Properties

Label 2016.2.cr.e
Level $2016$
Weight $2$
Character orbit 2016.cr
Analytic conductor $16.098$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2016,2,Mod(1297,2016)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2016.1297");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2016.cr (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.0978410475\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 32 q - 8 q^{23} + 16 q^{25} + 24 q^{31} - 24 q^{47} + 8 q^{49} + 64 q^{55} - 80 q^{71} + 8 q^{73} - 8 q^{79} + 24 q^{95} - 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1297.1 0 0 0 −3.09843 1.78888i 0 −0.993295 2.45222i 0 0 0
1297.2 0 0 0 −3.08781 1.78275i 0 2.38336 1.14873i 0 0 0
1297.3 0 0 0 −2.93503 1.69454i 0 1.85242 + 1.88906i 0 0 0
1297.4 0 0 0 −1.98722 1.14732i 0 1.05630 + 2.42574i 0 0 0
1297.5 0 0 0 −1.56250 0.902108i 0 −2.63683 + 0.217074i 0 0 0
1297.6 0 0 0 −1.23074 0.710569i 0 −1.39545 + 2.24783i 0 0 0
1297.7 0 0 0 −0.586448 0.338586i 0 −2.23683 1.41301i 0 0 0
1297.8 0 0 0 −0.0402223 0.0232224i 0 1.97032 1.76574i 0 0 0
1297.9 0 0 0 0.0402223 + 0.0232224i 0 1.97032 1.76574i 0 0 0
1297.10 0 0 0 0.586448 + 0.338586i 0 −2.23683 1.41301i 0 0 0
1297.11 0 0 0 1.23074 + 0.710569i 0 −1.39545 + 2.24783i 0 0 0
1297.12 0 0 0 1.56250 + 0.902108i 0 −2.63683 + 0.217074i 0 0 0
1297.13 0 0 0 1.98722 + 1.14732i 0 1.05630 + 2.42574i 0 0 0
1297.14 0 0 0 2.93503 + 1.69454i 0 1.85242 + 1.88906i 0 0 0
1297.15 0 0 0 3.08781 + 1.78275i 0 2.38336 1.14873i 0 0 0
1297.16 0 0 0 3.09843 + 1.78888i 0 −0.993295 2.45222i 0 0 0
1873.1 0 0 0 −3.09843 + 1.78888i 0 −0.993295 + 2.45222i 0 0 0
1873.2 0 0 0 −3.08781 + 1.78275i 0 2.38336 + 1.14873i 0 0 0
1873.3 0 0 0 −2.93503 + 1.69454i 0 1.85242 1.88906i 0 0 0
1873.4 0 0 0 −1.98722 + 1.14732i 0 1.05630 2.42574i 0 0 0
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1297.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner
8.b even 2 1 inner
56.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2016.2.cr.e 32
3.b odd 2 1 672.2.bk.a 32
4.b odd 2 1 504.2.cj.e 32
7.c even 3 1 inner 2016.2.cr.e 32
8.b even 2 1 inner 2016.2.cr.e 32
8.d odd 2 1 504.2.cj.e 32
12.b even 2 1 168.2.bc.a 32
21.g even 6 1 4704.2.c.f 16
21.h odd 6 1 672.2.bk.a 32
21.h odd 6 1 4704.2.c.e 16
24.f even 2 1 168.2.bc.a 32
24.h odd 2 1 672.2.bk.a 32
28.g odd 6 1 504.2.cj.e 32
56.k odd 6 1 504.2.cj.e 32
56.p even 6 1 inner 2016.2.cr.e 32
84.j odd 6 1 1176.2.c.f 16
84.n even 6 1 168.2.bc.a 32
84.n even 6 1 1176.2.c.e 16
168.s odd 6 1 672.2.bk.a 32
168.s odd 6 1 4704.2.c.e 16
168.v even 6 1 168.2.bc.a 32
168.v even 6 1 1176.2.c.e 16
168.ba even 6 1 4704.2.c.f 16
168.be odd 6 1 1176.2.c.f 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.bc.a 32 12.b even 2 1
168.2.bc.a 32 24.f even 2 1
168.2.bc.a 32 84.n even 6 1
168.2.bc.a 32 168.v even 6 1
504.2.cj.e 32 4.b odd 2 1
504.2.cj.e 32 8.d odd 2 1
504.2.cj.e 32 28.g odd 6 1
504.2.cj.e 32 56.k odd 6 1
672.2.bk.a 32 3.b odd 2 1
672.2.bk.a 32 21.h odd 6 1
672.2.bk.a 32 24.h odd 2 1
672.2.bk.a 32 168.s odd 6 1
1176.2.c.e 16 84.n even 6 1
1176.2.c.e 16 168.v even 6 1
1176.2.c.f 16 84.j odd 6 1
1176.2.c.f 16 168.be odd 6 1
2016.2.cr.e 32 1.a even 1 1 trivial
2016.2.cr.e 32 7.c even 3 1 inner
2016.2.cr.e 32 8.b even 2 1 inner
2016.2.cr.e 32 56.p even 6 1 inner
4704.2.c.e 16 21.h odd 6 1
4704.2.c.e 16 168.s odd 6 1
4704.2.c.f 16 21.g even 6 1
4704.2.c.f 16 168.ba even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{32} - 48 T_{5}^{30} + 1402 T_{5}^{28} - 26528 T_{5}^{26} + 370859 T_{5}^{24} - 3789184 T_{5}^{22} + \cdots + 4096 \) acting on \(S_{2}^{\mathrm{new}}(2016, [\chi])\). Copy content Toggle raw display