Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2016,2,Mod(1297,2016)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2016, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 0, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2016.1297");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2016 = 2^{5} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2016.cr (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(16.0978410475\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 168) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1297.1 | 0 | 0 | 0 | −3.09843 | − | 1.78888i | 0 | −0.993295 | − | 2.45222i | 0 | 0 | 0 | ||||||||||||||
1297.2 | 0 | 0 | 0 | −3.08781 | − | 1.78275i | 0 | 2.38336 | − | 1.14873i | 0 | 0 | 0 | ||||||||||||||
1297.3 | 0 | 0 | 0 | −2.93503 | − | 1.69454i | 0 | 1.85242 | + | 1.88906i | 0 | 0 | 0 | ||||||||||||||
1297.4 | 0 | 0 | 0 | −1.98722 | − | 1.14732i | 0 | 1.05630 | + | 2.42574i | 0 | 0 | 0 | ||||||||||||||
1297.5 | 0 | 0 | 0 | −1.56250 | − | 0.902108i | 0 | −2.63683 | + | 0.217074i | 0 | 0 | 0 | ||||||||||||||
1297.6 | 0 | 0 | 0 | −1.23074 | − | 0.710569i | 0 | −1.39545 | + | 2.24783i | 0 | 0 | 0 | ||||||||||||||
1297.7 | 0 | 0 | 0 | −0.586448 | − | 0.338586i | 0 | −2.23683 | − | 1.41301i | 0 | 0 | 0 | ||||||||||||||
1297.8 | 0 | 0 | 0 | −0.0402223 | − | 0.0232224i | 0 | 1.97032 | − | 1.76574i | 0 | 0 | 0 | ||||||||||||||
1297.9 | 0 | 0 | 0 | 0.0402223 | + | 0.0232224i | 0 | 1.97032 | − | 1.76574i | 0 | 0 | 0 | ||||||||||||||
1297.10 | 0 | 0 | 0 | 0.586448 | + | 0.338586i | 0 | −2.23683 | − | 1.41301i | 0 | 0 | 0 | ||||||||||||||
1297.11 | 0 | 0 | 0 | 1.23074 | + | 0.710569i | 0 | −1.39545 | + | 2.24783i | 0 | 0 | 0 | ||||||||||||||
1297.12 | 0 | 0 | 0 | 1.56250 | + | 0.902108i | 0 | −2.63683 | + | 0.217074i | 0 | 0 | 0 | ||||||||||||||
1297.13 | 0 | 0 | 0 | 1.98722 | + | 1.14732i | 0 | 1.05630 | + | 2.42574i | 0 | 0 | 0 | ||||||||||||||
1297.14 | 0 | 0 | 0 | 2.93503 | + | 1.69454i | 0 | 1.85242 | + | 1.88906i | 0 | 0 | 0 | ||||||||||||||
1297.15 | 0 | 0 | 0 | 3.08781 | + | 1.78275i | 0 | 2.38336 | − | 1.14873i | 0 | 0 | 0 | ||||||||||||||
1297.16 | 0 | 0 | 0 | 3.09843 | + | 1.78888i | 0 | −0.993295 | − | 2.45222i | 0 | 0 | 0 | ||||||||||||||
1873.1 | 0 | 0 | 0 | −3.09843 | + | 1.78888i | 0 | −0.993295 | + | 2.45222i | 0 | 0 | 0 | ||||||||||||||
1873.2 | 0 | 0 | 0 | −3.08781 | + | 1.78275i | 0 | 2.38336 | + | 1.14873i | 0 | 0 | 0 | ||||||||||||||
1873.3 | 0 | 0 | 0 | −2.93503 | + | 1.69454i | 0 | 1.85242 | − | 1.88906i | 0 | 0 | 0 | ||||||||||||||
1873.4 | 0 | 0 | 0 | −1.98722 | + | 1.14732i | 0 | 1.05630 | − | 2.42574i | 0 | 0 | 0 | ||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
8.b | even | 2 | 1 | inner |
56.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2016.2.cr.e | 32 | |
3.b | odd | 2 | 1 | 672.2.bk.a | 32 | ||
4.b | odd | 2 | 1 | 504.2.cj.e | 32 | ||
7.c | even | 3 | 1 | inner | 2016.2.cr.e | 32 | |
8.b | even | 2 | 1 | inner | 2016.2.cr.e | 32 | |
8.d | odd | 2 | 1 | 504.2.cj.e | 32 | ||
12.b | even | 2 | 1 | 168.2.bc.a | ✓ | 32 | |
21.g | even | 6 | 1 | 4704.2.c.f | 16 | ||
21.h | odd | 6 | 1 | 672.2.bk.a | 32 | ||
21.h | odd | 6 | 1 | 4704.2.c.e | 16 | ||
24.f | even | 2 | 1 | 168.2.bc.a | ✓ | 32 | |
24.h | odd | 2 | 1 | 672.2.bk.a | 32 | ||
28.g | odd | 6 | 1 | 504.2.cj.e | 32 | ||
56.k | odd | 6 | 1 | 504.2.cj.e | 32 | ||
56.p | even | 6 | 1 | inner | 2016.2.cr.e | 32 | |
84.j | odd | 6 | 1 | 1176.2.c.f | 16 | ||
84.n | even | 6 | 1 | 168.2.bc.a | ✓ | 32 | |
84.n | even | 6 | 1 | 1176.2.c.e | 16 | ||
168.s | odd | 6 | 1 | 672.2.bk.a | 32 | ||
168.s | odd | 6 | 1 | 4704.2.c.e | 16 | ||
168.v | even | 6 | 1 | 168.2.bc.a | ✓ | 32 | |
168.v | even | 6 | 1 | 1176.2.c.e | 16 | ||
168.ba | even | 6 | 1 | 4704.2.c.f | 16 | ||
168.be | odd | 6 | 1 | 1176.2.c.f | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
168.2.bc.a | ✓ | 32 | 12.b | even | 2 | 1 | |
168.2.bc.a | ✓ | 32 | 24.f | even | 2 | 1 | |
168.2.bc.a | ✓ | 32 | 84.n | even | 6 | 1 | |
168.2.bc.a | ✓ | 32 | 168.v | even | 6 | 1 | |
504.2.cj.e | 32 | 4.b | odd | 2 | 1 | ||
504.2.cj.e | 32 | 8.d | odd | 2 | 1 | ||
504.2.cj.e | 32 | 28.g | odd | 6 | 1 | ||
504.2.cj.e | 32 | 56.k | odd | 6 | 1 | ||
672.2.bk.a | 32 | 3.b | odd | 2 | 1 | ||
672.2.bk.a | 32 | 21.h | odd | 6 | 1 | ||
672.2.bk.a | 32 | 24.h | odd | 2 | 1 | ||
672.2.bk.a | 32 | 168.s | odd | 6 | 1 | ||
1176.2.c.e | 16 | 84.n | even | 6 | 1 | ||
1176.2.c.e | 16 | 168.v | even | 6 | 1 | ||
1176.2.c.f | 16 | 84.j | odd | 6 | 1 | ||
1176.2.c.f | 16 | 168.be | odd | 6 | 1 | ||
2016.2.cr.e | 32 | 1.a | even | 1 | 1 | trivial | |
2016.2.cr.e | 32 | 7.c | even | 3 | 1 | inner | |
2016.2.cr.e | 32 | 8.b | even | 2 | 1 | inner | |
2016.2.cr.e | 32 | 56.p | even | 6 | 1 | inner | |
4704.2.c.e | 16 | 21.h | odd | 6 | 1 | ||
4704.2.c.e | 16 | 168.s | odd | 6 | 1 | ||
4704.2.c.f | 16 | 21.g | even | 6 | 1 | ||
4704.2.c.f | 16 | 168.ba | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{32} - 48 T_{5}^{30} + 1402 T_{5}^{28} - 26528 T_{5}^{26} + 370859 T_{5}^{24} - 3789184 T_{5}^{22} + \cdots + 4096 \) acting on \(S_{2}^{\mathrm{new}}(2016, [\chi])\).