Properties

Label 5292.2.j.i.3529.3
Level $5292$
Weight $2$
Character 5292.3529
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(1765,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.1765");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3529.3
Character \(\chi\) \(=\) 5292.3529
Dual form 5292.2.j.i.1765.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19243 - 2.06535i) q^{5} +O(q^{10})\) \(q+(-1.19243 - 2.06535i) q^{5} +(-1.12978 + 1.95684i) q^{11} +(2.37884 + 4.12027i) q^{13} +4.30404 q^{17} -8.59629 q^{19} +(0.664550 + 1.15103i) q^{23} +(-0.343781 + 0.595446i) q^{25} +(3.87886 - 6.71839i) q^{29} +(-0.405320 - 0.702036i) q^{31} -4.63226 q^{37} +(-5.00426 - 8.66764i) q^{41} +(-1.74292 + 3.01883i) q^{43} +(-2.18338 + 3.78173i) q^{47} +11.6787 q^{53} +5.38874 q^{55} +(-2.40463 - 4.16495i) q^{59} +(0.575967 - 0.997604i) q^{61} +(5.67319 - 9.82626i) q^{65} +(2.06381 + 3.57463i) q^{67} +4.41593 q^{71} -12.1118 q^{73} +(4.23312 - 7.33198i) q^{79} +(-0.817808 + 1.41648i) q^{83} +(-5.13226 - 8.88934i) q^{85} +6.34310 q^{89} +(10.2505 + 17.7543i) q^{95} +(5.98278 - 10.3625i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 4 q^{11} + 8 q^{23} - 12 q^{25} + 32 q^{29} + 24 q^{37} - 32 q^{53} + 36 q^{65} + 12 q^{67} - 48 q^{71} + 12 q^{79} + 12 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.19243 2.06535i −0.533271 0.923653i −0.999245 0.0388541i \(-0.987629\pi\)
0.465974 0.884799i \(-0.345704\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.12978 + 1.95684i −0.340642 + 0.590009i −0.984552 0.175092i \(-0.943978\pi\)
0.643910 + 0.765101i \(0.277311\pi\)
\(12\) 0 0
\(13\) 2.37884 + 4.12027i 0.659770 + 1.14276i 0.980675 + 0.195644i \(0.0626798\pi\)
−0.320904 + 0.947112i \(0.603987\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.30404 1.04388 0.521941 0.852982i \(-0.325208\pi\)
0.521941 + 0.852982i \(0.325208\pi\)
\(18\) 0 0
\(19\) −8.59629 −1.97212 −0.986062 0.166378i \(-0.946793\pi\)
−0.986062 + 0.166378i \(0.946793\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.664550 + 1.15103i 0.138568 + 0.240007i 0.926955 0.375173i \(-0.122417\pi\)
−0.788387 + 0.615180i \(0.789083\pi\)
\(24\) 0 0
\(25\) −0.343781 + 0.595446i −0.0687562 + 0.119089i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.87886 6.71839i 0.720287 1.24757i −0.240598 0.970625i \(-0.577344\pi\)
0.960885 0.276948i \(-0.0893231\pi\)
\(30\) 0 0
\(31\) −0.405320 0.702036i −0.0727977 0.126089i 0.827329 0.561718i \(-0.189859\pi\)
−0.900126 + 0.435629i \(0.856526\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.63226 −0.761539 −0.380770 0.924670i \(-0.624341\pi\)
−0.380770 + 0.924670i \(0.624341\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.00426 8.66764i −0.781534 1.35366i −0.931048 0.364898i \(-0.881104\pi\)
0.149513 0.988760i \(-0.452229\pi\)
\(42\) 0 0
\(43\) −1.74292 + 3.01883i −0.265793 + 0.460367i −0.967771 0.251831i \(-0.918967\pi\)
0.701978 + 0.712199i \(0.252300\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.18338 + 3.78173i −0.318479 + 0.551622i −0.980171 0.198154i \(-0.936505\pi\)
0.661692 + 0.749776i \(0.269839\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.6787 1.60419 0.802094 0.597197i \(-0.203719\pi\)
0.802094 + 0.597197i \(0.203719\pi\)
\(54\) 0 0
\(55\) 5.38874 0.726617
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.40463 4.16495i −0.313056 0.542230i 0.665966 0.745982i \(-0.268020\pi\)
−0.979022 + 0.203752i \(0.934686\pi\)
\(60\) 0 0
\(61\) 0.575967 0.997604i 0.0737450 0.127730i −0.826795 0.562504i \(-0.809838\pi\)
0.900540 + 0.434774i \(0.143172\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5.67319 9.82626i 0.703673 1.21880i
\(66\) 0 0
\(67\) 2.06381 + 3.57463i 0.252135 + 0.436710i 0.964113 0.265491i \(-0.0855341\pi\)
−0.711979 + 0.702201i \(0.752201\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.41593 0.524074 0.262037 0.965058i \(-0.415606\pi\)
0.262037 + 0.965058i \(0.415606\pi\)
\(72\) 0 0
\(73\) −12.1118 −1.41758 −0.708790 0.705420i \(-0.750759\pi\)
−0.708790 + 0.705420i \(0.750759\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.23312 7.33198i 0.476263 0.824913i −0.523367 0.852108i \(-0.675324\pi\)
0.999630 + 0.0271950i \(0.00865752\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.817808 + 1.41648i −0.0897661 + 0.155479i −0.907412 0.420242i \(-0.861945\pi\)
0.817646 + 0.575721i \(0.195279\pi\)
\(84\) 0 0
\(85\) −5.13226 8.88934i −0.556672 0.964184i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.34310 0.672367 0.336184 0.941796i \(-0.390864\pi\)
0.336184 + 0.941796i \(0.390864\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 10.2505 + 17.7543i 1.05168 + 1.82156i
\(96\) 0 0
\(97\) 5.98278 10.3625i 0.607459 1.05215i −0.384198 0.923251i \(-0.625522\pi\)
0.991658 0.128900i \(-0.0411445\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.42348 9.39374i 0.539656 0.934712i −0.459266 0.888299i \(-0.651888\pi\)
0.998922 0.0464132i \(-0.0147791\pi\)
\(102\) 0 0
\(103\) −9.17226 15.8868i −0.903769 1.56537i −0.822561 0.568677i \(-0.807455\pi\)
−0.0812086 0.996697i \(-0.525878\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.83412 −0.370658 −0.185329 0.982676i \(-0.559335\pi\)
−0.185329 + 0.982676i \(0.559335\pi\)
\(108\) 0 0
\(109\) 2.64496 0.253341 0.126671 0.991945i \(-0.459571\pi\)
0.126671 + 0.991945i \(0.459571\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.64275 + 4.57738i 0.248609 + 0.430603i 0.963140 0.269000i \(-0.0866933\pi\)
−0.714531 + 0.699604i \(0.753360\pi\)
\(114\) 0 0
\(115\) 1.58486 2.74506i 0.147789 0.255978i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.94719 + 5.10469i 0.267927 + 0.464062i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.2846 −0.919880
\(126\) 0 0
\(127\) −7.67115 −0.680704 −0.340352 0.940298i \(-0.610546\pi\)
−0.340352 + 0.940298i \(0.610546\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.69007 16.7837i −0.846625 1.46640i −0.884202 0.467104i \(-0.845297\pi\)
0.0375770 0.999294i \(-0.488036\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.84498 + 8.39176i −0.413935 + 0.716956i −0.995316 0.0966750i \(-0.969179\pi\)
0.581381 + 0.813631i \(0.302513\pi\)
\(138\) 0 0
\(139\) 3.81197 + 6.60252i 0.323327 + 0.560018i 0.981172 0.193135i \(-0.0618654\pi\)
−0.657846 + 0.753153i \(0.728532\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −10.7503 −0.898981
\(144\) 0 0
\(145\) −18.5011 −1.53643
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.54590 7.87372i −0.372414 0.645041i 0.617522 0.786554i \(-0.288137\pi\)
−0.989936 + 0.141513i \(0.954803\pi\)
\(150\) 0 0
\(151\) 10.1291 17.5441i 0.824294 1.42772i −0.0781631 0.996941i \(-0.524905\pi\)
0.902457 0.430779i \(-0.141761\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.966633 + 1.67426i −0.0776418 + 0.134480i
\(156\) 0 0
\(157\) −4.18075 7.24127i −0.333660 0.577917i 0.649566 0.760305i \(-0.274951\pi\)
−0.983227 + 0.182388i \(0.941617\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −19.3839 −1.51826 −0.759132 0.650937i \(-0.774376\pi\)
−0.759132 + 0.650937i \(0.774376\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.84158 + 15.3141i 0.684182 + 1.18504i 0.973693 + 0.227864i \(0.0731740\pi\)
−0.289511 + 0.957175i \(0.593493\pi\)
\(168\) 0 0
\(169\) −4.81772 + 8.34454i −0.370594 + 0.641888i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 10.5928 18.3473i 0.805356 1.39492i −0.110695 0.993854i \(-0.535308\pi\)
0.916051 0.401063i \(-0.131359\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.9878 −0.970753 −0.485376 0.874305i \(-0.661317\pi\)
−0.485376 + 0.874305i \(0.661317\pi\)
\(180\) 0 0
\(181\) −16.8238 −1.25050 −0.625251 0.780423i \(-0.715004\pi\)
−0.625251 + 0.780423i \(0.715004\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.52365 + 9.56725i 0.406107 + 0.703398i
\(186\) 0 0
\(187\) −4.86262 + 8.42230i −0.355590 + 0.615899i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.58561 7.94251i 0.331803 0.574700i −0.651062 0.759024i \(-0.725676\pi\)
0.982865 + 0.184324i \(0.0590096\pi\)
\(192\) 0 0
\(193\) 12.8153 + 22.1968i 0.922466 + 1.59776i 0.795586 + 0.605840i \(0.207163\pi\)
0.126880 + 0.991918i \(0.459504\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.1036 −1.14734 −0.573668 0.819088i \(-0.694480\pi\)
−0.573668 + 0.819088i \(0.694480\pi\)
\(198\) 0 0
\(199\) −19.2282 −1.36305 −0.681526 0.731794i \(-0.738683\pi\)
−0.681526 + 0.731794i \(0.738683\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −11.9345 + 20.6711i −0.833540 + 1.44373i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.71192 16.8215i 0.671788 1.16357i
\(210\) 0 0
\(211\) −12.3251 21.3477i −0.848496 1.46964i −0.882551 0.470218i \(-0.844175\pi\)
0.0340549 0.999420i \(-0.489158\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.31325 0.566959
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 10.2386 + 17.7338i 0.688723 + 1.19290i
\(222\) 0 0
\(223\) −7.41074 + 12.8358i −0.496260 + 0.859547i −0.999991 0.00431335i \(-0.998627\pi\)
0.503731 + 0.863861i \(0.331960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.07752 15.7227i 0.602496 1.04355i −0.389946 0.920838i \(-0.627506\pi\)
0.992442 0.122716i \(-0.0391604\pi\)
\(228\) 0 0
\(229\) 4.75346 + 8.23323i 0.314117 + 0.544067i 0.979249 0.202659i \(-0.0649581\pi\)
−0.665132 + 0.746726i \(0.731625\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −20.3431 −1.33272 −0.666360 0.745630i \(-0.732149\pi\)
−0.666360 + 0.745630i \(0.732149\pi\)
\(234\) 0 0
\(235\) 10.4141 0.679343
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.90544 15.4247i −0.576045 0.997739i −0.995927 0.0901607i \(-0.971262\pi\)
0.419882 0.907579i \(-0.362071\pi\)
\(240\) 0 0
\(241\) 3.14437 5.44620i 0.202546 0.350821i −0.746802 0.665047i \(-0.768412\pi\)
0.949348 + 0.314226i \(0.101745\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −20.4492 35.4190i −1.30115 2.25366i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −25.1868 −1.58978 −0.794889 0.606755i \(-0.792471\pi\)
−0.794889 + 0.606755i \(0.792471\pi\)
\(252\) 0 0
\(253\) −3.00318 −0.188809
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.3401 24.8379i −0.894514 1.54934i −0.834405 0.551152i \(-0.814189\pi\)
−0.0601087 0.998192i \(-0.519145\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.20840 + 12.4853i −0.444489 + 0.769877i −0.998016 0.0629537i \(-0.979948\pi\)
0.553528 + 0.832831i \(0.313281\pi\)
\(264\) 0 0
\(265\) −13.9260 24.1205i −0.855468 1.48171i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.8999 −0.786524 −0.393262 0.919426i \(-0.628653\pi\)
−0.393262 + 0.919426i \(0.628653\pi\)
\(270\) 0 0
\(271\) 19.4622 1.18224 0.591122 0.806582i \(-0.298685\pi\)
0.591122 + 0.806582i \(0.298685\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.776794 1.34545i −0.0468424 0.0811335i
\(276\) 0 0
\(277\) −7.95620 + 13.7805i −0.478042 + 0.827993i −0.999683 0.0251721i \(-0.991987\pi\)
0.521641 + 0.853165i \(0.325320\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 13.9998 24.2484i 0.835158 1.44654i −0.0587432 0.998273i \(-0.518709\pi\)
0.893901 0.448263i \(-0.147957\pi\)
\(282\) 0 0
\(283\) 2.62345 + 4.54394i 0.155948 + 0.270109i 0.933404 0.358828i \(-0.116824\pi\)
−0.777456 + 0.628937i \(0.783490\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.52473 0.0896898
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.65939 + 2.87415i 0.0969428 + 0.167910i 0.910418 0.413690i \(-0.135760\pi\)
−0.813475 + 0.581600i \(0.802427\pi\)
\(294\) 0 0
\(295\) −5.73471 + 9.93282i −0.333888 + 0.578311i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.16171 + 5.47625i −0.182847 + 0.316700i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −2.74720 −0.157304
\(306\) 0 0
\(307\) −12.4703 −0.711715 −0.355857 0.934540i \(-0.615811\pi\)
−0.355857 + 0.934540i \(0.615811\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.3383 19.6385i −0.642936 1.11360i −0.984774 0.173840i \(-0.944383\pi\)
0.341838 0.939759i \(-0.388951\pi\)
\(312\) 0 0
\(313\) 3.16108 5.47515i 0.178675 0.309474i −0.762752 0.646691i \(-0.776152\pi\)
0.941427 + 0.337217i \(0.109486\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.79041 + 13.4934i −0.437553 + 0.757864i −0.997500 0.0706643i \(-0.977488\pi\)
0.559947 + 0.828528i \(0.310821\pi\)
\(318\) 0 0
\(319\) 8.76453 + 15.1806i 0.490719 + 0.849951i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −36.9987 −2.05867
\(324\) 0 0
\(325\) −3.27119 −0.181453
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.8634 18.8159i 0.597104 1.03422i −0.396142 0.918189i \(-0.629651\pi\)
0.993246 0.116026i \(-0.0370155\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.92190 8.52499i 0.268912 0.465770i
\(336\) 0 0
\(337\) 4.04329 + 7.00319i 0.220252 + 0.381488i 0.954884 0.296977i \(-0.0959786\pi\)
−0.734632 + 0.678465i \(0.762645\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.83169 0.0991917
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −0.466877 0.808654i −0.0250632 0.0434108i 0.853222 0.521548i \(-0.174645\pi\)
−0.878285 + 0.478138i \(0.841312\pi\)
\(348\) 0 0
\(349\) −1.90264 + 3.29548i −0.101846 + 0.176403i −0.912445 0.409199i \(-0.865808\pi\)
0.810599 + 0.585601i \(0.199142\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.55974 + 11.3618i −0.349140 + 0.604728i −0.986097 0.166171i \(-0.946859\pi\)
0.636957 + 0.770899i \(0.280193\pi\)
\(354\) 0 0
\(355\) −5.26569 9.12043i −0.279474 0.484062i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.5658 1.13820 0.569100 0.822268i \(-0.307292\pi\)
0.569100 + 0.822268i \(0.307292\pi\)
\(360\) 0 0
\(361\) 54.8962 2.88927
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 14.4425 + 25.0151i 0.755954 + 1.30935i
\(366\) 0 0
\(367\) −9.33095 + 16.1617i −0.487072 + 0.843633i −0.999890 0.0148645i \(-0.995268\pi\)
0.512818 + 0.858497i \(0.328602\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.0854 + 17.4684i 0.522201 + 0.904478i 0.999666 + 0.0258279i \(0.00822218\pi\)
−0.477466 + 0.878650i \(0.658444\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 36.9087 1.90090
\(378\) 0 0
\(379\) 18.2436 0.937110 0.468555 0.883434i \(-0.344775\pi\)
0.468555 + 0.883434i \(0.344775\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.4282 19.7942i −0.583952 1.01143i −0.995005 0.0998233i \(-0.968172\pi\)
0.411053 0.911611i \(-0.365161\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.17146 10.6893i 0.312905 0.541968i −0.666085 0.745876i \(-0.732031\pi\)
0.978990 + 0.203908i \(0.0653644\pi\)
\(390\) 0 0
\(391\) 2.86025 + 4.95410i 0.144649 + 0.250539i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −20.1908 −1.01591
\(396\) 0 0
\(397\) −26.2032 −1.31510 −0.657551 0.753410i \(-0.728408\pi\)
−0.657551 + 0.753410i \(0.728408\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.95559 + 3.38718i 0.0976575 + 0.169148i 0.910715 0.413036i \(-0.135532\pi\)
−0.813057 + 0.582184i \(0.802198\pi\)
\(402\) 0 0
\(403\) 1.92838 3.34006i 0.0960596 0.166380i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.23344 9.06459i 0.259412 0.449315i
\(408\) 0 0
\(409\) −1.05065 1.81978i −0.0519513 0.0899823i 0.838880 0.544316i \(-0.183211\pi\)
−0.890832 + 0.454334i \(0.849877\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.90072 0.191479
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 11.7017 + 20.2679i 0.571664 + 0.990150i 0.996395 + 0.0848311i \(0.0270351\pi\)
−0.424732 + 0.905319i \(0.639632\pi\)
\(420\) 0 0
\(421\) 9.78341 16.9454i 0.476814 0.825866i −0.522833 0.852435i \(-0.675125\pi\)
0.999647 + 0.0265688i \(0.00845812\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.47965 + 2.56282i −0.0717733 + 0.124315i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.70877 −0.323150 −0.161575 0.986860i \(-0.551657\pi\)
−0.161575 + 0.986860i \(0.551657\pi\)
\(432\) 0 0
\(433\) 9.46607 0.454910 0.227455 0.973789i \(-0.426959\pi\)
0.227455 + 0.973789i \(0.426959\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −5.71267 9.89463i −0.273274 0.473324i
\(438\) 0 0
\(439\) −3.82386 + 6.62312i −0.182503 + 0.316104i −0.942732 0.333550i \(-0.891753\pi\)
0.760229 + 0.649655i \(0.225087\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.0763 31.3091i 0.858833 1.48754i −0.0142102 0.999899i \(-0.504523\pi\)
0.873043 0.487643i \(-0.162143\pi\)
\(444\) 0 0
\(445\) −7.56371 13.1007i −0.358554 0.621034i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −13.7337 −0.648132 −0.324066 0.946034i \(-0.605050\pi\)
−0.324066 + 0.946034i \(0.605050\pi\)
\(450\) 0 0
\(451\) 22.6149 1.06489
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.213109 0.369115i 0.00996881 0.0172665i −0.860998 0.508608i \(-0.830160\pi\)
0.870967 + 0.491342i \(0.163493\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.26453 3.92228i 0.105470 0.182679i −0.808460 0.588551i \(-0.799699\pi\)
0.913930 + 0.405872i \(0.133032\pi\)
\(462\) 0 0
\(463\) 16.5598 + 28.6825i 0.769600 + 1.33299i 0.937780 + 0.347230i \(0.112878\pi\)
−0.168179 + 0.985756i \(0.553789\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.51332 0.0700281 0.0350140 0.999387i \(-0.488852\pi\)
0.0350140 + 0.999387i \(0.488852\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.93824 6.82123i −0.181080 0.313640i
\(474\) 0 0
\(475\) 2.95524 5.11863i 0.135596 0.234859i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.1463 19.3060i 0.509288 0.882112i −0.490654 0.871354i \(-0.663242\pi\)
0.999942 0.0107580i \(-0.00342444\pi\)
\(480\) 0 0
\(481\) −11.0194 19.0862i −0.502441 0.870254i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −28.5362 −1.29576
\(486\) 0 0
\(487\) 4.63353 0.209965 0.104983 0.994474i \(-0.466521\pi\)
0.104983 + 0.994474i \(0.466521\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.5858 + 21.7993i 0.567990 + 0.983788i 0.996765 + 0.0803766i \(0.0256123\pi\)
−0.428774 + 0.903412i \(0.641054\pi\)
\(492\) 0 0
\(493\) 16.6948 28.9162i 0.751894 1.30232i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.13727 + 1.96982i 0.0509114 + 0.0881811i 0.890358 0.455261i \(-0.150454\pi\)
−0.839447 + 0.543442i \(0.817121\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.94793 0.398968 0.199484 0.979901i \(-0.436073\pi\)
0.199484 + 0.979901i \(0.436073\pi\)
\(504\) 0 0
\(505\) −25.8685 −1.15113
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.6343 28.8115i −0.737304 1.27705i −0.953705 0.300743i \(-0.902765\pi\)
0.216402 0.976304i \(-0.430568\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −21.8746 + 37.8878i −0.963908 + 1.66954i
\(516\) 0 0
\(517\) −4.93349 8.54505i −0.216975 0.375811i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.1479 0.663642 0.331821 0.943342i \(-0.392337\pi\)
0.331821 + 0.943342i \(0.392337\pi\)
\(522\) 0 0
\(523\) −10.4790 −0.458217 −0.229108 0.973401i \(-0.573581\pi\)
−0.229108 + 0.973401i \(0.573581\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.74451 3.02159i −0.0759922 0.131622i
\(528\) 0 0
\(529\) 10.6167 18.3887i 0.461598 0.799511i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 23.8086 41.2378i 1.03127 1.78621i
\(534\) 0 0
\(535\) 4.57192 + 7.91880i 0.197661 + 0.342360i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.87748 0.209699 0.104850 0.994488i \(-0.466564\pi\)
0.104850 + 0.994488i \(0.466564\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.15393 5.46277i −0.135100 0.234000i
\(546\) 0 0
\(547\) 9.62179 16.6654i 0.411398 0.712562i −0.583645 0.812009i \(-0.698374\pi\)
0.995043 + 0.0994468i \(0.0317073\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −33.3438 + 57.7532i −1.42049 + 2.46037i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14.6478 −0.620646 −0.310323 0.950631i \(-0.600437\pi\)
−0.310323 + 0.950631i \(0.600437\pi\)
\(558\) 0 0
\(559\) −16.5845 −0.701450
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.85335 + 3.21010i 0.0781095 + 0.135290i 0.902434 0.430828i \(-0.141778\pi\)
−0.824325 + 0.566117i \(0.808445\pi\)
\(564\) 0 0
\(565\) 6.30259 10.9164i 0.265152 0.459257i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15.1768 26.2871i 0.636246 1.10201i −0.350004 0.936748i \(-0.613820\pi\)
0.986250 0.165262i \(-0.0528470\pi\)
\(570\) 0 0
\(571\) 5.88458 + 10.1924i 0.246262 + 0.426539i 0.962486 0.271332i \(-0.0874642\pi\)
−0.716224 + 0.697871i \(0.754131\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.913839 −0.0381097
\(576\) 0 0
\(577\) −3.59281 −0.149570 −0.0747852 0.997200i \(-0.523827\pi\)
−0.0747852 + 0.997200i \(0.523827\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −13.1943 + 22.8533i −0.546454 + 0.946485i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.62298 8.00724i 0.190811 0.330494i −0.754708 0.656060i \(-0.772222\pi\)
0.945519 + 0.325566i \(0.105555\pi\)
\(588\) 0 0
\(589\) 3.48425 + 6.03490i 0.143566 + 0.248664i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.0793 1.39947 0.699735 0.714403i \(-0.253302\pi\)
0.699735 + 0.714403i \(0.253302\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.51340 6.08539i −0.143554 0.248642i 0.785279 0.619142i \(-0.212520\pi\)
−0.928832 + 0.370500i \(0.879186\pi\)
\(600\) 0 0
\(601\) 2.31218 4.00481i 0.0943158 0.163360i −0.815007 0.579451i \(-0.803267\pi\)
0.909323 + 0.416091i \(0.136600\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.02864 12.1740i 0.285755 0.494942i
\(606\) 0 0
\(607\) 10.1041 + 17.5007i 0.410111 + 0.710333i 0.994901 0.100852i \(-0.0321567\pi\)
−0.584791 + 0.811184i \(0.698823\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −20.7756 −0.840493
\(612\) 0 0
\(613\) −17.8207 −0.719773 −0.359887 0.932996i \(-0.617185\pi\)
−0.359887 + 0.932996i \(0.617185\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.0671 26.0969i −0.606577 1.05062i −0.991800 0.127799i \(-0.959209\pi\)
0.385223 0.922824i \(-0.374125\pi\)
\(618\) 0 0
\(619\) −15.9558 + 27.6363i −0.641318 + 1.11080i 0.343821 + 0.939035i \(0.388279\pi\)
−0.985139 + 0.171760i \(0.945055\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 13.9825 + 24.2185i 0.559301 + 0.968738i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −19.9374 −0.794957
\(630\) 0 0
\(631\) −10.1430 −0.403788 −0.201894 0.979407i \(-0.564710\pi\)
−0.201894 + 0.979407i \(0.564710\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.14731 + 15.8436i 0.363000 + 0.628734i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 21.9256 37.9762i 0.866009 1.49997i −3.28428e−5 1.00000i \(-0.500010\pi\)
0.866042 0.499972i \(-0.166656\pi\)
\(642\) 0 0
\(643\) −1.10737 1.91802i −0.0436704 0.0756394i 0.843364 0.537343i \(-0.180572\pi\)
−0.887034 + 0.461703i \(0.847238\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 20.9266 0.822710 0.411355 0.911475i \(-0.365056\pi\)
0.411355 + 0.911475i \(0.365056\pi\)
\(648\) 0 0
\(649\) 10.8668 0.426560
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.01442 + 6.95317i 0.157096 + 0.272099i 0.933820 0.357742i \(-0.116453\pi\)
−0.776724 + 0.629841i \(0.783120\pi\)
\(654\) 0 0
\(655\) −23.1095 + 40.0268i −0.902962 + 1.56398i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −9.25793 + 16.0352i −0.360638 + 0.624643i −0.988066 0.154031i \(-0.950774\pi\)
0.627428 + 0.778675i \(0.284108\pi\)
\(660\) 0 0
\(661\) −10.4273 18.0606i −0.405574 0.702474i 0.588814 0.808268i \(-0.299595\pi\)
−0.994388 + 0.105794i \(0.966262\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.3108 0.399236
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.30143 + 2.25415i 0.0502412 + 0.0870204i
\(672\) 0 0
\(673\) 11.4484 19.8292i 0.441303 0.764360i −0.556483 0.830859i \(-0.687850\pi\)
0.997786 + 0.0664992i \(0.0211830\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −23.3119 + 40.3774i −0.895948 + 1.55183i −0.0633218 + 0.997993i \(0.520169\pi\)
−0.832627 + 0.553835i \(0.813164\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.6203 1.40124 0.700618 0.713536i \(-0.252908\pi\)
0.700618 + 0.713536i \(0.252908\pi\)
\(684\) 0 0
\(685\) 23.1092 0.882958
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 27.7816 + 48.1192i 1.05840 + 1.83320i
\(690\) 0 0
\(691\) −13.2586 + 22.9645i −0.504380 + 0.873611i 0.495607 + 0.868547i \(0.334945\pi\)
−0.999987 + 0.00506472i \(0.998388\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.09101 15.7461i 0.344842 0.597283i
\(696\) 0 0
\(697\) −21.5385 37.3058i −0.815830 1.41306i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29.9931 1.13282 0.566411 0.824123i \(-0.308331\pi\)
0.566411 + 0.824123i \(0.308331\pi\)
\(702\) 0 0
\(703\) 39.8203 1.50185
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.48805 + 9.50558i −0.206108 + 0.356990i −0.950485 0.310770i \(-0.899413\pi\)
0.744377 + 0.667759i \(0.232746\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.538712 0.933076i 0.0201749 0.0349440i
\(714\) 0 0
\(715\) 12.8189 + 22.2030i 0.479401 + 0.830346i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 13.1042 0.488705 0.244352 0.969687i \(-0.421425\pi\)
0.244352 + 0.969687i \(0.421425\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.66696 + 4.61931i 0.0990483 + 0.171557i
\(726\) 0 0
\(727\) −8.96026 + 15.5196i −0.332318 + 0.575591i −0.982966 0.183788i \(-0.941164\pi\)
0.650648 + 0.759379i \(0.274497\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.50160 + 12.9932i −0.277457 + 0.480569i
\(732\) 0 0
\(733\) −2.95660 5.12098i −0.109204 0.189148i 0.806244 0.591583i \(-0.201497\pi\)
−0.915448 + 0.402436i \(0.868164\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −9.32662 −0.343550
\(738\) 0 0
\(739\) −29.1774 −1.07331 −0.536653 0.843803i \(-0.680312\pi\)
−0.536653 + 0.843803i \(0.680312\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.8512 + 32.6513i 0.691584 + 1.19786i 0.971319 + 0.237781i \(0.0764201\pi\)
−0.279735 + 0.960077i \(0.590247\pi\)
\(744\) 0 0
\(745\) −10.8413 + 18.7777i −0.397196 + 0.687963i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.3277 35.2085i −0.741767 1.28478i −0.951690 0.307060i \(-0.900655\pi\)
0.209923 0.977718i \(-0.432679\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −48.3130 −1.75829
\(756\) 0 0
\(757\) 17.6704 0.642241 0.321120 0.947038i \(-0.395941\pi\)
0.321120 + 0.947038i \(0.395941\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.644183 1.11576i −0.0233516 0.0404462i 0.854113 0.520087i \(-0.174100\pi\)
−0.877465 + 0.479641i \(0.840767\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 11.4405 19.8154i 0.413091 0.715494i
\(768\) 0 0
\(769\) 4.19275 + 7.26205i 0.151194 + 0.261876i 0.931667 0.363314i \(-0.118355\pi\)
−0.780472 + 0.625190i \(0.785021\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −50.3060 −1.80938 −0.904691 0.426068i \(-0.859898\pi\)
−0.904691 + 0.426068i \(0.859898\pi\)
\(774\) 0 0
\(775\) 0.557366 0.0200212
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 43.0181 + 74.5095i 1.54128 + 2.66958i
\(780\) 0 0
\(781\) −4.98903 + 8.64125i −0.178521 + 0.309208i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −9.97051 + 17.2694i −0.355863 + 0.616373i
\(786\) 0 0
\(787\) −11.1922 19.3855i −0.398960 0.691020i 0.594638 0.803994i \(-0.297296\pi\)
−0.993598 + 0.112974i \(0.963962\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 5.48052 0.194619
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0.706182 + 1.22314i 0.0250143 + 0.0433260i 0.878262 0.478181i \(-0.158704\pi\)
−0.853247 + 0.521507i \(0.825370\pi\)
\(798\) 0 0
\(799\) −9.39736 + 16.2767i −0.332455 + 0.575828i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.6837 23.7008i 0.482887 0.836384i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −20.0848 −0.706142 −0.353071 0.935596i \(-0.614863\pi\)
−0.353071 + 0.935596i \(0.614863\pi\)
\(810\) 0 0
\(811\) 55.7821 1.95878 0.979388 0.201988i \(-0.0647401\pi\)
0.979388 + 0.201988i \(0.0647401\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 23.1140 + 40.0345i 0.809646 + 1.40235i
\(816\) 0 0
\(817\) 14.9827 25.9507i 0.524177 0.907901i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −24.4346 + 42.3219i −0.852772 + 1.47704i 0.0259249 + 0.999664i \(0.491747\pi\)
−0.878697 + 0.477380i \(0.841586\pi\)
\(822\) 0 0
\(823\) 0.266319 + 0.461277i 0.00928328 + 0.0160791i 0.870630 0.491939i \(-0.163712\pi\)
−0.861346 + 0.508018i \(0.830378\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −10.1951 −0.354518 −0.177259 0.984164i \(-0.556723\pi\)
−0.177259 + 0.984164i \(0.556723\pi\)
\(828\) 0 0
\(829\) 21.2692 0.738711 0.369355 0.929288i \(-0.379579\pi\)
0.369355 + 0.929288i \(0.379579\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 21.0859 36.5219i 0.729709 1.26389i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.47717 + 16.4149i −0.327188 + 0.566707i −0.981953 0.189126i \(-0.939434\pi\)
0.654765 + 0.755833i \(0.272768\pi\)
\(840\) 0 0
\(841\) −15.5912 27.0047i −0.537626 0.931196i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 22.9792 0.790509
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.07837 5.33190i −0.105525 0.182775i
\(852\) 0 0
\(853\) −2.75811 + 4.77718i −0.0944358 + 0.163568i −0.909373 0.415982i \(-0.863438\pi\)
0.814937 + 0.579549i \(0.196771\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.92471 13.7260i 0.270703 0.468871i −0.698339 0.715767i \(-0.746077\pi\)
0.969042 + 0.246896i \(0.0794106\pi\)
\(858\) 0 0
\(859\) 10.7004 + 18.5337i 0.365095 + 0.632362i 0.988791 0.149304i \(-0.0477033\pi\)
−0.623697 + 0.781666i \(0.714370\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.03720 0.137428 0.0687140 0.997636i \(-0.478110\pi\)
0.0687140 + 0.997636i \(0.478110\pi\)
\(864\) 0 0
\(865\) −50.5247 −1.71789
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 9.56500 + 16.5671i 0.324470 + 0.561999i
\(870\) 0 0
\(871\) −9.81894 + 17.0069i −0.332702 + 0.576257i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.6905 + 21.9806i 0.428529 + 0.742233i 0.996743 0.0806475i \(-0.0256988\pi\)
−0.568214 + 0.822881i \(0.692365\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 18.7755 0.632561 0.316281 0.948666i \(-0.397566\pi\)
0.316281 + 0.948666i \(0.397566\pi\)
\(882\) 0 0
\(883\) 8.52167 0.286777 0.143388 0.989666i \(-0.454200\pi\)
0.143388 + 0.989666i \(0.454200\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.05040 8.74755i −0.169576 0.293714i 0.768695 0.639616i \(-0.220906\pi\)
−0.938271 + 0.345902i \(0.887573\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 18.7690 32.5089i 0.628080 1.08787i
\(894\) 0 0
\(895\) 15.4870 + 26.8243i 0.517674 + 0.896638i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.28873 −0.209741
\(900\) 0 0
\(901\) 50.2654 1.67458
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.0612 + 34.7470i 0.666857 + 1.15503i
\(906\) 0 0
\(907\) 10.6088 18.3750i 0.352260 0.610131i −0.634385 0.773017i \(-0.718747\pi\)
0.986645 + 0.162885i \(0.0520801\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.46609 7.73550i 0.147968 0.256289i −0.782508 0.622640i \(-0.786060\pi\)
0.930476 + 0.366352i \(0.119393\pi\)
\(912\) 0 0
\(913\) −1.84789 3.20063i −0.0611561 0.105925i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 34.9129 1.15167 0.575834 0.817566i \(-0.304677\pi\)
0.575834 + 0.817566i \(0.304677\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 10.5048 + 18.1948i 0.345769 + 0.598889i
\(924\) 0 0
\(925\) 1.59248 2.75826i 0.0523605 0.0906911i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.51692 9.55559i 0.181004 0.313509i −0.761218 0.648496i \(-0.775399\pi\)
0.942223 + 0.334987i \(0.108732\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 23.1933 0.758503
\(936\) 0 0
\(937\) 13.6426 0.445686 0.222843 0.974854i \(-0.428466\pi\)
0.222843 + 0.974854i \(0.428466\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −12.0278 20.8328i −0.392095 0.679129i 0.600630 0.799527i \(-0.294916\pi\)
−0.992726 + 0.120398i \(0.961583\pi\)
\(942\) 0 0
\(943\) 6.65117 11.5202i 0.216592 0.375148i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 6.69602 11.5978i 0.217591 0.376879i −0.736480 0.676460i \(-0.763513\pi\)
0.954071 + 0.299580i \(0.0968466\pi\)
\(948\) 0 0
\(949\) −28.8120 49.9038i −0.935277 1.61995i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −36.3444 −1.17731 −0.588655 0.808384i \(-0.700342\pi\)
−0.588655 + 0.808384i \(0.700342\pi\)
\(954\) 0 0
\(955\) −21.8721 −0.707764
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.1714 26.2777i 0.489401 0.847667i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 30.5627 52.9362i 0.983849 1.70408i
\(966\) 0 0
\(967\) 4.82455 + 8.35637i 0.155147 + 0.268723i 0.933113 0.359584i \(-0.117082\pi\)
−0.777965 + 0.628307i \(0.783748\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 43.3775 1.39205 0.696025 0.718017i \(-0.254950\pi\)
0.696025 + 0.718017i \(0.254950\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.60004 + 4.50340i 0.0831826 + 0.144076i 0.904615 0.426229i \(-0.140158\pi\)
−0.821433 + 0.570305i \(0.806825\pi\)
\(978\) 0 0
\(979\) −7.16631 + 12.4124i −0.229036 + 0.396703i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11.6349 + 20.1522i −0.371095 + 0.642755i −0.989734 0.142920i \(-0.954351\pi\)
0.618639 + 0.785675i \(0.287684\pi\)
\(984\) 0 0
\(985\) 19.2025 + 33.2596i 0.611841 + 1.05974i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −4.63304 −0.147322
\(990\) 0 0
\(991\) −39.0382 −1.24009 −0.620044 0.784567i \(-0.712885\pi\)
−0.620044 + 0.784567i \(0.712885\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.9283 + 39.7130i 0.726877 + 1.25899i
\(996\) 0 0
\(997\) −12.0905 + 20.9413i −0.382909 + 0.663218i −0.991477 0.130284i \(-0.958411\pi\)
0.608568 + 0.793502i \(0.291744\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.j.i.3529.3 24
3.2 odd 2 1764.2.j.i.1177.5 yes 24
7.2 even 3 5292.2.i.j.2125.3 24
7.3 odd 6 5292.2.l.j.3313.3 24
7.4 even 3 5292.2.l.j.3313.10 24
7.5 odd 6 5292.2.i.j.2125.10 24
7.6 odd 2 inner 5292.2.j.i.3529.10 24
9.4 even 3 inner 5292.2.j.i.1765.3 24
9.5 odd 6 1764.2.j.i.589.5 24
21.2 odd 6 1764.2.i.j.1537.5 24
21.5 even 6 1764.2.i.j.1537.8 24
21.11 odd 6 1764.2.l.j.961.12 24
21.17 even 6 1764.2.l.j.961.1 24
21.20 even 2 1764.2.j.i.1177.8 yes 24
63.4 even 3 5292.2.i.j.1549.3 24
63.5 even 6 1764.2.l.j.949.1 24
63.13 odd 6 inner 5292.2.j.i.1765.10 24
63.23 odd 6 1764.2.l.j.949.12 24
63.31 odd 6 5292.2.i.j.1549.10 24
63.32 odd 6 1764.2.i.j.373.5 24
63.40 odd 6 5292.2.l.j.361.3 24
63.41 even 6 1764.2.j.i.589.8 yes 24
63.58 even 3 5292.2.l.j.361.10 24
63.59 even 6 1764.2.i.j.373.8 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.5 24 63.32 odd 6
1764.2.i.j.373.8 24 63.59 even 6
1764.2.i.j.1537.5 24 21.2 odd 6
1764.2.i.j.1537.8 24 21.5 even 6
1764.2.j.i.589.5 24 9.5 odd 6
1764.2.j.i.589.8 yes 24 63.41 even 6
1764.2.j.i.1177.5 yes 24 3.2 odd 2
1764.2.j.i.1177.8 yes 24 21.20 even 2
1764.2.l.j.949.1 24 63.5 even 6
1764.2.l.j.949.12 24 63.23 odd 6
1764.2.l.j.961.1 24 21.17 even 6
1764.2.l.j.961.12 24 21.11 odd 6
5292.2.i.j.1549.3 24 63.4 even 3
5292.2.i.j.1549.10 24 63.31 odd 6
5292.2.i.j.2125.3 24 7.2 even 3
5292.2.i.j.2125.10 24 7.5 odd 6
5292.2.j.i.1765.3 24 9.4 even 3 inner
5292.2.j.i.1765.10 24 63.13 odd 6 inner
5292.2.j.i.3529.3 24 1.1 even 1 trivial
5292.2.j.i.3529.10 24 7.6 odd 2 inner
5292.2.l.j.361.3 24 63.40 odd 6
5292.2.l.j.361.10 24 63.58 even 3
5292.2.l.j.3313.3 24 7.3 odd 6
5292.2.l.j.3313.10 24 7.4 even 3