Properties

Label 1764.2.j.i.1177.1
Level $1764$
Weight $2$
Character 1764.1177
Analytic conductor $14.086$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1764,2,Mod(589,1764)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1764, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1764.589");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1764 = 2^{2} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1764.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.0856109166\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1177.1
Character \(\chi\) \(=\) 1764.1177
Dual form 1764.2.j.i.589.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72754 - 0.124883i) q^{3} +(-1.73981 - 3.01343i) q^{5} +(2.96881 + 0.431481i) q^{9} +O(q^{10})\) \(q+(-1.72754 - 0.124883i) q^{3} +(-1.73981 - 3.01343i) q^{5} +(2.96881 + 0.431481i) q^{9} +(-1.25788 + 2.17871i) q^{11} +(-0.292110 - 0.505949i) q^{13} +(2.62926 + 5.42310i) q^{15} +1.09504 q^{17} -5.93668 q^{19} +(-3.19264 - 5.52982i) q^{23} +(-3.55384 + 6.15544i) q^{25} +(-5.07486 - 1.11616i) q^{27} +(0.918333 - 1.59060i) q^{29} +(-3.51872 - 6.09459i) q^{31} +(2.44513 - 3.60673i) q^{33} -1.40515 q^{37} +(0.441448 + 0.910529i) q^{39} +(5.37855 + 9.31593i) q^{41} +(-5.67879 + 9.83596i) q^{43} +(-3.86491 - 9.69699i) q^{45} +(3.76565 - 6.52229i) q^{47} +(-1.89173 - 0.136752i) q^{51} +11.6457 q^{53} +8.75386 q^{55} +(10.2559 + 0.741391i) q^{57} +(2.22775 + 3.85858i) q^{59} +(-6.17622 + 10.6975i) q^{61} +(-1.01643 + 1.76051i) q^{65} +(6.33536 + 10.9732i) q^{67} +(4.82485 + 9.95170i) q^{69} -4.93390 q^{71} +8.71115 q^{73} +(6.90813 - 10.1900i) q^{75} +(0.280206 - 0.485330i) q^{79} +(8.62765 + 2.56197i) q^{81} +(-3.68472 + 6.38212i) q^{83} +(-1.90515 - 3.29982i) q^{85} +(-1.78510 + 2.63315i) q^{87} +12.1451 q^{89} +(5.31762 + 10.9681i) q^{93} +(10.3287 + 17.8898i) q^{95} +(-6.98486 + 12.0981i) q^{97} +(-4.67448 + 5.92543i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 8 q^{9} - 4 q^{11} - 28 q^{15} - 8 q^{23} - 12 q^{25} - 32 q^{29} + 24 q^{37} - 40 q^{51} + 32 q^{53} + 52 q^{57} - 36 q^{65} + 12 q^{67} + 48 q^{71} + 12 q^{79} + 16 q^{81} + 12 q^{85} + 48 q^{93} + 32 q^{95} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1764\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(883\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72754 0.124883i −0.997397 0.0721012i
\(4\) 0 0
\(5\) −1.73981 3.01343i −0.778065 1.34765i −0.933056 0.359732i \(-0.882868\pi\)
0.154991 0.987916i \(-0.450465\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 2.96881 + 0.431481i 0.989603 + 0.143827i
\(10\) 0 0
\(11\) −1.25788 + 2.17871i −0.379265 + 0.656906i −0.990956 0.134191i \(-0.957156\pi\)
0.611690 + 0.791097i \(0.290490\pi\)
\(12\) 0 0
\(13\) −0.292110 0.505949i −0.0810167 0.140325i 0.822670 0.568519i \(-0.192483\pi\)
−0.903687 + 0.428194i \(0.859150\pi\)
\(14\) 0 0
\(15\) 2.62926 + 5.42310i 0.678873 + 1.40024i
\(16\) 0 0
\(17\) 1.09504 0.265586 0.132793 0.991144i \(-0.457605\pi\)
0.132793 + 0.991144i \(0.457605\pi\)
\(18\) 0 0
\(19\) −5.93668 −1.36197 −0.680984 0.732298i \(-0.738448\pi\)
−0.680984 + 0.732298i \(0.738448\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.19264 5.52982i −0.665712 1.15305i −0.979092 0.203419i \(-0.934795\pi\)
0.313380 0.949628i \(-0.398539\pi\)
\(24\) 0 0
\(25\) −3.55384 + 6.15544i −0.710769 + 1.23109i
\(26\) 0 0
\(27\) −5.07486 1.11616i −0.976657 0.214804i
\(28\) 0 0
\(29\) 0.918333 1.59060i 0.170530 0.295367i −0.768075 0.640360i \(-0.778785\pi\)
0.938605 + 0.344993i \(0.112119\pi\)
\(30\) 0 0
\(31\) −3.51872 6.09459i −0.631980 1.09462i −0.987146 0.159818i \(-0.948909\pi\)
0.355166 0.934803i \(-0.384424\pi\)
\(32\) 0 0
\(33\) 2.44513 3.60673i 0.425642 0.627851i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1.40515 −0.231006 −0.115503 0.993307i \(-0.536848\pi\)
−0.115503 + 0.993307i \(0.536848\pi\)
\(38\) 0 0
\(39\) 0.441448 + 0.910529i 0.0706883 + 0.145801i
\(40\) 0 0
\(41\) 5.37855 + 9.31593i 0.839989 + 1.45490i 0.889903 + 0.456150i \(0.150772\pi\)
−0.0499141 + 0.998754i \(0.515895\pi\)
\(42\) 0 0
\(43\) −5.67879 + 9.83596i −0.866008 + 1.49997i 3.53909e−5 1.00000i \(0.499989\pi\)
−0.866043 + 0.499969i \(0.833345\pi\)
\(44\) 0 0
\(45\) −3.86491 9.69699i −0.576147 1.44554i
\(46\) 0 0
\(47\) 3.76565 6.52229i 0.549276 0.951374i −0.449048 0.893507i \(-0.648237\pi\)
0.998324 0.0578664i \(-0.0184298\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.89173 0.136752i −0.264894 0.0191491i
\(52\) 0 0
\(53\) 11.6457 1.59966 0.799830 0.600227i \(-0.204923\pi\)
0.799830 + 0.600227i \(0.204923\pi\)
\(54\) 0 0
\(55\) 8.75386 1.18037
\(56\) 0 0
\(57\) 10.2559 + 0.741391i 1.35842 + 0.0981996i
\(58\) 0 0
\(59\) 2.22775 + 3.85858i 0.290029 + 0.502345i 0.973816 0.227337i \(-0.0730018\pi\)
−0.683787 + 0.729681i \(0.739668\pi\)
\(60\) 0 0
\(61\) −6.17622 + 10.6975i −0.790784 + 1.36968i 0.134698 + 0.990887i \(0.456994\pi\)
−0.925482 + 0.378792i \(0.876340\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.01643 + 1.76051i −0.126072 + 0.218364i
\(66\) 0 0
\(67\) 6.33536 + 10.9732i 0.773988 + 1.34059i 0.935362 + 0.353693i \(0.115074\pi\)
−0.161374 + 0.986893i \(0.551593\pi\)
\(68\) 0 0
\(69\) 4.82485 + 9.95170i 0.580843 + 1.19804i
\(70\) 0 0
\(71\) −4.93390 −0.585546 −0.292773 0.956182i \(-0.594578\pi\)
−0.292773 + 0.956182i \(0.594578\pi\)
\(72\) 0 0
\(73\) 8.71115 1.01956 0.509782 0.860304i \(-0.329726\pi\)
0.509782 + 0.860304i \(0.329726\pi\)
\(74\) 0 0
\(75\) 6.90813 10.1900i 0.797682 1.17664i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0.280206 0.485330i 0.0315256 0.0546039i −0.849832 0.527053i \(-0.823297\pi\)
0.881358 + 0.472450i \(0.156630\pi\)
\(80\) 0 0
\(81\) 8.62765 + 2.56197i 0.958628 + 0.284663i
\(82\) 0 0
\(83\) −3.68472 + 6.38212i −0.404451 + 0.700529i −0.994257 0.107015i \(-0.965871\pi\)
0.589807 + 0.807544i \(0.299204\pi\)
\(84\) 0 0
\(85\) −1.90515 3.29982i −0.206643 0.357916i
\(86\) 0 0
\(87\) −1.78510 + 2.63315i −0.191383 + 0.282303i
\(88\) 0 0
\(89\) 12.1451 1.28738 0.643690 0.765287i \(-0.277403\pi\)
0.643690 + 0.765287i \(0.277403\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 5.31762 + 10.9681i 0.551412 + 1.13734i
\(94\) 0 0
\(95\) 10.3287 + 17.8898i 1.05970 + 1.83545i
\(96\) 0 0
\(97\) −6.98486 + 12.0981i −0.709205 + 1.22838i 0.255947 + 0.966691i \(0.417613\pi\)
−0.965152 + 0.261688i \(0.915721\pi\)
\(98\) 0 0
\(99\) −4.67448 + 5.92543i −0.469803 + 0.595528i
\(100\) 0 0
\(101\) 4.58825 7.94708i 0.456548 0.790764i −0.542228 0.840231i \(-0.682419\pi\)
0.998776 + 0.0494676i \(0.0157525\pi\)
\(102\) 0 0
\(103\) 0.239538 + 0.414892i 0.0236024 + 0.0408805i 0.877585 0.479420i \(-0.159153\pi\)
−0.853983 + 0.520301i \(0.825820\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −5.35765 −0.517943 −0.258972 0.965885i \(-0.583384\pi\)
−0.258972 + 0.965885i \(0.583384\pi\)
\(108\) 0 0
\(109\) −15.7507 −1.50864 −0.754322 0.656505i \(-0.772034\pi\)
−0.754322 + 0.656505i \(0.772034\pi\)
\(110\) 0 0
\(111\) 2.42746 + 0.175480i 0.230404 + 0.0166558i
\(112\) 0 0
\(113\) −6.92483 11.9942i −0.651433 1.12832i −0.982775 0.184804i \(-0.940835\pi\)
0.331342 0.943511i \(-0.392499\pi\)
\(114\) 0 0
\(115\) −11.1092 + 19.2416i −1.03593 + 1.79429i
\(116\) 0 0
\(117\) −0.648911 1.62811i −0.0599918 0.150519i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.33548 + 4.04516i 0.212316 + 0.367742i
\(122\) 0 0
\(123\) −8.12828 16.7654i −0.732902 1.51168i
\(124\) 0 0
\(125\) 7.33394 0.655968
\(126\) 0 0
\(127\) 20.7533 1.84156 0.920780 0.390083i \(-0.127554\pi\)
0.920780 + 0.390083i \(0.127554\pi\)
\(128\) 0 0
\(129\) 11.0387 16.2829i 0.971903 1.43363i
\(130\) 0 0
\(131\) 0.799491 + 1.38476i 0.0698518 + 0.120987i 0.898836 0.438285i \(-0.144414\pi\)
−0.828984 + 0.559272i \(0.811081\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 5.46581 + 17.2346i 0.470422 + 1.48332i
\(136\) 0 0
\(137\) 3.82610 6.62700i 0.326886 0.566182i −0.655007 0.755623i \(-0.727334\pi\)
0.981892 + 0.189441i \(0.0606675\pi\)
\(138\) 0 0
\(139\) 7.99424 + 13.8464i 0.678062 + 1.17444i 0.975564 + 0.219717i \(0.0705134\pi\)
−0.297501 + 0.954721i \(0.596153\pi\)
\(140\) 0 0
\(141\) −7.31984 + 10.7973i −0.616442 + 0.909294i
\(142\) 0 0
\(143\) 1.46976 0.122907
\(144\) 0 0
\(145\) −6.39088 −0.530734
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.43734 + 2.48955i 0.117752 + 0.203952i 0.918876 0.394546i \(-0.129098\pi\)
−0.801125 + 0.598497i \(0.795765\pi\)
\(150\) 0 0
\(151\) −4.58076 + 7.93411i −0.372777 + 0.645669i −0.989992 0.141126i \(-0.954928\pi\)
0.617215 + 0.786795i \(0.288261\pi\)
\(152\) 0 0
\(153\) 3.25096 + 0.472488i 0.262824 + 0.0381984i
\(154\) 0 0
\(155\) −12.2438 + 21.2068i −0.983443 + 1.70337i
\(156\) 0 0
\(157\) −6.39409 11.0749i −0.510304 0.883873i −0.999929 0.0119393i \(-0.996200\pi\)
0.489625 0.871933i \(-0.337134\pi\)
\(158\) 0 0
\(159\) −20.1184 1.45435i −1.59550 0.115337i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 14.3678 1.12537 0.562686 0.826671i \(-0.309768\pi\)
0.562686 + 0.826671i \(0.309768\pi\)
\(164\) 0 0
\(165\) −15.1227 1.09321i −1.17730 0.0851062i
\(166\) 0 0
\(167\) 2.38280 + 4.12714i 0.184387 + 0.319367i 0.943370 0.331743i \(-0.107637\pi\)
−0.758983 + 0.651111i \(0.774303\pi\)
\(168\) 0 0
\(169\) 6.32934 10.9627i 0.486873 0.843288i
\(170\) 0 0
\(171\) −17.6249 2.56157i −1.34781 0.195888i
\(172\) 0 0
\(173\) −12.5583 + 21.7517i −0.954792 + 1.65375i −0.219948 + 0.975512i \(0.570589\pi\)
−0.734844 + 0.678237i \(0.762744\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −3.36667 6.94407i −0.253054 0.521949i
\(178\) 0 0
\(179\) 6.82336 0.510002 0.255001 0.966941i \(-0.417924\pi\)
0.255001 + 0.966941i \(0.417924\pi\)
\(180\) 0 0
\(181\) −13.4735 −1.00148 −0.500739 0.865598i \(-0.666938\pi\)
−0.500739 + 0.865598i \(0.666938\pi\)
\(182\) 0 0
\(183\) 12.0056 17.7091i 0.887481 1.30910i
\(184\) 0 0
\(185\) 2.44469 + 4.23433i 0.179737 + 0.311314i
\(186\) 0 0
\(187\) −1.37743 + 2.38577i −0.100727 + 0.174465i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.10318 + 12.3031i −0.513968 + 0.890218i 0.485901 + 0.874014i \(0.338492\pi\)
−0.999869 + 0.0162045i \(0.994842\pi\)
\(192\) 0 0
\(193\) 3.39260 + 5.87616i 0.244205 + 0.422975i 0.961908 0.273374i \(-0.0881397\pi\)
−0.717703 + 0.696349i \(0.754806\pi\)
\(194\) 0 0
\(195\) 1.97578 2.91442i 0.141489 0.208706i
\(196\) 0 0
\(197\) 18.5287 1.32011 0.660057 0.751215i \(-0.270532\pi\)
0.660057 + 0.751215i \(0.270532\pi\)
\(198\) 0 0
\(199\) −16.7961 −1.19064 −0.595321 0.803488i \(-0.702975\pi\)
−0.595321 + 0.803488i \(0.702975\pi\)
\(200\) 0 0
\(201\) −9.57425 19.7478i −0.675315 1.39290i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 18.7153 32.4158i 1.30713 2.26402i
\(206\) 0 0
\(207\) −7.09233 17.7945i −0.492951 1.23681i
\(208\) 0 0
\(209\) 7.46763 12.9343i 0.516547 0.894686i
\(210\) 0 0
\(211\) −10.7912 18.6909i −0.742896 1.28673i −0.951171 0.308664i \(-0.900118\pi\)
0.208275 0.978070i \(-0.433215\pi\)
\(212\) 0 0
\(213\) 8.52353 + 0.616160i 0.584022 + 0.0422186i
\(214\) 0 0
\(215\) 39.5200 2.69524
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −15.0489 1.08787i −1.01691 0.0735117i
\(220\) 0 0
\(221\) −0.319872 0.554034i −0.0215169 0.0372683i
\(222\) 0 0
\(223\) −0.495791 + 0.858736i −0.0332006 + 0.0575052i −0.882148 0.470972i \(-0.843903\pi\)
0.848948 + 0.528477i \(0.177237\pi\)
\(224\) 0 0
\(225\) −13.2066 + 16.7409i −0.880443 + 1.11606i
\(226\) 0 0
\(227\) 1.46567 2.53861i 0.0972799 0.168494i −0.813278 0.581875i \(-0.802319\pi\)
0.910558 + 0.413382i \(0.135652\pi\)
\(228\) 0 0
\(229\) −2.19201 3.79667i −0.144852 0.250891i 0.784466 0.620172i \(-0.212937\pi\)
−0.929318 + 0.369281i \(0.879604\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.08632 −0.0711670 −0.0355835 0.999367i \(-0.511329\pi\)
−0.0355835 + 0.999367i \(0.511329\pi\)
\(234\) 0 0
\(235\) −26.2060 −1.70949
\(236\) 0 0
\(237\) −0.544677 + 0.803436i −0.0353805 + 0.0521888i
\(238\) 0 0
\(239\) 1.91423 + 3.31554i 0.123821 + 0.214464i 0.921271 0.388920i \(-0.127152\pi\)
−0.797450 + 0.603384i \(0.793818\pi\)
\(240\) 0 0
\(241\) −6.46271 + 11.1937i −0.416300 + 0.721052i −0.995564 0.0940877i \(-0.970007\pi\)
0.579264 + 0.815140i \(0.303340\pi\)
\(242\) 0 0
\(243\) −14.5847 5.50336i −0.935608 0.353041i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.73416 + 3.00366i 0.110342 + 0.191118i
\(248\) 0 0
\(249\) 7.16253 10.5652i 0.453907 0.669544i
\(250\) 0 0
\(251\) −19.6654 −1.24127 −0.620634 0.784101i \(-0.713125\pi\)
−0.620634 + 0.784101i \(0.713125\pi\)
\(252\) 0 0
\(253\) 16.0638 1.00992
\(254\) 0 0
\(255\) 2.87914 + 5.93850i 0.180299 + 0.371884i
\(256\) 0 0
\(257\) 12.6799 + 21.9622i 0.790948 + 1.36996i 0.925381 + 0.379039i \(0.123745\pi\)
−0.134433 + 0.990923i \(0.542921\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.41267 4.32594i 0.211239 0.267769i
\(262\) 0 0
\(263\) −4.43798 + 7.68680i −0.273657 + 0.473988i −0.969796 0.243919i \(-0.921567\pi\)
0.696138 + 0.717908i \(0.254900\pi\)
\(264\) 0 0
\(265\) −20.2612 35.0935i −1.24464 2.15578i
\(266\) 0 0
\(267\) −20.9812 1.51672i −1.28403 0.0928216i
\(268\) 0 0
\(269\) 18.3068 1.11618 0.558092 0.829779i \(-0.311534\pi\)
0.558092 + 0.829779i \(0.311534\pi\)
\(270\) 0 0
\(271\) 4.68930 0.284855 0.142427 0.989805i \(-0.454509\pi\)
0.142427 + 0.989805i \(0.454509\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8.94062 15.4856i −0.539140 0.933817i
\(276\) 0 0
\(277\) −2.82807 + 4.89836i −0.169922 + 0.294314i −0.938392 0.345572i \(-0.887685\pi\)
0.768470 + 0.639886i \(0.221018\pi\)
\(278\) 0 0
\(279\) −7.81669 19.6119i −0.467973 1.17414i
\(280\) 0 0
\(281\) −5.36370 + 9.29020i −0.319971 + 0.554207i −0.980482 0.196610i \(-0.937007\pi\)
0.660510 + 0.750817i \(0.270340\pi\)
\(282\) 0 0
\(283\) 11.9053 + 20.6206i 0.707697 + 1.22577i 0.965710 + 0.259625i \(0.0835989\pi\)
−0.258013 + 0.966141i \(0.583068\pi\)
\(284\) 0 0
\(285\) −15.6091 32.1953i −0.924603 1.90708i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −15.8009 −0.929464
\(290\) 0 0
\(291\) 13.5775 20.0278i 0.795927 1.17405i
\(292\) 0 0
\(293\) −10.3315 17.8946i −0.603570 1.04541i −0.992276 0.124052i \(-0.960411\pi\)
0.388706 0.921362i \(-0.372922\pi\)
\(294\) 0 0
\(295\) 7.75171 13.4264i 0.451322 0.781713i
\(296\) 0 0
\(297\) 8.81535 9.65267i 0.511518 0.560104i
\(298\) 0 0
\(299\) −1.86521 + 3.23063i −0.107868 + 0.186832i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −8.91885 + 13.1559i −0.512374 + 0.755788i
\(304\) 0 0
\(305\) 42.9817 2.46112
\(306\) 0 0
\(307\) 11.9227 0.680464 0.340232 0.940342i \(-0.389494\pi\)
0.340232 + 0.940342i \(0.389494\pi\)
\(308\) 0 0
\(309\) −0.361999 0.746657i −0.0205934 0.0424758i
\(310\) 0 0
\(311\) 4.56635 + 7.90916i 0.258934 + 0.448487i 0.965957 0.258704i \(-0.0832954\pi\)
−0.707022 + 0.707191i \(0.749962\pi\)
\(312\) 0 0
\(313\) −6.91980 + 11.9854i −0.391130 + 0.677457i −0.992599 0.121439i \(-0.961249\pi\)
0.601469 + 0.798896i \(0.294582\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −0.915786 + 1.58619i −0.0514357 + 0.0890892i −0.890597 0.454794i \(-0.849713\pi\)
0.839161 + 0.543883i \(0.183046\pi\)
\(318\) 0 0
\(319\) 2.31031 + 4.00157i 0.129352 + 0.224045i
\(320\) 0 0
\(321\) 9.25557 + 0.669079i 0.516595 + 0.0373444i
\(322\) 0 0
\(323\) −6.50089 −0.361719
\(324\) 0 0
\(325\) 4.15245 0.230337
\(326\) 0 0
\(327\) 27.2100 + 1.96699i 1.50472 + 0.108775i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.103132 0.178630i 0.00566864 0.00981838i −0.863177 0.504901i \(-0.831529\pi\)
0.868846 + 0.495083i \(0.164862\pi\)
\(332\) 0 0
\(333\) −4.17163 0.606297i −0.228604 0.0332249i
\(334\) 0 0
\(335\) 22.0446 38.1824i 1.20442 2.08613i
\(336\) 0 0
\(337\) 0.756536 + 1.31036i 0.0412111 + 0.0713798i 0.885895 0.463885i \(-0.153545\pi\)
−0.844684 + 0.535265i \(0.820212\pi\)
\(338\) 0 0
\(339\) 10.4651 + 21.5852i 0.568385 + 1.17235i
\(340\) 0 0
\(341\) 17.7045 0.958752
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 21.5945 31.8534i 1.16261 1.71493i
\(346\) 0 0
\(347\) 1.60907 + 2.78698i 0.0863792 + 0.149613i 0.905978 0.423325i \(-0.139137\pi\)
−0.819599 + 0.572938i \(0.805804\pi\)
\(348\) 0 0
\(349\) −7.04006 + 12.1937i −0.376846 + 0.652716i −0.990601 0.136780i \(-0.956325\pi\)
0.613756 + 0.789496i \(0.289658\pi\)
\(350\) 0 0
\(351\) 0.917699 + 2.89366i 0.0489831 + 0.154452i
\(352\) 0 0
\(353\) 1.68465 2.91790i 0.0896648 0.155304i −0.817705 0.575638i \(-0.804754\pi\)
0.907369 + 0.420334i \(0.138087\pi\)
\(354\) 0 0
\(355\) 8.58403 + 14.8680i 0.455593 + 0.789110i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.5783 −0.769411 −0.384706 0.923039i \(-0.625697\pi\)
−0.384706 + 0.923039i \(0.625697\pi\)
\(360\) 0 0
\(361\) 16.2442 0.854959
\(362\) 0 0
\(363\) −3.52946 7.27986i −0.185249 0.382093i
\(364\) 0 0
\(365\) −15.1557 26.2505i −0.793286 1.37401i
\(366\) 0 0
\(367\) 0.368367 0.638030i 0.0192286 0.0333049i −0.856251 0.516560i \(-0.827212\pi\)
0.875480 + 0.483255i \(0.160546\pi\)
\(368\) 0 0
\(369\) 11.9482 + 29.9779i 0.622001 + 1.56059i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −14.4514 25.0306i −0.748267 1.29604i −0.948653 0.316320i \(-0.897553\pi\)
0.200385 0.979717i \(-0.435781\pi\)
\(374\) 0 0
\(375\) −12.6697 0.915884i −0.654260 0.0472961i
\(376\) 0 0
\(377\) −1.07302 −0.0552632
\(378\) 0 0
\(379\) −8.88267 −0.456272 −0.228136 0.973629i \(-0.573263\pi\)
−0.228136 + 0.973629i \(0.573263\pi\)
\(380\) 0 0
\(381\) −35.8523 2.59174i −1.83677 0.132779i
\(382\) 0 0
\(383\) −7.70273 13.3415i −0.393591 0.681720i 0.599329 0.800503i \(-0.295434\pi\)
−0.992920 + 0.118783i \(0.962101\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −21.1033 + 26.7508i −1.07274 + 1.35982i
\(388\) 0 0
\(389\) 10.1570 17.5924i 0.514978 0.891968i −0.484871 0.874586i \(-0.661133\pi\)
0.999849 0.0173821i \(-0.00553318\pi\)
\(390\) 0 0
\(391\) −3.49606 6.05536i −0.176804 0.306233i
\(392\) 0 0
\(393\) −1.20822 2.49207i −0.0609467 0.125708i
\(394\) 0 0
\(395\) −1.95001 −0.0981158
\(396\) 0 0
\(397\) −8.65790 −0.434528 −0.217264 0.976113i \(-0.569713\pi\)
−0.217264 + 0.976113i \(0.569713\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.5273 30.3582i −0.875272 1.51602i −0.856473 0.516192i \(-0.827349\pi\)
−0.0187988 0.999823i \(-0.505984\pi\)
\(402\) 0 0
\(403\) −2.05570 + 3.56058i −0.102402 + 0.177365i
\(404\) 0 0
\(405\) −7.29010 30.4562i −0.362248 1.51338i
\(406\) 0 0
\(407\) 1.76751 3.06142i 0.0876124 0.151749i
\(408\) 0 0
\(409\) 6.61681 + 11.4607i 0.327180 + 0.566693i 0.981951 0.189135i \(-0.0605682\pi\)
−0.654771 + 0.755827i \(0.727235\pi\)
\(410\) 0 0
\(411\) −7.43735 + 10.9706i −0.366857 + 0.541140i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 25.6428 1.25875
\(416\) 0 0
\(417\) −12.0812 24.9186i −0.591619 1.22027i
\(418\) 0 0
\(419\) 4.43952 + 7.68947i 0.216885 + 0.375655i 0.953854 0.300271i \(-0.0970771\pi\)
−0.736969 + 0.675926i \(0.763744\pi\)
\(420\) 0 0
\(421\) 2.00273 3.46884i 0.0976073 0.169061i −0.813087 0.582143i \(-0.802214\pi\)
0.910694 + 0.413082i \(0.135548\pi\)
\(422\) 0 0
\(423\) 13.9937 17.7386i 0.680398 0.862482i
\(424\) 0 0
\(425\) −3.89160 + 6.74044i −0.188770 + 0.326959i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −2.53907 0.183548i −0.122587 0.00886176i
\(430\) 0 0
\(431\) −14.9710 −0.721126 −0.360563 0.932735i \(-0.617415\pi\)
−0.360563 + 0.932735i \(0.617415\pi\)
\(432\) 0 0
\(433\) −15.3215 −0.736304 −0.368152 0.929766i \(-0.620009\pi\)
−0.368152 + 0.929766i \(0.620009\pi\)
\(434\) 0 0
\(435\) 11.0405 + 0.798113i 0.529353 + 0.0382666i
\(436\) 0 0
\(437\) 18.9537 + 32.8288i 0.906679 + 1.57041i
\(438\) 0 0
\(439\) −6.03657 + 10.4556i −0.288110 + 0.499021i −0.973359 0.229288i \(-0.926360\pi\)
0.685249 + 0.728309i \(0.259693\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6.02894 + 10.4424i −0.286444 + 0.496135i −0.972958 0.230981i \(-0.925806\pi\)
0.686515 + 0.727116i \(0.259140\pi\)
\(444\) 0 0
\(445\) −21.1301 36.5985i −1.00166 1.73493i
\(446\) 0 0
\(447\) −2.17217 4.48030i −0.102740 0.211911i
\(448\) 0 0
\(449\) −16.9502 −0.799928 −0.399964 0.916531i \(-0.630977\pi\)
−0.399964 + 0.916531i \(0.630977\pi\)
\(450\) 0 0
\(451\) −27.0623 −1.27431
\(452\) 0 0
\(453\) 8.90430 13.1345i 0.418360 0.617111i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.88323 + 4.99390i −0.134872 + 0.233605i −0.925548 0.378629i \(-0.876396\pi\)
0.790677 + 0.612234i \(0.209729\pi\)
\(458\) 0 0
\(459\) −5.55716 1.22223i −0.259386 0.0570490i
\(460\) 0 0
\(461\) −17.9138 + 31.0277i −0.834330 + 1.44510i 0.0602447 + 0.998184i \(0.480812\pi\)
−0.894575 + 0.446918i \(0.852521\pi\)
\(462\) 0 0
\(463\) 1.53947 + 2.66645i 0.0715455 + 0.123920i 0.899579 0.436758i \(-0.143874\pi\)
−0.828033 + 0.560679i \(0.810540\pi\)
\(464\) 0 0
\(465\) 23.8000 35.1066i 1.10370 1.62803i
\(466\) 0 0
\(467\) 2.85477 0.132103 0.0660515 0.997816i \(-0.478960\pi\)
0.0660515 + 0.997816i \(0.478960\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 9.66300 + 19.9309i 0.445248 + 0.918366i
\(472\) 0 0
\(473\) −14.2865 24.7449i −0.656893 1.13777i
\(474\) 0 0
\(475\) 21.0981 36.5429i 0.968045 1.67670i
\(476\) 0 0
\(477\) 34.5738 + 5.02490i 1.58303 + 0.230074i
\(478\) 0 0
\(479\) 2.18688 3.78779i 0.0999211 0.173068i −0.811731 0.584032i \(-0.801474\pi\)
0.911652 + 0.410964i \(0.134808\pi\)
\(480\) 0 0
\(481\) 0.410459 + 0.710936i 0.0187153 + 0.0324159i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 48.6092 2.20723
\(486\) 0 0
\(487\) −30.5357 −1.38370 −0.691852 0.722039i \(-0.743205\pi\)
−0.691852 + 0.722039i \(0.743205\pi\)
\(488\) 0 0
\(489\) −24.8210 1.79429i −1.12244 0.0811407i
\(490\) 0 0
\(491\) −21.3502 36.9797i −0.963522 1.66887i −0.713534 0.700621i \(-0.752906\pi\)
−0.249989 0.968249i \(-0.580427\pi\)
\(492\) 0 0
\(493\) 1.00561 1.74177i 0.0452904 0.0784453i
\(494\) 0 0
\(495\) 25.9885 + 3.77713i 1.16810 + 0.169769i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 11.3852 + 19.7197i 0.509670 + 0.882774i 0.999937 + 0.0112020i \(0.00356578\pi\)
−0.490267 + 0.871572i \(0.663101\pi\)
\(500\) 0 0
\(501\) −3.60099 7.42738i −0.160880 0.331831i
\(502\) 0 0
\(503\) −24.0843 −1.07387 −0.536933 0.843625i \(-0.680417\pi\)
−0.536933 + 0.843625i \(0.680417\pi\)
\(504\) 0 0
\(505\) −31.9306 −1.42089
\(506\) 0 0
\(507\) −12.3033 + 18.1482i −0.546407 + 0.805989i
\(508\) 0 0
\(509\) −12.2350 21.1917i −0.542307 0.939304i −0.998771 0.0495618i \(-0.984218\pi\)
0.456464 0.889742i \(-0.349116\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 30.1278 + 6.62627i 1.33018 + 0.292557i
\(514\) 0 0
\(515\) 0.833498 1.44366i 0.0367283 0.0636153i
\(516\) 0 0
\(517\) 9.47346 + 16.4085i 0.416642 + 0.721646i
\(518\) 0 0
\(519\) 24.4115 36.0086i 1.07154 1.58060i
\(520\) 0 0
\(521\) −38.7487 −1.69761 −0.848805 0.528707i \(-0.822677\pi\)
−0.848805 + 0.528707i \(0.822677\pi\)
\(522\) 0 0
\(523\) −25.6945 −1.12354 −0.561771 0.827293i \(-0.689880\pi\)
−0.561771 + 0.827293i \(0.689880\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.85313 6.67381i −0.167845 0.290716i
\(528\) 0 0
\(529\) −8.88593 + 15.3909i −0.386345 + 0.669169i
\(530\) 0 0
\(531\) 4.94887 + 12.4166i 0.214763 + 0.538836i
\(532\) 0 0
\(533\) 3.14226 5.44255i 0.136106 0.235743i
\(534\) 0 0
\(535\) 9.32127 + 16.1449i 0.402993 + 0.698005i
\(536\) 0 0
\(537\) −11.7876 0.852121i −0.508674 0.0367717i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −9.85757 −0.423810 −0.211905 0.977290i \(-0.567967\pi\)
−0.211905 + 0.977290i \(0.567967\pi\)
\(542\) 0 0
\(543\) 23.2761 + 1.68261i 0.998872 + 0.0722078i
\(544\) 0 0
\(545\) 27.4032 + 47.4636i 1.17382 + 2.03312i
\(546\) 0 0
\(547\) −3.94133 + 6.82659i −0.168519 + 0.291884i −0.937899 0.346907i \(-0.887232\pi\)
0.769380 + 0.638791i \(0.220565\pi\)
\(548\) 0 0
\(549\) −22.9518 + 29.0940i −0.979559 + 1.24170i
\(550\) 0 0
\(551\) −5.45185 + 9.44289i −0.232257 + 0.402281i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3.69452 7.62029i −0.156823 0.323463i
\(556\) 0 0
\(557\) −20.3372 −0.861714 −0.430857 0.902420i \(-0.641789\pi\)
−0.430857 + 0.902420i \(0.641789\pi\)
\(558\) 0 0
\(559\) 6.63533 0.280644
\(560\) 0 0
\(561\) 2.67750 3.94951i 0.113044 0.166748i
\(562\) 0 0
\(563\) 10.0910 + 17.4781i 0.425284 + 0.736614i 0.996447 0.0842230i \(-0.0268408\pi\)
−0.571163 + 0.820837i \(0.693507\pi\)
\(564\) 0 0
\(565\) −24.0957 + 41.7350i −1.01371 + 1.75580i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −12.0525 + 20.8755i −0.505266 + 0.875146i 0.494716 + 0.869055i \(0.335272\pi\)
−0.999981 + 0.00609110i \(0.998061\pi\)
\(570\) 0 0
\(571\) −3.22763 5.59042i −0.135072 0.233952i 0.790553 0.612394i \(-0.209793\pi\)
−0.925625 + 0.378442i \(0.876460\pi\)
\(572\) 0 0
\(573\) 13.8075 20.3670i 0.576816 0.850844i
\(574\) 0 0
\(575\) 45.3846 1.89267
\(576\) 0 0
\(577\) 18.4077 0.766322 0.383161 0.923682i \(-0.374835\pi\)
0.383161 + 0.923682i \(0.374835\pi\)
\(578\) 0 0
\(579\) −5.12703 10.5750i −0.213072 0.439482i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −14.6489 + 25.3726i −0.606695 + 1.05083i
\(584\) 0 0
\(585\) −3.77721 + 4.78804i −0.156168 + 0.197961i
\(586\) 0 0
\(587\) 22.8848 39.6376i 0.944557 1.63602i 0.187921 0.982184i \(-0.439825\pi\)
0.756636 0.653837i \(-0.226842\pi\)
\(588\) 0 0
\(589\) 20.8895 + 36.1817i 0.860737 + 1.49084i
\(590\) 0 0
\(591\) −32.0091 2.31392i −1.31668 0.0951818i
\(592\) 0 0
\(593\) 17.4326 0.715871 0.357935 0.933746i \(-0.383481\pi\)
0.357935 + 0.933746i \(0.383481\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 29.0159 + 2.09754i 1.18754 + 0.0858468i
\(598\) 0 0
\(599\) −1.72222 2.98297i −0.0703680 0.121881i 0.828695 0.559701i \(-0.189084\pi\)
−0.899063 + 0.437820i \(0.855751\pi\)
\(600\) 0 0
\(601\) 12.1666 21.0731i 0.496284 0.859590i −0.503706 0.863875i \(-0.668031\pi\)
0.999991 + 0.00428500i \(0.00136396\pi\)
\(602\) 0 0
\(603\) 14.0738 + 35.3108i 0.573128 + 1.43797i
\(604\) 0 0
\(605\) 8.12655 14.0756i 0.330391 0.572254i
\(606\) 0 0
\(607\) 9.96073 + 17.2525i 0.404294 + 0.700257i 0.994239 0.107186i \(-0.0341840\pi\)
−0.589945 + 0.807443i \(0.700851\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.39993 −0.178002
\(612\) 0 0
\(613\) 40.7696 1.64667 0.823334 0.567557i \(-0.192111\pi\)
0.823334 + 0.567557i \(0.192111\pi\)
\(614\) 0 0
\(615\) −36.3796 + 53.6625i −1.46697 + 2.16388i
\(616\) 0 0
\(617\) −11.5453 19.9970i −0.464796 0.805050i 0.534396 0.845234i \(-0.320539\pi\)
−0.999192 + 0.0401838i \(0.987206\pi\)
\(618\) 0 0
\(619\) 22.5584 39.0723i 0.906698 1.57045i 0.0880774 0.996114i \(-0.471928\pi\)
0.818621 0.574334i \(-0.194739\pi\)
\(620\) 0 0
\(621\) 10.0301 + 31.6265i 0.402493 + 1.26913i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.00960 + 8.67688i 0.200384 + 0.347075i
\(626\) 0 0
\(627\) −14.5159 + 21.4120i −0.579711 + 0.855114i
\(628\) 0 0
\(629\) −1.53870 −0.0613518
\(630\) 0 0
\(631\) −36.7010 −1.46104 −0.730521 0.682890i \(-0.760723\pi\)
−0.730521 + 0.682890i \(0.760723\pi\)
\(632\) 0 0
\(633\) 16.3081 + 33.6369i 0.648188 + 1.33695i
\(634\) 0 0
\(635\) −36.1067 62.5387i −1.43285 2.48177i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −14.6478 2.12889i −0.579458 0.0842174i
\(640\) 0 0
\(641\) −7.12245 + 12.3365i −0.281320 + 0.487261i −0.971710 0.236177i \(-0.924106\pi\)
0.690390 + 0.723437i \(0.257439\pi\)
\(642\) 0 0
\(643\) 18.0592 + 31.2795i 0.712187 + 1.23354i 0.964035 + 0.265777i \(0.0856285\pi\)
−0.251848 + 0.967767i \(0.581038\pi\)
\(644\) 0 0
\(645\) −68.2724 4.93537i −2.68822 0.194330i
\(646\) 0 0
\(647\) −7.46655 −0.293540 −0.146770 0.989171i \(-0.546888\pi\)
−0.146770 + 0.989171i \(0.546888\pi\)
\(648\) 0 0
\(649\) −11.2090 −0.439991
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.0545 + 34.7354i 0.784794 + 1.35930i 0.929122 + 0.369773i \(0.120564\pi\)
−0.144329 + 0.989530i \(0.546102\pi\)
\(654\) 0 0
\(655\) 2.78192 4.81842i 0.108698 0.188271i
\(656\) 0 0
\(657\) 25.8617 + 3.75870i 1.00896 + 0.146641i
\(658\) 0 0
\(659\) −3.96459 + 6.86688i −0.154439 + 0.267496i −0.932855 0.360253i \(-0.882690\pi\)
0.778416 + 0.627749i \(0.216024\pi\)
\(660\) 0 0
\(661\) −11.0643 19.1640i −0.430352 0.745392i 0.566551 0.824026i \(-0.308277\pi\)
−0.996904 + 0.0786346i \(0.974944\pi\)
\(662\) 0 0
\(663\) 0.483402 + 0.997064i 0.0187738 + 0.0387227i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −11.7276 −0.454096
\(668\) 0 0
\(669\) 0.963742 1.42159i 0.0372604 0.0549617i
\(670\) 0 0
\(671\) −15.5379 26.9124i −0.599834 1.03894i
\(672\) 0 0
\(673\) 6.60773 11.4449i 0.254709 0.441169i −0.710107 0.704094i \(-0.751354\pi\)
0.964817 + 0.262924i \(0.0846869\pi\)
\(674\) 0 0
\(675\) 24.9057 27.2713i 0.958621 1.04967i
\(676\) 0 0
\(677\) −10.0105 + 17.3387i −0.384736 + 0.666382i −0.991732 0.128323i \(-0.959041\pi\)
0.606997 + 0.794704i \(0.292374\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.84904 + 4.20253i −0.109175 + 0.161041i
\(682\) 0 0
\(683\) 21.5431 0.824324 0.412162 0.911111i \(-0.364774\pi\)
0.412162 + 0.911111i \(0.364774\pi\)
\(684\) 0 0
\(685\) −26.6267 −1.01735
\(686\) 0 0
\(687\) 3.31265 + 6.83265i 0.126385 + 0.260682i
\(688\) 0 0
\(689\) −3.40182 5.89213i −0.129599 0.224472i
\(690\) 0 0
\(691\) 21.8693 37.8787i 0.831947 1.44097i −0.0645449 0.997915i \(-0.520560\pi\)
0.896492 0.443060i \(-0.146107\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 27.8168 48.1802i 1.05515 1.82758i
\(696\) 0 0
\(697\) 5.88972 + 10.2013i 0.223089 + 0.386402i
\(698\) 0 0
\(699\) 1.87666 + 0.135662i 0.0709818 + 0.00513123i
\(700\) 0 0
\(701\) 16.2894 0.615244 0.307622 0.951509i \(-0.400467\pi\)
0.307622 + 0.951509i \(0.400467\pi\)
\(702\) 0 0
\(703\) 8.34195 0.314623
\(704\) 0 0
\(705\) 45.2719 + 3.27268i 1.70504 + 0.123256i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −18.4050 + 31.8784i −0.691214 + 1.19722i 0.280226 + 0.959934i \(0.409591\pi\)
−0.971440 + 0.237284i \(0.923743\pi\)
\(710\) 0 0
\(711\) 1.04129 1.31995i 0.0390513 0.0495020i
\(712\) 0 0
\(713\) −22.4680 + 38.9157i −0.841433 + 1.45741i
\(714\) 0 0
\(715\) −2.55709 4.42901i −0.0956298 0.165636i
\(716\) 0 0
\(717\) −2.89285 5.96679i −0.108036 0.222834i
\(718\) 0 0
\(719\) 31.7575 1.18435 0.592177 0.805808i \(-0.298269\pi\)
0.592177 + 0.805808i \(0.298269\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 12.5625 18.5306i 0.467205 0.689160i
\(724\) 0 0
\(725\) 6.52723 + 11.3055i 0.242415 + 0.419875i
\(726\) 0 0
\(727\) −2.83596 + 4.91203i −0.105180 + 0.182177i −0.913812 0.406138i \(-0.866875\pi\)
0.808632 + 0.588315i \(0.200209\pi\)
\(728\) 0 0
\(729\) 24.5084 + 11.3287i 0.907718 + 0.419580i
\(730\) 0 0
\(731\) −6.21849 + 10.7707i −0.229999 + 0.398370i
\(732\) 0 0
\(733\) −11.9926 20.7719i −0.442958 0.767226i 0.554949 0.831884i \(-0.312738\pi\)
−0.997907 + 0.0646579i \(0.979404\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −31.8765 −1.17419
\(738\) 0 0
\(739\) −0.325992 −0.0119918 −0.00599590 0.999982i \(-0.501909\pi\)
−0.00599590 + 0.999982i \(0.501909\pi\)
\(740\) 0 0
\(741\) −2.62074 5.40552i −0.0962752 0.198577i
\(742\) 0 0
\(743\) 13.3464 + 23.1166i 0.489631 + 0.848066i 0.999929 0.0119319i \(-0.00379815\pi\)
−0.510298 + 0.859998i \(0.670465\pi\)
\(744\) 0 0
\(745\) 5.00139 8.66266i 0.183237 0.317375i
\(746\) 0 0
\(747\) −13.6930 + 17.3574i −0.501000 + 0.635074i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −15.6978 27.1893i −0.572820 0.992153i −0.996275 0.0862357i \(-0.972516\pi\)
0.423455 0.905917i \(-0.360817\pi\)
\(752\) 0 0
\(753\) 33.9728 + 2.45587i 1.23804 + 0.0894969i
\(754\) 0 0
\(755\) 31.8785 1.16018
\(756\) 0 0
\(757\) −0.144979 −0.00526933 −0.00263467 0.999997i \(-0.500839\pi\)
−0.00263467 + 0.999997i \(0.500839\pi\)
\(758\) 0 0
\(759\) −27.7510 2.00610i −1.00730 0.0728168i
\(760\) 0 0
\(761\) 6.69005 + 11.5875i 0.242514 + 0.420047i 0.961430 0.275050i \(-0.0886946\pi\)
−0.718916 + 0.695097i \(0.755361\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.23222 10.6186i −0.153016 0.383915i
\(766\) 0 0
\(767\) 1.30150 2.25426i 0.0469944 0.0813966i
\(768\) 0 0
\(769\) 5.98750 + 10.3707i 0.215915 + 0.373975i 0.953555 0.301218i \(-0.0973933\pi\)
−0.737640 + 0.675194i \(0.764060\pi\)
\(770\) 0 0
\(771\) −19.1623 39.5241i −0.690113 1.42342i
\(772\) 0 0
\(773\) 27.8942 1.00328 0.501642 0.865075i \(-0.332730\pi\)
0.501642 + 0.865075i \(0.332730\pi\)
\(774\) 0 0
\(775\) 50.0199 1.79677
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −31.9308 55.3057i −1.14404 1.98153i
\(780\) 0 0
\(781\) 6.20626 10.7495i 0.222077 0.384649i
\(782\) 0 0
\(783\) −6.43577 + 7.04707i −0.229996 + 0.251842i
\(784\) 0 0
\(785\) −22.2489 + 38.5363i −0.794099 + 1.37542i
\(786\) 0 0
\(787\) −0.0522535 0.0905057i −0.00186264 0.00322618i 0.865093 0.501612i \(-0.167260\pi\)
−0.866955 + 0.498386i \(0.833926\pi\)
\(788\) 0 0
\(789\) 8.62674 12.7250i 0.307120 0.453024i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 7.21654 0.256267
\(794\) 0 0
\(795\) 30.6196 + 63.1558i 1.08596 + 2.23991i
\(796\) 0 0
\(797\) 17.5235 + 30.3516i 0.620715 + 1.07511i 0.989353 + 0.145537i \(0.0464910\pi\)
−0.368638 + 0.929573i \(0.620176\pi\)
\(798\) 0 0
\(799\) 4.12353 7.14216i 0.145880 0.252671i
\(800\) 0 0
\(801\) 36.0565 + 5.24039i 1.27399 + 0.185160i
\(802\) 0 0
\(803\) −10.9576 + 18.9791i −0.386685 + 0.669758i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −31.6257 2.28620i −1.11328 0.0804782i
\(808\) 0 0
\(809\) −44.2519 −1.55581 −0.777907 0.628380i \(-0.783718\pi\)
−0.777907 + 0.628380i \(0.783718\pi\)
\(810\) 0 0
\(811\) 0.903637 0.0317310 0.0158655 0.999874i \(-0.494950\pi\)
0.0158655 + 0.999874i \(0.494950\pi\)
\(812\) 0 0
\(813\) −8.10098 0.585614i −0.284114 0.0205384i
\(814\) 0 0
\(815\) −24.9972 43.2964i −0.875613 1.51661i
\(816\) 0 0
\(817\) 33.7132 58.3930i 1.17948 2.04291i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −23.1783 + 40.1459i −0.808927 + 1.40110i 0.104681 + 0.994506i \(0.466618\pi\)
−0.913608 + 0.406596i \(0.866716\pi\)
\(822\) 0 0
\(823\) 15.4915 + 26.8320i 0.539998 + 0.935305i 0.998903 + 0.0468193i \(0.0149085\pi\)
−0.458905 + 0.888485i \(0.651758\pi\)
\(824\) 0 0
\(825\) 13.5114 + 27.8686i 0.470407 + 0.970259i
\(826\) 0 0
\(827\) 25.0923 0.872544 0.436272 0.899815i \(-0.356299\pi\)
0.436272 + 0.899815i \(0.356299\pi\)
\(828\) 0 0
\(829\) −42.3707 −1.47160 −0.735798 0.677202i \(-0.763193\pi\)
−0.735798 + 0.677202i \(0.763193\pi\)
\(830\) 0 0
\(831\) 5.49734 8.10895i 0.190700 0.281296i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 8.29123 14.3608i 0.286930 0.496977i
\(836\) 0 0
\(837\) 11.0545 + 34.8566i 0.382098 + 1.20482i
\(838\) 0 0
\(839\) 1.36843 2.37020i 0.0472435 0.0818282i −0.841437 0.540356i \(-0.818290\pi\)
0.888680 + 0.458528i \(0.151623\pi\)
\(840\) 0 0
\(841\) 12.8133 + 22.1933i 0.441839 + 0.765287i
\(842\) 0 0
\(843\) 10.4262 15.3794i 0.359098 0.529694i
\(844\) 0 0
\(845\) −44.0473 −1.51527
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −17.9918 37.1097i −0.617475 1.27360i
\(850\) 0 0
\(851\) 4.48615 + 7.77024i 0.153783 + 0.266360i
\(852\) 0 0
\(853\) −4.59273 + 7.95485i −0.157252 + 0.272369i −0.933877 0.357595i \(-0.883597\pi\)
0.776625 + 0.629964i \(0.216930\pi\)
\(854\) 0 0
\(855\) 22.9447 + 57.5680i 0.784694 + 1.96878i
\(856\) 0 0
\(857\) 6.06106 10.4981i 0.207042 0.358607i −0.743739 0.668470i \(-0.766950\pi\)
0.950781 + 0.309862i \(0.100283\pi\)
\(858\) 0 0
\(859\) 3.41626 + 5.91714i 0.116561 + 0.201890i 0.918403 0.395647i \(-0.129480\pi\)
−0.801841 + 0.597537i \(0.796146\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 52.5189 1.78776 0.893882 0.448302i \(-0.147971\pi\)
0.893882 + 0.448302i \(0.147971\pi\)
\(864\) 0 0
\(865\) 87.3962 2.97156
\(866\) 0 0
\(867\) 27.2967 + 1.97326i 0.927045 + 0.0670155i
\(868\) 0 0
\(869\) 0.704930 + 1.22097i 0.0239131 + 0.0414187i
\(870\) 0 0
\(871\) 3.70125 6.41074i 0.125412 0.217220i
\(872\) 0 0
\(873\) −25.9568 + 32.9032i −0.878506 + 1.11360i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −16.0782 27.8482i −0.542922 0.940368i −0.998735 0.0502923i \(-0.983985\pi\)
0.455813 0.890076i \(-0.349349\pi\)
\(878\) 0 0
\(879\) 15.6133 + 32.2039i 0.526623 + 1.08621i
\(880\) 0 0
\(881\) −16.9101 −0.569715 −0.284858 0.958570i \(-0.591946\pi\)
−0.284858 + 0.958570i \(0.591946\pi\)
\(882\) 0 0
\(883\) −13.9999 −0.471135 −0.235567 0.971858i \(-0.575695\pi\)
−0.235567 + 0.971858i \(0.575695\pi\)
\(884\) 0 0
\(885\) −15.0681 + 22.2266i −0.506510 + 0.747138i
\(886\) 0 0
\(887\) −22.2283 38.5005i −0.746352 1.29272i −0.949560 0.313585i \(-0.898470\pi\)
0.203208 0.979136i \(-0.434863\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −16.4343 + 15.5745i −0.550571 + 0.521766i
\(892\) 0 0
\(893\) −22.3555 + 38.7208i −0.748097 + 1.29574i
\(894\) 0 0
\(895\) −11.8713 20.5617i −0.396814 0.687303i
\(896\) 0 0
\(897\) 3.62567 5.34812i 0.121058 0.178569i
\(898\) 0 0
\(899\) −12.9254 −0.431087
\(900\) 0 0
\(901\) 12.7525 0.424847
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 23.4413 + 40.6015i 0.779215 + 1.34964i
\(906\) 0 0
\(907\) 8.22392 14.2442i 0.273071 0.472972i −0.696576 0.717483i \(-0.745294\pi\)
0.969647 + 0.244511i \(0.0786273\pi\)
\(908\) 0 0
\(909\) 17.0506 21.6136i 0.565534 0.716878i
\(910\) 0 0
\(911\) −25.1577 + 43.5745i −0.833513 + 1.44369i 0.0617228 + 0.998093i \(0.480341\pi\)
−0.895236 + 0.445593i \(0.852993\pi\)
\(912\) 0 0
\(913\) −9.26987 16.0559i −0.306788 0.531372i
\(914\) 0 0
\(915\) −74.2527 5.36768i −2.45472 0.177450i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 58.5444 1.93120 0.965600 0.260031i \(-0.0837329\pi\)
0.965600 + 0.260031i \(0.0837329\pi\)
\(920\) 0 0
\(921\) −20.5970 1.48894i −0.678693 0.0490623i
\(922\) 0 0
\(923\) 1.44124 + 2.49630i 0.0474391 + 0.0821669i
\(924\) 0 0
\(925\) 4.99370 8.64933i 0.164192 0.284388i
\(926\) 0 0
\(927\) 0.532124 + 1.33509i 0.0174772 + 0.0438501i
\(928\) 0 0
\(929\) −0.318672 + 0.551956i −0.0104553 + 0.0181091i −0.871206 0.490918i \(-0.836661\pi\)
0.860750 + 0.509027i \(0.169995\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −6.90085 14.2337i −0.225924 0.465989i
\(934\) 0 0
\(935\) 9.58581 0.313490
\(936\) 0 0
\(937\) 19.0780 0.623250 0.311625 0.950205i \(-0.399127\pi\)
0.311625 + 0.950205i \(0.399127\pi\)
\(938\) 0 0
\(939\) 13.4510 19.8412i 0.438958 0.647493i
\(940\) 0 0
\(941\) −14.8153 25.6609i −0.482965 0.836521i 0.516843 0.856080i \(-0.327107\pi\)
−0.999809 + 0.0195594i \(0.993774\pi\)
\(942\) 0 0
\(943\) 34.3436 59.4848i 1.11838 1.93709i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.1681 + 29.7360i −0.557888 + 0.966290i 0.439785 + 0.898103i \(0.355055\pi\)
−0.997673 + 0.0681867i \(0.978279\pi\)
\(948\) 0 0
\(949\) −2.54461 4.40740i −0.0826017 0.143070i
\(950\) 0 0
\(951\) 1.78015 2.62584i 0.0577252 0.0851488i
\(952\) 0 0
\(953\) 53.6361 1.73744 0.868722 0.495301i \(-0.164942\pi\)
0.868722 + 0.495301i \(0.164942\pi\)
\(954\) 0 0
\(955\) 49.4326 1.59960
\(956\) 0 0
\(957\) −3.49142 7.20140i −0.112862 0.232788i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −9.26272 + 16.0435i −0.298798 + 0.517533i
\(962\) 0 0
\(963\) −15.9058 2.31173i −0.512558 0.0744943i
\(964\) 0 0
\(965\) 11.8049 20.4467i 0.380014 0.658204i
\(966\) 0 0
\(967\) 14.5629 + 25.2236i 0.468310 + 0.811136i 0.999344 0.0362139i \(-0.0115298\pi\)
−0.531034 + 0.847350i \(0.678196\pi\)
\(968\) 0 0
\(969\) 11.2306 + 0.811851i 0.360778 + 0.0260804i
\(970\) 0 0
\(971\) −23.8383 −0.765007 −0.382503 0.923954i \(-0.624938\pi\)
−0.382503 + 0.923954i \(0.624938\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −7.17354 0.518571i −0.229737 0.0166076i
\(976\) 0 0
\(977\) −19.0842 33.0547i −0.610556 1.05751i −0.991147 0.132771i \(-0.957613\pi\)
0.380591 0.924744i \(-0.375721\pi\)
\(978\) 0 0
\(979\) −15.2771 + 26.4607i −0.488258 + 0.845688i
\(980\) 0 0
\(981\) −46.7608 6.79613i −1.49296 0.216984i
\(982\) 0 0
\(983\) −3.78769 + 6.56046i −0.120808 + 0.209246i −0.920087 0.391715i \(-0.871882\pi\)
0.799278 + 0.600961i \(0.205215\pi\)
\(984\) 0 0
\(985\) −32.2363 55.8349i −1.02713 1.77905i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 72.5214 2.30605
\(990\) 0 0
\(991\) −9.37904 −0.297935 −0.148967 0.988842i \(-0.547595\pi\)
−0.148967 + 0.988842i \(0.547595\pi\)
\(992\) 0 0
\(993\) −0.200473 + 0.295711i −0.00636181 + 0.00938411i
\(994\) 0 0
\(995\) 29.2219 + 50.6138i 0.926397 + 1.60457i
\(996\) 0 0
\(997\) 4.21829 7.30629i 0.133595 0.231393i −0.791465 0.611214i \(-0.790681\pi\)
0.925060 + 0.379822i \(0.124015\pi\)
\(998\) 0 0
\(999\) 7.13095 + 1.56837i 0.225613 + 0.0496210i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1764.2.j.i.1177.1 yes 24
3.2 odd 2 5292.2.j.i.3529.11 24
7.2 even 3 1764.2.i.j.1537.9 24
7.3 odd 6 1764.2.l.j.961.4 24
7.4 even 3 1764.2.l.j.961.9 24
7.5 odd 6 1764.2.i.j.1537.4 24
7.6 odd 2 inner 1764.2.j.i.1177.12 yes 24
9.4 even 3 inner 1764.2.j.i.589.1 24
9.5 odd 6 5292.2.j.i.1765.11 24
21.2 odd 6 5292.2.i.j.2125.11 24
21.5 even 6 5292.2.i.j.2125.2 24
21.11 odd 6 5292.2.l.j.3313.2 24
21.17 even 6 5292.2.l.j.3313.11 24
21.20 even 2 5292.2.j.i.3529.2 24
63.4 even 3 1764.2.i.j.373.9 24
63.5 even 6 5292.2.l.j.361.11 24
63.13 odd 6 inner 1764.2.j.i.589.12 yes 24
63.23 odd 6 5292.2.l.j.361.2 24
63.31 odd 6 1764.2.i.j.373.4 24
63.32 odd 6 5292.2.i.j.1549.11 24
63.40 odd 6 1764.2.l.j.949.4 24
63.41 even 6 5292.2.j.i.1765.2 24
63.58 even 3 1764.2.l.j.949.9 24
63.59 even 6 5292.2.i.j.1549.2 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1764.2.i.j.373.4 24 63.31 odd 6
1764.2.i.j.373.9 24 63.4 even 3
1764.2.i.j.1537.4 24 7.5 odd 6
1764.2.i.j.1537.9 24 7.2 even 3
1764.2.j.i.589.1 24 9.4 even 3 inner
1764.2.j.i.589.12 yes 24 63.13 odd 6 inner
1764.2.j.i.1177.1 yes 24 1.1 even 1 trivial
1764.2.j.i.1177.12 yes 24 7.6 odd 2 inner
1764.2.l.j.949.4 24 63.40 odd 6
1764.2.l.j.949.9 24 63.58 even 3
1764.2.l.j.961.4 24 7.3 odd 6
1764.2.l.j.961.9 24 7.4 even 3
5292.2.i.j.1549.2 24 63.59 even 6
5292.2.i.j.1549.11 24 63.32 odd 6
5292.2.i.j.2125.2 24 21.5 even 6
5292.2.i.j.2125.11 24 21.2 odd 6
5292.2.j.i.1765.2 24 63.41 even 6
5292.2.j.i.1765.11 24 9.5 odd 6
5292.2.j.i.3529.2 24 21.20 even 2
5292.2.j.i.3529.11 24 3.2 odd 2
5292.2.l.j.361.2 24 63.23 odd 6
5292.2.l.j.361.11 24 63.5 even 6
5292.2.l.j.3313.2 24 21.11 odd 6
5292.2.l.j.3313.11 24 21.17 even 6