Properties

Label 1764.2.j.i.1177.5
Level $1764$
Weight $2$
Character 1764.1177
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(589,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1177.5
Character \(\chi\) \(=\) 1764.1177
Dual form 1764.2.j.i.589.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.899846 + 1.47996i) q^{3} +(1.19243 + 2.06535i) q^{5} +(-1.38055 - 2.66347i) q^{9} +O(q^{10})\) \(q+(-0.899846 + 1.47996i) q^{3} +(1.19243 + 2.06535i) q^{5} +(-1.38055 - 2.66347i) q^{9} +(1.12978 - 1.95684i) q^{11} +(2.37884 + 4.12027i) q^{13} +(-4.12964 - 0.0937498i) q^{15} -4.30404 q^{17} -8.59629 q^{19} +(-0.664550 - 1.15103i) q^{23} +(-0.343781 + 0.595446i) q^{25} +(5.18411 + 0.353550i) q^{27} +(-3.87886 + 6.71839i) q^{29} +(-0.405320 - 0.702036i) q^{31} +(1.87941 + 3.43288i) q^{33} -4.63226 q^{37} +(-8.23841 - 0.187026i) q^{39} +(5.00426 + 8.66764i) q^{41} +(-1.74292 + 3.01883i) q^{43} +(3.85478 - 6.02733i) q^{45} +(2.18338 - 3.78173i) q^{47} +(3.87297 - 6.36979i) q^{51} -11.6787 q^{53} +5.38874 q^{55} +(7.73534 - 12.7222i) q^{57} +(2.40463 + 4.16495i) q^{59} +(0.575967 - 0.997604i) q^{61} +(-5.67319 + 9.82626i) q^{65} +(2.06381 + 3.57463i) q^{67} +(2.30148 + 0.0522474i) q^{69} -4.41593 q^{71} -12.1118 q^{73} +(-0.571885 - 1.04459i) q^{75} +(4.23312 - 7.33198i) q^{79} +(-5.18814 + 7.35413i) q^{81} +(0.817808 - 1.41648i) q^{83} +(-5.13226 - 8.88934i) q^{85} +(-6.45255 - 11.7861i) q^{87} -6.34310 q^{89} +(1.40371 + 0.0318666i) q^{93} +(-10.2505 - 17.7543i) q^{95} +(5.98278 - 10.3625i) q^{97} +(-6.77170 - 0.307617i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 8 q^{9} - 4 q^{11} - 28 q^{15} - 8 q^{23} - 12 q^{25} - 32 q^{29} + 24 q^{37} - 40 q^{51} + 32 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} + 16 q^{81} + 12 q^{85} + 48 q^{93} + 32 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.899846 + 1.47996i −0.519526 + 0.854454i
\(4\) 0 0
\(5\) 1.19243 + 2.06535i 0.533271 + 0.923653i 0.999245 + 0.0388541i \(0.0123708\pi\)
−0.465974 + 0.884799i \(0.654296\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.38055 2.66347i −0.460185 0.887823i
\(10\) 0 0
\(11\) 1.12978 1.95684i 0.340642 0.590009i −0.643910 0.765101i \(-0.722689\pi\)
0.984552 + 0.175092i \(0.0560224\pi\)
\(12\) 0 0
\(13\) 2.37884 + 4.12027i 0.659770 + 1.14276i 0.980675 + 0.195644i \(0.0626798\pi\)
−0.320904 + 0.947112i \(0.603987\pi\)
\(14\) 0 0
\(15\) −4.12964 0.0937498i −1.06627 0.0242061i
\(16\) 0 0
\(17\) −4.30404 −1.04388 −0.521941 0.852982i \(-0.674792\pi\)
−0.521941 + 0.852982i \(0.674792\pi\)
\(18\) 0 0
\(19\) −8.59629 −1.97212 −0.986062 0.166378i \(-0.946793\pi\)
−0.986062 + 0.166378i \(0.946793\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.664550 1.15103i −0.138568 0.240007i 0.788387 0.615180i \(-0.210917\pi\)
−0.926955 + 0.375173i \(0.877583\pi\)
\(24\) 0 0
\(25\) −0.343781 + 0.595446i −0.0687562 + 0.119089i
\(26\) 0 0
\(27\) 5.18411 + 0.353550i 0.997683 + 0.0680408i
\(28\) 0 0
\(29\) −3.87886 + 6.71839i −0.720287 + 1.24757i 0.240598 + 0.970625i \(0.422656\pi\)
−0.960885 + 0.276948i \(0.910677\pi\)
\(30\) 0 0
\(31\) −0.405320 0.702036i −0.0727977 0.126089i 0.827329 0.561718i \(-0.189859\pi\)
−0.900126 + 0.435629i \(0.856526\pi\)
\(32\) 0 0
\(33\) 1.87941 + 3.43288i 0.327163 + 0.597588i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −4.63226 −0.761539 −0.380770 0.924670i \(-0.624341\pi\)
−0.380770 + 0.924670i \(0.624341\pi\)
\(38\) 0 0
\(39\) −8.23841 0.187026i −1.31920 0.0299481i
\(40\) 0 0
\(41\) 5.00426 + 8.66764i 0.781534 + 1.35366i 0.931048 + 0.364898i \(0.118896\pi\)
−0.149513 + 0.988760i \(0.547771\pi\)
\(42\) 0 0
\(43\) −1.74292 + 3.01883i −0.265793 + 0.460367i −0.967771 0.251831i \(-0.918967\pi\)
0.701978 + 0.712199i \(0.252300\pi\)
\(44\) 0 0
\(45\) 3.85478 6.02733i 0.574637 0.898501i
\(46\) 0 0
\(47\) 2.18338 3.78173i 0.318479 0.551622i −0.661692 0.749776i \(-0.730161\pi\)
0.980171 + 0.198154i \(0.0634946\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3.87297 6.36979i 0.542324 0.891950i
\(52\) 0 0
\(53\) −11.6787 −1.60419 −0.802094 0.597197i \(-0.796281\pi\)
−0.802094 + 0.597197i \(0.796281\pi\)
\(54\) 0 0
\(55\) 5.38874 0.726617
\(56\) 0 0
\(57\) 7.73534 12.7222i 1.02457 1.68509i
\(58\) 0 0
\(59\) 2.40463 + 4.16495i 0.313056 + 0.542230i 0.979022 0.203752i \(-0.0653137\pi\)
−0.665966 + 0.745982i \(0.731980\pi\)
\(60\) 0 0
\(61\) 0.575967 0.997604i 0.0737450 0.127730i −0.826795 0.562504i \(-0.809838\pi\)
0.900540 + 0.434774i \(0.143172\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.67319 + 9.82626i −0.703673 + 1.21880i
\(66\) 0 0
\(67\) 2.06381 + 3.57463i 0.252135 + 0.436710i 0.964113 0.265491i \(-0.0855341\pi\)
−0.711979 + 0.702201i \(0.752201\pi\)
\(68\) 0 0
\(69\) 2.30148 + 0.0522474i 0.277065 + 0.00628985i
\(70\) 0 0
\(71\) −4.41593 −0.524074 −0.262037 0.965058i \(-0.584394\pi\)
−0.262037 + 0.965058i \(0.584394\pi\)
\(72\) 0 0
\(73\) −12.1118 −1.41758 −0.708790 0.705420i \(-0.750759\pi\)
−0.708790 + 0.705420i \(0.750759\pi\)
\(74\) 0 0
\(75\) −0.571885 1.04459i −0.0660356 0.120619i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.23312 7.33198i 0.476263 0.824913i −0.523367 0.852108i \(-0.675324\pi\)
0.999630 + 0.0271950i \(0.00865752\pi\)
\(80\) 0 0
\(81\) −5.18814 + 7.35413i −0.576460 + 0.817125i
\(82\) 0 0
\(83\) 0.817808 1.41648i 0.0897661 0.155479i −0.817646 0.575721i \(-0.804721\pi\)
0.907412 + 0.420242i \(0.138055\pi\)
\(84\) 0 0
\(85\) −5.13226 8.88934i −0.556672 0.964184i
\(86\) 0 0
\(87\) −6.45255 11.7861i −0.691786 1.26360i
\(88\) 0 0
\(89\) −6.34310 −0.672367 −0.336184 0.941796i \(-0.609136\pi\)
−0.336184 + 0.941796i \(0.609136\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.40371 + 0.0318666i 0.145558 + 0.00330441i
\(94\) 0 0
\(95\) −10.2505 17.7543i −1.05168 1.82156i
\(96\) 0 0
\(97\) 5.98278 10.3625i 0.607459 1.05215i −0.384198 0.923251i \(-0.625522\pi\)
0.991658 0.128900i \(-0.0411445\pi\)
\(98\) 0 0
\(99\) −6.77170 0.307617i −0.680581 0.0309166i
\(100\) 0 0
\(101\) −5.42348 + 9.39374i −0.539656 + 0.934712i 0.459266 + 0.888299i \(0.348112\pi\)
−0.998922 + 0.0464132i \(0.985221\pi\)
\(102\) 0 0
\(103\) −9.17226 15.8868i −0.903769 1.56537i −0.822561 0.568677i \(-0.807455\pi\)
−0.0812086 0.996697i \(-0.525878\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.83412 0.370658 0.185329 0.982676i \(-0.440665\pi\)
0.185329 + 0.982676i \(0.440665\pi\)
\(108\) 0 0
\(109\) 2.64496 0.253341 0.126671 0.991945i \(-0.459571\pi\)
0.126671 + 0.991945i \(0.459571\pi\)
\(110\) 0 0
\(111\) 4.16832 6.85556i 0.395640 0.650701i
\(112\) 0 0
\(113\) −2.64275 4.57738i −0.248609 0.430603i 0.714531 0.699604i \(-0.246640\pi\)
−0.963140 + 0.269000i \(0.913307\pi\)
\(114\) 0 0
\(115\) 1.58486 2.74506i 0.147789 0.255978i
\(116\) 0 0
\(117\) 7.69009 12.0242i 0.710949 1.11164i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.94719 + 5.10469i 0.267927 + 0.464062i
\(122\) 0 0
\(123\) −17.3308 0.393439i −1.56267 0.0354752i
\(124\) 0 0
\(125\) 10.2846 0.919880
\(126\) 0 0
\(127\) −7.67115 −0.680704 −0.340352 0.940298i \(-0.610546\pi\)
−0.340352 + 0.940298i \(0.610546\pi\)
\(128\) 0 0
\(129\) −2.89938 5.29593i −0.255276 0.466281i
\(130\) 0 0
\(131\) 9.69007 + 16.7837i 0.846625 + 1.46640i 0.884202 + 0.467104i \(0.154703\pi\)
−0.0375770 + 0.999294i \(0.511964\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 5.45149 + 11.1286i 0.469189 + 0.957796i
\(136\) 0 0
\(137\) 4.84498 8.39176i 0.413935 0.716956i −0.581381 0.813631i \(-0.697487\pi\)
0.995316 + 0.0966750i \(0.0308208\pi\)
\(138\) 0 0
\(139\) 3.81197 + 6.60252i 0.323327 + 0.560018i 0.981172 0.193135i \(-0.0618654\pi\)
−0.657846 + 0.753153i \(0.728532\pi\)
\(140\) 0 0
\(141\) 3.63210 + 6.63429i 0.305878 + 0.558708i
\(142\) 0 0
\(143\) 10.7503 0.898981
\(144\) 0 0
\(145\) −18.5011 −1.53643
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.54590 + 7.87372i 0.372414 + 0.645041i 0.989936 0.141513i \(-0.0451967\pi\)
−0.617522 + 0.786554i \(0.711863\pi\)
\(150\) 0 0
\(151\) 10.1291 17.5441i 0.824294 1.42772i −0.0781631 0.996941i \(-0.524905\pi\)
0.902457 0.430779i \(-0.141761\pi\)
\(152\) 0 0
\(153\) 5.94195 + 11.4637i 0.480379 + 0.926783i
\(154\) 0 0
\(155\) 0.966633 1.67426i 0.0776418 0.134480i
\(156\) 0 0
\(157\) −4.18075 7.24127i −0.333660 0.577917i 0.649566 0.760305i \(-0.274951\pi\)
−0.983227 + 0.182388i \(0.941617\pi\)
\(158\) 0 0
\(159\) 10.5090 17.2839i 0.833418 1.37071i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −19.3839 −1.51826 −0.759132 0.650937i \(-0.774376\pi\)
−0.759132 + 0.650937i \(0.774376\pi\)
\(164\) 0 0
\(165\) −4.84904 + 7.97511i −0.377497 + 0.620861i
\(166\) 0 0
\(167\) −8.84158 15.3141i −0.684182 1.18504i −0.973693 0.227864i \(-0.926826\pi\)
0.289511 0.957175i \(-0.406507\pi\)
\(168\) 0 0
\(169\) −4.81772 + 8.34454i −0.370594 + 0.641888i
\(170\) 0 0
\(171\) 11.8676 + 22.8960i 0.907541 + 1.75090i
\(172\) 0 0
\(173\) −10.5928 + 18.3473i −0.805356 + 1.39492i 0.110695 + 0.993854i \(0.464692\pi\)
−0.916051 + 0.401063i \(0.868641\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −8.32775 0.189054i −0.625952 0.0142102i
\(178\) 0 0
\(179\) 12.9878 0.970753 0.485376 0.874305i \(-0.338683\pi\)
0.485376 + 0.874305i \(0.338683\pi\)
\(180\) 0 0
\(181\) −16.8238 −1.25050 −0.625251 0.780423i \(-0.715004\pi\)
−0.625251 + 0.780423i \(0.715004\pi\)
\(182\) 0 0
\(183\) 0.958131 + 1.75010i 0.0708271 + 0.129371i
\(184\) 0 0
\(185\) −5.52365 9.56725i −0.406107 0.703398i
\(186\) 0 0
\(187\) −4.86262 + 8.42230i −0.355590 + 0.615899i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.58561 + 7.94251i −0.331803 + 0.574700i −0.982865 0.184324i \(-0.940990\pi\)
0.651062 + 0.759024i \(0.274324\pi\)
\(192\) 0 0
\(193\) 12.8153 + 22.1968i 0.922466 + 1.59776i 0.795586 + 0.605840i \(0.207163\pi\)
0.126880 + 0.991918i \(0.459504\pi\)
\(194\) 0 0
\(195\) −9.43745 17.2382i −0.675830 1.23445i
\(196\) 0 0
\(197\) 16.1036 1.14734 0.573668 0.819088i \(-0.305520\pi\)
0.573668 + 0.819088i \(0.305520\pi\)
\(198\) 0 0
\(199\) −19.2282 −1.36305 −0.681526 0.731794i \(-0.738683\pi\)
−0.681526 + 0.731794i \(0.738683\pi\)
\(200\) 0 0
\(201\) −7.14741 0.162258i −0.504140 0.0114448i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −11.9345 + 20.6711i −0.833540 + 1.44373i
\(206\) 0 0
\(207\) −2.14830 + 3.35907i −0.149317 + 0.233472i
\(208\) 0 0
\(209\) −9.71192 + 16.8215i −0.671788 + 1.16357i
\(210\) 0 0
\(211\) −12.3251 21.3477i −0.848496 1.46964i −0.882551 0.470218i \(-0.844175\pi\)
0.0340549 0.999420i \(-0.489158\pi\)
\(212\) 0 0
\(213\) 3.97365 6.53539i 0.272270 0.447797i
\(214\) 0 0
\(215\) −8.31325 −0.566959
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 10.8988 17.9250i 0.736470 1.21126i
\(220\) 0 0
\(221\) −10.2386 17.7338i −0.688723 1.19290i
\(222\) 0 0
\(223\) −7.41074 + 12.8358i −0.496260 + 0.859547i −0.999991 0.00431335i \(-0.998627\pi\)
0.503731 + 0.863861i \(0.331960\pi\)
\(224\) 0 0
\(225\) 2.06056 + 0.0936047i 0.137371 + 0.00624031i
\(226\) 0 0
\(227\) −9.07752 + 15.7227i −0.602496 + 1.04355i 0.389946 + 0.920838i \(0.372494\pi\)
−0.992442 + 0.122716i \(0.960840\pi\)
\(228\) 0 0
\(229\) 4.75346 + 8.23323i 0.314117 + 0.544067i 0.979249 0.202659i \(-0.0649581\pi\)
−0.665132 + 0.746726i \(0.731625\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.3431 1.33272 0.666360 0.745630i \(-0.267851\pi\)
0.666360 + 0.745630i \(0.267851\pi\)
\(234\) 0 0
\(235\) 10.4141 0.679343
\(236\) 0 0
\(237\) 7.04187 + 12.8625i 0.457419 + 0.835509i
\(238\) 0 0
\(239\) 8.90544 + 15.4247i 0.576045 + 0.997739i 0.995927 + 0.0901607i \(0.0287381\pi\)
−0.419882 + 0.907579i \(0.637929\pi\)
\(240\) 0 0
\(241\) 3.14437 5.44620i 0.202546 0.350821i −0.746802 0.665047i \(-0.768412\pi\)
0.949348 + 0.314226i \(0.101745\pi\)
\(242\) 0 0
\(243\) −6.21527 14.2958i −0.398710 0.917077i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −20.4492 35.4190i −1.30115 2.25366i
\(248\) 0 0
\(249\) 1.36044 + 2.48494i 0.0862142 + 0.157477i
\(250\) 0 0
\(251\) 25.1868 1.58978 0.794889 0.606755i \(-0.207529\pi\)
0.794889 + 0.606755i \(0.207529\pi\)
\(252\) 0 0
\(253\) −3.00318 −0.188809
\(254\) 0 0
\(255\) 17.7741 + 0.403502i 1.11306 + 0.0252683i
\(256\) 0 0
\(257\) 14.3401 + 24.8379i 0.894514 + 1.54934i 0.834405 + 0.551152i \(0.185811\pi\)
0.0601087 + 0.998192i \(0.480855\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 23.2492 + 1.05614i 1.43909 + 0.0653732i
\(262\) 0 0
\(263\) 7.20840 12.4853i 0.444489 0.769877i −0.553528 0.832831i \(-0.686719\pi\)
0.998016 + 0.0629537i \(0.0200520\pi\)
\(264\) 0 0
\(265\) −13.9260 24.1205i −0.855468 1.48171i
\(266\) 0 0
\(267\) 5.70782 9.38753i 0.349313 0.574507i
\(268\) 0 0
\(269\) 12.8999 0.786524 0.393262 0.919426i \(-0.371347\pi\)
0.393262 + 0.919426i \(0.371347\pi\)
\(270\) 0 0
\(271\) 19.4622 1.18224 0.591122 0.806582i \(-0.298685\pi\)
0.591122 + 0.806582i \(0.298685\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.776794 + 1.34545i 0.0468424 + 0.0811335i
\(276\) 0 0
\(277\) −7.95620 + 13.7805i −0.478042 + 0.827993i −0.999683 0.0251721i \(-0.991987\pi\)
0.521641 + 0.853165i \(0.325320\pi\)
\(278\) 0 0
\(279\) −1.31028 + 2.04876i −0.0784446 + 0.122656i
\(280\) 0 0
\(281\) −13.9998 + 24.2484i −0.835158 + 1.44654i 0.0587432 + 0.998273i \(0.481291\pi\)
−0.893901 + 0.448263i \(0.852043\pi\)
\(282\) 0 0
\(283\) 2.62345 + 4.54394i 0.155948 + 0.270109i 0.933404 0.358828i \(-0.116824\pi\)
−0.777456 + 0.628937i \(0.783490\pi\)
\(284\) 0 0
\(285\) 35.4996 + 0.805900i 2.10281 + 0.0477374i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.52473 0.0896898
\(290\) 0 0
\(291\) 9.95246 + 18.1789i 0.583423 + 1.06567i
\(292\) 0 0
\(293\) −1.65939 2.87415i −0.0969428 0.167910i 0.813475 0.581600i \(-0.197573\pi\)
−0.910418 + 0.413690i \(0.864240\pi\)
\(294\) 0 0
\(295\) −5.73471 + 9.93282i −0.333888 + 0.578311i
\(296\) 0 0
\(297\) 6.54875 9.74503i 0.379997 0.565464i
\(298\) 0 0
\(299\) 3.16171 5.47625i 0.182847 0.316700i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −9.02205 16.4794i −0.518303 0.946719i
\(304\) 0 0
\(305\) 2.74720 0.157304
\(306\) 0 0
\(307\) −12.4703 −0.711715 −0.355857 0.934540i \(-0.615811\pi\)
−0.355857 + 0.934540i \(0.615811\pi\)
\(308\) 0 0
\(309\) 31.7654 + 0.721130i 1.80707 + 0.0410236i
\(310\) 0 0
\(311\) 11.3383 + 19.6385i 0.642936 + 1.11360i 0.984774 + 0.173840i \(0.0556174\pi\)
−0.341838 + 0.939759i \(0.611049\pi\)
\(312\) 0 0
\(313\) 3.16108 5.47515i 0.178675 0.309474i −0.762752 0.646691i \(-0.776152\pi\)
0.941427 + 0.337217i \(0.109486\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.79041 13.4934i 0.437553 0.757864i −0.559947 0.828528i \(-0.689179\pi\)
0.997500 + 0.0706643i \(0.0225119\pi\)
\(318\) 0 0
\(319\) 8.76453 + 15.1806i 0.490719 + 0.849951i
\(320\) 0 0
\(321\) −3.45012 + 5.67434i −0.192567 + 0.316711i
\(322\) 0 0
\(323\) 36.9987 2.05867
\(324\) 0 0
\(325\) −3.27119 −0.181453
\(326\) 0 0
\(327\) −2.38006 + 3.91443i −0.131618 + 0.216469i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 10.8634 18.8159i 0.597104 1.03422i −0.396142 0.918189i \(-0.629651\pi\)
0.993246 0.116026i \(-0.0370155\pi\)
\(332\) 0 0
\(333\) 6.39509 + 12.3379i 0.350449 + 0.676112i
\(334\) 0 0
\(335\) −4.92190 + 8.52499i −0.268912 + 0.465770i
\(336\) 0 0
\(337\) 4.04329 + 7.00319i 0.220252 + 0.381488i 0.954884 0.296977i \(-0.0959786\pi\)
−0.734632 + 0.678465i \(0.762645\pi\)
\(338\) 0 0
\(339\) 9.15239 + 0.207775i 0.497090 + 0.0112848i
\(340\) 0 0
\(341\) −1.83169 −0.0991917
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.63644 + 4.81566i 0.141941 + 0.259266i
\(346\) 0 0
\(347\) 0.466877 + 0.808654i 0.0250632 + 0.0434108i 0.878285 0.478138i \(-0.158688\pi\)
−0.853222 + 0.521548i \(0.825355\pi\)
\(348\) 0 0
\(349\) −1.90264 + 3.29548i −0.101846 + 0.176403i −0.912445 0.409199i \(-0.865808\pi\)
0.810599 + 0.585601i \(0.199142\pi\)
\(350\) 0 0
\(351\) 10.8754 + 22.2009i 0.580487 + 1.18500i
\(352\) 0 0
\(353\) 6.55974 11.3618i 0.349140 0.604728i −0.636957 0.770899i \(-0.719807\pi\)
0.986097 + 0.166171i \(0.0531405\pi\)
\(354\) 0 0
\(355\) −5.26569 9.12043i −0.279474 0.484062i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.5658 −1.13820 −0.569100 0.822268i \(-0.692708\pi\)
−0.569100 + 0.822268i \(0.692708\pi\)
\(360\) 0 0
\(361\) 54.8962 2.88927
\(362\) 0 0
\(363\) −10.2067 0.231710i −0.535715 0.0121616i
\(364\) 0 0
\(365\) −14.4425 25.0151i −0.755954 1.30935i
\(366\) 0 0
\(367\) −9.33095 + 16.1617i −0.487072 + 0.843633i −0.999890 0.0148645i \(-0.995268\pi\)
0.512818 + 0.858497i \(0.328602\pi\)
\(368\) 0 0
\(369\) 16.1773 25.2948i 0.842158 1.31680i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.0854 + 17.4684i 0.522201 + 0.904478i 0.999666 + 0.0258279i \(0.00822218\pi\)
−0.477466 + 0.878650i \(0.658444\pi\)
\(374\) 0 0
\(375\) −9.25453 + 15.2207i −0.477902 + 0.785995i
\(376\) 0 0
\(377\) −36.9087 −1.90090
\(378\) 0 0
\(379\) 18.2436 0.937110 0.468555 0.883434i \(-0.344775\pi\)
0.468555 + 0.883434i \(0.344775\pi\)
\(380\) 0 0
\(381\) 6.90285 11.3530i 0.353644 0.581631i
\(382\) 0 0
\(383\) 11.4282 + 19.7942i 0.583952 + 1.01143i 0.995005 + 0.0998233i \(0.0318278\pi\)
−0.411053 + 0.911611i \(0.634839\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 10.4468 + 0.474563i 0.531039 + 0.0241234i
\(388\) 0 0
\(389\) −6.17146 + 10.6893i −0.312905 + 0.541968i −0.978990 0.203908i \(-0.934636\pi\)
0.666085 + 0.745876i \(0.267969\pi\)
\(390\) 0 0
\(391\) 2.86025 + 4.95410i 0.144649 + 0.250539i
\(392\) 0 0
\(393\) −33.5587 0.761840i −1.69281 0.0384298i
\(394\) 0 0
\(395\) 20.1908 1.01591
\(396\) 0 0
\(397\) −26.2032 −1.31510 −0.657551 0.753410i \(-0.728408\pi\)
−0.657551 + 0.753410i \(0.728408\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.95559 3.38718i −0.0976575 0.169148i 0.813057 0.582184i \(-0.197802\pi\)
−0.910715 + 0.413036i \(0.864468\pi\)
\(402\) 0 0
\(403\) 1.92838 3.34006i 0.0960596 0.166380i
\(404\) 0 0
\(405\) −21.3753 1.94604i −1.06215 0.0966997i
\(406\) 0 0
\(407\) −5.23344 + 9.06459i −0.259412 + 0.449315i
\(408\) 0 0
\(409\) −1.05065 1.81978i −0.0519513 0.0899823i 0.838880 0.544316i \(-0.183211\pi\)
−0.890832 + 0.454334i \(0.849877\pi\)
\(410\) 0 0
\(411\) 8.05971 + 14.7217i 0.397556 + 0.726166i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 3.90072 0.191479
\(416\) 0 0
\(417\) −13.2016 0.299700i −0.646487 0.0146763i
\(418\) 0 0
\(419\) −11.7017 20.2679i −0.571664 0.990150i −0.996395 0.0848311i \(-0.972965\pi\)
0.424732 0.905319i \(-0.360368\pi\)
\(420\) 0 0
\(421\) 9.78341 16.9454i 0.476814 0.825866i −0.522833 0.852435i \(-0.675125\pi\)
0.999647 + 0.0265688i \(0.00845812\pi\)
\(422\) 0 0
\(423\) −13.0868 0.594492i −0.636302 0.0289052i
\(424\) 0 0
\(425\) 1.47965 2.56282i 0.0717733 0.124315i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −9.67357 + 15.9099i −0.467044 + 0.768138i
\(430\) 0 0
\(431\) 6.70877 0.323150 0.161575 0.986860i \(-0.448343\pi\)
0.161575 + 0.986860i \(0.448343\pi\)
\(432\) 0 0
\(433\) 9.46607 0.454910 0.227455 0.973789i \(-0.426959\pi\)
0.227455 + 0.973789i \(0.426959\pi\)
\(434\) 0 0
\(435\) 16.6481 27.3809i 0.798217 1.31281i
\(436\) 0 0
\(437\) 5.71267 + 9.89463i 0.273274 + 0.473324i
\(438\) 0 0
\(439\) −3.82386 + 6.62312i −0.182503 + 0.316104i −0.942732 0.333550i \(-0.891753\pi\)
0.760229 + 0.649655i \(0.225087\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18.0763 + 31.3091i −0.858833 + 1.48754i 0.0142102 + 0.999899i \(0.495477\pi\)
−0.873043 + 0.487643i \(0.837857\pi\)
\(444\) 0 0
\(445\) −7.56371 13.1007i −0.358554 0.621034i
\(446\) 0 0
\(447\) −15.7434 0.357402i −0.744637 0.0169045i
\(448\) 0 0
\(449\) 13.7337 0.648132 0.324066 0.946034i \(-0.394950\pi\)
0.324066 + 0.946034i \(0.394950\pi\)
\(450\) 0 0
\(451\) 22.6149 1.06489
\(452\) 0 0
\(453\) 16.8499 + 30.7776i 0.791679 + 1.44606i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0.213109 0.369115i 0.00996881 0.0172665i −0.860998 0.508608i \(-0.830160\pi\)
0.870967 + 0.491342i \(0.163493\pi\)
\(458\) 0 0
\(459\) −22.3126 1.52169i −1.04146 0.0710266i
\(460\) 0 0
\(461\) −2.26453 + 3.92228i −0.105470 + 0.182679i −0.913930 0.405872i \(-0.866968\pi\)
0.808460 + 0.588551i \(0.200301\pi\)
\(462\) 0 0
\(463\) 16.5598 + 28.6825i 0.769600 + 1.33299i 0.937780 + 0.347230i \(0.112878\pi\)
−0.168179 + 0.985756i \(0.553789\pi\)
\(464\) 0 0
\(465\) 1.60801 + 2.93715i 0.0745697 + 0.136207i
\(466\) 0 0
\(467\) −1.51332 −0.0700281 −0.0350140 0.999387i \(-0.511148\pi\)
−0.0350140 + 0.999387i \(0.511148\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 14.4788 + 0.328694i 0.667149 + 0.0151454i
\(472\) 0 0
\(473\) 3.93824 + 6.82123i 0.181080 + 0.313640i
\(474\) 0 0
\(475\) 2.95524 5.11863i 0.135596 0.234859i
\(476\) 0 0
\(477\) 16.1230 + 31.1058i 0.738223 + 1.42424i
\(478\) 0 0
\(479\) −11.1463 + 19.3060i −0.509288 + 0.882112i 0.490654 + 0.871354i \(0.336758\pi\)
−0.999942 + 0.0107580i \(0.996576\pi\)
\(480\) 0 0
\(481\) −11.0194 19.0862i −0.502441 0.870254i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 28.5362 1.29576
\(486\) 0 0
\(487\) 4.63353 0.209965 0.104983 0.994474i \(-0.466521\pi\)
0.104983 + 0.994474i \(0.466521\pi\)
\(488\) 0 0
\(489\) 17.4425 28.6874i 0.788778 1.29729i
\(490\) 0 0
\(491\) −12.5858 21.7993i −0.567990 0.983788i −0.996765 0.0803766i \(-0.974388\pi\)
0.428774 0.903412i \(-0.358946\pi\)
\(492\) 0 0
\(493\) 16.6948 28.9162i 0.751894 1.30232i
\(494\) 0 0
\(495\) −7.43944 14.3527i −0.334378 0.645108i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.13727 + 1.96982i 0.0509114 + 0.0881811i 0.890358 0.455261i \(-0.150454\pi\)
−0.839447 + 0.543442i \(0.817121\pi\)
\(500\) 0 0
\(501\) 30.6203 + 0.695132i 1.36801 + 0.0310562i
\(502\) 0 0
\(503\) −8.94793 −0.398968 −0.199484 0.979901i \(-0.563927\pi\)
−0.199484 + 0.979901i \(0.563927\pi\)
\(504\) 0 0
\(505\) −25.8685 −1.15113
\(506\) 0 0
\(507\) −8.01437 14.6388i −0.355930 0.650133i
\(508\) 0 0
\(509\) 16.6343 + 28.8115i 0.737304 + 1.27705i 0.953705 + 0.300743i \(0.0972346\pi\)
−0.216402 + 0.976304i \(0.569432\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −44.5641 3.03922i −1.96755 0.134185i
\(514\) 0 0
\(515\) 21.8746 37.8878i 0.963908 1.66954i
\(516\) 0 0
\(517\) −4.93349 8.54505i −0.216975 0.375811i
\(518\) 0 0
\(519\) −17.6213 32.1866i −0.773490 1.41284i
\(520\) 0 0
\(521\) −15.1479 −0.663642 −0.331821 0.943342i \(-0.607663\pi\)
−0.331821 + 0.943342i \(0.607663\pi\)
\(522\) 0 0
\(523\) −10.4790 −0.458217 −0.229108 0.973401i \(-0.573581\pi\)
−0.229108 + 0.973401i \(0.573581\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.74451 + 3.02159i 0.0759922 + 0.131622i
\(528\) 0 0
\(529\) 10.6167 18.3887i 0.461598 0.799511i
\(530\) 0 0
\(531\) 7.77348 12.1546i 0.337340 0.527465i
\(532\) 0 0
\(533\) −23.8086 + 41.2378i −1.03127 + 1.78621i
\(534\) 0 0
\(535\) 4.57192 + 7.91880i 0.197661 + 0.342360i
\(536\) 0 0
\(537\) −11.6870 + 19.2214i −0.504332 + 0.829464i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.87748 0.209699 0.104850 0.994488i \(-0.466564\pi\)
0.104850 + 0.994488i \(0.466564\pi\)
\(542\) 0 0
\(543\) 15.1388 24.8985i 0.649669 1.06850i
\(544\) 0 0
\(545\) 3.15393 + 5.46277i 0.135100 + 0.234000i
\(546\) 0 0
\(547\) 9.62179 16.6654i 0.411398 0.712562i −0.583645 0.812009i \(-0.698374\pi\)
0.995043 + 0.0994468i \(0.0317073\pi\)
\(548\) 0 0
\(549\) −3.45224 0.156824i −0.147338 0.00669310i
\(550\) 0 0
\(551\) 33.3438 57.7532i 1.42049 2.46037i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 19.1296 + 0.434274i 0.812005 + 0.0184339i
\(556\) 0 0
\(557\) 14.6478 0.620646 0.310323 0.950631i \(-0.399563\pi\)
0.310323 + 0.950631i \(0.399563\pi\)
\(558\) 0 0
\(559\) −16.5845 −0.701450
\(560\) 0 0
\(561\) −8.08905 14.7752i −0.341520 0.623811i
\(562\) 0 0
\(563\) −1.85335 3.21010i −0.0781095 0.135290i 0.824325 0.566117i \(-0.191555\pi\)
−0.902434 + 0.430828i \(0.858222\pi\)
\(564\) 0 0
\(565\) 6.30259 10.9164i 0.265152 0.459257i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −15.1768 + 26.2871i −0.636246 + 1.10201i 0.350004 + 0.936748i \(0.386180\pi\)
−0.986250 + 0.165262i \(0.947153\pi\)
\(570\) 0 0
\(571\) 5.88458 + 10.1924i 0.246262 + 0.426539i 0.962486 0.271332i \(-0.0874642\pi\)
−0.716224 + 0.697871i \(0.754131\pi\)
\(572\) 0 0
\(573\) −7.62825 13.9336i −0.318675 0.582083i
\(574\) 0 0
\(575\) 0.913839 0.0381097
\(576\) 0 0
\(577\) −3.59281 −0.149570 −0.0747852 0.997200i \(-0.523827\pi\)
−0.0747852 + 0.997200i \(0.523827\pi\)
\(578\) 0 0
\(579\) −44.3821 1.00755i −1.84446 0.0418723i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −13.1943 + 22.8533i −0.546454 + 0.946485i
\(584\) 0 0
\(585\) 34.0041 + 1.54470i 1.40590 + 0.0638654i
\(586\) 0 0
\(587\) −4.62298 + 8.00724i −0.190811 + 0.330494i −0.945519 0.325566i \(-0.894445\pi\)
0.754708 + 0.656060i \(0.227778\pi\)
\(588\) 0 0
\(589\) 3.48425 + 6.03490i 0.143566 + 0.248664i
\(590\) 0 0
\(591\) −14.4908 + 23.8327i −0.596071 + 0.980346i
\(592\) 0 0
\(593\) −34.0793 −1.39947 −0.699735 0.714403i \(-0.746698\pi\)
−0.699735 + 0.714403i \(0.746698\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 17.3024 28.4570i 0.708142 1.16467i
\(598\) 0 0
\(599\) 3.51340 + 6.08539i 0.143554 + 0.248642i 0.928832 0.370500i \(-0.120814\pi\)
−0.785279 + 0.619142i \(0.787480\pi\)
\(600\) 0 0
\(601\) 2.31218 4.00481i 0.0943158 0.163360i −0.815007 0.579451i \(-0.803267\pi\)
0.909323 + 0.416091i \(0.136600\pi\)
\(602\) 0 0
\(603\) 6.67171 10.4319i 0.271693 0.424818i
\(604\) 0 0
\(605\) −7.02864 + 12.1740i −0.285755 + 0.494942i
\(606\) 0 0
\(607\) 10.1041 + 17.5007i 0.410111 + 0.710333i 0.994901 0.100852i \(-0.0321567\pi\)
−0.584791 + 0.811184i \(0.698823\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.7756 0.840493
\(612\) 0 0
\(613\) −17.8207 −0.719773 −0.359887 0.932996i \(-0.617185\pi\)
−0.359887 + 0.932996i \(0.617185\pi\)
\(614\) 0 0
\(615\) −19.8532 36.2633i −0.800558 1.46228i
\(616\) 0 0
\(617\) 15.0671 + 26.0969i 0.606577 + 1.05062i 0.991800 + 0.127799i \(0.0407913\pi\)
−0.385223 + 0.922824i \(0.625875\pi\)
\(618\) 0 0
\(619\) −15.9558 + 27.6363i −0.641318 + 1.11080i 0.343821 + 0.939035i \(0.388279\pi\)
−0.985139 + 0.171760i \(0.945055\pi\)
\(620\) 0 0
\(621\) −3.03815 6.20204i −0.121917 0.248879i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 13.9825 + 24.2185i 0.559301 + 0.968738i
\(626\) 0 0
\(627\) −16.1559 29.5100i −0.645206 1.17852i
\(628\) 0 0
\(629\) 19.9374 0.794957
\(630\) 0 0
\(631\) −10.1430 −0.403788 −0.201894 0.979407i \(-0.564710\pi\)
−0.201894 + 0.979407i \(0.564710\pi\)
\(632\) 0 0
\(633\) 42.6844 + 0.969009i 1.69655 + 0.0385147i
\(634\) 0 0
\(635\) −9.14731 15.8436i −0.363000 0.628734i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 6.09643 + 11.7617i 0.241171 + 0.465285i
\(640\) 0 0
\(641\) −21.9256 + 37.9762i −0.866009 + 1.49997i 3.28428e−5 1.00000i \(0.499990\pi\)
−0.866042 + 0.499972i \(0.833344\pi\)
\(642\) 0 0
\(643\) −1.10737 1.91802i −0.0436704 0.0756394i 0.843364 0.537343i \(-0.180572\pi\)
−0.887034 + 0.461703i \(0.847238\pi\)
\(644\) 0 0
\(645\) 7.48065 12.3033i 0.294550 0.484441i
\(646\) 0 0
\(647\) −20.9266 −0.822710 −0.411355 0.911475i \(-0.634944\pi\)
−0.411355 + 0.911475i \(0.634944\pi\)
\(648\) 0 0
\(649\) 10.8668 0.426560
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.01442 6.95317i −0.157096 0.272099i 0.776724 0.629841i \(-0.216880\pi\)
−0.933820 + 0.357742i \(0.883547\pi\)
\(654\) 0 0
\(655\) −23.1095 + 40.0268i −0.902962 + 1.56398i
\(656\) 0 0
\(657\) 16.7210 + 32.2594i 0.652348 + 1.25856i
\(658\) 0 0
\(659\) 9.25793 16.0352i 0.360638 0.624643i −0.627428 0.778675i \(-0.715892\pi\)
0.988066 + 0.154031i \(0.0492257\pi\)
\(660\) 0 0
\(661\) −10.4273 18.0606i −0.405574 0.702474i 0.588814 0.808268i \(-0.299595\pi\)
−0.994388 + 0.105794i \(0.966262\pi\)
\(662\) 0 0
\(663\) 35.4584 + 0.804966i 1.37709 + 0.0312623i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.3108 0.399236
\(668\) 0 0
\(669\) −12.3279 22.5178i −0.476624 0.870589i
\(670\) 0 0
\(671\) −1.30143 2.25415i −0.0502412 0.0870204i
\(672\) 0 0
\(673\) 11.4484 19.8292i 0.441303 0.764360i −0.556483 0.830859i \(-0.687850\pi\)
0.997786 + 0.0664992i \(0.0211830\pi\)
\(674\) 0 0
\(675\) −1.99272 + 2.96531i −0.0766998 + 0.114135i
\(676\) 0 0
\(677\) 23.3119 40.3774i 0.895948 1.55183i 0.0633218 0.997993i \(-0.479831\pi\)
0.832627 0.553835i \(-0.186836\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −15.1006 27.5824i −0.578656 1.05696i
\(682\) 0 0
\(683\) −36.6203 −1.40124 −0.700618 0.713536i \(-0.747092\pi\)
−0.700618 + 0.713536i \(0.747092\pi\)
\(684\) 0 0
\(685\) 23.1092 0.882958
\(686\) 0 0
\(687\) −16.4622 0.373720i −0.628073 0.0142583i
\(688\) 0 0
\(689\) −27.7816 48.1192i −1.05840 1.83320i
\(690\) 0 0
\(691\) −13.2586 + 22.9645i −0.504380 + 0.873611i 0.495607 + 0.868547i \(0.334945\pi\)
−0.999987 + 0.00506472i \(0.998388\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.09101 + 15.7461i −0.344842 + 0.597283i
\(696\) 0 0
\(697\) −21.5385 37.3058i −0.815830 1.41306i
\(698\) 0 0
\(699\) −18.3057 + 30.1069i −0.692383 + 1.13875i
\(700\) 0 0
\(701\) −29.9931 −1.13282 −0.566411 0.824123i \(-0.691669\pi\)
−0.566411 + 0.824123i \(0.691669\pi\)
\(702\) 0 0
\(703\) 39.8203 1.50185
\(704\) 0 0
\(705\) −9.37111 + 15.4125i −0.352937 + 0.580468i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −5.48805 + 9.50558i −0.206108 + 0.356990i −0.950485 0.310770i \(-0.899413\pi\)
0.744377 + 0.667759i \(0.232746\pi\)
\(710\) 0 0
\(711\) −25.3726 1.15259i −0.951546 0.0432257i
\(712\) 0 0
\(713\) −0.538712 + 0.933076i −0.0201749 + 0.0349440i
\(714\) 0 0
\(715\) 12.8189 + 22.2030i 0.479401 + 0.830346i
\(716\) 0 0
\(717\) −30.8414 0.700152i −1.15179 0.0261477i
\(718\) 0 0
\(719\) −13.1042 −0.488705 −0.244352 0.969687i \(-0.578575\pi\)
−0.244352 + 0.969687i \(0.578575\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 5.23071 + 9.55427i 0.194532 + 0.355327i
\(724\) 0 0
\(725\) −2.66696 4.61931i −0.0990483 0.171557i
\(726\) 0 0
\(727\) −8.96026 + 15.5196i −0.332318 + 0.575591i −0.982966 0.183788i \(-0.941164\pi\)
0.650648 + 0.759379i \(0.274497\pi\)
\(728\) 0 0
\(729\) 26.7500 + 3.66569i 0.990741 + 0.135766i
\(730\) 0 0
\(731\) 7.50160 12.9932i 0.277457 0.480569i
\(732\) 0 0
\(733\) −2.95660 5.12098i −0.109204 0.189148i 0.806244 0.591583i \(-0.201497\pi\)
−0.915448 + 0.402436i \(0.868164\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.32662 0.343550
\(738\) 0 0
\(739\) −29.1774 −1.07331 −0.536653 0.843803i \(-0.680312\pi\)
−0.536653 + 0.843803i \(0.680312\pi\)
\(740\) 0 0
\(741\) 70.8197 + 1.60773i 2.60163 + 0.0590614i
\(742\) 0 0
\(743\) −18.8512 32.6513i −0.691584 1.19786i −0.971319 0.237781i \(-0.923580\pi\)
0.279735 0.960077i \(-0.409753\pi\)
\(744\) 0 0
\(745\) −10.8413 + 18.7777i −0.397196 + 0.687963i
\(746\) 0 0
\(747\) −4.90179 0.222673i −0.179347 0.00814717i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −20.3277 35.2085i −0.741767 1.28478i −0.951690 0.307060i \(-0.900655\pi\)
0.209923 0.977718i \(-0.432679\pi\)
\(752\) 0 0
\(753\) −22.6643 + 37.2755i −0.825932 + 1.35839i
\(754\) 0 0
\(755\) 48.3130 1.75829
\(756\) 0 0
\(757\) 17.6704 0.642241 0.321120 0.947038i \(-0.395941\pi\)
0.321120 + 0.947038i \(0.395941\pi\)
\(758\) 0 0
\(759\) 2.70240 4.44459i 0.0980910 0.161328i
\(760\) 0 0
\(761\) 0.644183 + 1.11576i 0.0233516 + 0.0404462i 0.877465 0.479641i \(-0.159233\pi\)
−0.854113 + 0.520087i \(0.825900\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −16.5911 + 25.9418i −0.599853 + 0.937929i
\(766\) 0 0
\(767\) −11.4405 + 19.8154i −0.413091 + 0.715494i
\(768\) 0 0
\(769\) 4.19275 + 7.26205i 0.151194 + 0.261876i 0.931667 0.363314i \(-0.118355\pi\)
−0.780472 + 0.625190i \(0.785021\pi\)
\(770\) 0 0
\(771\) −49.6629 1.12743i −1.78857 0.0406035i
\(772\) 0 0
\(773\) 50.3060 1.80938 0.904691 0.426068i \(-0.140102\pi\)
0.904691 + 0.426068i \(0.140102\pi\)
\(774\) 0 0
\(775\) 0.557366 0.0200212
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −43.0181 74.5095i −1.54128 2.66958i
\(780\) 0 0
\(781\) −4.98903 + 8.64125i −0.178521 + 0.309208i
\(782\) 0 0
\(783\) −22.4837 + 33.4575i −0.803503 + 1.19567i
\(784\) 0 0
\(785\) 9.97051 17.2694i 0.355863 0.616373i
\(786\) 0 0
\(787\) −11.1922 19.3855i −0.398960 0.691020i 0.594638 0.803994i \(-0.297296\pi\)
−0.993598 + 0.112974i \(0.963962\pi\)
\(788\) 0 0
\(789\) 11.9913 + 21.9030i 0.426901 + 0.779767i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 5.48052 0.194619
\(794\) 0 0
\(795\) 48.2287 + 1.09487i 1.71049 + 0.0388311i
\(796\) 0 0
\(797\) −0.706182 1.22314i −0.0250143 0.0433260i 0.853247 0.521507i \(-0.174630\pi\)
−0.878262 + 0.478181i \(0.841296\pi\)
\(798\) 0 0
\(799\) −9.39736 + 16.2767i −0.332455 + 0.575828i
\(800\) 0 0
\(801\) 8.75699 + 16.8947i 0.309413 + 0.596943i
\(802\) 0 0
\(803\) −13.6837 + 23.7008i −0.482887 + 0.836384i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −11.6080 + 19.0914i −0.408620 + 0.672049i
\(808\) 0 0
\(809\) 20.0848 0.706142 0.353071 0.935596i \(-0.385137\pi\)
0.353071 + 0.935596i \(0.385137\pi\)
\(810\) 0 0
\(811\) 55.7821 1.95878 0.979388 0.201988i \(-0.0647401\pi\)
0.979388 + 0.201988i \(0.0647401\pi\)
\(812\) 0 0
\(813\) −17.5130 + 28.8033i −0.614207 + 1.01017i
\(814\) 0 0
\(815\) −23.1140 40.0345i −0.809646 1.40235i
\(816\) 0 0
\(817\) 14.9827 25.9507i 0.524177 0.907901i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.4346 42.3219i 0.852772 1.47704i −0.0259249 0.999664i \(-0.508253\pi\)
0.878697 0.477380i \(-0.158414\pi\)
\(822\) 0 0
\(823\) 0.266319 + 0.461277i 0.00928328 + 0.0160791i 0.870630 0.491939i \(-0.163712\pi\)
−0.861346 + 0.508018i \(0.830378\pi\)
\(824\) 0 0
\(825\) −2.69020 0.0610721i −0.0936607 0.00212626i
\(826\) 0 0
\(827\) 10.1951 0.354518 0.177259 0.984164i \(-0.443277\pi\)
0.177259 + 0.984164i \(0.443277\pi\)
\(828\) 0 0
\(829\) 21.2692 0.738711 0.369355 0.929288i \(-0.379579\pi\)
0.369355 + 0.929288i \(0.379579\pi\)
\(830\) 0 0
\(831\) −13.2353 24.1752i −0.459127 0.838629i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 21.0859 36.5219i 0.729709 1.26389i
\(836\) 0 0
\(837\) −1.85302 3.78273i −0.0640498 0.130750i
\(838\) 0 0
\(839\) 9.47717 16.4149i 0.327188 0.566707i −0.654765 0.755833i \(-0.727232\pi\)
0.981953 + 0.189126i \(0.0605655\pi\)
\(840\) 0 0
\(841\) −15.5912 27.0047i −0.537626 0.931196i
\(842\) 0 0
\(843\) −23.2889 42.5389i −0.802113 1.46512i
\(844\) 0 0
\(845\) −22.9792 −0.790509
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −9.08555 0.206257i −0.311815 0.00707873i
\(850\) 0 0
\(851\) 3.07837 + 5.33190i 0.105525 + 0.182775i
\(852\) 0 0
\(853\) −2.75811 + 4.77718i −0.0944358 + 0.163568i −0.909373 0.415982i \(-0.863438\pi\)
0.814937 + 0.579549i \(0.196771\pi\)
\(854\) 0 0
\(855\) −33.1368 + 51.8127i −1.13326 + 1.77196i
\(856\) 0 0
\(857\) −7.92471 + 13.7260i −0.270703 + 0.468871i −0.969042 0.246896i \(-0.920589\pi\)
0.698339 + 0.715767i \(0.253923\pi\)
\(858\) 0 0
\(859\) 10.7004 + 18.5337i 0.365095 + 0.632362i 0.988791 0.149304i \(-0.0477033\pi\)
−0.623697 + 0.781666i \(0.714370\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.03720 −0.137428 −0.0687140 0.997636i \(-0.521890\pi\)
−0.0687140 + 0.997636i \(0.521890\pi\)
\(864\) 0 0
\(865\) −50.5247 −1.71789
\(866\) 0 0
\(867\) −1.37202 + 2.25653i −0.0465962 + 0.0766358i
\(868\) 0 0
\(869\) −9.56500 16.5671i −0.324470 0.561999i
\(870\) 0 0
\(871\) −9.81894 + 17.0069i −0.332702 + 0.576257i
\(872\) 0 0
\(873\) −35.8597 1.62899i −1.21367 0.0551330i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.6905 + 21.9806i 0.428529 + 0.742233i 0.996743 0.0806475i \(-0.0256988\pi\)
−0.568214 + 0.822881i \(0.692365\pi\)
\(878\) 0 0
\(879\) 5.74683 + 0.130463i 0.193836 + 0.00440040i
\(880\) 0 0
\(881\) −18.7755 −0.632561 −0.316281 0.948666i \(-0.602434\pi\)
−0.316281 + 0.948666i \(0.602434\pi\)
\(882\) 0 0
\(883\) 8.52167 0.286777 0.143388 0.989666i \(-0.454200\pi\)
0.143388 + 0.989666i \(0.454200\pi\)
\(884\) 0 0
\(885\) −9.53980 17.4251i −0.320677 0.585740i
\(886\) 0 0
\(887\) 5.05040 + 8.74755i 0.169576 + 0.293714i 0.938271 0.345902i \(-0.112427\pi\)
−0.768695 + 0.639616i \(0.779094\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 8.52937 + 18.4609i 0.285745 + 0.618463i
\(892\) 0 0
\(893\) −18.7690 + 32.5089i −0.628080 + 1.08787i
\(894\) 0 0
\(895\) 15.4870 + 26.8243i 0.517674 + 0.896638i
\(896\) 0 0
\(897\) 5.25956 + 9.60698i 0.175612 + 0.320768i
\(898\) 0 0
\(899\) 6.28873 0.209741
\(900\) 0 0
\(901\) 50.2654 1.67458
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −20.0612 34.7470i −0.666857 1.15503i
\(906\) 0 0
\(907\) 10.6088 18.3750i 0.352260 0.610131i −0.634385 0.773017i \(-0.718747\pi\)
0.986645 + 0.162885i \(0.0520801\pi\)
\(908\) 0 0
\(909\) 32.5073 + 1.47670i 1.07820 + 0.0489792i
\(910\) 0 0
\(911\) −4.46609 + 7.73550i −0.147968 + 0.256289i −0.930476 0.366352i \(-0.880607\pi\)
0.782508 + 0.622640i \(0.213940\pi\)
\(912\) 0 0
\(913\) −1.84789 3.20063i −0.0611561 0.105925i
\(914\) 0 0
\(915\) −2.47206 + 4.06574i −0.0817237 + 0.134409i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 34.9129 1.15167 0.575834 0.817566i \(-0.304677\pi\)
0.575834 + 0.817566i \(0.304677\pi\)
\(920\) 0 0
\(921\) 11.2213 18.4555i 0.369755 0.608128i
\(922\) 0 0
\(923\) −10.5048 18.1948i −0.345769 0.598889i
\(924\) 0 0
\(925\) 1.59248 2.75826i 0.0523605 0.0906911i
\(926\) 0 0
\(927\) −29.6513 + 46.3626i −0.973875 + 1.52275i
\(928\) 0 0
\(929\) −5.51692 + 9.55559i −0.181004 + 0.313509i −0.942223 0.334987i \(-0.891268\pi\)
0.761218 + 0.648496i \(0.224601\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −39.2669 0.891426i −1.28554 0.0291840i
\(934\) 0 0
\(935\) −23.1933 −0.758503
\(936\) 0 0
\(937\) 13.6426 0.445686 0.222843 0.974854i \(-0.428466\pi\)
0.222843 + 0.974854i \(0.428466\pi\)
\(938\) 0 0
\(939\) 5.25851 + 9.60506i 0.171605 + 0.313449i
\(940\) 0 0
\(941\) 12.0278 + 20.8328i 0.392095 + 0.679129i 0.992726 0.120398i \(-0.0384170\pi\)
−0.600630 + 0.799527i \(0.705084\pi\)
\(942\) 0 0
\(943\) 6.65117 11.5202i 0.216592 0.375148i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.69602 + 11.5978i −0.217591 + 0.376879i −0.954071 0.299580i \(-0.903153\pi\)
0.736480 + 0.676460i \(0.236487\pi\)
\(948\) 0 0
\(949\) −28.8120 49.9038i −0.935277 1.61995i
\(950\) 0 0
\(951\) 12.9595 + 23.6715i 0.420240 + 0.767600i
\(952\) 0 0
\(953\) 36.3444 1.17731 0.588655 0.808384i \(-0.299658\pi\)
0.588655 + 0.808384i \(0.299658\pi\)
\(954\) 0 0
\(955\) −21.8721 −0.707764
\(956\) 0 0
\(957\) −30.3534 0.689074i −0.981186 0.0222746i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 15.1714 26.2777i 0.489401 0.847667i
\(962\) 0 0
\(963\) −5.29321 10.2121i −0.170571 0.329079i
\(964\) 0 0
\(965\) −30.5627 + 52.9362i −0.983849 + 1.70408i
\(966\) 0 0
\(967\) 4.82455 + 8.35637i 0.155147 + 0.268723i 0.933113 0.359584i \(-0.117082\pi\)
−0.777965 + 0.628307i \(0.783748\pi\)
\(968\) 0 0
\(969\) −33.2932 + 54.7566i −1.06953 + 1.75904i
\(970\) 0 0
\(971\) −43.3775 −1.39205 −0.696025 0.718017i \(-0.745050\pi\)
−0.696025 + 0.718017i \(0.745050\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.94357 4.84123i 0.0942697 0.155043i
\(976\) 0 0
\(977\) −2.60004 4.50340i −0.0831826 0.144076i 0.821433 0.570305i \(-0.193175\pi\)
−0.904615 + 0.426229i \(0.859842\pi\)
\(978\) 0 0
\(979\) −7.16631 + 12.4124i −0.229036 + 0.396703i
\(980\) 0 0
\(981\) −3.65151 7.04478i −0.116584 0.224922i
\(982\) 0 0
\(983\) 11.6349 20.1522i 0.371095 0.642755i −0.618639 0.785675i \(-0.712316\pi\)
0.989734 + 0.142920i \(0.0456491\pi\)
\(984\) 0 0
\(985\) 19.2025 + 33.2596i 0.611841 + 1.05974i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.63304 0.147322
\(990\) 0 0
\(991\) −39.0382 −1.24009 −0.620044 0.784567i \(-0.712885\pi\)
−0.620044 + 0.784567i \(0.712885\pi\)
\(992\) 0 0
\(993\) 18.0714 + 33.0087i 0.573478 + 1.04750i
\(994\) 0 0
\(995\) −22.9283 39.7130i −0.726877 1.25899i
\(996\) 0 0
\(997\) −12.0905 + 20.9413i −0.382909 + 0.663218i −0.991477 0.130284i \(-0.958411\pi\)
0.608568 + 0.793502i \(0.291744\pi\)
\(998\) 0 0
\(999\) −24.0142 1.63774i −0.759775 0.0518157i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.i.1177.5 yes 24
3.2 odd 2 5292.2.j.i.3529.3 24
7.2 even 3 1764.2.i.j.1537.5 24
7.3 odd 6 1764.2.l.j.961.1 24
7.4 even 3 1764.2.l.j.961.12 24
7.5 odd 6 1764.2.i.j.1537.8 24
7.6 odd 2 inner 1764.2.j.i.1177.8 yes 24
9.4 even 3 inner 1764.2.j.i.589.5 24
9.5 odd 6 5292.2.j.i.1765.3 24
21.2 odd 6 5292.2.i.j.2125.3 24
21.5 even 6 5292.2.i.j.2125.10 24
21.11 odd 6 5292.2.l.j.3313.10 24
21.17 even 6 5292.2.l.j.3313.3 24
21.20 even 2 5292.2.j.i.3529.10 24
63.4 even 3 1764.2.i.j.373.5 24
63.5 even 6 5292.2.l.j.361.3 24
63.13 odd 6 inner 1764.2.j.i.589.8 yes 24
63.23 odd 6 5292.2.l.j.361.10 24
63.31 odd 6 1764.2.i.j.373.8 24
63.32 odd 6 5292.2.i.j.1549.3 24
63.40 odd 6 1764.2.l.j.949.1 24
63.41 even 6 5292.2.j.i.1765.10 24
63.58 even 3 1764.2.l.j.949.12 24
63.59 even 6 5292.2.i.j.1549.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.5 24 63.4 even 3
1764.2.i.j.373.8 24 63.31 odd 6
1764.2.i.j.1537.5 24 7.2 even 3
1764.2.i.j.1537.8 24 7.5 odd 6
1764.2.j.i.589.5 24 9.4 even 3 inner
1764.2.j.i.589.8 yes 24 63.13 odd 6 inner
1764.2.j.i.1177.5 yes 24 1.1 even 1 trivial
1764.2.j.i.1177.8 yes 24 7.6 odd 2 inner
1764.2.l.j.949.1 24 63.40 odd 6
1764.2.l.j.949.12 24 63.58 even 3
1764.2.l.j.961.1 24 7.3 odd 6
1764.2.l.j.961.12 24 7.4 even 3
5292.2.i.j.1549.3 24 63.32 odd 6
5292.2.i.j.1549.10 24 63.59 even 6
5292.2.i.j.2125.3 24 21.2 odd 6
5292.2.i.j.2125.10 24 21.5 even 6
5292.2.j.i.1765.3 24 9.5 odd 6
5292.2.j.i.1765.10 24 63.41 even 6
5292.2.j.i.3529.3 24 3.2 odd 2
5292.2.j.i.3529.10 24 21.20 even 2
5292.2.l.j.361.3 24 63.5 even 6
5292.2.l.j.361.10 24 63.23 odd 6
5292.2.l.j.3313.3 24 21.17 even 6
5292.2.l.j.3313.10 24 21.11 odd 6