Properties

Label 5292.2.i.j.1549.11
Level $5292$
Weight $2$
Character 5292.1549
Analytic conductor $42.257$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(1549,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 1764)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.11
Character \(\chi\) \(=\) 5292.1549
Dual form 5292.2.i.j.2125.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73981 + 3.01343i) q^{5} +(1.25788 - 2.17871i) q^{11} +(-0.292110 + 0.505949i) q^{13} +(0.547519 + 0.948331i) q^{17} +(2.96834 - 5.14132i) q^{19} +(3.19264 + 5.52982i) q^{23} +(-3.55384 + 6.15544i) q^{25} +(-0.918333 - 1.59060i) q^{29} +7.03743 q^{31} +(0.702576 - 1.21690i) q^{37} +(-5.37855 + 9.31593i) q^{41} +(-5.67879 - 9.83596i) q^{43} +7.53129 q^{47} +(5.82285 + 10.0855i) q^{53} +8.75386 q^{55} +4.45551 q^{59} +12.3524 q^{61} -2.03286 q^{65} -12.6707 q^{67} +4.93390 q^{71} +(-4.35558 - 7.54408i) q^{73} -0.560411 q^{79} +(3.68472 + 6.38212i) q^{83} +(-1.90515 + 3.29982i) q^{85} +(6.07256 - 10.5180i) q^{89} +20.6573 q^{95} +(-6.98486 - 12.0981i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 4 q^{11} + 8 q^{23} - 12 q^{25} + 32 q^{29} - 12 q^{37} + 16 q^{53} - 72 q^{65} - 24 q^{67} - 48 q^{71} - 24 q^{79} + 12 q^{85} + 64 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.73981 + 3.01343i 0.778065 + 1.34765i 0.933056 + 0.359732i \(0.117132\pi\)
−0.154991 + 0.987916i \(0.549535\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.25788 2.17871i 0.379265 0.656906i −0.611690 0.791097i \(-0.709510\pi\)
0.990956 + 0.134191i \(0.0428435\pi\)
\(12\) 0 0
\(13\) −0.292110 + 0.505949i −0.0810167 + 0.140325i −0.903687 0.428194i \(-0.859150\pi\)
0.822670 + 0.568519i \(0.192483\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.547519 + 0.948331i 0.132793 + 0.230004i 0.924752 0.380570i \(-0.124272\pi\)
−0.791959 + 0.610574i \(0.790939\pi\)
\(18\) 0 0
\(19\) 2.96834 5.14132i 0.680984 1.17950i −0.293696 0.955899i \(-0.594885\pi\)
0.974681 0.223601i \(-0.0717812\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.19264 + 5.52982i 0.665712 + 1.15305i 0.979092 + 0.203419i \(0.0652053\pi\)
−0.313380 + 0.949628i \(0.601461\pi\)
\(24\) 0 0
\(25\) −3.55384 + 6.15544i −0.710769 + 1.23109i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.918333 1.59060i −0.170530 0.295367i 0.768075 0.640360i \(-0.221215\pi\)
−0.938605 + 0.344993i \(0.887881\pi\)
\(30\) 0 0
\(31\) 7.03743 1.26396 0.631980 0.774985i \(-0.282242\pi\)
0.631980 + 0.774985i \(0.282242\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.702576 1.21690i 0.115503 0.200057i −0.802478 0.596682i \(-0.796485\pi\)
0.917981 + 0.396625i \(0.129819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.37855 + 9.31593i −0.839989 + 1.45490i 0.0499141 + 0.998754i \(0.484105\pi\)
−0.889903 + 0.456150i \(0.849228\pi\)
\(42\) 0 0
\(43\) −5.67879 9.83596i −0.866008 1.49997i −0.866043 0.499969i \(-0.833345\pi\)
3.53909e−5 1.00000i \(-0.499989\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.53129 1.09855 0.549276 0.835641i \(-0.314904\pi\)
0.549276 + 0.835641i \(0.314904\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.82285 + 10.0855i 0.799830 + 1.38535i 0.919727 + 0.392560i \(0.128410\pi\)
−0.119897 + 0.992786i \(0.538256\pi\)
\(54\) 0 0
\(55\) 8.75386 1.18037
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 4.45551 0.580058 0.290029 0.957018i \(-0.406335\pi\)
0.290029 + 0.957018i \(0.406335\pi\)
\(60\) 0 0
\(61\) 12.3524 1.58157 0.790784 0.612095i \(-0.209673\pi\)
0.790784 + 0.612095i \(0.209673\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.03286 −0.252145
\(66\) 0 0
\(67\) −12.6707 −1.54798 −0.773988 0.633201i \(-0.781741\pi\)
−0.773988 + 0.633201i \(0.781741\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.93390 0.585546 0.292773 0.956182i \(-0.405422\pi\)
0.292773 + 0.956182i \(0.405422\pi\)
\(72\) 0 0
\(73\) −4.35558 7.54408i −0.509782 0.882968i −0.999936 0.0113320i \(-0.996393\pi\)
0.490154 0.871636i \(-0.336940\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −0.560411 −0.0630512 −0.0315256 0.999503i \(-0.510037\pi\)
−0.0315256 + 0.999503i \(0.510037\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.68472 + 6.38212i 0.404451 + 0.700529i 0.994257 0.107015i \(-0.0341294\pi\)
−0.589807 + 0.807544i \(0.700796\pi\)
\(84\) 0 0
\(85\) −1.90515 + 3.29982i −0.206643 + 0.357916i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.07256 10.5180i 0.643690 1.11490i −0.340913 0.940095i \(-0.610736\pi\)
0.984602 0.174808i \(-0.0559306\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 20.6573 2.11940
\(96\) 0 0
\(97\) −6.98486 12.0981i −0.709205 1.22838i −0.965152 0.261688i \(-0.915721\pi\)
0.255947 0.966691i \(-0.417613\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.58825 + 7.94708i −0.456548 + 0.790764i −0.998776 0.0494676i \(-0.984248\pi\)
0.542228 + 0.840231i \(0.317581\pi\)
\(102\) 0 0
\(103\) 0.239538 + 0.414892i 0.0236024 + 0.0408805i 0.877585 0.479420i \(-0.159153\pi\)
−0.853983 + 0.520301i \(0.825820\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.67882 + 4.63986i −0.258972 + 0.448552i −0.965967 0.258666i \(-0.916717\pi\)
0.706995 + 0.707219i \(0.250050\pi\)
\(108\) 0 0
\(109\) 7.87535 + 13.6405i 0.754322 + 1.30652i 0.945711 + 0.325009i \(0.105367\pi\)
−0.191389 + 0.981514i \(0.561299\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.92483 11.9942i 0.651433 1.12832i −0.331342 0.943511i \(-0.607501\pi\)
0.982775 0.184804i \(-0.0591652\pi\)
\(114\) 0 0
\(115\) −11.1092 + 19.2416i −1.03593 + 1.79429i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.33548 + 4.04516i 0.212316 + 0.367742i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.33394 −0.655968
\(126\) 0 0
\(127\) 20.7533 1.84156 0.920780 0.390083i \(-0.127554\pi\)
0.920780 + 0.390083i \(0.127554\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −0.799491 1.38476i −0.0698518 0.120987i 0.828984 0.559272i \(-0.188919\pi\)
−0.898836 + 0.438285i \(0.855586\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.82610 + 6.62700i −0.326886 + 0.566182i −0.981892 0.189441i \(-0.939333\pi\)
0.655007 + 0.755623i \(0.272666\pi\)
\(138\) 0 0
\(139\) 7.99424 13.8464i 0.678062 1.17444i −0.297501 0.954721i \(-0.596153\pi\)
0.975564 0.219717i \(-0.0705134\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.734878 + 1.27285i 0.0614536 + 0.106441i
\(144\) 0 0
\(145\) 3.19544 5.53467i 0.265367 0.459629i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.43734 2.48955i −0.117752 0.203952i 0.801125 0.598497i \(-0.204235\pi\)
−0.918876 + 0.394546i \(0.870902\pi\)
\(150\) 0 0
\(151\) −4.58076 + 7.93411i −0.372777 + 0.645669i −0.989992 0.141126i \(-0.954928\pi\)
0.617215 + 0.786795i \(0.288261\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.2438 + 21.2068i 0.983443 + 1.70337i
\(156\) 0 0
\(157\) 12.7882 1.02061 0.510304 0.859994i \(-0.329533\pi\)
0.510304 + 0.859994i \(0.329533\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −7.18390 + 12.4429i −0.562686 + 0.974601i 0.434575 + 0.900636i \(0.356899\pi\)
−0.997261 + 0.0739653i \(0.976435\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.38280 + 4.12714i −0.184387 + 0.319367i −0.943370 0.331743i \(-0.892363\pi\)
0.758983 + 0.651111i \(0.225697\pi\)
\(168\) 0 0
\(169\) 6.32934 + 10.9627i 0.486873 + 0.843288i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −25.1167 −1.90958 −0.954792 0.297275i \(-0.903922\pi\)
−0.954792 + 0.297275i \(0.903922\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3.41168 + 5.90920i 0.255001 + 0.441675i 0.964896 0.262633i \(-0.0845909\pi\)
−0.709895 + 0.704308i \(0.751258\pi\)
\(180\) 0 0
\(181\) −13.4735 −1.00148 −0.500739 0.865598i \(-0.666938\pi\)
−0.500739 + 0.865598i \(0.666938\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.88938 0.359475
\(186\) 0 0
\(187\) 2.75485 0.201455
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.2064 −1.02794 −0.513968 0.857809i \(-0.671825\pi\)
−0.513968 + 0.857809i \(0.671825\pi\)
\(192\) 0 0
\(193\) −6.78520 −0.488410 −0.244205 0.969724i \(-0.578527\pi\)
−0.244205 + 0.969724i \(0.578527\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.5287 −1.32011 −0.660057 0.751215i \(-0.729468\pi\)
−0.660057 + 0.751215i \(0.729468\pi\)
\(198\) 0 0
\(199\) 8.39804 + 14.5458i 0.595321 + 1.03113i 0.993501 + 0.113819i \(0.0363086\pi\)
−0.398180 + 0.917307i \(0.630358\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −37.4305 −2.61426
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.46763 12.9343i −0.516547 0.894686i
\(210\) 0 0
\(211\) −10.7912 + 18.6909i −0.742896 + 1.28673i 0.208275 + 0.978070i \(0.433215\pi\)
−0.951171 + 0.308664i \(0.900118\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 19.7600 34.2253i 1.34762 2.33415i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.639743 −0.0430338
\(222\) 0 0
\(223\) −0.495791 0.858736i −0.0332006 0.0575052i 0.848948 0.528477i \(-0.177237\pi\)
−0.882148 + 0.470972i \(0.843903\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −1.46567 + 2.53861i −0.0972799 + 0.168494i −0.910558 0.413382i \(-0.864348\pi\)
0.813278 + 0.581875i \(0.197681\pi\)
\(228\) 0 0
\(229\) −2.19201 3.79667i −0.144852 0.250891i 0.784466 0.620172i \(-0.212937\pi\)
−0.929318 + 0.369281i \(0.879604\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.543158 + 0.940778i −0.0355835 + 0.0616324i −0.883269 0.468867i \(-0.844662\pi\)
0.847685 + 0.530500i \(0.177996\pi\)
\(234\) 0 0
\(235\) 13.1030 + 22.6950i 0.854744 + 1.48046i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.91423 + 3.31554i −0.123821 + 0.214464i −0.921271 0.388920i \(-0.872848\pi\)
0.797450 + 0.603384i \(0.206182\pi\)
\(240\) 0 0
\(241\) −6.46271 + 11.1937i −0.416300 + 0.721052i −0.995564 0.0940877i \(-0.970007\pi\)
0.579264 + 0.815140i \(0.303340\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.73416 + 3.00366i 0.110342 + 0.191118i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.6654 1.24127 0.620634 0.784101i \(-0.286875\pi\)
0.620634 + 0.784101i \(0.286875\pi\)
\(252\) 0 0
\(253\) 16.0638 1.00992
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.6799 21.9622i −0.790948 1.36996i −0.925381 0.379039i \(-0.876255\pi\)
0.134433 0.990923i \(-0.457079\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.43798 7.68680i 0.273657 0.473988i −0.696138 0.717908i \(-0.745100\pi\)
0.969796 + 0.243919i \(0.0784332\pi\)
\(264\) 0 0
\(265\) −20.2612 + 35.0935i −1.24464 + 2.15578i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.15338 + 15.8541i 0.558092 + 0.966643i 0.997656 + 0.0684319i \(0.0217996\pi\)
−0.439564 + 0.898211i \(0.644867\pi\)
\(270\) 0 0
\(271\) −2.34465 + 4.06106i −0.142427 + 0.246692i −0.928410 0.371557i \(-0.878824\pi\)
0.785983 + 0.618248i \(0.212157\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.94062 + 15.4856i 0.539140 + 0.933817i
\(276\) 0 0
\(277\) −2.82807 + 4.89836i −0.169922 + 0.294314i −0.938392 0.345572i \(-0.887685\pi\)
0.768470 + 0.639886i \(0.221018\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.36370 + 9.29020i 0.319971 + 0.554207i 0.980482 0.196610i \(-0.0629933\pi\)
−0.660510 + 0.750817i \(0.729660\pi\)
\(282\) 0 0
\(283\) −23.8106 −1.41539 −0.707697 0.706517i \(-0.750266\pi\)
−0.707697 + 0.706517i \(0.750266\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 7.90045 13.6840i 0.464732 0.804940i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.3315 17.8946i 0.603570 1.04541i −0.388706 0.921362i \(-0.627078\pi\)
0.992276 0.124052i \(-0.0395889\pi\)
\(294\) 0 0
\(295\) 7.75171 + 13.4264i 0.451322 + 0.781713i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.73041 −0.215735
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 21.4908 + 37.2232i 1.23056 + 2.13140i
\(306\) 0 0
\(307\) 11.9227 0.680464 0.340232 0.940342i \(-0.389494\pi\)
0.340232 + 0.940342i \(0.389494\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 9.13271 0.517868 0.258934 0.965895i \(-0.416629\pi\)
0.258934 + 0.965895i \(0.416629\pi\)
\(312\) 0 0
\(313\) 13.8396 0.782260 0.391130 0.920335i \(-0.372084\pi\)
0.391130 + 0.920335i \(0.372084\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.83157 −0.102871 −0.0514357 0.998676i \(-0.516380\pi\)
−0.0514357 + 0.998676i \(0.516380\pi\)
\(318\) 0 0
\(319\) −4.62061 −0.258705
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6.50089 0.361719
\(324\) 0 0
\(325\) −2.07623 3.59613i −0.115168 0.199477i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.206264 −0.0113373 −0.00566864 0.999984i \(-0.501804\pi\)
−0.00566864 + 0.999984i \(0.501804\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −22.0446 38.1824i −1.20442 2.08613i
\(336\) 0 0
\(337\) 0.756536 1.31036i 0.0412111 0.0713798i −0.844684 0.535265i \(-0.820212\pi\)
0.885895 + 0.463885i \(0.153545\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8.85224 15.3325i 0.479376 0.830303i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.21813 0.172758 0.0863792 0.996262i \(-0.472470\pi\)
0.0863792 + 0.996262i \(0.472470\pi\)
\(348\) 0 0
\(349\) −7.04006 12.1937i −0.376846 0.652716i 0.613756 0.789496i \(-0.289658\pi\)
−0.990601 + 0.136780i \(0.956325\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −1.68465 + 2.91790i −0.0896648 + 0.155304i −0.907369 0.420334i \(-0.861913\pi\)
0.817705 + 0.575638i \(0.195246\pi\)
\(354\) 0 0
\(355\) 8.58403 + 14.8680i 0.455593 + 0.789110i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −7.28913 + 12.6251i −0.384706 + 0.666330i −0.991728 0.128355i \(-0.959030\pi\)
0.607023 + 0.794685i \(0.292364\pi\)
\(360\) 0 0
\(361\) −8.12211 14.0679i −0.427479 0.740416i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 15.1557 26.2505i 0.793286 1.37401i
\(366\) 0 0
\(367\) 0.368367 0.638030i 0.0192286 0.0333049i −0.856251 0.516560i \(-0.827212\pi\)
0.875480 + 0.483255i \(0.160546\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −14.4514 25.0306i −0.748267 1.29604i −0.948653 0.316320i \(-0.897553\pi\)
0.200385 0.979717i \(-0.435781\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.07302 0.0552632
\(378\) 0 0
\(379\) −8.88267 −0.456272 −0.228136 0.973629i \(-0.573263\pi\)
−0.228136 + 0.973629i \(0.573263\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.70273 + 13.3415i 0.393591 + 0.681720i 0.992920 0.118783i \(-0.0378992\pi\)
−0.599329 + 0.800503i \(0.704566\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10.1570 + 17.5924i −0.514978 + 0.891968i 0.484871 + 0.874586i \(0.338867\pi\)
−0.999849 + 0.0173821i \(0.994467\pi\)
\(390\) 0 0
\(391\) −3.49606 + 6.05536i −0.176804 + 0.306233i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.975006 1.68876i −0.0490579 0.0849708i
\(396\) 0 0
\(397\) 4.32895 7.49796i 0.217264 0.376312i −0.736707 0.676212i \(-0.763620\pi\)
0.953970 + 0.299901i \(0.0969535\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.5273 + 30.3582i 0.875272 + 1.51602i 0.856473 + 0.516192i \(0.172651\pi\)
0.0187988 + 0.999823i \(0.494016\pi\)
\(402\) 0 0
\(403\) −2.05570 + 3.56058i −0.102402 + 0.177365i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.76751 3.06142i −0.0876124 0.151749i
\(408\) 0 0
\(409\) −13.2336 −0.654361 −0.327180 0.944962i \(-0.606098\pi\)
−0.327180 + 0.944962i \(0.606098\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −12.8214 + 22.2073i −0.629377 + 1.09011i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.43952 + 7.68947i −0.216885 + 0.375655i −0.953854 0.300271i \(-0.902923\pi\)
0.736969 + 0.675926i \(0.236256\pi\)
\(420\) 0 0
\(421\) 2.00273 + 3.46884i 0.0976073 + 0.169061i 0.910694 0.413082i \(-0.135548\pi\)
−0.813087 + 0.582143i \(0.802214\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.78319 −0.377540
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.48548 12.9652i −0.360563 0.624513i 0.627491 0.778624i \(-0.284082\pi\)
−0.988054 + 0.154111i \(0.950749\pi\)
\(432\) 0 0
\(433\) −15.3215 −0.736304 −0.368152 0.929766i \(-0.620009\pi\)
−0.368152 + 0.929766i \(0.620009\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 37.9074 1.81336
\(438\) 0 0
\(439\) 12.0731 0.576220 0.288110 0.957597i \(-0.406973\pi\)
0.288110 + 0.957597i \(0.406973\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0579 −0.572887 −0.286444 0.958097i \(-0.592473\pi\)
−0.286444 + 0.958097i \(0.592473\pi\)
\(444\) 0 0
\(445\) 42.2603 2.00333
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 16.9502 0.799928 0.399964 0.916531i \(-0.369023\pi\)
0.399964 + 0.916531i \(0.369023\pi\)
\(450\) 0 0
\(451\) 13.5311 + 23.4366i 0.637157 + 1.10359i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.76646 0.269743 0.134872 0.990863i \(-0.456938\pi\)
0.134872 + 0.990863i \(0.456938\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 17.9138 + 31.0277i 0.834330 + 1.44510i 0.894575 + 0.446918i \(0.147479\pi\)
−0.0602447 + 0.998184i \(0.519188\pi\)
\(462\) 0 0
\(463\) 1.53947 2.66645i 0.0715455 0.123920i −0.828033 0.560679i \(-0.810540\pi\)
0.899579 + 0.436758i \(0.143874\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.42738 2.47230i 0.0660515 0.114404i −0.831108 0.556110i \(-0.812293\pi\)
0.897160 + 0.441706i \(0.145627\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −28.5730 −1.31379
\(474\) 0 0
\(475\) 21.0981 + 36.5429i 0.968045 + 1.67670i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.18688 + 3.78779i −0.0999211 + 0.173068i −0.911652 0.410964i \(-0.865192\pi\)
0.811731 + 0.584032i \(0.198526\pi\)
\(480\) 0 0
\(481\) 0.410459 + 0.710936i 0.0187153 + 0.0324159i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.3046 42.0968i 1.10361 1.91152i
\(486\) 0 0
\(487\) 15.2678 + 26.4447i 0.691852 + 1.19832i 0.971230 + 0.238142i \(0.0765383\pi\)
−0.279378 + 0.960181i \(0.590128\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.3502 36.9797i 0.963522 1.66887i 0.249989 0.968249i \(-0.419573\pi\)
0.713534 0.700621i \(-0.247094\pi\)
\(492\) 0 0
\(493\) 1.00561 1.74177i 0.0452904 0.0784453i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 11.3852 + 19.7197i 0.509670 + 0.882774i 0.999937 + 0.0112020i \(0.00356578\pi\)
−0.490267 + 0.871572i \(0.663101\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 24.0843 1.07387 0.536933 0.843625i \(-0.319583\pi\)
0.536933 + 0.843625i \(0.319583\pi\)
\(504\) 0 0
\(505\) −31.9306 −1.42089
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.2350 + 21.1917i 0.542307 + 0.939304i 0.998771 + 0.0495618i \(0.0157825\pi\)
−0.456464 + 0.889742i \(0.650884\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −0.833498 + 1.44366i −0.0367283 + 0.0636153i
\(516\) 0 0
\(517\) 9.47346 16.4085i 0.416642 0.721646i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.3743 33.5573i −0.848805 1.47017i −0.882276 0.470733i \(-0.843989\pi\)
0.0334709 0.999440i \(-0.489344\pi\)
\(522\) 0 0
\(523\) 12.8473 22.2521i 0.561771 0.973016i −0.435571 0.900154i \(-0.643454\pi\)
0.997342 0.0728616i \(-0.0232131\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.85313 + 6.67381i 0.167845 + 0.290716i
\(528\) 0 0
\(529\) −8.88593 + 15.3909i −0.386345 + 0.669169i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.14226 5.44255i −0.136106 0.235743i
\(534\) 0 0
\(535\) −18.6425 −0.805987
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.92878 8.53690i 0.211905 0.367030i −0.740406 0.672160i \(-0.765367\pi\)
0.952311 + 0.305130i \(0.0986999\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −27.4032 + 47.4636i −1.17382 + 2.03312i
\(546\) 0 0
\(547\) −3.94133 6.82659i −0.168519 0.291884i 0.769380 0.638791i \(-0.220565\pi\)
−0.937899 + 0.346907i \(0.887232\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −10.9037 −0.464514
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.1686 17.6125i −0.430857 0.746266i 0.566090 0.824343i \(-0.308455\pi\)
−0.996947 + 0.0780770i \(0.975122\pi\)
\(558\) 0 0
\(559\) 6.63533 0.280644
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 20.1820 0.850568 0.425284 0.905060i \(-0.360174\pi\)
0.425284 + 0.905060i \(0.360174\pi\)
\(564\) 0 0
\(565\) 48.1914 2.02743
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −24.1049 −1.01053 −0.505266 0.862964i \(-0.668606\pi\)
−0.505266 + 0.862964i \(0.668606\pi\)
\(570\) 0 0
\(571\) 6.45527 0.270144 0.135072 0.990836i \(-0.456873\pi\)
0.135072 + 0.990836i \(0.456873\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −45.3846 −1.89267
\(576\) 0 0
\(577\) −9.20385 15.9415i −0.383161 0.663654i 0.608351 0.793668i \(-0.291831\pi\)
−0.991512 + 0.130014i \(0.958498\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 29.2978 1.21339
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.8848 39.6376i −0.944557 1.63602i −0.756636 0.653837i \(-0.773158\pi\)
−0.187921 0.982184i \(-0.560175\pi\)
\(588\) 0 0
\(589\) 20.8895 36.1817i 0.860737 1.49084i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 8.71630 15.0971i 0.357935 0.619962i −0.629680 0.776854i \(-0.716814\pi\)
0.987616 + 0.156892i \(0.0501475\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −3.44444 −0.140736 −0.0703680 0.997521i \(-0.522417\pi\)
−0.0703680 + 0.997521i \(0.522417\pi\)
\(600\) 0 0
\(601\) 12.1666 + 21.0731i 0.496284 + 0.859590i 0.999991 0.00428500i \(-0.00136396\pi\)
−0.503706 + 0.863875i \(0.668031\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −8.12655 + 14.0756i −0.330391 + 0.572254i
\(606\) 0 0
\(607\) 9.96073 + 17.2525i 0.404294 + 0.700257i 0.994239 0.107186i \(-0.0341840\pi\)
−0.589945 + 0.807443i \(0.700851\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.19997 + 3.81045i −0.0890011 + 0.154154i
\(612\) 0 0
\(613\) −20.3848 35.3075i −0.823334 1.42606i −0.903186 0.429250i \(-0.858778\pi\)
0.0798515 0.996807i \(-0.474555\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 11.5453 19.9970i 0.464796 0.805050i −0.534396 0.845234i \(-0.679461\pi\)
0.999192 + 0.0401838i \(0.0127944\pi\)
\(618\) 0 0
\(619\) 22.5584 39.0723i 0.906698 1.57045i 0.0880774 0.996114i \(-0.471928\pi\)
0.818621 0.574334i \(-0.194739\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.00960 + 8.67688i 0.200384 + 0.347075i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.53870 0.0613518
\(630\) 0 0
\(631\) −36.7010 −1.46104 −0.730521 0.682890i \(-0.760723\pi\)
−0.730521 + 0.682890i \(0.760723\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 36.1067 + 62.5387i 1.43285 + 2.48177i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.12245 12.3365i 0.281320 0.487261i −0.690390 0.723437i \(-0.742561\pi\)
0.971710 + 0.236177i \(0.0758944\pi\)
\(642\) 0 0
\(643\) 18.0592 31.2795i 0.712187 1.23354i −0.251848 0.967767i \(-0.581038\pi\)
0.964035 0.265777i \(-0.0856285\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −3.73327 6.46622i −0.146770 0.254213i 0.783262 0.621692i \(-0.213554\pi\)
−0.930032 + 0.367479i \(0.880221\pi\)
\(648\) 0 0
\(649\) 5.60449 9.70727i 0.219996 0.381043i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20.0545 34.7354i −0.784794 1.35930i −0.929122 0.369773i \(-0.879436\pi\)
0.144329 0.989530i \(-0.453898\pi\)
\(654\) 0 0
\(655\) 2.78192 4.81842i 0.108698 0.188271i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3.96459 + 6.86688i 0.154439 + 0.267496i 0.932855 0.360253i \(-0.117310\pi\)
−0.778416 + 0.627749i \(0.783976\pi\)
\(660\) 0 0
\(661\) 22.1286 0.860704 0.430352 0.902661i \(-0.358389\pi\)
0.430352 + 0.902661i \(0.358389\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.86382 10.1564i 0.227048 0.393259i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 15.5379 26.9124i 0.599834 1.03894i
\(672\) 0 0
\(673\) 6.60773 + 11.4449i 0.254709 + 0.441169i 0.964817 0.262924i \(-0.0846869\pi\)
−0.710107 + 0.704094i \(0.751354\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −20.0210 −0.769471 −0.384736 0.923027i \(-0.625707\pi\)
−0.384736 + 0.923027i \(0.625707\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 10.7716 + 18.6569i 0.412162 + 0.713886i 0.995126 0.0986124i \(-0.0314404\pi\)
−0.582964 + 0.812498i \(0.698107\pi\)
\(684\) 0 0
\(685\) −26.6267 −1.01735
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.80365 −0.259198
\(690\) 0 0
\(691\) −43.7386 −1.66389 −0.831947 0.554855i \(-0.812774\pi\)
−0.831947 + 0.554855i \(0.812774\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 55.6337 2.11031
\(696\) 0 0
\(697\) −11.7794 −0.446178
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16.2894 −0.615244 −0.307622 0.951509i \(-0.599533\pi\)
−0.307622 + 0.951509i \(0.599533\pi\)
\(702\) 0 0
\(703\) −4.17097 7.22434i −0.157311 0.272471i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 36.8100 1.38243 0.691214 0.722650i \(-0.257076\pi\)
0.691214 + 0.722650i \(0.257076\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 22.4680 + 38.9157i 0.841433 + 1.45741i
\(714\) 0 0
\(715\) −2.55709 + 4.42901i −0.0956298 + 0.165636i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 15.8787 27.5028i 0.592177 1.02568i −0.401762 0.915744i \(-0.631602\pi\)
0.993939 0.109936i \(-0.0350646\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.0545 0.484830
\(726\) 0 0
\(727\) −2.83596 4.91203i −0.105180 0.182177i 0.808632 0.588315i \(-0.200209\pi\)
−0.913812 + 0.406138i \(0.866875\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.21849 10.7707i 0.229999 0.398370i
\(732\) 0 0
\(733\) −11.9926 20.7719i −0.442958 0.767226i 0.554949 0.831884i \(-0.312738\pi\)
−0.997907 + 0.0646579i \(0.979404\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.9382 + 27.6059i −0.587093 + 1.01687i
\(738\) 0 0
\(739\) 0.162996 + 0.282317i 0.00599590 + 0.0103852i 0.869008 0.494798i \(-0.164758\pi\)
−0.863012 + 0.505184i \(0.831425\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −13.3464 + 23.1166i −0.489631 + 0.848066i −0.999929 0.0119319i \(-0.996202\pi\)
0.510298 + 0.859998i \(0.329535\pi\)
\(744\) 0 0
\(745\) 5.00139 8.66266i 0.183237 0.317375i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −15.6978 27.1893i −0.572820 0.992153i −0.996275 0.0862357i \(-0.972516\pi\)
0.423455 0.905917i \(-0.360817\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −31.8785 −1.16018
\(756\) 0 0
\(757\) −0.144979 −0.00526933 −0.00263467 0.999997i \(-0.500839\pi\)
−0.00263467 + 0.999997i \(0.500839\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −6.69005 11.5875i −0.242514 0.420047i 0.718916 0.695097i \(-0.244639\pi\)
−0.961430 + 0.275050i \(0.911305\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.30150 + 2.25426i −0.0469944 + 0.0813966i
\(768\) 0 0
\(769\) 5.98750 10.3707i 0.215915 0.373975i −0.737640 0.675194i \(-0.764060\pi\)
0.953555 + 0.301218i \(0.0973933\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 13.9471 + 24.1571i 0.501642 + 0.868869i 0.999998 + 0.00189699i \(0.000603830\pi\)
−0.498356 + 0.866972i \(0.666063\pi\)
\(774\) 0 0
\(775\) −25.0099 + 43.3185i −0.898384 + 1.55605i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 31.9308 + 55.3057i 1.14404 + 1.98153i
\(780\) 0 0
\(781\) 6.20626 10.7495i 0.222077 0.384649i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.2489 + 38.5363i 0.794099 + 1.37542i
\(786\) 0 0
\(787\) 0.104507 0.00372527 0.00186264 0.999998i \(-0.499407\pi\)
0.00186264 + 0.999998i \(0.499407\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −3.60827 + 6.24971i −0.128133 + 0.221934i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −17.5235 + 30.3516i −0.620715 + 1.07511i 0.368638 + 0.929573i \(0.379824\pi\)
−0.989353 + 0.145537i \(0.953509\pi\)
\(798\) 0 0
\(799\) 4.12353 + 7.14216i 0.145880 + 0.252671i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −21.9152 −0.773369
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.1259 38.3233i −0.777907 1.34737i −0.933146 0.359497i \(-0.882948\pi\)
0.155239 0.987877i \(-0.450385\pi\)
\(810\) 0 0
\(811\) 0.903637 0.0317310 0.0158655 0.999874i \(-0.494950\pi\)
0.0158655 + 0.999874i \(0.494950\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −49.9943 −1.75123
\(816\) 0 0
\(817\) −67.4264 −2.35895
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −46.3565 −1.61785 −0.808927 0.587910i \(-0.799951\pi\)
−0.808927 + 0.587910i \(0.799951\pi\)
\(822\) 0 0
\(823\) −30.9829 −1.08000 −0.539998 0.841666i \(-0.681575\pi\)
−0.539998 + 0.841666i \(0.681575\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −25.0923 −0.872544 −0.436272 0.899815i \(-0.643701\pi\)
−0.436272 + 0.899815i \(0.643701\pi\)
\(828\) 0 0
\(829\) 21.1853 + 36.6941i 0.735798 + 1.27444i 0.954373 + 0.298619i \(0.0965258\pi\)
−0.218575 + 0.975820i \(0.570141\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −16.5825 −0.573860
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.36843 2.37020i −0.0472435 0.0818282i 0.841437 0.540356i \(-0.181710\pi\)
−0.888680 + 0.458528i \(0.848377\pi\)
\(840\) 0 0
\(841\) 12.8133 22.1933i 0.441839 0.765287i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −22.0237 + 38.1461i −0.757637 + 1.31227i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.97230 0.307566
\(852\) 0 0
\(853\) −4.59273 7.95485i −0.157252 0.272369i 0.776625 0.629964i \(-0.216930\pi\)
−0.933877 + 0.357595i \(0.883597\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −6.06106 + 10.4981i −0.207042 + 0.358607i −0.950781 0.309862i \(-0.899717\pi\)
0.743739 + 0.668470i \(0.233050\pi\)
\(858\) 0 0
\(859\) 3.41626 + 5.91714i 0.116561 + 0.201890i 0.918403 0.395647i \(-0.129480\pi\)
−0.801841 + 0.597537i \(0.796146\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.2595 45.4827i 0.893882 1.54825i 0.0587005 0.998276i \(-0.481304\pi\)
0.835182 0.549974i \(-0.185362\pi\)
\(864\) 0 0
\(865\) −43.6981 75.6873i −1.48578 2.57345i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.704930 + 1.22097i −0.0239131 + 0.0414187i
\(870\) 0 0
\(871\) 3.70125 6.41074i 0.125412 0.217220i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −16.0782 27.8482i −0.542922 0.940368i −0.998735 0.0502923i \(-0.983985\pi\)
0.455813 0.890076i \(-0.349349\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.9101 0.569715 0.284858 0.958570i \(-0.408054\pi\)
0.284858 + 0.958570i \(0.408054\pi\)
\(882\) 0 0
\(883\) −13.9999 −0.471135 −0.235567 0.971858i \(-0.575695\pi\)
−0.235567 + 0.971858i \(0.575695\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.2283 + 38.5005i 0.746352 + 1.29272i 0.949560 + 0.313585i \(0.101530\pi\)
−0.203208 + 0.979136i \(0.565137\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 22.3555 38.7208i 0.748097 1.29574i
\(894\) 0 0
\(895\) −11.8713 + 20.5617i −0.396814 + 0.687303i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.46271 11.1937i −0.215543 0.373332i
\(900\) 0 0
\(901\) −6.37624 + 11.0440i −0.212423 + 0.367928i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −23.4413 40.6015i −0.779215 1.34964i
\(906\) 0 0
\(907\) 8.22392 14.2442i 0.273071 0.472972i −0.696576 0.717483i \(-0.745294\pi\)
0.969647 + 0.244511i \(0.0786273\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.1577 + 43.5745i 0.833513 + 1.44369i 0.895236 + 0.445593i \(0.147007\pi\)
−0.0617228 + 0.998093i \(0.519659\pi\)
\(912\) 0 0
\(913\) 18.5397 0.613576
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −29.2722 + 50.7009i −0.965600 + 1.67247i −0.257606 + 0.966250i \(0.582934\pi\)
−0.707994 + 0.706219i \(0.750400\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.44124 + 2.49630i −0.0474391 + 0.0821669i
\(924\) 0 0
\(925\) 4.99370 + 8.64933i 0.164192 + 0.284388i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.637344 −0.0209106 −0.0104553 0.999945i \(-0.503328\pi\)
−0.0104553 + 0.999945i \(0.503328\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.79291 + 8.30156i 0.156745 + 0.271490i
\(936\) 0 0
\(937\) 19.0780 0.623250 0.311625 0.950205i \(-0.399127\pi\)
0.311625 + 0.950205i \(0.399127\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −29.6306 −0.965931 −0.482965 0.875639i \(-0.660440\pi\)
−0.482965 + 0.875639i \(0.660440\pi\)
\(942\) 0 0
\(943\) −68.6872 −2.23676
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −34.3362 −1.11578 −0.557888 0.829916i \(-0.688388\pi\)
−0.557888 + 0.829916i \(0.688388\pi\)
\(948\) 0 0
\(949\) 5.08923 0.165203
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −53.6361 −1.73744 −0.868722 0.495301i \(-0.835058\pi\)
−0.868722 + 0.495301i \(0.835058\pi\)
\(954\) 0 0
\(955\) −24.7163 42.8099i −0.799800 1.38529i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 18.5254 0.597595
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −11.8049 20.4467i −0.380014 0.658204i
\(966\) 0 0
\(967\) 14.5629 25.2236i 0.468310 0.811136i −0.531034 0.847350i \(-0.678196\pi\)
0.999344 + 0.0362139i \(0.0115298\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −11.9191 + 20.6446i −0.382503 + 0.662515i −0.991419 0.130719i \(-0.958271\pi\)
0.608916 + 0.793235i \(0.291605\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −38.1683 −1.22111 −0.610556 0.791973i \(-0.709054\pi\)
−0.610556 + 0.791973i \(0.709054\pi\)
\(978\) 0 0
\(979\) −15.2771 26.4607i −0.488258 0.845688i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.78769 6.56046i 0.120808 0.209246i −0.799278 0.600961i \(-0.794785\pi\)
0.920087 + 0.391715i \(0.128118\pi\)
\(984\) 0 0
\(985\) −32.2363 55.8349i −1.02713 1.77905i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 36.2607 62.8054i 1.15302 1.99709i
\(990\) 0 0
\(991\) 4.68952 + 8.12248i 0.148967 + 0.258019i 0.930846 0.365411i \(-0.119072\pi\)
−0.781879 + 0.623431i \(0.785738\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −29.2219 + 50.6138i −0.926397 + 1.60457i
\(996\) 0 0
\(997\) 4.21829 7.30629i 0.133595 0.231393i −0.791465 0.611214i \(-0.790681\pi\)
0.925060 + 0.379822i \(0.124015\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.i.j.1549.11 24
3.2 odd 2 1764.2.i.j.373.9 24
7.2 even 3 5292.2.j.i.1765.11 24
7.3 odd 6 5292.2.l.j.361.11 24
7.4 even 3 5292.2.l.j.361.2 24
7.5 odd 6 5292.2.j.i.1765.2 24
7.6 odd 2 inner 5292.2.i.j.1549.2 24
9.2 odd 6 1764.2.l.j.961.9 24
9.7 even 3 5292.2.l.j.3313.2 24
21.2 odd 6 1764.2.j.i.589.1 24
21.5 even 6 1764.2.j.i.589.12 yes 24
21.11 odd 6 1764.2.l.j.949.9 24
21.17 even 6 1764.2.l.j.949.4 24
21.20 even 2 1764.2.i.j.373.4 24
63.2 odd 6 1764.2.j.i.1177.1 yes 24
63.11 odd 6 1764.2.i.j.1537.9 24
63.16 even 3 5292.2.j.i.3529.11 24
63.20 even 6 1764.2.l.j.961.4 24
63.25 even 3 inner 5292.2.i.j.2125.11 24
63.34 odd 6 5292.2.l.j.3313.11 24
63.38 even 6 1764.2.i.j.1537.4 24
63.47 even 6 1764.2.j.i.1177.12 yes 24
63.52 odd 6 inner 5292.2.i.j.2125.2 24
63.61 odd 6 5292.2.j.i.3529.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.4 24 21.20 even 2
1764.2.i.j.373.9 24 3.2 odd 2
1764.2.i.j.1537.4 24 63.38 even 6
1764.2.i.j.1537.9 24 63.11 odd 6
1764.2.j.i.589.1 24 21.2 odd 6
1764.2.j.i.589.12 yes 24 21.5 even 6
1764.2.j.i.1177.1 yes 24 63.2 odd 6
1764.2.j.i.1177.12 yes 24 63.47 even 6
1764.2.l.j.949.4 24 21.17 even 6
1764.2.l.j.949.9 24 21.11 odd 6
1764.2.l.j.961.4 24 63.20 even 6
1764.2.l.j.961.9 24 9.2 odd 6
5292.2.i.j.1549.2 24 7.6 odd 2 inner
5292.2.i.j.1549.11 24 1.1 even 1 trivial
5292.2.i.j.2125.2 24 63.52 odd 6 inner
5292.2.i.j.2125.11 24 63.25 even 3 inner
5292.2.j.i.1765.2 24 7.5 odd 6
5292.2.j.i.1765.11 24 7.2 even 3
5292.2.j.i.3529.2 24 63.61 odd 6
5292.2.j.i.3529.11 24 63.16 even 3
5292.2.l.j.361.2 24 7.4 even 3
5292.2.l.j.361.11 24 7.3 odd 6
5292.2.l.j.3313.2 24 9.7 even 3
5292.2.l.j.3313.11 24 63.34 odd 6