Properties

Label 1764.2.l.j.949.9
Level $1764$
Weight $2$
Character 1764.949
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(949,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.949");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 949.9
Character \(\chi\) \(=\) 1764.949
Dual form 1764.2.l.j.961.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.755620 - 1.55854i) q^{3} +3.47961 q^{5} +(-1.85808 - 2.35532i) q^{9} +O(q^{10})\) \(q+(0.755620 - 1.55854i) q^{3} +3.47961 q^{5} +(-1.85808 - 2.35532i) q^{9} +2.51576 q^{11} +(-0.292110 + 0.505949i) q^{13} +(2.62926 - 5.42310i) q^{15} +(-0.547519 + 0.948331i) q^{17} +(2.96834 + 5.14132i) q^{19} +6.38528 q^{23} +7.10769 q^{25} +(-5.07486 + 1.11616i) q^{27} +(0.918333 + 1.59060i) q^{29} +(-3.51872 - 6.09459i) q^{31} +(1.90096 - 3.92091i) q^{33} +(0.702576 + 1.21690i) q^{37} +(0.567817 + 0.837570i) q^{39} +(5.37855 - 9.31593i) q^{41} +(-5.67879 - 9.83596i) q^{43} +(-6.46539 - 8.19561i) q^{45} +(3.76565 - 6.52229i) q^{47} +(1.06429 + 1.56991i) q^{51} +(-5.82285 + 10.0855i) q^{53} +8.75386 q^{55} +(10.2559 - 0.741391i) q^{57} +(2.22775 + 3.85858i) q^{59} +(-6.17622 + 10.6975i) q^{61} +(-1.01643 + 1.76051i) q^{65} +(6.33536 + 10.9732i) q^{67} +(4.82485 - 9.95170i) q^{69} -4.93390 q^{71} +(-4.35558 + 7.54408i) q^{73} +(5.37071 - 11.0776i) q^{75} +(0.280206 - 0.485330i) q^{79} +(-2.09509 + 8.75275i) q^{81} +(-3.68472 - 6.38212i) q^{83} +(-1.90515 + 3.29982i) q^{85} +(3.17292 - 0.229368i) q^{87} +(-6.07256 - 10.5180i) q^{89} +(-12.1575 + 0.878855i) q^{93} +(10.3287 + 17.8898i) q^{95} +(-6.98486 - 12.0981i) q^{97} +(-4.67448 - 5.92543i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 4 q^{9} + 8 q^{11} - 28 q^{15} + 16 q^{23} + 24 q^{25} - 32 q^{29} - 12 q^{37} + 32 q^{51} - 16 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} - 8 q^{81} + 12 q^{85} + 32 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.755620 1.55854i 0.436257 0.899822i
\(4\) 0 0
\(5\) 3.47961 1.55613 0.778065 0.628184i \(-0.216202\pi\)
0.778065 + 0.628184i \(0.216202\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.85808 2.35532i −0.619359 0.785108i
\(10\) 0 0
\(11\) 2.51576 0.758530 0.379265 0.925288i \(-0.376177\pi\)
0.379265 + 0.925288i \(0.376177\pi\)
\(12\) 0 0
\(13\) −0.292110 + 0.505949i −0.0810167 + 0.140325i −0.903687 0.428194i \(-0.859150\pi\)
0.822670 + 0.568519i \(0.192483\pi\)
\(14\) 0 0
\(15\) 2.62926 5.42310i 0.678873 1.40024i
\(16\) 0 0
\(17\) −0.547519 + 0.948331i −0.132793 + 0.230004i −0.924752 0.380570i \(-0.875728\pi\)
0.791959 + 0.610574i \(0.209061\pi\)
\(18\) 0 0
\(19\) 2.96834 + 5.14132i 0.680984 + 1.17950i 0.974681 + 0.223601i \(0.0717812\pi\)
−0.293696 + 0.955899i \(0.594885\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.38528 1.33142 0.665712 0.746209i \(-0.268128\pi\)
0.665712 + 0.746209i \(0.268128\pi\)
\(24\) 0 0
\(25\) 7.10769 1.42154
\(26\) 0 0
\(27\) −5.07486 + 1.11616i −0.976657 + 0.214804i
\(28\) 0 0
\(29\) 0.918333 + 1.59060i 0.170530 + 0.295367i 0.938605 0.344993i \(-0.112119\pi\)
−0.768075 + 0.640360i \(0.778785\pi\)
\(30\) 0 0
\(31\) −3.51872 6.09459i −0.631980 1.09462i −0.987146 0.159818i \(-0.948909\pi\)
0.355166 0.934803i \(-0.384424\pi\)
\(32\) 0 0
\(33\) 1.90096 3.92091i 0.330914 0.682542i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.702576 + 1.21690i 0.115503 + 0.200057i 0.917981 0.396625i \(-0.129819\pi\)
−0.802478 + 0.596682i \(0.796485\pi\)
\(38\) 0 0
\(39\) 0.567817 + 0.837570i 0.0909235 + 0.134118i
\(40\) 0 0
\(41\) 5.37855 9.31593i 0.839989 1.45490i −0.0499141 0.998754i \(-0.515895\pi\)
0.889903 0.456150i \(-0.150772\pi\)
\(42\) 0 0
\(43\) −5.67879 9.83596i −0.866008 1.49997i −0.866043 0.499969i \(-0.833345\pi\)
3.53909e−5 1.00000i \(-0.499989\pi\)
\(44\) 0 0
\(45\) −6.46539 8.19561i −0.963803 1.22173i
\(46\) 0 0
\(47\) 3.76565 6.52229i 0.549276 0.951374i −0.449048 0.893507i \(-0.648237\pi\)
0.998324 0.0578664i \(-0.0184298\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.06429 + 1.56991i 0.149031 + 0.219831i
\(52\) 0 0
\(53\) −5.82285 + 10.0855i −0.799830 + 1.38535i 0.119897 + 0.992786i \(0.461744\pi\)
−0.919727 + 0.392560i \(0.871590\pi\)
\(54\) 0 0
\(55\) 8.75386 1.18037
\(56\) 0 0
\(57\) 10.2559 0.741391i 1.35842 0.0981996i
\(58\) 0 0
\(59\) 2.22775 + 3.85858i 0.290029 + 0.502345i 0.973816 0.227337i \(-0.0730018\pi\)
−0.683787 + 0.729681i \(0.739668\pi\)
\(60\) 0 0
\(61\) −6.17622 + 10.6975i −0.790784 + 1.36968i 0.134698 + 0.990887i \(0.456994\pi\)
−0.925482 + 0.378792i \(0.876340\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.01643 + 1.76051i −0.126072 + 0.218364i
\(66\) 0 0
\(67\) 6.33536 + 10.9732i 0.773988 + 1.34059i 0.935362 + 0.353693i \(0.115074\pi\)
−0.161374 + 0.986893i \(0.551593\pi\)
\(68\) 0 0
\(69\) 4.82485 9.95170i 0.580843 1.19804i
\(70\) 0 0
\(71\) −4.93390 −0.585546 −0.292773 0.956182i \(-0.594578\pi\)
−0.292773 + 0.956182i \(0.594578\pi\)
\(72\) 0 0
\(73\) −4.35558 + 7.54408i −0.509782 + 0.882968i 0.490154 + 0.871636i \(0.336940\pi\)
−0.999936 + 0.0113320i \(0.996393\pi\)
\(74\) 0 0
\(75\) 5.37071 11.0776i 0.620156 1.27913i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.280206 0.485330i 0.0315256 0.0546039i −0.849832 0.527053i \(-0.823297\pi\)
0.881358 + 0.472450i \(0.156630\pi\)
\(80\) 0 0
\(81\) −2.09509 + 8.75275i −0.232788 + 0.972528i
\(82\) 0 0
\(83\) −3.68472 6.38212i −0.404451 0.700529i 0.589807 0.807544i \(-0.299204\pi\)
−0.994257 + 0.107015i \(0.965871\pi\)
\(84\) 0 0
\(85\) −1.90515 + 3.29982i −0.206643 + 0.357916i
\(86\) 0 0
\(87\) 3.17292 0.229368i 0.340173 0.0245909i
\(88\) 0 0
\(89\) −6.07256 10.5180i −0.643690 1.11490i −0.984602 0.174808i \(-0.944069\pi\)
0.340913 0.940095i \(-0.389264\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −12.1575 + 0.878855i −1.26067 + 0.0911331i
\(94\) 0 0
\(95\) 10.3287 + 17.8898i 1.05970 + 1.83545i
\(96\) 0 0
\(97\) −6.98486 12.0981i −0.709205 1.22838i −0.965152 0.261688i \(-0.915721\pi\)
0.255947 0.966691i \(-0.417613\pi\)
\(98\) 0 0
\(99\) −4.67448 5.92543i −0.469803 0.595528i
\(100\) 0 0
\(101\) −9.17649 −0.913095 −0.456548 0.889699i \(-0.650914\pi\)
−0.456548 + 0.889699i \(0.650914\pi\)
\(102\) 0 0
\(103\) −0.479075 −0.0472047 −0.0236024 0.999721i \(-0.507514\pi\)
−0.0236024 + 0.999721i \(0.507514\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.67882 + 4.63986i 0.258972 + 0.448552i 0.965967 0.258666i \(-0.0832830\pi\)
−0.706995 + 0.707219i \(0.749950\pi\)
\(108\) 0 0
\(109\) 7.87535 13.6405i 0.754322 1.30652i −0.191389 0.981514i \(-0.561299\pi\)
0.945711 0.325009i \(-0.105367\pi\)
\(110\) 0 0
\(111\) 2.42746 0.175480i 0.230404 0.0166558i
\(112\) 0 0
\(113\) −6.92483 + 11.9942i −0.651433 + 1.12832i 0.331342 + 0.943511i \(0.392499\pi\)
−0.982775 + 0.184804i \(0.940835\pi\)
\(114\) 0 0
\(115\) 22.2183 2.07187
\(116\) 0 0
\(117\) 1.73444 0.252080i 0.160349 0.0233048i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.67095 −0.424632
\(122\) 0 0
\(123\) −10.4551 15.4220i −0.942703 1.39055i
\(124\) 0 0
\(125\) 7.33394 0.655968
\(126\) 0 0
\(127\) 20.7533 1.84156 0.920780 0.390083i \(-0.127554\pi\)
0.920780 + 0.390083i \(0.127554\pi\)
\(128\) 0 0
\(129\) −19.6207 + 1.41837i −1.72751 + 0.124880i
\(130\) 0 0
\(131\) −1.59898 −0.139704 −0.0698518 0.997557i \(-0.522253\pi\)
−0.0698518 + 0.997557i \(0.522253\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −17.6585 + 3.88379i −1.51980 + 0.334263i
\(136\) 0 0
\(137\) −7.65220 −0.653771 −0.326886 0.945064i \(-0.605999\pi\)
−0.326886 + 0.945064i \(0.605999\pi\)
\(138\) 0 0
\(139\) 7.99424 13.8464i 0.678062 1.17444i −0.297501 0.954721i \(-0.596153\pi\)
0.975564 0.219717i \(-0.0705134\pi\)
\(140\) 0 0
\(141\) −7.31984 10.7973i −0.616442 0.909294i
\(142\) 0 0
\(143\) −0.734878 + 1.27285i −0.0614536 + 0.106441i
\(144\) 0 0
\(145\) 3.19544 + 5.53467i 0.265367 + 0.459629i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.87468 −0.235503 −0.117752 0.993043i \(-0.537569\pi\)
−0.117752 + 0.993043i \(0.537569\pi\)
\(150\) 0 0
\(151\) 9.16152 0.745554 0.372777 0.927921i \(-0.378406\pi\)
0.372777 + 0.927921i \(0.378406\pi\)
\(152\) 0 0
\(153\) 3.25096 0.472488i 0.262824 0.0381984i
\(154\) 0 0
\(155\) −12.2438 21.2068i −0.983443 1.70337i
\(156\) 0 0
\(157\) −6.39409 11.0749i −0.510304 0.883873i −0.999929 0.0119393i \(-0.996200\pi\)
0.489625 0.871933i \(-0.337134\pi\)
\(158\) 0 0
\(159\) 11.3187 + 16.6959i 0.897633 + 1.32407i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.18390 12.4429i −0.562686 0.974601i −0.997261 0.0739653i \(-0.976435\pi\)
0.434575 0.900636i \(-0.356899\pi\)
\(164\) 0 0
\(165\) 6.61459 13.6432i 0.514945 1.06212i
\(166\) 0 0
\(167\) 2.38280 4.12714i 0.184387 0.319367i −0.758983 0.651111i \(-0.774303\pi\)
0.943370 + 0.331743i \(0.107637\pi\)
\(168\) 0 0
\(169\) 6.32934 + 10.9627i 0.486873 + 0.843288i
\(170\) 0 0
\(171\) 6.59406 16.5444i 0.504260 1.26518i
\(172\) 0 0
\(173\) −12.5583 + 21.7517i −0.954792 + 1.65375i −0.219948 + 0.975512i \(0.570589\pi\)
−0.734844 + 0.678237i \(0.762744\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 7.69708 0.556417i 0.578548 0.0418229i
\(178\) 0 0
\(179\) −3.41168 + 5.90920i −0.255001 + 0.441675i −0.964896 0.262633i \(-0.915409\pi\)
0.709895 + 0.704308i \(0.248742\pi\)
\(180\) 0 0
\(181\) −13.4735 −1.00148 −0.500739 0.865598i \(-0.666938\pi\)
−0.500739 + 0.865598i \(0.666938\pi\)
\(182\) 0 0
\(183\) 12.0056 + 17.7091i 0.887481 + 1.30910i
\(184\) 0 0
\(185\) 2.44469 + 4.23433i 0.179737 + 0.311314i
\(186\) 0 0
\(187\) −1.37743 + 2.38577i −0.100727 + 0.174465i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.10318 + 12.3031i −0.513968 + 0.890218i 0.485901 + 0.874014i \(0.338492\pi\)
−0.999869 + 0.0162045i \(0.994842\pi\)
\(192\) 0 0
\(193\) 3.39260 + 5.87616i 0.244205 + 0.422975i 0.961908 0.273374i \(-0.0881397\pi\)
−0.717703 + 0.696349i \(0.754806\pi\)
\(194\) 0 0
\(195\) 1.97578 + 2.91442i 0.141489 + 0.208706i
\(196\) 0 0
\(197\) 18.5287 1.32011 0.660057 0.751215i \(-0.270532\pi\)
0.660057 + 0.751215i \(0.270532\pi\)
\(198\) 0 0
\(199\) 8.39804 14.5458i 0.595321 1.03113i −0.398180 0.917307i \(-0.630358\pi\)
0.993501 0.113819i \(-0.0363086\pi\)
\(200\) 0 0
\(201\) 21.8892 1.58236i 1.54395 0.111611i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 18.7153 32.4158i 1.30713 2.26402i
\(206\) 0 0
\(207\) −11.8644 15.0394i −0.824630 1.04531i
\(208\) 0 0
\(209\) 7.46763 + 12.9343i 0.516547 + 0.894686i
\(210\) 0 0
\(211\) −10.7912 + 18.6909i −0.742896 + 1.28673i 0.208275 + 0.978070i \(0.433215\pi\)
−0.951171 + 0.308664i \(0.900118\pi\)
\(212\) 0 0
\(213\) −3.72815 + 7.68967i −0.255449 + 0.526888i
\(214\) 0 0
\(215\) −19.7600 34.2253i −1.34762 2.33415i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 8.46657 + 12.4888i 0.572118 + 0.843914i
\(220\) 0 0
\(221\) −0.319872 0.554034i −0.0215169 0.0372683i
\(222\) 0 0
\(223\) −0.495791 0.858736i −0.0332006 0.0575052i 0.848948 0.528477i \(-0.177237\pi\)
−0.882148 + 0.470972i \(0.843903\pi\)
\(224\) 0 0
\(225\) −13.2066 16.7409i −0.880443 1.11606i
\(226\) 0 0
\(227\) −2.93134 −0.194560 −0.0972799 0.995257i \(-0.531014\pi\)
−0.0972799 + 0.995257i \(0.531014\pi\)
\(228\) 0 0
\(229\) 4.38401 0.289704 0.144852 0.989453i \(-0.453729\pi\)
0.144852 + 0.989453i \(0.453729\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.543158 + 0.940778i 0.0355835 + 0.0616324i 0.883269 0.468867i \(-0.155338\pi\)
−0.847685 + 0.530500i \(0.822004\pi\)
\(234\) 0 0
\(235\) 13.1030 22.6950i 0.854744 1.48046i
\(236\) 0 0
\(237\) −0.544677 0.803436i −0.0353805 0.0521888i
\(238\) 0 0
\(239\) 1.91423 3.31554i 0.123821 0.214464i −0.797450 0.603384i \(-0.793818\pi\)
0.921271 + 0.388920i \(0.127152\pi\)
\(240\) 0 0
\(241\) 12.9254 0.832599 0.416300 0.909227i \(-0.363327\pi\)
0.416300 + 0.909227i \(0.363327\pi\)
\(242\) 0 0
\(243\) 12.0584 + 9.87903i 0.773546 + 0.633740i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.46833 −0.220685
\(248\) 0 0
\(249\) −12.7310 + 0.920317i −0.806796 + 0.0583227i
\(250\) 0 0
\(251\) −19.6654 −1.24127 −0.620634 0.784101i \(-0.713125\pi\)
−0.620634 + 0.784101i \(0.713125\pi\)
\(252\) 0 0
\(253\) 16.0638 1.00992
\(254\) 0 0
\(255\) 3.70332 + 5.46266i 0.231911 + 0.342085i
\(256\) 0 0
\(257\) −25.3597 −1.58190 −0.790948 0.611884i \(-0.790412\pi\)
−0.790948 + 0.611884i \(0.790412\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.04004 5.11843i 0.126275 0.316823i
\(262\) 0 0
\(263\) 8.87595 0.547315 0.273657 0.961827i \(-0.411767\pi\)
0.273657 + 0.961827i \(0.411767\pi\)
\(264\) 0 0
\(265\) −20.2612 + 35.0935i −1.24464 + 2.15578i
\(266\) 0 0
\(267\) −20.9812 + 1.51672i −1.28403 + 0.0928216i
\(268\) 0 0
\(269\) −9.15338 + 15.8541i −0.558092 + 0.966643i 0.439564 + 0.898211i \(0.355133\pi\)
−0.997656 + 0.0684319i \(0.978200\pi\)
\(270\) 0 0
\(271\) −2.34465 4.06106i −0.142427 0.246692i 0.785983 0.618248i \(-0.212157\pi\)
−0.928410 + 0.371557i \(0.878824\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 17.8812 1.07828
\(276\) 0 0
\(277\) 5.65614 0.339845 0.169922 0.985457i \(-0.445648\pi\)
0.169922 + 0.985457i \(0.445648\pi\)
\(278\) 0 0
\(279\) −7.81669 + 19.6119i −0.467973 + 1.17414i
\(280\) 0 0
\(281\) −5.36370 9.29020i −0.319971 0.554207i 0.660510 0.750817i \(-0.270340\pi\)
−0.980482 + 0.196610i \(0.937007\pi\)
\(282\) 0 0
\(283\) 11.9053 + 20.6206i 0.707697 + 1.22577i 0.965710 + 0.259625i \(0.0835989\pi\)
−0.258013 + 0.966141i \(0.583068\pi\)
\(284\) 0 0
\(285\) 35.6865 2.57975i 2.11388 0.152811i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.90045 + 13.6840i 0.464732 + 0.804940i
\(290\) 0 0
\(291\) −24.1333 + 1.74458i −1.41472 + 0.102269i
\(292\) 0 0
\(293\) −10.3315 + 17.8946i −0.603570 + 1.04541i 0.388706 + 0.921362i \(0.372922\pi\)
−0.992276 + 0.124052i \(0.960411\pi\)
\(294\) 0 0
\(295\) 7.75171 + 13.4264i 0.451322 + 0.781713i
\(296\) 0 0
\(297\) −12.7671 + 2.80798i −0.740824 + 0.162936i
\(298\) 0 0
\(299\) −1.86521 + 3.23063i −0.107868 + 0.186832i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −6.93394 + 14.3019i −0.398344 + 0.821623i
\(304\) 0 0
\(305\) −21.4908 + 37.2232i −1.23056 + 2.13140i
\(306\) 0 0
\(307\) 11.9227 0.680464 0.340232 0.940342i \(-0.389494\pi\)
0.340232 + 0.940342i \(0.389494\pi\)
\(308\) 0 0
\(309\) −0.361999 + 0.746657i −0.0205934 + 0.0424758i
\(310\) 0 0
\(311\) 4.56635 + 7.90916i 0.258934 + 0.448487i 0.965957 0.258704i \(-0.0832954\pi\)
−0.707022 + 0.707191i \(0.749962\pi\)
\(312\) 0 0
\(313\) −6.91980 + 11.9854i −0.391130 + 0.677457i −0.992599 0.121439i \(-0.961249\pi\)
0.601469 + 0.798896i \(0.294582\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.915786 + 1.58619i −0.0514357 + 0.0890892i −0.890597 0.454794i \(-0.849713\pi\)
0.839161 + 0.543883i \(0.183046\pi\)
\(318\) 0 0
\(319\) 2.31031 + 4.00157i 0.129352 + 0.224045i
\(320\) 0 0
\(321\) 9.25557 0.669079i 0.516595 0.0373444i
\(322\) 0 0
\(323\) −6.50089 −0.361719
\(324\) 0 0
\(325\) −2.07623 + 3.59613i −0.115168 + 0.199477i
\(326\) 0 0
\(327\) −15.3085 22.5811i −0.846560 1.24874i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.103132 0.178630i 0.00566864 0.00981838i −0.863177 0.504901i \(-0.831529\pi\)
0.868846 + 0.495083i \(0.164862\pi\)
\(332\) 0 0
\(333\) 1.56075 3.91589i 0.0855284 0.214589i
\(334\) 0 0
\(335\) 22.0446 + 38.1824i 1.20442 + 2.08613i
\(336\) 0 0
\(337\) 0.756536 1.31036i 0.0412111 0.0713798i −0.844684 0.535265i \(-0.820212\pi\)
0.885895 + 0.463885i \(0.153545\pi\)
\(338\) 0 0
\(339\) 13.4608 + 19.8556i 0.731090 + 1.07841i
\(340\) 0 0
\(341\) −8.85224 15.3325i −0.479376 0.830303i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 16.7886 34.6281i 0.903867 1.86431i
\(346\) 0 0
\(347\) 1.60907 + 2.78698i 0.0863792 + 0.149613i 0.905978 0.423325i \(-0.139137\pi\)
−0.819599 + 0.572938i \(0.805804\pi\)
\(348\) 0 0
\(349\) −7.04006 12.1937i −0.376846 0.652716i 0.613756 0.789496i \(-0.289658\pi\)
−0.990601 + 0.136780i \(0.956325\pi\)
\(350\) 0 0
\(351\) 0.917699 2.89366i 0.0489831 0.154452i
\(352\) 0 0
\(353\) −3.36930 −0.179330 −0.0896648 0.995972i \(-0.528580\pi\)
−0.0896648 + 0.995972i \(0.528580\pi\)
\(354\) 0 0
\(355\) −17.1681 −0.911186
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.28913 + 12.6251i 0.384706 + 0.666330i 0.991728 0.128355i \(-0.0409696\pi\)
−0.607023 + 0.794685i \(0.707636\pi\)
\(360\) 0 0
\(361\) −8.12211 + 14.0679i −0.427479 + 0.740416i
\(362\) 0 0
\(363\) −3.52946 + 7.27986i −0.185249 + 0.382093i
\(364\) 0 0
\(365\) −15.1557 + 26.2505i −0.793286 + 1.37401i
\(366\) 0 0
\(367\) −0.736734 −0.0384572 −0.0192286 0.999815i \(-0.506121\pi\)
−0.0192286 + 0.999815i \(0.506121\pi\)
\(368\) 0 0
\(369\) −31.9358 + 4.64149i −1.66251 + 0.241626i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 28.9029 1.49653 0.748267 0.663397i \(-0.230886\pi\)
0.748267 + 0.663397i \(0.230886\pi\)
\(374\) 0 0
\(375\) 5.54167 11.4302i 0.286171 0.590254i
\(376\) 0 0
\(377\) −1.07302 −0.0552632
\(378\) 0 0
\(379\) −8.88267 −0.456272 −0.228136 0.973629i \(-0.573263\pi\)
−0.228136 + 0.973629i \(0.573263\pi\)
\(380\) 0 0
\(381\) 15.6816 32.3448i 0.803394 1.65708i
\(382\) 0 0
\(383\) 15.4055 0.787182 0.393591 0.919286i \(-0.371233\pi\)
0.393591 + 0.919286i \(0.371233\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.6152 + 31.6514i −0.641267 + 1.60893i
\(388\) 0 0
\(389\) −20.3139 −1.02996 −0.514978 0.857204i \(-0.672200\pi\)
−0.514978 + 0.857204i \(0.672200\pi\)
\(390\) 0 0
\(391\) −3.49606 + 6.05536i −0.176804 + 0.306233i
\(392\) 0 0
\(393\) −1.20822 + 2.49207i −0.0609467 + 0.125708i
\(394\) 0 0
\(395\) 0.975006 1.68876i 0.0490579 0.0849708i
\(396\) 0 0
\(397\) 4.32895 + 7.49796i 0.217264 + 0.376312i 0.953970 0.299901i \(-0.0969535\pi\)
−0.736707 + 0.676212i \(0.763620\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 35.0546 1.75054 0.875272 0.483631i \(-0.160682\pi\)
0.875272 + 0.483631i \(0.160682\pi\)
\(402\) 0 0
\(403\) 4.11141 0.204804
\(404\) 0 0
\(405\) −7.29010 + 30.4562i −0.362248 + 1.51338i
\(406\) 0 0
\(407\) 1.76751 + 3.06142i 0.0876124 + 0.151749i
\(408\) 0 0
\(409\) 6.61681 + 11.4607i 0.327180 + 0.566693i 0.981951 0.189135i \(-0.0605682\pi\)
−0.654771 + 0.755827i \(0.727235\pi\)
\(410\) 0 0
\(411\) −5.78215 + 11.9262i −0.285212 + 0.588278i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.8214 22.2073i −0.629377 1.09011i
\(416\) 0 0
\(417\) −15.5396 22.9219i −0.760976 1.12249i
\(418\) 0 0
\(419\) 4.43952 7.68947i 0.216885 0.375655i −0.736969 0.675926i \(-0.763744\pi\)
0.953854 + 0.300271i \(0.0970771\pi\)
\(420\) 0 0
\(421\) 2.00273 + 3.46884i 0.0976073 + 0.169061i 0.910694 0.413082i \(-0.135548\pi\)
−0.813087 + 0.582143i \(0.802214\pi\)
\(422\) 0 0
\(423\) −22.3590 + 3.24961i −1.08713 + 0.158002i
\(424\) 0 0
\(425\) −3.89160 + 6.74044i −0.188770 + 0.326959i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.42849 + 2.10712i 0.0689682 + 0.101733i
\(430\) 0 0
\(431\) 7.48548 12.9652i 0.360563 0.624513i −0.627491 0.778624i \(-0.715918\pi\)
0.988054 + 0.154111i \(0.0492513\pi\)
\(432\) 0 0
\(433\) −15.3215 −0.736304 −0.368152 0.929766i \(-0.620009\pi\)
−0.368152 + 0.929766i \(0.620009\pi\)
\(434\) 0 0
\(435\) 11.0405 0.798113i 0.529353 0.0382666i
\(436\) 0 0
\(437\) 18.9537 + 32.8288i 0.906679 + 1.57041i
\(438\) 0 0
\(439\) −6.03657 + 10.4556i −0.288110 + 0.499021i −0.973359 0.229288i \(-0.926360\pi\)
0.685249 + 0.728309i \(0.259693\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.02894 + 10.4424i −0.286444 + 0.496135i −0.972958 0.230981i \(-0.925806\pi\)
0.686515 + 0.727116i \(0.259140\pi\)
\(444\) 0 0
\(445\) −21.1301 36.5985i −1.00166 1.73493i
\(446\) 0 0
\(447\) −2.17217 + 4.48030i −0.102740 + 0.211911i
\(448\) 0 0
\(449\) −16.9502 −0.799928 −0.399964 0.916531i \(-0.630977\pi\)
−0.399964 + 0.916531i \(0.630977\pi\)
\(450\) 0 0
\(451\) 13.5311 23.4366i 0.637157 1.10359i
\(452\) 0 0
\(453\) 6.92263 14.2786i 0.325253 0.670866i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.88323 + 4.99390i −0.134872 + 0.233605i −0.925548 0.378629i \(-0.876396\pi\)
0.790677 + 0.612234i \(0.209729\pi\)
\(458\) 0 0
\(459\) 1.72010 5.42376i 0.0802872 0.253160i
\(460\) 0 0
\(461\) −17.9138 31.0277i −0.834330 1.44510i −0.894575 0.446918i \(-0.852521\pi\)
0.0602447 0.998184i \(-0.480812\pi\)
\(462\) 0 0
\(463\) 1.53947 2.66645i 0.0715455 0.123920i −0.828033 0.560679i \(-0.810540\pi\)
0.899579 + 0.436758i \(0.143874\pi\)
\(464\) 0 0
\(465\) −42.3032 + 3.05807i −1.96177 + 0.141815i
\(466\) 0 0
\(467\) −1.42738 2.47230i −0.0660515 0.114404i 0.831108 0.556110i \(-0.187707\pi\)
−0.897160 + 0.441706i \(0.854373\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −22.0921 + 1.59703i −1.01795 + 0.0735871i
\(472\) 0 0
\(473\) −14.2865 24.7449i −0.656893 1.13777i
\(474\) 0 0
\(475\) 21.0981 + 36.5429i 0.968045 + 1.67670i
\(476\) 0 0
\(477\) 34.5738 5.02490i 1.58303 0.230074i
\(478\) 0 0
\(479\) −4.37376 −0.199842 −0.0999211 0.994995i \(-0.531859\pi\)
−0.0999211 + 0.994995i \(0.531859\pi\)
\(480\) 0 0
\(481\) −0.820918 −0.0374307
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −24.3046 42.0968i −1.10361 1.91152i
\(486\) 0 0
\(487\) 15.2678 26.4447i 0.691852 1.19832i −0.279378 0.960181i \(-0.590128\pi\)
0.971230 0.238142i \(-0.0765383\pi\)
\(488\) 0 0
\(489\) −24.8210 + 1.79429i −1.12244 + 0.0811407i
\(490\) 0 0
\(491\) −21.3502 + 36.9797i −0.963522 + 1.66887i −0.249989 + 0.968249i \(0.580427\pi\)
−0.713534 + 0.700621i \(0.752906\pi\)
\(492\) 0 0
\(493\) −2.01122 −0.0905808
\(494\) 0 0
\(495\) −16.2654 20.6182i −0.731074 0.926718i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −22.7703 −1.01934 −0.509670 0.860370i \(-0.670232\pi\)
−0.509670 + 0.860370i \(0.670232\pi\)
\(500\) 0 0
\(501\) −4.63180 6.83223i −0.206934 0.305242i
\(502\) 0 0
\(503\) −24.0843 −1.07387 −0.536933 0.843625i \(-0.680417\pi\)
−0.536933 + 0.843625i \(0.680417\pi\)
\(504\) 0 0
\(505\) −31.9306 −1.42089
\(506\) 0 0
\(507\) 21.8684 1.58085i 0.971211 0.0702082i
\(508\) 0 0
\(509\) 24.4700 1.08461 0.542307 0.840180i \(-0.317551\pi\)
0.542307 + 0.840180i \(0.317551\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −20.8024 22.7783i −0.918450 1.00569i
\(514\) 0 0
\(515\) −1.66700 −0.0734566
\(516\) 0 0
\(517\) 9.47346 16.4085i 0.416642 0.721646i
\(518\) 0 0
\(519\) 24.4115 + 36.0086i 1.07154 + 1.58060i
\(520\) 0 0
\(521\) 19.3743 33.5573i 0.848805 1.47017i −0.0334709 0.999440i \(-0.510656\pi\)
0.882276 0.470733i \(-0.156011\pi\)
\(522\) 0 0
\(523\) 12.8473 + 22.2521i 0.561771 + 0.973016i 0.997342 + 0.0728616i \(0.0232131\pi\)
−0.435571 + 0.900154i \(0.643454\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.70626 0.335690
\(528\) 0 0
\(529\) 17.7719 0.772689
\(530\) 0 0
\(531\) 4.94887 12.4166i 0.214763 0.538836i
\(532\) 0 0
\(533\) 3.14226 + 5.44255i 0.136106 + 0.235743i
\(534\) 0 0
\(535\) 9.32127 + 16.1449i 0.402993 + 0.698005i
\(536\) 0 0
\(537\) 6.63178 + 9.78234i 0.286182 + 0.422139i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.92878 + 8.53690i 0.211905 + 0.367030i 0.952311 0.305130i \(-0.0986999\pi\)
−0.740406 + 0.672160i \(0.765367\pi\)
\(542\) 0 0
\(543\) −10.1809 + 20.9990i −0.436902 + 0.901152i
\(544\) 0 0
\(545\) 27.4032 47.4636i 1.17382 2.03312i
\(546\) 0 0
\(547\) −3.94133 6.82659i −0.168519 0.291884i 0.769380 0.638791i \(-0.220565\pi\)
−0.937899 + 0.346907i \(0.887232\pi\)
\(548\) 0 0
\(549\) 36.6720 5.32985i 1.56512 0.227472i
\(550\) 0 0
\(551\) −5.45185 + 9.44289i −0.232257 + 0.402281i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 8.44662 0.610601i 0.358539 0.0259186i
\(556\) 0 0
\(557\) 10.1686 17.6125i 0.430857 0.746266i −0.566090 0.824343i \(-0.691545\pi\)
0.996947 + 0.0780770i \(0.0248780\pi\)
\(558\) 0 0
\(559\) 6.63533 0.280644
\(560\) 0 0
\(561\) 2.67750 + 3.94951i 0.113044 + 0.166748i
\(562\) 0 0
\(563\) 10.0910 + 17.4781i 0.425284 + 0.736614i 0.996447 0.0842230i \(-0.0268408\pi\)
−0.571163 + 0.820837i \(0.693507\pi\)
\(564\) 0 0
\(565\) −24.0957 + 41.7350i −1.01371 + 1.75580i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.0525 + 20.8755i −0.505266 + 0.875146i 0.494716 + 0.869055i \(0.335272\pi\)
−0.999981 + 0.00609110i \(0.998061\pi\)
\(570\) 0 0
\(571\) −3.22763 5.59042i −0.135072 0.233952i 0.790553 0.612394i \(-0.209793\pi\)
−0.925625 + 0.378442i \(0.876460\pi\)
\(572\) 0 0
\(573\) 13.8075 + 20.3670i 0.576816 + 0.850844i
\(574\) 0 0
\(575\) 45.3846 1.89267
\(576\) 0 0
\(577\) −9.20385 + 15.9415i −0.383161 + 0.663654i −0.991512 0.130014i \(-0.958498\pi\)
0.608351 + 0.793668i \(0.291831\pi\)
\(578\) 0 0
\(579\) 11.7217 0.847356i 0.487139 0.0352149i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −14.6489 + 25.3726i −0.606695 + 1.05083i
\(584\) 0 0
\(585\) 6.03517 0.877140i 0.249523 0.0362653i
\(586\) 0 0
\(587\) 22.8848 + 39.6376i 0.944557 + 1.63602i 0.756636 + 0.653837i \(0.226842\pi\)
0.187921 + 0.982184i \(0.439825\pi\)
\(588\) 0 0
\(589\) 20.8895 36.1817i 0.860737 1.49084i
\(590\) 0 0
\(591\) 14.0006 28.8776i 0.575909 1.18787i
\(592\) 0 0
\(593\) −8.71630 15.0971i −0.357935 0.619962i 0.629680 0.776854i \(-0.283186\pi\)
−0.987616 + 0.156892i \(0.949853\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −16.3245 24.0798i −0.668117 0.985520i
\(598\) 0 0
\(599\) −1.72222 2.98297i −0.0703680 0.121881i 0.828695 0.559701i \(-0.189084\pi\)
−0.899063 + 0.437820i \(0.855751\pi\)
\(600\) 0 0
\(601\) 12.1666 + 21.0731i 0.496284 + 0.859590i 0.999991 0.00428500i \(-0.00136396\pi\)
−0.503706 + 0.863875i \(0.668031\pi\)
\(602\) 0 0
\(603\) 14.0738 35.3108i 0.573128 1.43797i
\(604\) 0 0
\(605\) −16.2531 −0.660782
\(606\) 0 0
\(607\) −19.9215 −0.808587 −0.404294 0.914629i \(-0.632483\pi\)
−0.404294 + 0.914629i \(0.632483\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.19997 + 3.81045i 0.0890011 + 0.154154i
\(612\) 0 0
\(613\) −20.3848 + 35.3075i −0.823334 + 1.42606i 0.0798515 + 0.996807i \(0.474555\pi\)
−0.903186 + 0.429250i \(0.858778\pi\)
\(614\) 0 0
\(615\) −36.3796 53.6625i −1.46697 2.16388i
\(616\) 0 0
\(617\) −11.5453 + 19.9970i −0.464796 + 0.805050i −0.999192 0.0401838i \(-0.987206\pi\)
0.534396 + 0.845234i \(0.320539\pi\)
\(618\) 0 0
\(619\) −45.1168 −1.81340 −0.906698 0.421780i \(-0.861406\pi\)
−0.906698 + 0.421780i \(0.861406\pi\)
\(620\) 0 0
\(621\) −32.4044 + 7.12697i −1.30034 + 0.285996i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −10.0192 −0.400768
\(626\) 0 0
\(627\) 25.8013 1.86516i 1.03041 0.0744873i
\(628\) 0 0
\(629\) −1.53870 −0.0613518
\(630\) 0 0
\(631\) −36.7010 −1.46104 −0.730521 0.682890i \(-0.760723\pi\)
−0.730521 + 0.682890i \(0.760723\pi\)
\(632\) 0 0
\(633\) 20.9764 + 30.9417i 0.833738 + 1.22982i
\(634\) 0 0
\(635\) 72.2135 2.86570
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 9.16757 + 11.6209i 0.362664 + 0.459717i
\(640\) 0 0
\(641\) 14.2449 0.562640 0.281320 0.959614i \(-0.409228\pi\)
0.281320 + 0.959614i \(0.409228\pi\)
\(642\) 0 0
\(643\) 18.0592 31.2795i 0.712187 1.23354i −0.251848 0.967767i \(-0.581038\pi\)
0.964035 0.265777i \(-0.0856285\pi\)
\(644\) 0 0
\(645\) −68.2724 + 4.93537i −2.68822 + 0.194330i
\(646\) 0 0
\(647\) 3.73327 6.46622i 0.146770 0.254213i −0.783262 0.621692i \(-0.786446\pi\)
0.930032 + 0.367479i \(0.119779\pi\)
\(648\) 0 0
\(649\) 5.60449 + 9.70727i 0.219996 + 0.381043i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −40.1090 −1.56959 −0.784794 0.619757i \(-0.787231\pi\)
−0.784794 + 0.619757i \(0.787231\pi\)
\(654\) 0 0
\(655\) −5.56383 −0.217397
\(656\) 0 0
\(657\) 25.8617 3.75870i 1.00896 0.146641i
\(658\) 0 0
\(659\) −3.96459 6.86688i −0.154439 0.267496i 0.778416 0.627749i \(-0.216024\pi\)
−0.932855 + 0.360253i \(0.882690\pi\)
\(660\) 0 0
\(661\) −11.0643 19.1640i −0.430352 0.745392i 0.566551 0.824026i \(-0.308277\pi\)
−0.996904 + 0.0786346i \(0.974944\pi\)
\(662\) 0 0
\(663\) −1.10518 + 0.0798930i −0.0429218 + 0.00310279i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.86382 + 10.1564i 0.227048 + 0.393259i
\(668\) 0 0
\(669\) −1.71300 + 0.123832i −0.0662285 + 0.00478761i
\(670\) 0 0
\(671\) −15.5379 + 26.9124i −0.599834 + 1.03894i
\(672\) 0 0
\(673\) 6.60773 + 11.4449i 0.254709 + 0.441169i 0.964817 0.262924i \(-0.0846869\pi\)
−0.710107 + 0.704094i \(0.751354\pi\)
\(674\) 0 0
\(675\) −36.0705 + 7.93329i −1.38836 + 0.305353i
\(676\) 0 0
\(677\) −10.0105 + 17.3387i −0.384736 + 0.666382i −0.991732 0.128323i \(-0.959041\pi\)
0.606997 + 0.794704i \(0.292374\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.21498 + 4.56860i −0.0848781 + 0.175069i
\(682\) 0 0
\(683\) −10.7716 + 18.6569i −0.412162 + 0.713886i −0.995126 0.0986124i \(-0.968560\pi\)
0.582964 + 0.812498i \(0.301893\pi\)
\(684\) 0 0
\(685\) −26.6267 −1.01735
\(686\) 0 0
\(687\) 3.31265 6.83265i 0.126385 0.260682i
\(688\) 0 0
\(689\) −3.40182 5.89213i −0.129599 0.224472i
\(690\) 0 0
\(691\) 21.8693 37.8787i 0.831947 1.44097i −0.0645449 0.997915i \(-0.520560\pi\)
0.896492 0.443060i \(-0.146107\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 27.8168 48.1802i 1.05515 1.82758i
\(696\) 0 0
\(697\) 5.88972 + 10.2013i 0.223089 + 0.386402i
\(698\) 0 0
\(699\) 1.87666 0.135662i 0.0709818 0.00513123i
\(700\) 0 0
\(701\) 16.2894 0.615244 0.307622 0.951509i \(-0.400467\pi\)
0.307622 + 0.951509i \(0.400467\pi\)
\(702\) 0 0
\(703\) −4.17097 + 7.22434i −0.157311 + 0.272471i
\(704\) 0 0
\(705\) −25.4702 37.5703i −0.959263 1.41498i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −18.4050 + 31.8784i −0.691214 + 1.19722i 0.280226 + 0.959934i \(0.409591\pi\)
−0.971440 + 0.237284i \(0.923743\pi\)
\(710\) 0 0
\(711\) −1.66375 + 0.241807i −0.0623956 + 0.00906847i
\(712\) 0 0
\(713\) −22.4680 38.9157i −0.841433 1.45741i
\(714\) 0 0
\(715\) −2.55709 + 4.42901i −0.0956298 + 0.165636i
\(716\) 0 0
\(717\) −3.72096 5.48868i −0.138962 0.204978i
\(718\) 0 0
\(719\) −15.8787 27.5028i −0.592177 1.02568i −0.993939 0.109936i \(-0.964935\pi\)
0.401762 0.915744i \(-0.368398\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.76670 20.1447i 0.363227 0.749191i
\(724\) 0 0
\(725\) 6.52723 + 11.3055i 0.242415 + 0.419875i
\(726\) 0 0
\(727\) −2.83596 4.91203i −0.105180 0.182177i 0.808632 0.588315i \(-0.200209\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(728\) 0 0
\(729\) 24.5084 11.3287i 0.907718 0.419580i
\(730\) 0 0
\(731\) 12.4370 0.459999
\(732\) 0 0
\(733\) 23.9853 0.885917 0.442958 0.896542i \(-0.353929\pi\)
0.442958 + 0.896542i \(0.353929\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 15.9382 + 27.6059i 0.587093 + 1.01687i
\(738\) 0 0
\(739\) 0.162996 0.282317i 0.00599590 0.0103852i −0.863012 0.505184i \(-0.831425\pi\)
0.869008 + 0.494798i \(0.164758\pi\)
\(740\) 0 0
\(741\) −2.62074 + 5.40552i −0.0962752 + 0.198577i
\(742\) 0 0
\(743\) 13.3464 23.1166i 0.489631 0.848066i −0.510298 0.859998i \(-0.670465\pi\)
0.999929 + 0.0119319i \(0.00379815\pi\)
\(744\) 0 0
\(745\) −10.0028 −0.366473
\(746\) 0 0
\(747\) −8.18546 + 20.5372i −0.299490 + 0.751416i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 31.3955 1.14564 0.572820 0.819681i \(-0.305850\pi\)
0.572820 + 0.819681i \(0.305850\pi\)
\(752\) 0 0
\(753\) −14.8595 + 30.6492i −0.541512 + 1.11692i
\(754\) 0 0
\(755\) 31.8785 1.16018
\(756\) 0 0
\(757\) −0.144979 −0.00526933 −0.00263467 0.999997i \(-0.500839\pi\)
−0.00263467 + 0.999997i \(0.500839\pi\)
\(758\) 0 0
\(759\) 12.1382 25.0361i 0.440587 0.908753i
\(760\) 0 0
\(761\) −13.3801 −0.485028 −0.242514 0.970148i \(-0.577972\pi\)
−0.242514 + 0.970148i \(0.577972\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 11.3121 1.64408i 0.408989 0.0594417i
\(766\) 0 0
\(767\) −2.60300 −0.0939887
\(768\) 0 0
\(769\) 5.98750 10.3707i 0.215915 0.373975i −0.737640 0.675194i \(-0.764060\pi\)
0.953555 + 0.301218i \(0.0973933\pi\)
\(770\) 0 0
\(771\) −19.1623 + 39.5241i −0.690113 + 1.42342i
\(772\) 0 0
\(773\) −13.9471 + 24.1571i −0.501642 + 0.868869i 0.498356 + 0.866972i \(0.333937\pi\)
−0.999998 + 0.00189699i \(0.999396\pi\)
\(774\) 0 0
\(775\) −25.0099 43.3185i −0.898384 1.55605i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 63.8615 2.28808
\(780\) 0 0
\(781\) −12.4125 −0.444155
\(782\) 0 0
\(783\) −6.43577 7.04707i −0.229996 0.251842i
\(784\) 0 0
\(785\) −22.2489 38.5363i −0.794099 1.37542i
\(786\) 0 0
\(787\) −0.0522535 0.0905057i −0.00186264 0.00322618i 0.865093 0.501612i \(-0.167260\pi\)
−0.866955 + 0.498386i \(0.833926\pi\)
\(788\) 0 0
\(789\) 6.70684 13.8335i 0.238770 0.492486i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.60827 6.24971i −0.128133 0.221934i
\(794\) 0 0
\(795\) 39.3848 + 58.0953i 1.39683 + 2.06043i
\(796\) 0 0
\(797\) 17.5235 30.3516i 0.620715 1.07511i −0.368638 0.929573i \(-0.620176\pi\)
0.989353 0.145537i \(-0.0464910\pi\)
\(798\) 0 0
\(799\) 4.12353 + 7.14216i 0.145880 + 0.252671i
\(800\) 0 0
\(801\) −13.4899 + 33.8461i −0.476644 + 1.19589i
\(802\) 0 0
\(803\) −10.9576 + 18.9791i −0.386685 + 0.669758i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 17.7928 + 26.2456i 0.626335 + 0.923888i
\(808\) 0 0
\(809\) 22.1259 38.3233i 0.777907 1.34737i −0.155239 0.987877i \(-0.549615\pi\)
0.933146 0.359497i \(-0.117052\pi\)
\(810\) 0 0
\(811\) 0.903637 0.0317310 0.0158655 0.999874i \(-0.494950\pi\)
0.0158655 + 0.999874i \(0.494950\pi\)
\(812\) 0 0
\(813\) −8.10098 + 0.585614i −0.284114 + 0.0205384i
\(814\) 0 0
\(815\) −24.9972 43.2964i −0.875613 1.51661i
\(816\) 0 0
\(817\) 33.7132 58.3930i 1.17948 2.04291i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.1783 + 40.1459i −0.808927 + 1.40110i 0.104681 + 0.994506i \(0.466618\pi\)
−0.913608 + 0.406596i \(0.866716\pi\)
\(822\) 0 0
\(823\) 15.4915 + 26.8320i 0.539998 + 0.935305i 0.998903 + 0.0468193i \(0.0149085\pi\)
−0.458905 + 0.888485i \(0.651758\pi\)
\(824\) 0 0
\(825\) 13.5114 27.8686i 0.470407 0.970259i
\(826\) 0 0
\(827\) 25.0923 0.872544 0.436272 0.899815i \(-0.356299\pi\)
0.436272 + 0.899815i \(0.356299\pi\)
\(828\) 0 0
\(829\) 21.1853 36.6941i 0.735798 1.27444i −0.218575 0.975820i \(-0.570141\pi\)
0.954373 0.298619i \(-0.0965258\pi\)
\(830\) 0 0
\(831\) 4.27389 8.81531i 0.148260 0.305800i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.29123 14.3608i 0.286930 0.496977i
\(836\) 0 0
\(837\) 24.6595 + 27.0018i 0.852357 + 0.933318i
\(838\) 0 0
\(839\) 1.36843 + 2.37020i 0.0472435 + 0.0818282i 0.888680 0.458528i \(-0.151623\pi\)
−0.841437 + 0.540356i \(0.818290\pi\)
\(840\) 0 0
\(841\) 12.8133 22.1933i 0.441839 0.765287i
\(842\) 0 0
\(843\) −18.5320 + 1.33967i −0.638277 + 0.0461407i
\(844\) 0 0
\(845\) 22.0237 + 38.1461i 0.757637 + 1.31227i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 41.1338 2.97354i 1.41171 0.102052i
\(850\) 0 0
\(851\) 4.48615 + 7.77024i 0.153783 + 0.266360i
\(852\) 0 0
\(853\) −4.59273 7.95485i −0.157252 0.272369i 0.776625 0.629964i \(-0.216930\pi\)
−0.933877 + 0.357595i \(0.883597\pi\)
\(854\) 0 0
\(855\) 22.9447 57.5680i 0.784694 1.96878i
\(856\) 0 0
\(857\) −12.1221 −0.414084 −0.207042 0.978332i \(-0.566384\pi\)
−0.207042 + 0.978332i \(0.566384\pi\)
\(858\) 0 0
\(859\) −6.83252 −0.233123 −0.116561 0.993183i \(-0.537187\pi\)
−0.116561 + 0.993183i \(0.537187\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.2595 45.4827i −0.893882 1.54825i −0.835182 0.549974i \(-0.814638\pi\)
−0.0587005 0.998276i \(-0.518696\pi\)
\(864\) 0 0
\(865\) −43.6981 + 75.6873i −1.48578 + 2.57345i
\(866\) 0 0
\(867\) 27.2967 1.97326i 0.927045 0.0670155i
\(868\) 0 0
\(869\) 0.704930 1.22097i 0.0239131 0.0414187i
\(870\) 0 0
\(871\) −7.40249 −0.250824
\(872\) 0 0
\(873\) −15.5166 + 38.9309i −0.525157 + 1.31761i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.1564 1.08584 0.542922 0.839783i \(-0.317318\pi\)
0.542922 + 0.839783i \(0.317318\pi\)
\(878\) 0 0
\(879\) 20.0828 + 29.6235i 0.677375 + 0.999175i
\(880\) 0 0
\(881\) −16.9101 −0.569715 −0.284858 0.958570i \(-0.591946\pi\)
−0.284858 + 0.958570i \(0.591946\pi\)
\(882\) 0 0
\(883\) −13.9999 −0.471135 −0.235567 0.971858i \(-0.575695\pi\)
−0.235567 + 0.971858i \(0.575695\pi\)
\(884\) 0 0
\(885\) 26.7828 1.93611i 0.900295 0.0650818i
\(886\) 0 0
\(887\) 44.4566 1.49270 0.746352 0.665551i \(-0.231803\pi\)
0.746352 + 0.665551i \(0.231803\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −5.27075 + 22.0198i −0.176577 + 0.737691i
\(892\) 0 0
\(893\) 44.7109 1.49619
\(894\) 0 0
\(895\) −11.8713 + 20.5617i −0.396814 + 0.687303i
\(896\) 0 0
\(897\) 3.62567 + 5.34812i 0.121058 + 0.178569i
\(898\) 0 0
\(899\) 6.46271 11.1937i 0.215543 0.373332i
\(900\) 0 0
\(901\) −6.37624 11.0440i −0.212423 0.367928i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −46.8826 −1.55843
\(906\) 0 0
\(907\) −16.4478 −0.546142 −0.273071 0.961994i \(-0.588039\pi\)
−0.273071 + 0.961994i \(0.588039\pi\)
\(908\) 0 0
\(909\) 17.0506 + 21.6136i 0.565534 + 0.716878i
\(910\) 0 0
\(911\) −25.1577 43.5745i −0.833513 1.44369i −0.895236 0.445593i \(-0.852993\pi\)
0.0617228 0.998093i \(-0.480341\pi\)
\(912\) 0 0
\(913\) −9.26987 16.0559i −0.306788 0.531372i
\(914\) 0 0
\(915\) 41.7749 + 61.6209i 1.38104 + 2.03712i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −29.2722 50.7009i −0.965600 1.67247i −0.707994 0.706219i \(-0.750400\pi\)
−0.257606 0.966250i \(-0.582934\pi\)
\(920\) 0 0
\(921\) 9.00902 18.5820i 0.296857 0.612296i
\(922\) 0 0
\(923\) 1.44124 2.49630i 0.0474391 0.0821669i
\(924\) 0 0
\(925\) 4.99370 + 8.64933i 0.164192 + 0.284388i
\(926\) 0 0
\(927\) 0.890160 + 1.12838i 0.0292367 + 0.0370608i
\(928\) 0 0
\(929\) −0.318672 + 0.551956i −0.0104553 + 0.0181091i −0.871206 0.490918i \(-0.836661\pi\)
0.860750 + 0.509027i \(0.169995\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 15.7771 1.14052i 0.516521 0.0373389i
\(934\) 0 0
\(935\) −4.79291 + 8.30156i −0.156745 + 0.271490i
\(936\) 0 0
\(937\) 19.0780 0.623250 0.311625 0.950205i \(-0.399127\pi\)
0.311625 + 0.950205i \(0.399127\pi\)
\(938\) 0 0
\(939\) 13.4510 + 19.8412i 0.438958 + 0.647493i
\(940\) 0 0
\(941\) −14.8153 25.6609i −0.482965 0.836521i 0.516843 0.856080i \(-0.327107\pi\)
−0.999809 + 0.0195594i \(0.993774\pi\)
\(942\) 0 0
\(943\) 34.3436 59.4848i 1.11838 1.93709i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.1681 + 29.7360i −0.557888 + 0.966290i 0.439785 + 0.898103i \(0.355055\pi\)
−0.997673 + 0.0681867i \(0.978279\pi\)
\(948\) 0 0
\(949\) −2.54461 4.40740i −0.0826017 0.143070i
\(950\) 0 0
\(951\) 1.78015 + 2.62584i 0.0577252 + 0.0851488i
\(952\) 0 0
\(953\) 53.6361 1.73744 0.868722 0.495301i \(-0.164942\pi\)
0.868722 + 0.495301i \(0.164942\pi\)
\(954\) 0 0
\(955\) −24.7163 + 42.8099i −0.799800 + 1.38529i
\(956\) 0 0
\(957\) 7.98230 0.577036i 0.258031 0.0186529i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −9.26272 + 16.0435i −0.298798 + 0.517533i
\(962\) 0 0
\(963\) 5.95090 14.9307i 0.191765 0.481136i
\(964\) 0 0
\(965\) 11.8049 + 20.4467i 0.380014 + 0.658204i
\(966\) 0 0
\(967\) 14.5629 25.2236i 0.468310 0.811136i −0.531034 0.847350i \(-0.678196\pi\)
0.999344 + 0.0362139i \(0.0115298\pi\)
\(968\) 0 0
\(969\) −4.91220 + 10.1319i −0.157803 + 0.325483i
\(970\) 0 0
\(971\) 11.9191 + 20.6446i 0.382503 + 0.662515i 0.991419 0.130719i \(-0.0417287\pi\)
−0.608916 + 0.793235i \(0.708395\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 4.03587 + 5.95318i 0.129251 + 0.190654i
\(976\) 0 0
\(977\) −19.0842 33.0547i −0.610556 1.05751i −0.991147 0.132771i \(-0.957613\pi\)
0.380591 0.924744i \(-0.375721\pi\)
\(978\) 0 0
\(979\) −15.2771 26.4607i −0.488258 0.845688i
\(980\) 0 0
\(981\) −46.7608 + 6.79613i −1.49296 + 0.216984i
\(982\) 0 0
\(983\) 7.57537 0.241617 0.120808 0.992676i \(-0.461451\pi\)
0.120808 + 0.992676i \(0.461451\pi\)
\(984\) 0 0
\(985\) 64.4726 2.05427
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −36.2607 62.8054i −1.15302 1.99709i
\(990\) 0 0
\(991\) 4.68952 8.12248i 0.148967 0.258019i −0.781879 0.623431i \(-0.785738\pi\)
0.930846 + 0.365411i \(0.119072\pi\)
\(992\) 0 0
\(993\) −0.200473 0.295711i −0.00636181 0.00938411i
\(994\) 0 0
\(995\) 29.2219 50.6138i 0.926397 1.60457i
\(996\) 0 0
\(997\) −8.43658 −0.267189 −0.133595 0.991036i \(-0.542652\pi\)
−0.133595 + 0.991036i \(0.542652\pi\)
\(998\) 0 0
\(999\) −4.92372 5.39140i −0.155780 0.170576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.l.j.949.9 24
3.2 odd 2 5292.2.l.j.361.2 24
7.2 even 3 1764.2.i.j.373.9 24
7.3 odd 6 1764.2.j.i.589.12 yes 24
7.4 even 3 1764.2.j.i.589.1 24
7.5 odd 6 1764.2.i.j.373.4 24
7.6 odd 2 inner 1764.2.l.j.949.4 24
9.2 odd 6 5292.2.i.j.2125.11 24
9.7 even 3 1764.2.i.j.1537.9 24
21.2 odd 6 5292.2.i.j.1549.11 24
21.5 even 6 5292.2.i.j.1549.2 24
21.11 odd 6 5292.2.j.i.1765.11 24
21.17 even 6 5292.2.j.i.1765.2 24
21.20 even 2 5292.2.l.j.361.11 24
63.2 odd 6 5292.2.l.j.3313.2 24
63.11 odd 6 5292.2.j.i.3529.11 24
63.16 even 3 inner 1764.2.l.j.961.9 24
63.20 even 6 5292.2.i.j.2125.2 24
63.25 even 3 1764.2.j.i.1177.1 yes 24
63.34 odd 6 1764.2.i.j.1537.4 24
63.38 even 6 5292.2.j.i.3529.2 24
63.47 even 6 5292.2.l.j.3313.11 24
63.52 odd 6 1764.2.j.i.1177.12 yes 24
63.61 odd 6 inner 1764.2.l.j.961.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.4 24 7.5 odd 6
1764.2.i.j.373.9 24 7.2 even 3
1764.2.i.j.1537.4 24 63.34 odd 6
1764.2.i.j.1537.9 24 9.7 even 3
1764.2.j.i.589.1 24 7.4 even 3
1764.2.j.i.589.12 yes 24 7.3 odd 6
1764.2.j.i.1177.1 yes 24 63.25 even 3
1764.2.j.i.1177.12 yes 24 63.52 odd 6
1764.2.l.j.949.4 24 7.6 odd 2 inner
1764.2.l.j.949.9 24 1.1 even 1 trivial
1764.2.l.j.961.4 24 63.61 odd 6 inner
1764.2.l.j.961.9 24 63.16 even 3 inner
5292.2.i.j.1549.2 24 21.5 even 6
5292.2.i.j.1549.11 24 21.2 odd 6
5292.2.i.j.2125.2 24 63.20 even 6
5292.2.i.j.2125.11 24 9.2 odd 6
5292.2.j.i.1765.2 24 21.17 even 6
5292.2.j.i.1765.11 24 21.11 odd 6
5292.2.j.i.3529.2 24 63.38 even 6
5292.2.j.i.3529.11 24 63.11 odd 6
5292.2.l.j.361.2 24 3.2 odd 2
5292.2.l.j.361.11 24 21.20 even 2
5292.2.l.j.3313.2 24 63.2 odd 6
5292.2.l.j.3313.11 24 63.47 even 6