Properties

Label 192.2.a.c
Level $192$
Weight $2$
Character orbit 192.a
Self dual yes
Analytic conductor $1.533$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [192,2,Mod(1,192)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(192, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("192.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 192 = 2^{6} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 192.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.53312771881\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 96)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{3} - 2 q^{5} + 4 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} - 2 q^{5} + 4 q^{7} + q^{9} + 4 q^{11} + 2 q^{13} - 2 q^{15} - 6 q^{17} - 4 q^{19} + 4 q^{21} - q^{25} + q^{27} - 2 q^{29} - 4 q^{31} + 4 q^{33} - 8 q^{35} + 2 q^{37} + 2 q^{39} + 2 q^{41} + 4 q^{43} - 2 q^{45} - 8 q^{47} + 9 q^{49} - 6 q^{51} - 10 q^{53} - 8 q^{55} - 4 q^{57} - 4 q^{59} - 6 q^{61} + 4 q^{63} - 4 q^{65} + 4 q^{67} + 16 q^{71} - 6 q^{73} - q^{75} + 16 q^{77} - 4 q^{79} + q^{81} + 12 q^{83} + 12 q^{85} - 2 q^{87} + 10 q^{89} + 8 q^{91} - 4 q^{93} + 8 q^{95} - 14 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 1.00000 0 −2.00000 0 4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 192.2.a.c 1
3.b odd 2 1 576.2.a.h 1
4.b odd 2 1 192.2.a.a 1
5.b even 2 1 4800.2.a.f 1
5.c odd 4 2 4800.2.f.bh 2
7.b odd 2 1 9408.2.a.bj 1
8.b even 2 1 96.2.a.a 1
8.d odd 2 1 96.2.a.b yes 1
12.b even 2 1 576.2.a.g 1
16.e even 4 2 768.2.d.a 2
16.f odd 4 2 768.2.d.h 2
20.d odd 2 1 4800.2.a.co 1
20.e even 4 2 4800.2.f.e 2
24.f even 2 1 288.2.a.b 1
24.h odd 2 1 288.2.a.c 1
28.d even 2 1 9408.2.a.ct 1
40.e odd 2 1 2400.2.a.q 1
40.f even 2 1 2400.2.a.r 1
40.i odd 4 2 2400.2.f.a 2
40.k even 4 2 2400.2.f.r 2
48.i odd 4 2 2304.2.d.c 2
48.k even 4 2 2304.2.d.s 2
56.e even 2 1 4704.2.a.e 1
56.h odd 2 1 4704.2.a.t 1
72.j odd 6 2 2592.2.i.q 2
72.l even 6 2 2592.2.i.w 2
72.n even 6 2 2592.2.i.b 2
72.p odd 6 2 2592.2.i.h 2
120.i odd 2 1 7200.2.a.e 1
120.m even 2 1 7200.2.a.bx 1
120.q odd 4 2 7200.2.f.f 2
120.w even 4 2 7200.2.f.x 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.2.a.a 1 8.b even 2 1
96.2.a.b yes 1 8.d odd 2 1
192.2.a.a 1 4.b odd 2 1
192.2.a.c 1 1.a even 1 1 trivial
288.2.a.b 1 24.f even 2 1
288.2.a.c 1 24.h odd 2 1
576.2.a.g 1 12.b even 2 1
576.2.a.h 1 3.b odd 2 1
768.2.d.a 2 16.e even 4 2
768.2.d.h 2 16.f odd 4 2
2304.2.d.c 2 48.i odd 4 2
2304.2.d.s 2 48.k even 4 2
2400.2.a.q 1 40.e odd 2 1
2400.2.a.r 1 40.f even 2 1
2400.2.f.a 2 40.i odd 4 2
2400.2.f.r 2 40.k even 4 2
2592.2.i.b 2 72.n even 6 2
2592.2.i.h 2 72.p odd 6 2
2592.2.i.q 2 72.j odd 6 2
2592.2.i.w 2 72.l even 6 2
4704.2.a.e 1 56.e even 2 1
4704.2.a.t 1 56.h odd 2 1
4800.2.a.f 1 5.b even 2 1
4800.2.a.co 1 20.d odd 2 1
4800.2.f.e 2 20.e even 4 2
4800.2.f.bh 2 5.c odd 4 2
7200.2.a.e 1 120.i odd 2 1
7200.2.a.bx 1 120.m even 2 1
7200.2.f.f 2 120.q odd 4 2
7200.2.f.x 2 120.w even 4 2
9408.2.a.bj 1 7.b odd 2 1
9408.2.a.ct 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(192))\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 1 \) Copy content Toggle raw display
$5$ \( T + 2 \) Copy content Toggle raw display
$7$ \( T - 4 \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T - 2 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T + 4 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 2 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 2 \) Copy content Toggle raw display
$41$ \( T - 2 \) Copy content Toggle raw display
$43$ \( T - 4 \) Copy content Toggle raw display
$47$ \( T + 8 \) Copy content Toggle raw display
$53$ \( T + 10 \) Copy content Toggle raw display
$59$ \( T + 4 \) Copy content Toggle raw display
$61$ \( T + 6 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T - 16 \) Copy content Toggle raw display
$73$ \( T + 6 \) Copy content Toggle raw display
$79$ \( T + 4 \) Copy content Toggle raw display
$83$ \( T - 12 \) Copy content Toggle raw display
$89$ \( T - 10 \) Copy content Toggle raw display
$97$ \( T + 14 \) Copy content Toggle raw display
show more
show less