Properties

Label 2592.2.i.w
Level 25922592
Weight 22
Character orbit 2592.i
Analytic conductor 20.69720.697
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2592,2,Mod(865,2592)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2592, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2592.865");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2592=2534 2592 = 2^{5} \cdot 3^{4}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2592.i (of order 33, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.697224203920.6972242039
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a25]\Z[a_1, \ldots, a_{25}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 96)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+2ζ6q5+(4ζ6+4)q7+(4ζ6+4)q11+2ζ6q13+6q174q19+(ζ6+1)q25+(2ζ6+2)q294ζ6q31++(14ζ6+14)q97+O(q100) q + 2 \zeta_{6} q^{5} + ( - 4 \zeta_{6} + 4) q^{7} + ( - 4 \zeta_{6} + 4) q^{11} + 2 \zeta_{6} q^{13} + 6 q^{17} - 4 q^{19} + ( - \zeta_{6} + 1) q^{25} + ( - 2 \zeta_{6} + 2) q^{29} - 4 \zeta_{6} q^{31} + \cdots + ( - 14 \zeta_{6} + 14) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q5+4q7+4q11+2q13+12q178q19+q25+2q294q31+16q354q37+2q414q43+8q479q4920q53+16q554q59++14q97+O(q100) 2 q + 2 q^{5} + 4 q^{7} + 4 q^{11} + 2 q^{13} + 12 q^{17} - 8 q^{19} + q^{25} + 2 q^{29} - 4 q^{31} + 16 q^{35} - 4 q^{37} + 2 q^{41} - 4 q^{43} + 8 q^{47} - 9 q^{49} - 20 q^{53} + 16 q^{55} - 4 q^{59}+ \cdots + 14 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2592Z)×\left(\mathbb{Z}/2592\mathbb{Z}\right)^\times.

nn 325325 12171217 24312431
χ(n)\chi(n) 11 ζ6-\zeta_{6} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
865.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 1.00000 + 1.73205i 0 2.00000 3.46410i 0 0 0
1729.1 0 0 0 1.00000 1.73205i 0 2.00000 + 3.46410i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2592.2.i.w 2
3.b odd 2 1 2592.2.i.h 2
4.b odd 2 1 2592.2.i.q 2
9.c even 3 1 288.2.a.b 1
9.c even 3 1 inner 2592.2.i.w 2
9.d odd 6 1 96.2.a.b yes 1
9.d odd 6 1 2592.2.i.h 2
12.b even 2 1 2592.2.i.b 2
36.f odd 6 1 288.2.a.c 1
36.f odd 6 1 2592.2.i.q 2
36.h even 6 1 96.2.a.a 1
36.h even 6 1 2592.2.i.b 2
45.h odd 6 1 2400.2.a.q 1
45.j even 6 1 7200.2.a.bx 1
45.k odd 12 2 7200.2.f.f 2
45.l even 12 2 2400.2.f.r 2
63.o even 6 1 4704.2.a.e 1
72.j odd 6 1 192.2.a.a 1
72.l even 6 1 192.2.a.c 1
72.n even 6 1 576.2.a.g 1
72.p odd 6 1 576.2.a.h 1
144.u even 12 2 768.2.d.a 2
144.v odd 12 2 2304.2.d.c 2
144.w odd 12 2 768.2.d.h 2
144.x even 12 2 2304.2.d.s 2
180.n even 6 1 2400.2.a.r 1
180.p odd 6 1 7200.2.a.e 1
180.v odd 12 2 2400.2.f.a 2
180.x even 12 2 7200.2.f.x 2
252.s odd 6 1 4704.2.a.t 1
360.bd even 6 1 4800.2.a.f 1
360.bh odd 6 1 4800.2.a.co 1
360.br even 12 2 4800.2.f.e 2
360.bt odd 12 2 4800.2.f.bh 2
504.cc even 6 1 9408.2.a.ct 1
504.co odd 6 1 9408.2.a.bj 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
96.2.a.a 1 36.h even 6 1
96.2.a.b yes 1 9.d odd 6 1
192.2.a.a 1 72.j odd 6 1
192.2.a.c 1 72.l even 6 1
288.2.a.b 1 9.c even 3 1
288.2.a.c 1 36.f odd 6 1
576.2.a.g 1 72.n even 6 1
576.2.a.h 1 72.p odd 6 1
768.2.d.a 2 144.u even 12 2
768.2.d.h 2 144.w odd 12 2
2304.2.d.c 2 144.v odd 12 2
2304.2.d.s 2 144.x even 12 2
2400.2.a.q 1 45.h odd 6 1
2400.2.a.r 1 180.n even 6 1
2400.2.f.a 2 180.v odd 12 2
2400.2.f.r 2 45.l even 12 2
2592.2.i.b 2 12.b even 2 1
2592.2.i.b 2 36.h even 6 1
2592.2.i.h 2 3.b odd 2 1
2592.2.i.h 2 9.d odd 6 1
2592.2.i.q 2 4.b odd 2 1
2592.2.i.q 2 36.f odd 6 1
2592.2.i.w 2 1.a even 1 1 trivial
2592.2.i.w 2 9.c even 3 1 inner
4704.2.a.e 1 63.o even 6 1
4704.2.a.t 1 252.s odd 6 1
4800.2.a.f 1 360.bd even 6 1
4800.2.a.co 1 360.bh odd 6 1
4800.2.f.e 2 360.br even 12 2
4800.2.f.bh 2 360.bt odd 12 2
7200.2.a.e 1 180.p odd 6 1
7200.2.a.bx 1 45.j even 6 1
7200.2.f.f 2 45.k odd 12 2
7200.2.f.x 2 180.x even 12 2
9408.2.a.bj 1 504.co odd 6 1
9408.2.a.ct 1 504.cc even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2592,[χ])S_{2}^{\mathrm{new}}(2592, [\chi]):

T522T5+4 T_{5}^{2} - 2T_{5} + 4 Copy content Toggle raw display
T724T7+16 T_{7}^{2} - 4T_{7} + 16 Copy content Toggle raw display
T1124T11+16 T_{11}^{2} - 4T_{11} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
77 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1111 T24T+16 T^{2} - 4T + 16 Copy content Toggle raw display
1313 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
1717 (T6)2 (T - 6)^{2} Copy content Toggle raw display
1919 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
3131 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
3737 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
4141 T22T+4 T^{2} - 2T + 4 Copy content Toggle raw display
4343 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
4747 T28T+64 T^{2} - 8T + 64 Copy content Toggle raw display
5353 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
5959 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
6161 T2+6T+36 T^{2} + 6T + 36 Copy content Toggle raw display
6767 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
7171 (T16)2 (T - 16)^{2} Copy content Toggle raw display
7373 (T+6)2 (T + 6)^{2} Copy content Toggle raw display
7979 T2+4T+16 T^{2} + 4T + 16 Copy content Toggle raw display
8383 T212T+144 T^{2} - 12T + 144 Copy content Toggle raw display
8989 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
9797 T214T+196 T^{2} - 14T + 196 Copy content Toggle raw display
show more
show less