 0.356990i −0.950485 0.310770i \(-0.899413\pi\)
0.744377 + 0.667759i \(0.232746\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.538712 0.933076i −0.0201749 0.0349440i
\(714\) 0 0
\(715\) 12.8189 22.2030i 0.479401 0.830346i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.55211 + 11.3486i 0.244352 + 0.423231i 0.961949 0.273228i \(-0.0880913\pi\)
−0.717597 + 0.696459i \(0.754758\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.66696 + 4.61931i 0.0990483 + 0.171557i
\(726\) 0 0
\(727\) 8.96026 + 15.5196i 0.332318 + 0.575591i 0.982966 0.183788i \(-0.0588361\pi\)
−0.650648 + 0.759379i \(0.725503\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −15.0032 −0.554913
\(732\) 0 0
\(733\) −5.91320 −0.218409 −0.109204 0.994019i \(-0.534830\pi\)
−0.109204 + 0.994019i \(0.534830\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 4.66331 + 8.07709i 0.171775 + 0.297523i
\(738\) 0 0
\(739\) 14.5887 25.2683i 0.536653 0.929511i −0.462428 0.886657i \(-0.653022\pi\)
0.999081 0.0428538i \(-0.0136450\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.8512 32.6513i 0.691584 1.19786i −0.279735 0.960077i \(-0.590247\pi\)
0.971319 0.237781i \(-0.0764201\pi\)
\(744\) 0 0
\(745\) −21.6827 −0.794391
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 40.6553 1.48353 0.741767 0.670658i \(-0.233988\pi\)
0.741767 + 0.670658i \(0.233988\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 48.3130 1.75829
\(756\) 0 0
\(757\) 17.6704 0.642241 0.321120 0.947038i \(-0.395941\pi\)
0.321120 + 0.947038i \(0.395941\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.28837 −0.0467033 −0.0233516 0.999727i \(-0.507434\pi\)
−0.0233516 + 0.999727i \(0.507434\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −22.8809 −0.826182
\(768\) 0 0
\(769\) −4.19275 + 7.26205i −0.151194 + 0.261876i −0.931667 0.363314i \(-0.881645\pi\)
0.780472 + 0.625190i \(0.214979\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.1530 + 43.5663i −0.904691 + 1.56697i −0.0833598 + 0.996520i \(0.526565\pi\)
−0.821331 + 0.570451i \(0.806768\pi\)
\(774\) 0 0
\(775\) 0.278683 + 0.482693i 0.0100106 + 0.0173388i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −86.0362 −3.08257
\(780\) 0 0
\(781\) 9.97806 0.357043
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9.97051 17.2694i −0.355863 0.616373i
\(786\) 0 0
\(787\) 11.1922 + 19.3855i 0.398960 + 0.691020i 0.993598 0.112974i \(-0.0360378\pi\)
−0.594638 + 0.803994i \(0.702704\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.74026 4.74627i −0.0973095 0.168545i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −0.706182 + 1.22314i −0.0250143 + 0.0433260i −0.878262 0.478181i \(-0.841296\pi\)
0.853247 + 0.521507i \(0.174630\pi\)
\(798\) 0 0
\(799\) −9.39736 16.2767i −0.332455 0.575828i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −13.6837 + 23.7008i −0.482887 + 0.836384i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.0424 17.3939i 0.353071 0.611537i −0.633715 0.773567i \(-0.718471\pi\)
0.986786 + 0.162030i \(0.0518040\pi\)
\(810\) 0 0
\(811\) −55.7821 −1.95878 −0.979388 0.201988i \(-0.935260\pi\)
−0.979388 + 0.201988i \(0.935260\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −23.1140 40.0345i −0.809646 1.40235i
\(816\) 0 0
\(817\) −14.9827 + 25.9507i −0.524177 + 0.907901i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.4346 + 42.3219i −0.852772 + 1.47704i 0.0259249 + 0.999664i \(0.491747\pi\)
−0.878697 + 0.477380i \(0.841586\pi\)
\(822\) 0 0
\(823\) 0.266319 + 0.461277i 0.00928328 + 0.0160791i 0.870630 0.491939i \(-0.163712\pi\)
−0.861346 + 0.508018i \(0.830378\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −10.1951 −0.354518 −0.177259 0.984164i \(-0.556723\pi\)
−0.177259 + 0.984164i \(0.556723\pi\)
\(828\) 0 0
\(829\) 10.6346 18.4197i 0.369355 0.639742i −0.620110 0.784515i \(-0.712912\pi\)
0.989465 + 0.144773i \(0.0462452\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 21.0859 36.5219i 0.729709 1.26389i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.47717 + 16.4149i 0.327188 + 0.566707i 0.981953 0.189126i \(-0.0605655\pi\)
−0.654765 + 0.755833i \(0.727232\pi\)
\(840\) 0 0
\(841\) −15.5912 + 27.0047i −0.537626 + 0.931196i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.4896 + 19.9006i 0.395254 + 0.684601i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.07837 5.33190i −0.105525 0.182775i
\(852\) 0 0
\(853\) 2.75811 + 4.77718i 0.0944358 + 0.163568i 0.909373 0.415982i \(-0.136562\pi\)
−0.814937 + 0.579549i \(0.803229\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15.8494 0.541406 0.270703 0.962663i \(-0.412744\pi\)
0.270703 + 0.962663i \(0.412744\pi\)
\(858\) 0 0
\(859\) 21.4009 0.730189 0.365095 0.930970i \(-0.381037\pi\)
0.365095 + 0.930970i \(0.381037\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −2.01860 3.49632i −0.0687140 0.119016i 0.829621 0.558326i \(-0.188556\pi\)
−0.898335 + 0.439310i \(0.855223\pi\)
\(864\) 0 0
\(865\) 25.2624 43.7557i 0.858946 1.48774i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.56500 16.5671i 0.324470 0.561999i
\(870\) 0 0
\(871\) −19.6379 −0.665404
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −25.3810 −0.857057 −0.428529 0.903528i \(-0.640968\pi\)
−0.428529 + 0.903528i \(0.640968\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −18.7755 −0.632561 −0.316281 0.948666i \(-0.602434\pi\)
−0.316281 + 0.948666i \(0.602434\pi\)
\(882\) 0 0
\(883\) 8.52167 0.286777 0.143388 0.989666i \(-0.454200\pi\)
0.143388 + 0.989666i \(0.454200\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.1008 −0.339152 −0.169576 0.985517i \(-0.554240\pi\)
−0.169576 + 0.985517i \(0.554240\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −37.5380 −1.25616
\(894\) 0 0
\(895\) −15.4870 + 26.8243i −0.517674 + 0.896638i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.14437 + 5.44620i −0.104870 + 0.181641i
\(900\) 0 0
\(901\) 25.1327 + 43.5311i 0.837292 + 1.45023i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −40.1224 −1.33371
\(906\) 0 0
\(907\) −21.2176 −0.704519 −0.352260 0.935902i \(-0.614587\pi\)
−0.352260 + 0.935902i \(0.614587\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.46609 + 7.73550i 0.147968 + 0.256289i 0.930476 0.366352i \(-0.119393\pi\)
−0.782508 + 0.622640i \(0.786060\pi\)
\(912\) 0 0
\(913\) 1.84789 + 3.20063i 0.0611561 + 0.105925i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −17.4564 30.2354i −0.575834 0.997374i −0.995950 0.0899041i \(-0.971344\pi\)
0.420116 0.907470i \(-0.361989\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −10.5048 + 18.1948i −0.345769 + 0.598889i
\(924\) 0 0
\(925\) 1.59248 + 2.75826i 0.0523605 + 0.0906911i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5.51692 + 9.55559i −0.181004 + 0.313509i −0.942223 0.334987i \(-0.891268\pi\)
0.761218 + 0.648496i \(0.224601\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11.5967 + 20.0860i −0.379251 + 0.656883i
\(936\) 0 0
\(937\) −13.6426 −0.445686 −0.222843 0.974854i \(-0.571534\pi\)
−0.222843 + 0.974854i \(0.571534\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 12.0278 + 20.8328i 0.392095 + 0.679129i 0.992726 0.120398i \(-0.0384170\pi\)
−0.600630 + 0.799527i \(0.705084\pi\)
\(942\) 0 0
\(943\) −6.65117 + 11.5202i −0.216592 + 0.375148i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.69602 11.5978i 0.217591 0.376879i −0.736480 0.676460i \(-0.763513\pi\)
0.954071 + 0.299580i \(0.0968466\pi\)
\(948\) 0 0
\(949\) −28.8120 49.9038i −0.935277 1.61995i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −36.3444 −1.17731 −0.588655 0.808384i \(-0.700342\pi\)
−0.588655 + 0.808384i \(0.700342\pi\)
\(954\) 0 0
\(955\) −10.9360 + 18.9418i −0.353882 + 0.612942i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.1714 26.2777i 0.489401 0.847667i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −30.5627 52.9362i −0.983849 1.70408i
\(966\) 0 0
\(967\) 4.82455 8.35637i 0.155147 0.268723i −0.777965 0.628307i \(-0.783748\pi\)
0.933113 + 0.359584i \(0.117082\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 21.6888 + 37.5660i 0.696025 + 1.20555i 0.969834 + 0.243767i \(0.0783832\pi\)
−0.273809 + 0.961784i \(0.588283\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.60004 + 4.50340i 0.0831826 + 0.144076i 0.904615 0.426229i \(-0.140158\pi\)
−0.821433 + 0.570305i \(0.806825\pi\)
\(978\) 0 0
\(979\) 7.16631 + 12.4124i 0.229036 + 0.396703i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −23.2697 −0.742190 −0.371095 0.928595i \(-0.621018\pi\)
−0.371095 + 0.928595i \(0.621018\pi\)
\(984\) 0 0
\(985\) 38.4049 1.22368
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.31652 + 4.01233i 0.0736610 + 0.127585i
\(990\) 0 0
\(991\) 19.5191 33.8080i 0.620044 1.07395i −0.369433 0.929257i \(-0.620448\pi\)
0.989477 0.144691i \(-0.0462187\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.9283 39.7130i 0.726877 1.25899i
\(996\) 0 0
\(997\) −24.1809 −0.765818 −0.382909 0.923786i \(-0.625078\pi\)
−0.382909 + 0.923786i \(0.625078\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.j.361.3 24
3.2 odd 2 1764.2.l.j.949.1 24
7.2 even 3 5292.2.i.j.1549.10 24
7.3 odd 6 5292.2.j.i.1765.3 24
7.4 even 3 5292.2.j.i.1765.10 24
7.5 odd 6 5292.2.i.j.1549.3 24
7.6 odd 2 inner 5292.2.l.j.361.10 24
9.2 odd 6 1764.2.i.j.1537.8 24
9.7 even 3 5292.2.i.j.2125.10 24
21.2 odd 6 1764.2.i.j.373.8 24
21.5 even 6 1764.2.i.j.373.5 24
21.11 odd 6 1764.2.j.i.589.8 yes 24
21.17 even 6 1764.2.j.i.589.5 24
21.20 even 2 1764.2.l.j.949.12 24
63.2 odd 6 1764.2.l.j.961.1 24
63.11 odd 6 1764.2.j.i.1177.8 yes 24
63.16 even 3 inner 5292.2.l.j.3313.3 24
63.20 even 6 1764.2.i.j.1537.5 24
63.25 even 3 5292.2.j.i.3529.10 24
63.34 odd 6 5292.2.i.j.2125.3 24
63.38 even 6 1764.2.j.i.1177.5 yes 24
63.47 even 6 1764.2.l.j.961.12 24
63.52 odd 6 5292.2.j.i.3529.3 24
63.61 odd 6 inner 5292.2.l.j.3313.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.5 24 21.5 even 6
1764.2.i.j.373.8 24 21.2 odd 6
1764.2.i.j.1537.5 24 63.20 even 6
1764.2.i.j.1537.8 24 9.2 odd 6
1764.2.j.i.589.5 24 21.17 even 6
1764.2.j.i.589.8 yes 24 21.11 odd 6
1764.2.j.i.1177.5 yes 24 63.38 even 6
1764.2.j.i.1177.8 yes 24 63.11 odd 6
1764.2.l.j.949.1 24 3.2 odd 2
1764.2.l.j.949.12 24 21.20 even 2
1764.2.l.j.961.1 24 63.2 odd 6
1764.2.l.j.961.12 24 63.47 even 6
5292.2.i.j.1549.3 24 7.5 odd 6
5292.2.i.j.1549.10 24 7.2 even 3
5292.2.i.j.2125.3 24 63.34 odd 6
5292.2.i.j.2125.10 24 9.7 even 3
5292.2.j.i.1765.3 24 7.3 odd 6
5292.2.j.i.1765.10 24 7.4 even 3
5292.2.j.i.3529.3 24 63.52 odd 6
5292.2.j.i.3529.10 24 63.25 even 3
5292.2.l.j.361.3 24 1.1 even 1 trivial
5292.2.l.j.361.10 24 7.6 odd 2 inner
5292.2.l.j.3313.3 24 63.16 even 3 inner
5292.2.l.j.3313.10 24 63.61 odd 6 inner