Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4704,2,Mod(1,4704)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4704, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4704.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4704.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 96) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4704.2.a.t | 1 | |
4.b | odd | 2 | 1 | 4704.2.a.e | 1 | ||
7.b | odd | 2 | 1 | 96.2.a.a | ✓ | 1 | |
8.b | even | 2 | 1 | 9408.2.a.bj | 1 | ||
8.d | odd | 2 | 1 | 9408.2.a.ct | 1 | ||
21.c | even | 2 | 1 | 288.2.a.c | 1 | ||
28.d | even | 2 | 1 | 96.2.a.b | yes | 1 | |
35.c | odd | 2 | 1 | 2400.2.a.r | 1 | ||
35.f | even | 4 | 2 | 2400.2.f.a | 2 | ||
56.e | even | 2 | 1 | 192.2.a.a | 1 | ||
56.h | odd | 2 | 1 | 192.2.a.c | 1 | ||
63.l | odd | 6 | 2 | 2592.2.i.b | 2 | ||
63.o | even | 6 | 2 | 2592.2.i.q | 2 | ||
84.h | odd | 2 | 1 | 288.2.a.b | 1 | ||
105.g | even | 2 | 1 | 7200.2.a.e | 1 | ||
105.k | odd | 4 | 2 | 7200.2.f.x | 2 | ||
112.j | even | 4 | 2 | 768.2.d.h | 2 | ||
112.l | odd | 4 | 2 | 768.2.d.a | 2 | ||
140.c | even | 2 | 1 | 2400.2.a.q | 1 | ||
140.j | odd | 4 | 2 | 2400.2.f.r | 2 | ||
168.e | odd | 2 | 1 | 576.2.a.g | 1 | ||
168.i | even | 2 | 1 | 576.2.a.h | 1 | ||
252.s | odd | 6 | 2 | 2592.2.i.w | 2 | ||
252.bi | even | 6 | 2 | 2592.2.i.h | 2 | ||
280.c | odd | 2 | 1 | 4800.2.a.f | 1 | ||
280.n | even | 2 | 1 | 4800.2.a.co | 1 | ||
280.s | even | 4 | 2 | 4800.2.f.bh | 2 | ||
280.y | odd | 4 | 2 | 4800.2.f.e | 2 | ||
336.v | odd | 4 | 2 | 2304.2.d.s | 2 | ||
336.y | even | 4 | 2 | 2304.2.d.c | 2 | ||
420.o | odd | 2 | 1 | 7200.2.a.bx | 1 | ||
420.w | even | 4 | 2 | 7200.2.f.f | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
96.2.a.a | ✓ | 1 | 7.b | odd | 2 | 1 | |
96.2.a.b | yes | 1 | 28.d | even | 2 | 1 | |
192.2.a.a | 1 | 56.e | even | 2 | 1 | ||
192.2.a.c | 1 | 56.h | odd | 2 | 1 | ||
288.2.a.b | 1 | 84.h | odd | 2 | 1 | ||
288.2.a.c | 1 | 21.c | even | 2 | 1 | ||
576.2.a.g | 1 | 168.e | odd | 2 | 1 | ||
576.2.a.h | 1 | 168.i | even | 2 | 1 | ||
768.2.d.a | 2 | 112.l | odd | 4 | 2 | ||
768.2.d.h | 2 | 112.j | even | 4 | 2 | ||
2304.2.d.c | 2 | 336.y | even | 4 | 2 | ||
2304.2.d.s | 2 | 336.v | odd | 4 | 2 | ||
2400.2.a.q | 1 | 140.c | even | 2 | 1 | ||
2400.2.a.r | 1 | 35.c | odd | 2 | 1 | ||
2400.2.f.a | 2 | 35.f | even | 4 | 2 | ||
2400.2.f.r | 2 | 140.j | odd | 4 | 2 | ||
2592.2.i.b | 2 | 63.l | odd | 6 | 2 | ||
2592.2.i.h | 2 | 252.bi | even | 6 | 2 | ||
2592.2.i.q | 2 | 63.o | even | 6 | 2 | ||
2592.2.i.w | 2 | 252.s | odd | 6 | 2 | ||
4704.2.a.e | 1 | 4.b | odd | 2 | 1 | ||
4704.2.a.t | 1 | 1.a | even | 1 | 1 | trivial | |
4800.2.a.f | 1 | 280.c | odd | 2 | 1 | ||
4800.2.a.co | 1 | 280.n | even | 2 | 1 | ||
4800.2.f.e | 2 | 280.y | odd | 4 | 2 | ||
4800.2.f.bh | 2 | 280.s | even | 4 | 2 | ||
7200.2.a.e | 1 | 105.g | even | 2 | 1 | ||
7200.2.a.bx | 1 | 420.o | odd | 2 | 1 | ||
7200.2.f.f | 2 | 420.w | even | 4 | 2 | ||
7200.2.f.x | 2 | 105.k | odd | 4 | 2 | ||
9408.2.a.bj | 1 | 8.b | even | 2 | 1 | ||
9408.2.a.ct | 1 | 8.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|
|