Properties

Label 5292.2.l.j.3313.11
Level $5292$
Weight $2$
Character 5292.3313
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(361,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.11
Character \(\chi\) \(=\) 5292.3313
Dual form 5292.2.l.j.361.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.47961 q^{5} +O(q^{10})\) \(q+3.47961 q^{5} -2.51576 q^{11} +(0.292110 + 0.505949i) q^{13} +(-0.547519 - 0.948331i) q^{17} +(-2.96834 + 5.14132i) q^{19} -6.38528 q^{23} +7.10769 q^{25} +(-0.918333 + 1.59060i) q^{29} +(3.51872 - 6.09459i) q^{31} +(0.702576 - 1.21690i) q^{37} +(5.37855 + 9.31593i) q^{41} +(-5.67879 + 9.83596i) q^{43} +(3.76565 + 6.52229i) q^{47} +(5.82285 + 10.0855i) q^{53} -8.75386 q^{55} +(2.22775 - 3.85858i) q^{59} +(6.17622 + 10.6975i) q^{61} +(1.01643 + 1.76051i) q^{65} +(6.33536 - 10.9732i) q^{67} +4.93390 q^{71} +(4.35558 + 7.54408i) q^{73} +(0.280206 + 0.485330i) q^{79} +(-3.68472 + 6.38212i) q^{83} +(-1.90515 - 3.29982i) q^{85} +(-6.07256 + 10.5180i) q^{89} +(-10.3287 + 17.8898i) q^{95} +(6.98486 - 12.0981i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q+O(q^{10}) \) Copy content Toggle raw display \( 24 q - 8 q^{11} - 16 q^{23} + 24 q^{25} + 32 q^{29} - 12 q^{37} + 16 q^{53} + 36 q^{65} + 12 q^{67} - 48 q^{71} + 12 q^{79} + 12 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 3.47961 1.55613 0.778065 0.628184i \(-0.216202\pi\)
0.778065 + 0.628184i \(0.216202\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.51576 −0.758530 −0.379265 0.925288i \(-0.623823\pi\)
−0.379265 + 0.925288i \(0.623823\pi\)
\(12\) 0 0
\(13\) 0.292110 + 0.505949i 0.0810167 + 0.140325i 0.903687 0.428194i \(-0.140850\pi\)
−0.822670 + 0.568519i \(0.807517\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.547519 0.948331i −0.132793 0.230004i 0.791959 0.610574i \(-0.209061\pi\)
−0.924752 + 0.380570i \(0.875728\pi\)
\(18\) 0 0
\(19\) −2.96834 + 5.14132i −0.680984 + 1.17950i 0.293696 + 0.955899i \(0.405115\pi\)
−0.974681 + 0.223601i \(0.928219\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.38528 −1.33142 −0.665712 0.746209i \(-0.731872\pi\)
−0.665712 + 0.746209i \(0.731872\pi\)
\(24\) 0 0
\(25\) 7.10769 1.42154
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.918333 + 1.59060i −0.170530 + 0.295367i −0.938605 0.344993i \(-0.887881\pi\)
0.768075 + 0.640360i \(0.221215\pi\)
\(30\) 0 0
\(31\) 3.51872 6.09459i 0.631980 1.09462i −0.355166 0.934803i \(-0.615576\pi\)
0.987146 0.159818i \(-0.0510909\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.702576 1.21690i 0.115503 0.200057i −0.802478 0.596682i \(-0.796485\pi\)
0.917981 + 0.396625i \(0.129819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.37855 + 9.31593i 0.839989 + 1.45490i 0.889903 + 0.456150i \(0.150772\pi\)
−0.0499141 + 0.998754i \(0.515895\pi\)
\(42\) 0 0
\(43\) −5.67879 + 9.83596i −0.866008 + 1.49997i 3.53909e−5 1.00000i \(0.499989\pi\)
−0.866043 + 0.499969i \(0.833345\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.76565 + 6.52229i 0.549276 + 0.951374i 0.998324 + 0.0578664i \(0.0184298\pi\)
−0.449048 + 0.893507i \(0.648237\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.82285 + 10.0855i 0.799830 + 1.38535i 0.919727 + 0.392560i \(0.128410\pi\)
−0.119897 + 0.992786i \(0.538256\pi\)
\(54\) 0 0
\(55\) −8.75386 −1.18037
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.22775 3.85858i 0.290029 0.502345i −0.683787 0.729681i \(-0.739668\pi\)
0.973816 + 0.227337i \(0.0730018\pi\)
\(60\) 0 0
\(61\) 6.17622 + 10.6975i 0.790784 + 1.36968i 0.925482 + 0.378792i \(0.123660\pi\)
−0.134698 + 0.990887i \(0.543006\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.01643 + 1.76051i 0.126072 + 0.218364i
\(66\) 0 0
\(67\) 6.33536 10.9732i 0.773988 1.34059i −0.161374 0.986893i \(-0.551593\pi\)
0.935362 0.353693i \(-0.115074\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.93390 0.585546 0.292773 0.956182i \(-0.405422\pi\)
0.292773 + 0.956182i \(0.405422\pi\)
\(72\) 0 0
\(73\) 4.35558 + 7.54408i 0.509782 + 0.882968i 0.999936 + 0.0113320i \(0.00360715\pi\)
−0.490154 + 0.871636i \(0.663060\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.280206 + 0.485330i 0.0315256 + 0.0546039i 0.881358 0.472450i \(-0.156630\pi\)
−0.849832 + 0.527053i \(0.823297\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.68472 + 6.38212i −0.404451 + 0.700529i −0.994257 0.107015i \(-0.965871\pi\)
0.589807 + 0.807544i \(0.299204\pi\)
\(84\) 0 0
\(85\) −1.90515 3.29982i −0.206643 0.357916i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.07256 + 10.5180i −0.643690 + 1.11490i 0.340913 + 0.940095i \(0.389264\pi\)
−0.984602 + 0.174808i \(0.944069\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.3287 + 17.8898i −1.05970 + 1.83545i
\(96\) 0 0
\(97\) 6.98486 12.0981i 0.709205 1.22838i −0.255947 0.966691i \(-0.582387\pi\)
0.965152 0.261688i \(-0.0842793\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −9.17649 −0.913095 −0.456548 0.889699i \(-0.650914\pi\)
−0.456548 + 0.889699i \(0.650914\pi\)
\(102\) 0 0
\(103\) 0.479075 0.0472047 0.0236024 0.999721i \(-0.492486\pi\)
0.0236024 + 0.999721i \(0.492486\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.67882 + 4.63986i −0.258972 + 0.448552i −0.965967 0.258666i \(-0.916717\pi\)
0.706995 + 0.707219i \(0.250050\pi\)
\(108\) 0 0
\(109\) 7.87535 + 13.6405i 0.754322 + 1.30652i 0.945711 + 0.325009i \(0.105367\pi\)
−0.191389 + 0.981514i \(0.561299\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.92483 + 11.9942i 0.651433 + 1.12832i 0.982775 + 0.184804i \(0.0591652\pi\)
−0.331342 + 0.943511i \(0.607501\pi\)
\(114\) 0 0
\(115\) −22.2183 −2.07187
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −4.67095 −0.424632
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.33394 0.655968
\(126\) 0 0
\(127\) 20.7533 1.84156 0.920780 0.390083i \(-0.127554\pi\)
0.920780 + 0.390083i \(0.127554\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.59898 −0.139704 −0.0698518 0.997557i \(-0.522253\pi\)
−0.0698518 + 0.997557i \(0.522253\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.65220 0.653771 0.326886 0.945064i \(-0.394001\pi\)
0.326886 + 0.945064i \(0.394001\pi\)
\(138\) 0 0
\(139\) −7.99424 13.8464i −0.678062 1.17444i −0.975564 0.219717i \(-0.929487\pi\)
0.297501 0.954721i \(-0.403847\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.734878 1.27285i −0.0614536 0.106441i
\(144\) 0 0
\(145\) −3.19544 + 5.53467i −0.265367 + 0.459629i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.87468 0.235503 0.117752 0.993043i \(-0.462431\pi\)
0.117752 + 0.993043i \(0.462431\pi\)
\(150\) 0 0
\(151\) 9.16152 0.745554 0.372777 0.927921i \(-0.378406\pi\)
0.372777 + 0.927921i \(0.378406\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.2438 21.2068i 0.983443 1.70337i
\(156\) 0 0
\(157\) 6.39409 11.0749i 0.510304 0.883873i −0.489625 0.871933i \(-0.662866\pi\)
0.999929 0.0119393i \(-0.00380048\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.18390 + 12.4429i −0.562686 + 0.974601i 0.434575 + 0.900636i \(0.356899\pi\)
−0.997261 + 0.0739653i \(0.976435\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.38280 + 4.12714i 0.184387 + 0.319367i 0.943370 0.331743i \(-0.107637\pi\)
−0.758983 + 0.651111i \(0.774303\pi\)
\(168\) 0 0
\(169\) 6.32934 10.9627i 0.486873 0.843288i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.5583 21.7517i −0.954792 1.65375i −0.734844 0.678237i \(-0.762744\pi\)
−0.219948 0.975512i \(-0.570589\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.41168 + 5.90920i 0.255001 + 0.441675i 0.964896 0.262633i \(-0.0845909\pi\)
−0.709895 + 0.704308i \(0.751258\pi\)
\(180\) 0 0
\(181\) 13.4735 1.00148 0.500739 0.865598i \(-0.333062\pi\)
0.500739 + 0.865598i \(0.333062\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 2.44469 4.23433i 0.179737 0.311314i
\(186\) 0 0
\(187\) 1.37743 + 2.38577i 0.100727 + 0.174465i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.10318 + 12.3031i 0.513968 + 0.890218i 0.999869 + 0.0162045i \(0.00515827\pi\)
−0.485901 + 0.874014i \(0.661508\pi\)
\(192\) 0 0
\(193\) 3.39260 5.87616i 0.244205 0.422975i −0.717703 0.696349i \(-0.754806\pi\)
0.961908 + 0.273374i \(0.0881397\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.5287 −1.32011 −0.660057 0.751215i \(-0.729468\pi\)
−0.660057 + 0.751215i \(0.729468\pi\)
\(198\) 0 0
\(199\) −8.39804 14.5458i −0.595321 1.03113i −0.993501 0.113819i \(-0.963691\pi\)
0.398180 0.917307i \(-0.369642\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 18.7153 + 32.4158i 1.30713 + 2.26402i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.46763 12.9343i 0.516547 0.894686i
\(210\) 0 0
\(211\) −10.7912 18.6909i −0.742896 1.28673i −0.951171 0.308664i \(-0.900118\pi\)
0.208275 0.978070i \(-0.433215\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −19.7600 + 34.2253i −1.34762 + 2.33415i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.319872 0.554034i 0.0215169 0.0372683i
\(222\) 0 0
\(223\) 0.495791 0.858736i 0.0332006 0.0575052i −0.848948 0.528477i \(-0.822763\pi\)
0.882148 + 0.470972i \(0.156097\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.93134 −0.194560 −0.0972799 0.995257i \(-0.531014\pi\)
−0.0972799 + 0.995257i \(0.531014\pi\)
\(228\) 0 0
\(229\) −4.38401 −0.289704 −0.144852 0.989453i \(-0.546271\pi\)
−0.144852 + 0.989453i \(0.546271\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.543158 + 0.940778i −0.0355835 + 0.0616324i −0.883269 0.468867i \(-0.844662\pi\)
0.847685 + 0.530500i \(0.177996\pi\)
\(234\) 0 0
\(235\) 13.1030 + 22.6950i 0.854744 + 1.48046i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.91423 3.31554i −0.123821 0.214464i 0.797450 0.603384i \(-0.206182\pi\)
−0.921271 + 0.388920i \(0.872848\pi\)
\(240\) 0 0
\(241\) −12.9254 −0.832599 −0.416300 0.909227i \(-0.636673\pi\)
−0.416300 + 0.909227i \(0.636673\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.46833 −0.220685
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −19.6654 −1.24127 −0.620634 0.784101i \(-0.713125\pi\)
−0.620634 + 0.784101i \(0.713125\pi\)
\(252\) 0 0
\(253\) 16.0638 1.00992
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −25.3597 −1.58190 −0.790948 0.611884i \(-0.790412\pi\)
−0.790948 + 0.611884i \(0.790412\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −8.87595 −0.547315 −0.273657 0.961827i \(-0.588233\pi\)
−0.273657 + 0.961827i \(0.588233\pi\)
\(264\) 0 0
\(265\) 20.2612 + 35.0935i 1.24464 + 2.15578i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −9.15338 15.8541i −0.558092 0.966643i −0.997656 0.0684319i \(-0.978200\pi\)
0.439564 0.898211i \(-0.355133\pi\)
\(270\) 0 0
\(271\) 2.34465 4.06106i 0.142427 0.246692i −0.785983 0.618248i \(-0.787843\pi\)
0.928410 + 0.371557i \(0.121176\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −17.8812 −1.07828
\(276\) 0 0
\(277\) 5.65614 0.339845 0.169922 0.985457i \(-0.445648\pi\)
0.169922 + 0.985457i \(0.445648\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.36370 9.29020i 0.319971 0.554207i −0.660510 0.750817i \(-0.729660\pi\)
0.980482 + 0.196610i \(0.0629933\pi\)
\(282\) 0 0
\(283\) −11.9053 + 20.6206i −0.707697 + 1.22577i 0.258013 + 0.966141i \(0.416932\pi\)
−0.965710 + 0.259625i \(0.916401\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.90045 13.6840i 0.464732 0.804940i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.3315 17.8946i −0.603570 1.04541i −0.992276 0.124052i \(-0.960411\pi\)
0.388706 0.921362i \(-0.372922\pi\)
\(294\) 0 0
\(295\) 7.75171 13.4264i 0.451322 0.781713i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.86521 3.23063i −0.107868 0.186832i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 21.4908 + 37.2232i 1.23056 + 2.13140i
\(306\) 0 0
\(307\) −11.9227 −0.680464 −0.340232 0.940342i \(-0.610506\pi\)
−0.340232 + 0.940342i \(0.610506\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.56635 7.90916i 0.258934 0.448487i −0.707022 0.707191i \(-0.749962\pi\)
0.965957 + 0.258704i \(0.0832954\pi\)
\(312\) 0 0
\(313\) 6.91980 + 11.9854i 0.391130 + 0.677457i 0.992599 0.121439i \(-0.0387509\pi\)
−0.601469 + 0.798896i \(0.705418\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.915786 + 1.58619i 0.0514357 + 0.0890892i 0.890597 0.454794i \(-0.150287\pi\)
−0.839161 + 0.543883i \(0.816954\pi\)
\(318\) 0 0
\(319\) 2.31031 4.00157i 0.129352 0.224045i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.50089 0.361719
\(324\) 0 0
\(325\) 2.07623 + 3.59613i 0.115168 + 0.199477i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.103132 + 0.178630i 0.00566864 + 0.00981838i 0.868846 0.495083i \(-0.164862\pi\)
−0.863177 + 0.504901i \(0.831529\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 22.0446 38.1824i 1.20442 2.08613i
\(336\) 0 0
\(337\) 0.756536 + 1.31036i 0.0412111 + 0.0713798i 0.885895 0.463885i \(-0.153545\pi\)
−0.844684 + 0.535265i \(0.820212\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −8.85224 + 15.3325i −0.479376 + 0.830303i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.60907 + 2.78698i −0.0863792 + 0.149613i −0.905978 0.423325i \(-0.860863\pi\)
0.819599 + 0.572938i \(0.194196\pi\)
\(348\) 0 0
\(349\) 7.04006 12.1937i 0.376846 0.652716i −0.613756 0.789496i \(-0.710342\pi\)
0.990601 + 0.136780i \(0.0436753\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −3.36930 −0.179330 −0.0896648 0.995972i \(-0.528580\pi\)
−0.0896648 + 0.995972i \(0.528580\pi\)
\(354\) 0 0
\(355\) 17.1681 0.911186
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.28913 + 12.6251i −0.384706 + 0.666330i −0.991728 0.128355i \(-0.959030\pi\)
0.607023 + 0.794685i \(0.292364\pi\)
\(360\) 0 0
\(361\) −8.12211 14.0679i −0.427479 0.740416i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.1557 + 26.2505i 0.793286 + 1.37401i
\(366\) 0 0
\(367\) 0.736734 0.0384572 0.0192286 0.999815i \(-0.493879\pi\)
0.0192286 + 0.999815i \(0.493879\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 28.9029 1.49653 0.748267 0.663397i \(-0.230886\pi\)
0.748267 + 0.663397i \(0.230886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.07302 −0.0552632
\(378\) 0 0
\(379\) −8.88267 −0.456272 −0.228136 0.973629i \(-0.573263\pi\)
−0.228136 + 0.973629i \(0.573263\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.4055 0.787182 0.393591 0.919286i \(-0.371233\pi\)
0.393591 + 0.919286i \(0.371233\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 20.3139 1.02996 0.514978 0.857204i \(-0.327800\pi\)
0.514978 + 0.857204i \(0.327800\pi\)
\(390\) 0 0
\(391\) 3.49606 + 6.05536i 0.176804 + 0.306233i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0.975006 + 1.68876i 0.0490579 + 0.0849708i
\(396\) 0 0
\(397\) −4.32895 + 7.49796i −0.217264 + 0.376312i −0.953970 0.299901i \(-0.903047\pi\)
0.736707 + 0.676212i \(0.236380\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −35.0546 −1.75054 −0.875272 0.483631i \(-0.839318\pi\)
−0.875272 + 0.483631i \(0.839318\pi\)
\(402\) 0 0
\(403\) 4.11141 0.204804
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.76751 + 3.06142i −0.0876124 + 0.151749i
\(408\) 0 0
\(409\) −6.61681 + 11.4607i −0.327180 + 0.566693i −0.981951 0.189135i \(-0.939432\pi\)
0.654771 + 0.755827i \(0.272765\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.8214 + 22.2073i −0.629377 + 1.09011i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.43952 + 7.68947i 0.216885 + 0.375655i 0.953854 0.300271i \(-0.0970771\pi\)
−0.736969 + 0.675926i \(0.763744\pi\)
\(420\) 0 0
\(421\) 2.00273 3.46884i 0.0976073 0.169061i −0.813087 0.582143i \(-0.802214\pi\)
0.910694 + 0.413082i \(0.135548\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.89160 6.74044i −0.188770 0.326959i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.48548 12.9652i −0.360563 0.624513i 0.627491 0.778624i \(-0.284082\pi\)
−0.988054 + 0.154111i \(0.950749\pi\)
\(432\) 0 0
\(433\) 15.3215 0.736304 0.368152 0.929766i \(-0.379991\pi\)
0.368152 + 0.929766i \(0.379991\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 18.9537 32.8288i 0.906679 1.57041i
\(438\) 0 0
\(439\) 6.03657 + 10.4556i 0.288110 + 0.499021i 0.973359 0.229288i \(-0.0736399\pi\)
−0.685249 + 0.728309i \(0.740307\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 6.02894 + 10.4424i 0.286444 + 0.496135i 0.972958 0.230981i \(-0.0741935\pi\)
−0.686515 + 0.727116i \(0.740860\pi\)
\(444\) 0 0
\(445\) −21.1301 + 36.5985i −1.00166 + 1.73493i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.9502 0.799928 0.399964 0.916531i \(-0.369023\pi\)
0.399964 + 0.916531i \(0.369023\pi\)
\(450\) 0 0
\(451\) −13.5311 23.4366i −0.637157 1.10359i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.88323 4.99390i −0.134872 0.233605i 0.790677 0.612234i \(-0.209729\pi\)
−0.925548 + 0.378629i \(0.876396\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −17.9138 + 31.0277i −0.834330 + 1.44510i 0.0602447 + 0.998184i \(0.480812\pi\)
−0.894575 + 0.446918i \(0.852521\pi\)
\(462\) 0 0
\(463\) 1.53947 + 2.66645i 0.0715455 + 0.123920i 0.899579 0.436758i \(-0.143874\pi\)
−0.828033 + 0.560679i \(0.810540\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −1.42738 + 2.47230i −0.0660515 + 0.114404i −0.897160 0.441706i \(-0.854373\pi\)
0.831108 + 0.556110i \(0.187707\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 14.2865 24.7449i 0.656893 1.13777i
\(474\) 0 0
\(475\) −21.0981 + 36.5429i −0.968045 + 1.67670i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −4.37376 −0.199842 −0.0999211 0.994995i \(-0.531859\pi\)
−0.0999211 + 0.994995i \(0.531859\pi\)
\(480\) 0 0
\(481\) 0.820918 0.0374307
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.3046 42.0968i 1.10361 1.91152i
\(486\) 0 0
\(487\) 15.2678 + 26.4447i 0.691852 + 1.19832i 0.971230 + 0.238142i \(0.0765383\pi\)
−0.279378 + 0.960181i \(0.590128\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.3502 + 36.9797i 0.963522 + 1.66887i 0.713534 + 0.700621i \(0.247094\pi\)
0.249989 + 0.968249i \(0.419573\pi\)
\(492\) 0 0
\(493\) 2.01122 0.0905808
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −22.7703 −1.01934 −0.509670 0.860370i \(-0.670232\pi\)
−0.509670 + 0.860370i \(0.670232\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0843 −1.07387 −0.536933 0.843625i \(-0.680417\pi\)
−0.536933 + 0.843625i \(0.680417\pi\)
\(504\) 0 0
\(505\) −31.9306 −1.42089
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 24.4700 1.08461 0.542307 0.840180i \(-0.317551\pi\)
0.542307 + 0.840180i \(0.317551\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.66700 0.0734566
\(516\) 0 0
\(517\) −9.47346 16.4085i −0.416642 0.721646i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 19.3743 + 33.5573i 0.848805 + 1.47017i 0.882276 + 0.470733i \(0.156011\pi\)
−0.0334709 + 0.999440i \(0.510656\pi\)
\(522\) 0 0
\(523\) −12.8473 + 22.2521i −0.561771 + 0.973016i 0.435571 + 0.900154i \(0.356546\pi\)
−0.997342 + 0.0728616i \(0.976787\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.70626 −0.335690
\(528\) 0 0
\(529\) 17.7719 0.772689
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.14226 + 5.44255i −0.136106 + 0.235743i
\(534\) 0 0
\(535\) −9.32127 + 16.1449i −0.402993 + 0.698005i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.92878 8.53690i 0.211905 0.367030i −0.740406 0.672160i \(-0.765367\pi\)
0.952311 + 0.305130i \(0.0986999\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 27.4032 + 47.4636i 1.17382 + 2.03312i
\(546\) 0 0
\(547\) −3.94133 + 6.82659i −0.168519 + 0.291884i −0.937899 0.346907i \(-0.887232\pi\)
0.769380 + 0.638791i \(0.220565\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.45185 9.44289i −0.232257 0.402281i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.1686 17.6125i −0.430857 0.746266i 0.566090 0.824343i \(-0.308455\pi\)
−0.996947 + 0.0780770i \(0.975122\pi\)
\(558\) 0 0
\(559\) −6.63533 −0.280644
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 10.0910 17.4781i 0.425284 0.736614i −0.571163 0.820837i \(-0.693507\pi\)
0.996447 + 0.0842230i \(0.0268408\pi\)
\(564\) 0 0
\(565\) 24.0957 + 41.7350i 1.01371 + 1.75580i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 12.0525 + 20.8755i 0.505266 + 0.875146i 0.999981 + 0.00609110i \(0.00193887\pi\)
−0.494716 + 0.869055i \(0.664728\pi\)
\(570\) 0 0
\(571\) −3.22763 + 5.59042i −0.135072 + 0.233952i −0.925625 0.378442i \(-0.876460\pi\)
0.790553 + 0.612394i \(0.209793\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −45.3846 −1.89267
\(576\) 0 0
\(577\) 9.20385 + 15.9415i 0.383161 + 0.663654i 0.991512 0.130014i \(-0.0415021\pi\)
−0.608351 + 0.793668i \(0.708169\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −14.6489 25.3726i −0.606695 1.05083i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.8848 39.6376i 0.944557 1.63602i 0.187921 0.982184i \(-0.439825\pi\)
0.756636 0.653837i \(-0.226842\pi\)
\(588\) 0 0
\(589\) 20.8895 + 36.1817i 0.860737 + 1.49084i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −8.71630 + 15.0971i −0.357935 + 0.619962i −0.987616 0.156892i \(-0.949853\pi\)
0.629680 + 0.776854i \(0.283186\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.72222 2.98297i 0.0703680 0.121881i −0.828695 0.559701i \(-0.810916\pi\)
0.899063 + 0.437820i \(0.144249\pi\)
\(600\) 0 0
\(601\) −12.1666 + 21.0731i −0.496284 + 0.859590i −0.999991 0.00428500i \(-0.998636\pi\)
0.503706 + 0.863875i \(0.331969\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −16.2531 −0.660782
\(606\) 0 0
\(607\) 19.9215 0.808587 0.404294 0.914629i \(-0.367517\pi\)
0.404294 + 0.914629i \(0.367517\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.19997 + 3.81045i −0.0890011 + 0.154154i
\(612\) 0 0
\(613\) −20.3848 35.3075i −0.823334 1.42606i −0.903186 0.429250i \(-0.858778\pi\)
0.0798515 0.996807i \(-0.474555\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.5453 + 19.9970i 0.464796 + 0.805050i 0.999192 0.0401838i \(-0.0127944\pi\)
−0.534396 + 0.845234i \(0.679461\pi\)
\(618\) 0 0
\(619\) 45.1168 1.81340 0.906698 0.421780i \(-0.138594\pi\)
0.906698 + 0.421780i \(0.138594\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −10.0192 −0.400768
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.53870 −0.0613518
\(630\) 0 0
\(631\) −36.7010 −1.46104 −0.730521 0.682890i \(-0.760723\pi\)
−0.730521 + 0.682890i \(0.760723\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 72.2135 2.86570
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.2449 −0.562640 −0.281320 0.959614i \(-0.590772\pi\)
−0.281320 + 0.959614i \(0.590772\pi\)
\(642\) 0 0
\(643\) −18.0592 31.2795i −0.712187 1.23354i −0.964035 0.265777i \(-0.914372\pi\)
0.251848 0.967767i \(-0.418962\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 3.73327 + 6.46622i 0.146770 + 0.254213i 0.930032 0.367479i \(-0.119779\pi\)
−0.783262 + 0.621692i \(0.786446\pi\)
\(648\) 0 0
\(649\) −5.60449 + 9.70727i −0.219996 + 0.381043i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 40.1090 1.56959 0.784794 0.619757i \(-0.212769\pi\)
0.784794 + 0.619757i \(0.212769\pi\)
\(654\) 0 0
\(655\) −5.56383 −0.217397
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.96459 6.86688i 0.154439 0.267496i −0.778416 0.627749i \(-0.783976\pi\)
0.932855 + 0.360253i \(0.117310\pi\)
\(660\) 0 0
\(661\) 11.0643 19.1640i 0.430352 0.745392i −0.566551 0.824026i \(-0.691723\pi\)
0.996904 + 0.0786346i \(0.0250560\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.86382 10.1564i 0.227048 0.393259i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −15.5379 26.9124i −0.599834 1.03894i
\(672\) 0 0
\(673\) 6.60773 11.4449i 0.254709 0.441169i −0.710107 0.704094i \(-0.751354\pi\)
0.964817 + 0.262924i \(0.0846869\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.0105 17.3387i −0.384736 0.666382i 0.606997 0.794704i \(-0.292374\pi\)
−0.991732 + 0.128323i \(0.959041\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.7716 + 18.6569i 0.412162 + 0.713886i 0.995126 0.0986124i \(-0.0314404\pi\)
−0.582964 + 0.812498i \(0.698107\pi\)
\(684\) 0 0
\(685\) 26.6267 1.01735
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −3.40182 + 5.89213i −0.129599 + 0.224472i
\(690\) 0 0
\(691\) −21.8693 37.8787i −0.831947 1.44097i −0.896492 0.443060i \(-0.853893\pi\)
0.0645449 0.997915i \(-0.479440\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −27.8168 48.1802i −1.05515 1.82758i
\(696\) 0 0
\(697\) 5.88972 10.2013i 0.223089 0.386402i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16.2894 −0.615244 −0.307622 0.951509i \(-0.599533\pi\)
−0.307622 + 0.951509i \(0.599533\pi\)
\(702\) 0 0
\(703\) 4.17097 + 7.22434i 0.157311 + 0.272471i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −18.4050 31.8784i −0.691214 1.19722i −0.971440 0.237284i \(-0.923743\pi\)
0.280226 0.959934i \(-0.409591\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −22.4680 + 38.9157i −0.841433 + 1.45741i
\(714\) 0 0
\(715\) −2.55709 4.42901i −0.0956298 0.165636i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.8787 + 27.5028i −0.592177 + 1.02568i 0.401762 + 0.915744i \(0.368398\pi\)
−0.993939 + 0.109936i \(0.964935\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.52723 + 11.3055i −0.242415 + 0.419875i
\(726\) 0 0
\(727\) 2.83596 4.91203i 0.105180 0.182177i −0.808632 0.588315i \(-0.799791\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 12.4370 0.459999
\(732\) 0 0
\(733\) −23.9853 −0.885917 −0.442958 0.896542i \(-0.646071\pi\)
−0.442958 + 0.896542i \(0.646071\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.9382 + 27.6059i −0.587093 + 1.01687i
\(738\) 0 0
\(739\) 0.162996 + 0.282317i 0.00599590 + 0.0103852i 0.869008 0.494798i \(-0.164758\pi\)
−0.863012 + 0.505184i \(0.831425\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.3464 23.1166i −0.489631 0.848066i 0.510298 0.859998i \(-0.329535\pi\)
−0.999929 + 0.0119319i \(0.996202\pi\)
\(744\) 0 0
\(745\) 10.0028 0.366473
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 31.3955 1.14564 0.572820 0.819681i \(-0.305850\pi\)
0.572820 + 0.819681i \(0.305850\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 31.8785 1.16018
\(756\) 0 0
\(757\) −0.144979 −0.00526933 −0.00263467 0.999997i \(-0.500839\pi\)
−0.00263467 + 0.999997i \(0.500839\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −13.3801 −0.485028 −0.242514 0.970148i \(-0.577972\pi\)
−0.242514 + 0.970148i \(0.577972\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.60300 0.0939887
\(768\) 0 0
\(769\) −5.98750 10.3707i −0.215915 0.373975i 0.737640 0.675194i \(-0.235940\pi\)
−0.953555 + 0.301218i \(0.902607\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −13.9471 24.1571i −0.501642 0.868869i −0.999998 0.00189699i \(-0.999396\pi\)
0.498356 0.866972i \(-0.333937\pi\)
\(774\) 0 0
\(775\) 25.0099 43.3185i 0.898384 1.55605i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −63.8615 −2.28808
\(780\) 0 0
\(781\) −12.4125 −0.444155
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.2489 38.5363i 0.794099 1.37542i
\(786\) 0 0
\(787\) 0.0522535 0.0905057i 0.00186264 0.00322618i −0.865093 0.501612i \(-0.832740\pi\)
0.866955 + 0.498386i \(0.166074\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.60827 + 6.24971i −0.128133 + 0.221934i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 17.5235 + 30.3516i 0.620715 + 1.07511i 0.989353 + 0.145537i \(0.0464910\pi\)
−0.368638 + 0.929573i \(0.620176\pi\)
\(798\) 0 0
\(799\) 4.12353 7.14216i 0.145880 0.252671i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.9576 18.9791i −0.386685 0.669758i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.1259 38.3233i −0.777907 1.34737i −0.933146 0.359497i \(-0.882948\pi\)
0.155239 0.987877i \(-0.450385\pi\)
\(810\) 0 0
\(811\) −0.903637 −0.0317310 −0.0158655 0.999874i \(-0.505050\pi\)
−0.0158655 + 0.999874i \(0.505050\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −24.9972 + 43.2964i −0.875613 + 1.51661i
\(816\) 0 0
\(817\) −33.7132 58.3930i −1.17948 2.04291i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 23.1783 + 40.1459i 0.808927 + 1.40110i 0.913608 + 0.406596i \(0.133284\pi\)
−0.104681 + 0.994506i \(0.533382\pi\)
\(822\) 0 0
\(823\) 15.4915 26.8320i 0.539998 0.935305i −0.458905 0.888485i \(-0.651758\pi\)
0.998903 0.0468193i \(-0.0149085\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25.0923 −0.872544 −0.436272 0.899815i \(-0.643701\pi\)
−0.436272 + 0.899815i \(0.643701\pi\)
\(828\) 0 0
\(829\) −21.1853 36.6941i −0.735798 1.27444i −0.954373 0.298619i \(-0.903474\pi\)
0.218575 0.975820i \(-0.429859\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.29123 + 14.3608i 0.286930 + 0.496977i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.36843 2.37020i 0.0472435 0.0818282i −0.841437 0.540356i \(-0.818290\pi\)
0.888680 + 0.458528i \(0.151623\pi\)
\(840\) 0 0
\(841\) 12.8133 + 22.1933i 0.441839 + 0.765287i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 22.0237 38.1461i 0.757637 1.31227i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −4.48615 + 7.77024i −0.153783 + 0.266360i
\(852\) 0 0
\(853\) 4.59273 7.95485i 0.157252 0.272369i −0.776625 0.629964i \(-0.783070\pi\)
0.933877 + 0.357595i \(0.116403\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.1221 −0.414084 −0.207042 0.978332i \(-0.566384\pi\)
−0.207042 + 0.978332i \(0.566384\pi\)
\(858\) 0 0
\(859\) 6.83252 0.233123 0.116561 0.993183i \(-0.462813\pi\)
0.116561 + 0.993183i \(0.462813\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.2595 45.4827i 0.893882 1.54825i 0.0587005 0.998276i \(-0.481304\pi\)
0.835182 0.549974i \(-0.185362\pi\)
\(864\) 0 0
\(865\) −43.6981 75.6873i −1.48578 2.57345i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.704930 1.22097i −0.0239131 0.0414187i
\(870\) 0 0
\(871\) 7.40249 0.250824
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 32.1564 1.08584 0.542922 0.839783i \(-0.317318\pi\)
0.542922 + 0.839783i \(0.317318\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −16.9101 −0.569715 −0.284858 0.958570i \(-0.591946\pi\)
−0.284858 + 0.958570i \(0.591946\pi\)
\(882\) 0 0
\(883\) −13.9999 −0.471135 −0.235567 0.971858i \(-0.575695\pi\)
−0.235567 + 0.971858i \(0.575695\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 44.4566 1.49270 0.746352 0.665551i \(-0.231803\pi\)
0.746352 + 0.665551i \(0.231803\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −44.7109 −1.49619
\(894\) 0 0
\(895\) 11.8713 + 20.5617i 0.396814 + 0.687303i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.46271 + 11.1937i 0.215543 + 0.373332i
\(900\) 0 0
\(901\) 6.37624 11.0440i 0.212423 0.367928i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 46.8826 1.55843
\(906\) 0 0
\(907\) −16.4478 −0.546142 −0.273071 0.961994i \(-0.588039\pi\)
−0.273071 + 0.961994i \(0.588039\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.1577 43.5745i 0.833513 1.44369i −0.0617228 0.998093i \(-0.519659\pi\)
0.895236 0.445593i \(-0.147007\pi\)
\(912\) 0 0
\(913\) 9.26987 16.0559i 0.306788 0.531372i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −29.2722 + 50.7009i −0.965600 + 1.67247i −0.257606 + 0.966250i \(0.582934\pi\)
−0.707994 + 0.706219i \(0.750400\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.44124 + 2.49630i 0.0474391 + 0.0821669i
\(924\) 0 0
\(925\) 4.99370 8.64933i 0.164192 0.284388i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.318672 0.551956i −0.0104553 0.0181091i 0.860750 0.509027i \(-0.169995\pi\)
−0.871206 + 0.490918i \(0.836661\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.79291 + 8.30156i 0.156745 + 0.271490i
\(936\) 0 0
\(937\) −19.0780 −0.623250 −0.311625 0.950205i \(-0.600873\pi\)
−0.311625 + 0.950205i \(0.600873\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −14.8153 + 25.6609i −0.482965 + 0.836521i −0.999809 0.0195594i \(-0.993774\pi\)
0.516843 + 0.856080i \(0.327107\pi\)
\(942\) 0 0
\(943\) −34.3436 59.4848i −1.11838 1.93709i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.1681 + 29.7360i 0.557888 + 0.966290i 0.997673 + 0.0681867i \(0.0217213\pi\)
−0.439785 + 0.898103i \(0.644945\pi\)
\(948\) 0 0
\(949\) −2.54461 + 4.40740i −0.0826017 + 0.143070i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −53.6361 −1.73744 −0.868722 0.495301i \(-0.835058\pi\)
−0.868722 + 0.495301i \(0.835058\pi\)
\(954\) 0 0
\(955\) 24.7163 + 42.8099i 0.799800 + 1.38529i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −9.26272 16.0435i −0.298798 0.517533i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 11.8049 20.4467i 0.380014 0.658204i
\(966\) 0 0
\(967\) 14.5629 + 25.2236i 0.468310 + 0.811136i 0.999344 0.0362139i \(-0.0115298\pi\)
−0.531034 + 0.847350i \(0.678196\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.9191 20.6446i 0.382503 0.662515i −0.608916 0.793235i \(-0.708395\pi\)
0.991419 + 0.130719i \(0.0417287\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.0842 33.0547i 0.610556 1.05751i −0.380591 0.924744i \(-0.624279\pi\)
0.991147 0.132771i \(-0.0423874\pi\)
\(978\) 0 0
\(979\) 15.2771 26.4607i 0.488258 0.845688i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.57537 0.241617 0.120808 0.992676i \(-0.461451\pi\)
0.120808 + 0.992676i \(0.461451\pi\)
\(984\) 0 0
\(985\) −64.4726 −2.05427
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 36.2607 62.8054i 1.15302 1.99709i
\(990\) 0 0
\(991\) 4.68952 + 8.12248i 0.148967 + 0.258019i 0.930846 0.365411i \(-0.119072\pi\)
−0.781879 + 0.623431i \(0.785738\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −29.2219 50.6138i −0.926397 1.60457i
\(996\) 0 0
\(997\) 8.43658 0.267189 0.133595 0.991036i \(-0.457348\pi\)
0.133595 + 0.991036i \(0.457348\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.j.3313.11 24
3.2 odd 2 1764.2.l.j.961.4 24
7.2 even 3 5292.2.j.i.3529.2 24
7.3 odd 6 5292.2.i.j.2125.11 24
7.4 even 3 5292.2.i.j.2125.2 24
7.5 odd 6 5292.2.j.i.3529.11 24
7.6 odd 2 inner 5292.2.l.j.3313.2 24
9.4 even 3 5292.2.i.j.1549.2 24
9.5 odd 6 1764.2.i.j.373.4 24
21.2 odd 6 1764.2.j.i.1177.12 yes 24
21.5 even 6 1764.2.j.i.1177.1 yes 24
21.11 odd 6 1764.2.i.j.1537.4 24
21.17 even 6 1764.2.i.j.1537.9 24
21.20 even 2 1764.2.l.j.961.9 24
63.4 even 3 inner 5292.2.l.j.361.11 24
63.5 even 6 1764.2.j.i.589.1 24
63.13 odd 6 5292.2.i.j.1549.11 24
63.23 odd 6 1764.2.j.i.589.12 yes 24
63.31 odd 6 inner 5292.2.l.j.361.2 24
63.32 odd 6 1764.2.l.j.949.4 24
63.40 odd 6 5292.2.j.i.1765.11 24
63.41 even 6 1764.2.i.j.373.9 24
63.58 even 3 5292.2.j.i.1765.2 24
63.59 even 6 1764.2.l.j.949.9 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.4 24 9.5 odd 6
1764.2.i.j.373.9 24 63.41 even 6
1764.2.i.j.1537.4 24 21.11 odd 6
1764.2.i.j.1537.9 24 21.17 even 6
1764.2.j.i.589.1 24 63.5 even 6
1764.2.j.i.589.12 yes 24 63.23 odd 6
1764.2.j.i.1177.1 yes 24 21.5 even 6
1764.2.j.i.1177.12 yes 24 21.2 odd 6
1764.2.l.j.949.4 24 63.32 odd 6
1764.2.l.j.949.9 24 63.59 even 6
1764.2.l.j.961.4 24 3.2 odd 2
1764.2.l.j.961.9 24 21.20 even 2
5292.2.i.j.1549.2 24 9.4 even 3
5292.2.i.j.1549.11 24 63.13 odd 6
5292.2.i.j.2125.2 24 7.4 even 3
5292.2.i.j.2125.11 24 7.3 odd 6
5292.2.j.i.1765.2 24 63.58 even 3
5292.2.j.i.1765.11 24 63.40 odd 6
5292.2.j.i.3529.2 24 7.2 even 3
5292.2.j.i.3529.11 24 7.5 odd 6
5292.2.l.j.361.2 24 63.31 odd 6 inner
5292.2.l.j.361.11 24 63.4 even 3 inner
5292.2.l.j.3313.2 24 7.6 odd 2 inner
5292.2.l.j.3313.11 24 1.1 even 1 trivial