Properties

Label 768.2.d.h
Level $768$
Weight $2$
Character orbit 768.d
Analytic conductor $6.133$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [768,2,Mod(385,768)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(768, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("768.385");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.13251087523\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{3} + 2 i q^{5} + 4 q^{7} - q^{9} + 4 i q^{11} + 2 i q^{13} + 2 q^{15} - 6 q^{17} + 4 i q^{19} - 4 i q^{21} + q^{25} + i q^{27} - 2 i q^{29} + 4 q^{31} + 4 q^{33} + 8 i q^{35} - 2 i q^{37} + 2 q^{39} + \cdots - 4 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{7} - 2 q^{9} + 4 q^{15} - 12 q^{17} + 2 q^{25} + 8 q^{31} + 8 q^{33} + 4 q^{39} - 4 q^{41} + 16 q^{47} + 18 q^{49} - 16 q^{55} + 8 q^{57} - 8 q^{63} - 8 q^{65} + 32 q^{71} + 12 q^{73} + 8 q^{79}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/768\mathbb{Z}\right)^\times\).

\(n\) \(257\) \(511\) \(517\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
385.1
1.00000i
1.00000i
0 1.00000i 0 2.00000i 0 4.00000 0 −1.00000 0
385.2 0 1.00000i 0 2.00000i 0 4.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 768.2.d.h 2
3.b odd 2 1 2304.2.d.s 2
4.b odd 2 1 768.2.d.a 2
8.b even 2 1 inner 768.2.d.h 2
8.d odd 2 1 768.2.d.a 2
12.b even 2 1 2304.2.d.c 2
16.e even 4 1 96.2.a.b yes 1
16.e even 4 1 192.2.a.a 1
16.f odd 4 1 96.2.a.a 1
16.f odd 4 1 192.2.a.c 1
24.f even 2 1 2304.2.d.c 2
24.h odd 2 1 2304.2.d.s 2
48.i odd 4 1 288.2.a.b 1
48.i odd 4 1 576.2.a.g 1
48.k even 4 1 288.2.a.c 1
48.k even 4 1 576.2.a.h 1
80.i odd 4 1 2400.2.f.r 2
80.i odd 4 1 4800.2.f.e 2
80.j even 4 1 2400.2.f.a 2
80.j even 4 1 4800.2.f.bh 2
80.k odd 4 1 2400.2.a.r 1
80.k odd 4 1 4800.2.a.f 1
80.q even 4 1 2400.2.a.q 1
80.q even 4 1 4800.2.a.co 1
80.s even 4 1 2400.2.f.a 2
80.s even 4 1 4800.2.f.bh 2
80.t odd 4 1 2400.2.f.r 2
80.t odd 4 1 4800.2.f.e 2
112.j even 4 1 4704.2.a.t 1
112.j even 4 1 9408.2.a.bj 1
112.l odd 4 1 4704.2.a.e 1
112.l odd 4 1 9408.2.a.ct 1
144.u even 12 2 2592.2.i.q 2
144.v odd 12 2 2592.2.i.b 2
144.w odd 12 2 2592.2.i.w 2
144.x even 12 2 2592.2.i.h 2
240.t even 4 1 7200.2.a.e 1
240.z odd 4 1 7200.2.f.x 2
240.bb even 4 1 7200.2.f.f 2
240.bd odd 4 1 7200.2.f.x 2
240.bf even 4 1 7200.2.f.f 2
240.bm odd 4 1 7200.2.a.bx 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.2.a.a 1 16.f odd 4 1
96.2.a.b yes 1 16.e even 4 1
192.2.a.a 1 16.e even 4 1
192.2.a.c 1 16.f odd 4 1
288.2.a.b 1 48.i odd 4 1
288.2.a.c 1 48.k even 4 1
576.2.a.g 1 48.i odd 4 1
576.2.a.h 1 48.k even 4 1
768.2.d.a 2 4.b odd 2 1
768.2.d.a 2 8.d odd 2 1
768.2.d.h 2 1.a even 1 1 trivial
768.2.d.h 2 8.b even 2 1 inner
2304.2.d.c 2 12.b even 2 1
2304.2.d.c 2 24.f even 2 1
2304.2.d.s 2 3.b odd 2 1
2304.2.d.s 2 24.h odd 2 1
2400.2.a.q 1 80.q even 4 1
2400.2.a.r 1 80.k odd 4 1
2400.2.f.a 2 80.j even 4 1
2400.2.f.a 2 80.s even 4 1
2400.2.f.r 2 80.i odd 4 1
2400.2.f.r 2 80.t odd 4 1
2592.2.i.b 2 144.v odd 12 2
2592.2.i.h 2 144.x even 12 2
2592.2.i.q 2 144.u even 12 2
2592.2.i.w 2 144.w odd 12 2
4704.2.a.e 1 112.l odd 4 1
4704.2.a.t 1 112.j even 4 1
4800.2.a.f 1 80.k odd 4 1
4800.2.a.co 1 80.q even 4 1
4800.2.f.e 2 80.i odd 4 1
4800.2.f.e 2 80.t odd 4 1
4800.2.f.bh 2 80.j even 4 1
4800.2.f.bh 2 80.s even 4 1
7200.2.a.e 1 240.t even 4 1
7200.2.a.bx 1 240.bm odd 4 1
7200.2.f.f 2 240.bb even 4 1
7200.2.f.f 2 240.bf even 4 1
7200.2.f.x 2 240.z odd 4 1
7200.2.f.x 2 240.bd odd 4 1
9408.2.a.bj 1 112.j even 4 1
9408.2.a.ct 1 112.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(768, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{7} - 4 \) Copy content Toggle raw display
\( T_{23} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( (T - 4)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T + 6)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 16 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 4 \) Copy content Toggle raw display
$31$ \( (T - 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 16 \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 100 \) Copy content Toggle raw display
$59$ \( T^{2} + 16 \) Copy content Toggle raw display
$61$ \( T^{2} + 36 \) Copy content Toggle raw display
$67$ \( T^{2} + 16 \) Copy content Toggle raw display
$71$ \( (T - 16)^{2} \) Copy content Toggle raw display
$73$ \( (T - 6)^{2} \) Copy content Toggle raw display
$79$ \( (T - 4)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 144 \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( (T + 14)^{2} \) Copy content Toggle raw display
show more
show less