Properties

Label 2160.2.q.i.721.2
Level $2160$
Weight $2$
Character 2160.721
Analytic conductor $17.248$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2160,2,Mod(721,2160)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2160, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2160.721");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2160 = 2^{4} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2160.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.2476868366\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 721.2
Root \(1.71903 + 0.211943i\) of defining polynomial
Character \(\chi\) \(=\) 2160.721
Dual form 2160.2.q.i.1441.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{5} +(1.36710 - 2.36788i) q^{7} +(-2.76210 + 4.78410i) q^{11} +(1.76210 + 3.05205i) q^{13} +5.52420 q^{17} -7.52420 q^{19} +(-0.367095 - 0.635828i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(-2.23419 + 3.86973i) q^{29} +(3.76210 + 6.51615i) q^{31} -2.73419 q^{35} +6.05582 q^{37} +(-0.527909 - 0.914365i) q^{41} +(-1.76210 + 3.05205i) q^{43} +(-0.604996 + 1.04788i) q^{47} +(-0.237900 - 0.412055i) q^{49} -1.46838 q^{53} +5.52420 q^{55} +(0.734191 + 1.27166i) q^{59} +(-4.52791 + 7.84257i) q^{61} +(1.76210 - 3.05205i) q^{65} +(-2.12920 - 3.68787i) q^{67} +10.0558 q^{71} +8.00000 q^{73} +(7.55211 + 13.0806i) q^{77} +(1.00000 - 1.73205i) q^{79} +(2.63290 - 4.56032i) q^{83} +(-2.76210 - 4.78410i) q^{85} +3.00000 q^{89} +9.63583 q^{91} +(3.76210 + 6.51615i) q^{95} +(-4.73419 + 8.19986i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} + 3 q^{7} - 6 q^{13} - 12 q^{19} + 3 q^{23} - 3 q^{25} - 3 q^{29} + 6 q^{31} - 6 q^{35} + 24 q^{37} + 3 q^{41} + 6 q^{43} - 15 q^{47} - 18 q^{49} + 12 q^{53} - 6 q^{59} - 21 q^{61} - 6 q^{65}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2160\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(1297\) \(1621\) \(2081\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 1.36710 2.36788i 0.516714 0.894974i −0.483098 0.875566i \(-0.660489\pi\)
0.999812 0.0194079i \(-0.00617810\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.76210 + 4.78410i −0.832804 + 1.44246i 0.0630012 + 0.998013i \(0.479933\pi\)
−0.895806 + 0.444446i \(0.853401\pi\)
\(12\) 0 0
\(13\) 1.76210 + 3.05205i 0.488719 + 0.846485i 0.999916 0.0129781i \(-0.00413116\pi\)
−0.511197 + 0.859463i \(0.670798\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.52420 1.33982 0.669908 0.742444i \(-0.266334\pi\)
0.669908 + 0.742444i \(0.266334\pi\)
\(18\) 0 0
\(19\) −7.52420 −1.72617 −0.863085 0.505059i \(-0.831471\pi\)
−0.863085 + 0.505059i \(0.831471\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.367095 0.635828i −0.0765447 0.132579i 0.825212 0.564823i \(-0.191055\pi\)
−0.901757 + 0.432243i \(0.857722\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.23419 + 3.86973i −0.414879 + 0.718591i −0.995416 0.0956427i \(-0.969509\pi\)
0.580537 + 0.814234i \(0.302843\pi\)
\(30\) 0 0
\(31\) 3.76210 + 6.51615i 0.675693 + 1.17033i 0.976266 + 0.216576i \(0.0694889\pi\)
−0.300573 + 0.953759i \(0.597178\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.73419 −0.462163
\(36\) 0 0
\(37\) 6.05582 0.995570 0.497785 0.867300i \(-0.334147\pi\)
0.497785 + 0.867300i \(0.334147\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.527909 0.914365i −0.0824455 0.142800i 0.821854 0.569698i \(-0.192940\pi\)
−0.904300 + 0.426898i \(0.859606\pi\)
\(42\) 0 0
\(43\) −1.76210 + 3.05205i −0.268718 + 0.465433i −0.968531 0.248893i \(-0.919933\pi\)
0.699813 + 0.714326i \(0.253267\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.604996 + 1.04788i −0.0882477 + 0.152849i −0.906771 0.421625i \(-0.861460\pi\)
0.818523 + 0.574474i \(0.194793\pi\)
\(48\) 0 0
\(49\) −0.237900 0.412055i −0.0339857 0.0588650i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.46838 −0.201698 −0.100849 0.994902i \(-0.532156\pi\)
−0.100849 + 0.994902i \(0.532156\pi\)
\(54\) 0 0
\(55\) 5.52420 0.744883
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.734191 + 1.27166i 0.0955835 + 0.165556i 0.909852 0.414933i \(-0.136195\pi\)
−0.814268 + 0.580488i \(0.802862\pi\)
\(60\) 0 0
\(61\) −4.52791 + 7.84257i −0.579739 + 1.00414i 0.415770 + 0.909470i \(0.363512\pi\)
−0.995509 + 0.0946680i \(0.969821\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.76210 3.05205i 0.218562 0.378560i
\(66\) 0 0
\(67\) −2.12920 3.68787i −0.260123 0.450546i 0.706152 0.708061i \(-0.250430\pi\)
−0.966274 + 0.257515i \(0.917096\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.0558 1.19341 0.596703 0.802462i \(-0.296477\pi\)
0.596703 + 0.802462i \(0.296477\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.55211 + 13.0806i 0.860643 + 1.49068i
\(78\) 0 0
\(79\) 1.00000 1.73205i 0.112509 0.194871i −0.804272 0.594261i \(-0.797445\pi\)
0.916781 + 0.399390i \(0.130778\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.63290 4.56032i 0.288999 0.500561i −0.684572 0.728945i \(-0.740011\pi\)
0.973571 + 0.228384i \(0.0733443\pi\)
\(84\) 0 0
\(85\) −2.76210 4.78410i −0.299592 0.518908i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) 9.63583 1.01011
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.76210 + 6.51615i 0.385983 + 0.668543i
\(96\) 0 0
\(97\) −4.73419 + 8.19986i −0.480684 + 0.832570i −0.999754 0.0221621i \(-0.992945\pi\)
0.519070 + 0.854732i \(0.326278\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.73419 11.6640i 0.670077 1.16061i −0.307805 0.951450i \(-0.599594\pi\)
0.977882 0.209158i \(-0.0670723\pi\)
\(102\) 0 0
\(103\) 9.28630 + 16.0843i 0.915006 + 1.58484i 0.806892 + 0.590699i \(0.201148\pi\)
0.108114 + 0.994138i \(0.465519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.2510 1.86106 0.930531 0.366213i \(-0.119346\pi\)
0.930531 + 0.366213i \(0.119346\pi\)
\(108\) 0 0
\(109\) −0.524200 −0.0502092 −0.0251046 0.999685i \(-0.507992\pi\)
−0.0251046 + 0.999685i \(0.507992\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −3.73419 6.46781i −0.351283 0.608440i 0.635191 0.772355i \(-0.280921\pi\)
−0.986475 + 0.163915i \(0.947588\pi\)
\(114\) 0 0
\(115\) −0.367095 + 0.635828i −0.0342318 + 0.0592913i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.55211 13.0806i 0.692301 1.19910i
\(120\) 0 0
\(121\) −9.75839 16.9020i −0.887126 1.53655i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −8.25839 −0.732814 −0.366407 0.930455i \(-0.619412\pi\)
−0.366407 + 0.930455i \(0.619412\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.04840 + 13.9402i 0.703192 + 1.21796i 0.967340 + 0.253482i \(0.0815759\pi\)
−0.264148 + 0.964482i \(0.585091\pi\)
\(132\) 0 0
\(133\) −10.2863 + 17.8164i −0.891935 + 1.54488i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.25839 + 16.0360i −0.790998 + 1.37005i 0.134352 + 0.990934i \(0.457105\pi\)
−0.925350 + 0.379115i \(0.876229\pi\)
\(138\) 0 0
\(139\) −2.00000 3.46410i −0.169638 0.293821i 0.768655 0.639664i \(-0.220926\pi\)
−0.938293 + 0.345843i \(0.887593\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −19.4684 −1.62803
\(144\) 0 0
\(145\) 4.46838 0.371079
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.78630 + 11.7542i 0.555955 + 0.962943i 0.997829 + 0.0658653i \(0.0209808\pi\)
−0.441873 + 0.897078i \(0.645686\pi\)
\(150\) 0 0
\(151\) −6.23048 + 10.7915i −0.507029 + 0.878201i 0.492937 + 0.870065i \(0.335923\pi\)
−0.999967 + 0.00813598i \(0.997410\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.76210 6.51615i 0.302179 0.523390i
\(156\) 0 0
\(157\) 0.790009 + 1.36834i 0.0630496 + 0.109205i 0.895827 0.444403i \(-0.146584\pi\)
−0.832778 + 0.553608i \(0.813251\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00742 −0.158207
\(162\) 0 0
\(163\) 4.47580 0.350572 0.175286 0.984518i \(-0.443915\pi\)
0.175286 + 0.984518i \(0.443915\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.39500 14.5406i −0.649625 1.12518i −0.983212 0.182464i \(-0.941593\pi\)
0.333588 0.942719i \(-0.391741\pi\)
\(168\) 0 0
\(169\) 0.290009 0.502310i 0.0223084 0.0386392i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −11.5242 + 19.9605i −0.876169 + 1.51757i −0.0206561 + 0.999787i \(0.506576\pi\)
−0.855513 + 0.517782i \(0.826758\pi\)
\(174\) 0 0
\(175\) 1.36710 + 2.36788i 0.103343 + 0.178995i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.9926 0.971111 0.485556 0.874206i \(-0.338617\pi\)
0.485556 + 0.874206i \(0.338617\pi\)
\(180\) 0 0
\(181\) −24.5652 −1.82592 −0.912958 0.408054i \(-0.866207\pi\)
−0.912958 + 0.408054i \(0.866207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −3.02791 5.24449i −0.222616 0.385583i
\(186\) 0 0
\(187\) −15.2584 + 26.4283i −1.11580 + 1.93263i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.55211 + 13.0806i −0.546451 + 0.946482i 0.452063 + 0.891986i \(0.350688\pi\)
−0.998514 + 0.0544954i \(0.982645\pi\)
\(192\) 0 0
\(193\) 7.28630 + 12.6202i 0.524479 + 0.908425i 0.999594 + 0.0285008i \(0.00907332\pi\)
−0.475114 + 0.879924i \(0.657593\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.53162 0.322864 0.161432 0.986884i \(-0.448389\pi\)
0.161432 + 0.986884i \(0.448389\pi\)
\(198\) 0 0
\(199\) 7.41256 0.525463 0.262731 0.964869i \(-0.415377\pi\)
0.262731 + 0.964869i \(0.415377\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.10870 + 10.5806i 0.428747 + 0.742612i
\(204\) 0 0
\(205\) −0.527909 + 0.914365i −0.0368708 + 0.0638620i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.7826 35.9965i 1.43756 2.48993i
\(210\) 0 0
\(211\) −6.70628 11.6156i −0.461680 0.799652i 0.537365 0.843350i \(-0.319420\pi\)
−0.999045 + 0.0436972i \(0.986086\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 3.52420 0.240348
\(216\) 0 0
\(217\) 20.5726 1.39656
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.73419 + 16.8601i 0.654793 + 1.13413i
\(222\) 0 0
\(223\) −4.39500 + 7.61237i −0.294311 + 0.509762i −0.974824 0.222974i \(-0.928424\pi\)
0.680513 + 0.732736i \(0.261757\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.02791 + 3.51244i −0.134597 + 0.233129i −0.925443 0.378886i \(-0.876307\pi\)
0.790846 + 0.612015i \(0.209641\pi\)
\(228\) 0 0
\(229\) −1.29001 2.23436i −0.0852462 0.147651i 0.820250 0.572005i \(-0.193834\pi\)
−0.905496 + 0.424355i \(0.860501\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.94418 0.127368 0.0636838 0.997970i \(-0.479715\pi\)
0.0636838 + 0.997970i \(0.479715\pi\)
\(234\) 0 0
\(235\) 1.20999 0.0789311
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.73419 6.46781i −0.241545 0.418368i 0.719610 0.694379i \(-0.244321\pi\)
−0.961154 + 0.276011i \(0.910987\pi\)
\(240\) 0 0
\(241\) −1.20628 + 2.08934i −0.0777035 + 0.134586i −0.902259 0.431195i \(-0.858092\pi\)
0.824555 + 0.565781i \(0.191425\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.237900 + 0.412055i −0.0151989 + 0.0263252i
\(246\) 0 0
\(247\) −13.2584 22.9642i −0.843611 1.46118i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.99258 −0.441368 −0.220684 0.975345i \(-0.570829\pi\)
−0.220684 + 0.975345i \(0.570829\pi\)
\(252\) 0 0
\(253\) 4.05582 0.254987
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.0484 24.3325i −0.876315 1.51782i −0.855355 0.518042i \(-0.826661\pi\)
−0.0209598 0.999780i \(-0.506672\pi\)
\(258\) 0 0
\(259\) 8.27888 14.3394i 0.514425 0.891010i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.81792 + 6.61283i −0.235423 + 0.407764i −0.959395 0.282064i \(-0.908981\pi\)
0.723973 + 0.689829i \(0.242314\pi\)
\(264\) 0 0
\(265\) 0.734191 + 1.27166i 0.0451010 + 0.0781172i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.6210 1.13534 0.567671 0.823255i \(-0.307845\pi\)
0.567671 + 0.823255i \(0.307845\pi\)
\(270\) 0 0
\(271\) −6.57260 −0.399257 −0.199628 0.979872i \(-0.563974\pi\)
−0.199628 + 0.979872i \(0.563974\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.76210 4.78410i −0.166561 0.288492i
\(276\) 0 0
\(277\) −0.762100 + 1.32000i −0.0457901 + 0.0793108i −0.888012 0.459820i \(-0.847914\pi\)
0.842222 + 0.539131i \(0.181247\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.26210 12.5783i 0.433221 0.750360i −0.563928 0.825824i \(-0.690710\pi\)
0.997149 + 0.0754640i \(0.0240438\pi\)
\(282\) 0 0
\(283\) −8.36710 14.4922i −0.497372 0.861474i 0.502623 0.864506i \(-0.332368\pi\)
−0.999995 + 0.00303167i \(0.999035\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.88681 −0.170403
\(288\) 0 0
\(289\) 13.5168 0.795105
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.2305 17.7197i −0.597671 1.03520i −0.993164 0.116728i \(-0.962760\pi\)
0.395493 0.918469i \(-0.370574\pi\)
\(294\) 0 0
\(295\) 0.734191 1.27166i 0.0427463 0.0740387i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.29372 2.24078i 0.0748176 0.129588i
\(300\) 0 0
\(301\) 4.81792 + 8.34488i 0.277700 + 0.480991i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 9.05582 0.518535
\(306\) 0 0
\(307\) 18.2026 1.03888 0.519438 0.854508i \(-0.326141\pi\)
0.519438 + 0.854508i \(0.326141\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.55211 2.68833i −0.0880120 0.152441i 0.818659 0.574280i \(-0.194718\pi\)
−0.906671 + 0.421839i \(0.861385\pi\)
\(312\) 0 0
\(313\) 9.55211 16.5447i 0.539917 0.935164i −0.458991 0.888441i \(-0.651789\pi\)
0.998908 0.0467228i \(-0.0148777\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.50371 4.33655i 0.140622 0.243565i −0.787109 0.616814i \(-0.788423\pi\)
0.927731 + 0.373249i \(0.121756\pi\)
\(318\) 0 0
\(319\) −12.3421 21.3772i −0.691026 1.19689i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −41.5652 −2.31275
\(324\) 0 0
\(325\) −3.52420 −0.195487
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.65417 + 2.86511i 0.0911976 + 0.157959i
\(330\) 0 0
\(331\) −1.74161 + 3.01656i −0.0957275 + 0.165805i −0.909912 0.414801i \(-0.863851\pi\)
0.814184 + 0.580606i \(0.197184\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.12920 + 3.68787i −0.116330 + 0.201490i
\(336\) 0 0
\(337\) −5.79001 10.0286i −0.315402 0.546292i 0.664121 0.747625i \(-0.268806\pi\)
−0.979523 + 0.201333i \(0.935473\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −41.5652 −2.25088
\(342\) 0 0
\(343\) 17.8384 0.963183
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.2305 22.9159i −0.710249 1.23019i −0.964763 0.263119i \(-0.915249\pi\)
0.254514 0.967069i \(-0.418085\pi\)
\(348\) 0 0
\(349\) 13.0168 22.5457i 0.696772 1.20685i −0.272807 0.962069i \(-0.587952\pi\)
0.969580 0.244776i \(-0.0787145\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.0000 + 20.7846i −0.638696 + 1.10625i 0.347024 + 0.937856i \(0.387192\pi\)
−0.985719 + 0.168397i \(0.946141\pi\)
\(354\) 0 0
\(355\) −5.02791 8.70859i −0.266854 0.462204i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.04098 0.318831 0.159415 0.987212i \(-0.449039\pi\)
0.159415 + 0.987212i \(0.449039\pi\)
\(360\) 0 0
\(361\) 37.6136 1.97966
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.00000 6.92820i −0.209370 0.362639i
\(366\) 0 0
\(367\) 11.2305 19.4518i 0.586226 1.01537i −0.408495 0.912761i \(-0.633946\pi\)
0.994721 0.102613i \(-0.0327204\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.00742 + 3.47695i −0.104220 + 0.180514i
\(372\) 0 0
\(373\) 1.26581 + 2.19245i 0.0655411 + 0.113521i 0.896934 0.442165i \(-0.145789\pi\)
−0.831393 + 0.555685i \(0.812456\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.7475 −0.811036
\(378\) 0 0
\(379\) 21.0484 1.08118 0.540592 0.841285i \(-0.318200\pi\)
0.540592 + 0.841285i \(0.318200\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.81792 + 6.61283i 0.195086 + 0.337900i 0.946929 0.321443i \(-0.104168\pi\)
−0.751842 + 0.659343i \(0.770835\pi\)
\(384\) 0 0
\(385\) 7.55211 13.0806i 0.384891 0.666651i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.46467 + 16.3933i −0.479878 + 0.831173i −0.999734 0.0230811i \(-0.992652\pi\)
0.519856 + 0.854254i \(0.325986\pi\)
\(390\) 0 0
\(391\) −2.02791 3.51244i −0.102556 0.177632i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.00000 −0.100631
\(396\) 0 0
\(397\) −29.1600 −1.46350 −0.731750 0.681573i \(-0.761296\pi\)
−0.731750 + 0.681573i \(0.761296\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.3142 + 28.2570i 0.814693 + 1.41109i 0.909548 + 0.415598i \(0.136428\pi\)
−0.0948557 + 0.995491i \(0.530239\pi\)
\(402\) 0 0
\(403\) −13.2584 + 22.9642i −0.660447 + 1.14393i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.7268 + 28.9716i −0.829115 + 1.43607i
\(408\) 0 0
\(409\) −16.1042 27.8933i −0.796302 1.37924i −0.922009 0.387169i \(-0.873453\pi\)
0.125707 0.992067i \(-0.459880\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.01484 0.197557
\(414\) 0 0
\(415\) −5.26581 −0.258488
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.7063 + 18.5438i 0.523036 + 0.905925i 0.999641 + 0.0268073i \(0.00853405\pi\)
−0.476605 + 0.879118i \(0.658133\pi\)
\(420\) 0 0
\(421\) 0.944182 1.63537i 0.0460166 0.0797031i −0.842100 0.539322i \(-0.818681\pi\)
0.888116 + 0.459619i \(0.152014\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.76210 + 4.78410i −0.133982 + 0.232063i
\(426\) 0 0
\(427\) 12.3802 + 21.4431i 0.599118 + 1.03770i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −2.11164 −0.101714 −0.0508569 0.998706i \(-0.516195\pi\)
−0.0508569 + 0.998706i \(0.516195\pi\)
\(432\) 0 0
\(433\) −9.52420 −0.457704 −0.228852 0.973461i \(-0.573497\pi\)
−0.228852 + 0.973461i \(0.573497\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.76210 + 4.78410i 0.132129 + 0.228854i
\(438\) 0 0
\(439\) −7.20257 + 12.4752i −0.343760 + 0.595410i −0.985128 0.171824i \(-0.945034\pi\)
0.641368 + 0.767234i \(0.278367\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.60500 16.6363i 0.456347 0.790416i −0.542417 0.840109i \(-0.682491\pi\)
0.998765 + 0.0496927i \(0.0158242\pi\)
\(444\) 0 0
\(445\) −1.50000 2.59808i −0.0711068 0.123161i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.5800 −1.58474 −0.792369 0.610041i \(-0.791153\pi\)
−0.792369 + 0.610041i \(0.791153\pi\)
\(450\) 0 0
\(451\) 5.83255 0.274644
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.81792 8.34488i −0.225867 0.391214i
\(456\) 0 0
\(457\) −1.08373 + 1.87707i −0.0506946 + 0.0878056i −0.890259 0.455454i \(-0.849477\pi\)
0.839565 + 0.543260i \(0.182810\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.8700 + 22.2915i −0.599417 + 1.03822i 0.393490 + 0.919329i \(0.371267\pi\)
−0.992907 + 0.118892i \(0.962066\pi\)
\(462\) 0 0
\(463\) 6.02791 + 10.4406i 0.280141 + 0.485218i 0.971419 0.237371i \(-0.0762855\pi\)
−0.691279 + 0.722588i \(0.742952\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.4610 −0.669174 −0.334587 0.942365i \(-0.608597\pi\)
−0.334587 + 0.942365i \(0.608597\pi\)
\(468\) 0 0
\(469\) −11.6433 −0.537635
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −9.73419 16.8601i −0.447579 0.775229i
\(474\) 0 0
\(475\) 3.76210 6.51615i 0.172617 0.298981i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.99258 17.3077i 0.456573 0.790807i −0.542204 0.840247i \(-0.682410\pi\)
0.998777 + 0.0494395i \(0.0157435\pi\)
\(480\) 0 0
\(481\) 10.6710 + 18.4826i 0.486554 + 0.842736i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.46838 0.429937
\(486\) 0 0
\(487\) 18.1526 0.822574 0.411287 0.911506i \(-0.365079\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −19.7900 34.2773i −0.893111 1.54691i −0.836126 0.548538i \(-0.815185\pi\)
−0.0569849 0.998375i \(-0.518149\pi\)
\(492\) 0 0
\(493\) −12.3421 + 21.3772i −0.555861 + 0.962779i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.7473 23.8110i 0.616649 1.06807i
\(498\) 0 0
\(499\) −21.3142 36.9173i −0.954155 1.65264i −0.736290 0.676666i \(-0.763424\pi\)
−0.217865 0.975979i \(-0.569909\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.1952 0.945045 0.472523 0.881319i \(-0.343343\pi\)
0.472523 + 0.881319i \(0.343343\pi\)
\(504\) 0 0
\(505\) −13.4684 −0.599335
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.0168 19.0816i −0.488310 0.845778i 0.511599 0.859224i \(-0.329053\pi\)
−0.999910 + 0.0134460i \(0.995720\pi\)
\(510\) 0 0
\(511\) 10.9368 18.9430i 0.483814 0.837990i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 9.28630 16.0843i 0.409203 0.708761i
\(516\) 0 0
\(517\) −3.34212 5.78872i −0.146986 0.254587i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.40515 −0.0615606 −0.0307803 0.999526i \(-0.509799\pi\)
−0.0307803 + 0.999526i \(0.509799\pi\)
\(522\) 0 0
\(523\) 11.8532 0.518306 0.259153 0.965836i \(-0.416557\pi\)
0.259153 + 0.965836i \(0.416557\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.7826 + 35.9965i 0.905304 + 1.56803i
\(528\) 0 0
\(529\) 11.2305 19.4518i 0.488282 0.845729i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.86046 3.22240i 0.0805853 0.139578i
\(534\) 0 0
\(535\) −9.62549 16.6718i −0.416146 0.720786i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.62842 0.113214
\(540\) 0 0
\(541\) −8.98516 −0.386302 −0.193151 0.981169i \(-0.561871\pi\)
−0.193151 + 0.981169i \(0.561871\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0.262100 + 0.453970i 0.0112271 + 0.0194459i
\(546\) 0 0
\(547\) −3.10129 + 5.37159i −0.132601 + 0.229672i −0.924679 0.380749i \(-0.875666\pi\)
0.792077 + 0.610421i \(0.209000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16.8105 29.1166i 0.716151 1.24041i
\(552\) 0 0
\(553\) −2.73419 4.73576i −0.116270 0.201385i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.00000 −0.254228 −0.127114 0.991888i \(-0.540571\pi\)
−0.127114 + 0.991888i \(0.540571\pi\)
\(558\) 0 0
\(559\) −12.4200 −0.525309
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.13661 + 3.70072i 0.0900475 + 0.155967i 0.907531 0.419985i \(-0.137965\pi\)
−0.817483 + 0.575952i \(0.804631\pi\)
\(564\) 0 0
\(565\) −3.73419 + 6.46781i −0.157099 + 0.272103i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.04840 13.9402i 0.337406 0.584405i −0.646538 0.762882i \(-0.723784\pi\)
0.983944 + 0.178477i \(0.0571170\pi\)
\(570\) 0 0
\(571\) 5.46838 + 9.47152i 0.228845 + 0.396371i 0.957466 0.288546i \(-0.0931719\pi\)
−0.728621 + 0.684917i \(0.759839\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.734191 0.0306179
\(576\) 0 0
\(577\) −37.6620 −1.56789 −0.783944 0.620831i \(-0.786795\pi\)
−0.783944 + 0.620831i \(0.786795\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.19886 12.4688i −0.298659 0.517293i
\(582\) 0 0
\(583\) 4.05582 7.02488i 0.167975 0.290941i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.8987 + 18.8771i −0.449838 + 0.779142i −0.998375 0.0569839i \(-0.981852\pi\)
0.548537 + 0.836126i \(0.315185\pi\)
\(588\) 0 0
\(589\) −28.3068 49.0288i −1.16636 2.02020i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −28.2643 −1.16067 −0.580337 0.814377i \(-0.697079\pi\)
−0.580337 + 0.814377i \(0.697079\pi\)
\(594\) 0 0
\(595\) −15.1042 −0.619213
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.05582 12.2210i −0.288293 0.499338i 0.685109 0.728440i \(-0.259754\pi\)
−0.973402 + 0.229102i \(0.926421\pi\)
\(600\) 0 0
\(601\) 14.1042 24.4292i 0.575323 0.996489i −0.420683 0.907207i \(-0.638210\pi\)
0.996006 0.0892812i \(-0.0284570\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.75839 + 16.9020i −0.396735 + 0.687165i
\(606\) 0 0
\(607\) 14.1850 + 24.5692i 0.575752 + 0.997232i 0.995959 + 0.0898036i \(0.0286239\pi\)
−0.420208 + 0.907428i \(0.638043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.26425 −0.172513
\(612\) 0 0
\(613\) 24.5726 0.992478 0.496239 0.868186i \(-0.334714\pi\)
0.496239 + 0.868186i \(0.334714\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.3142 23.0609i −0.536010 0.928396i −0.999114 0.0420923i \(-0.986598\pi\)
0.463104 0.886304i \(-0.346736\pi\)
\(618\) 0 0
\(619\) 15.2863 26.4766i 0.614408 1.06419i −0.376080 0.926587i \(-0.622728\pi\)
0.990488 0.137599i \(-0.0439385\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.10129 7.10364i 0.164315 0.284601i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 33.4535 1.33388
\(630\) 0 0
\(631\) −27.4684 −1.09350 −0.546750 0.837296i \(-0.684135\pi\)
−0.546750 + 0.837296i \(0.684135\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.12920 + 7.15198i 0.163862 + 0.283818i
\(636\) 0 0
\(637\) 0.838408 1.45216i 0.0332189 0.0575369i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.26952 10.8591i 0.247631 0.428910i −0.715237 0.698882i \(-0.753681\pi\)
0.962868 + 0.269972i \(0.0870146\pi\)
\(642\) 0 0
\(643\) −5.12920 8.88403i −0.202276 0.350352i 0.746986 0.664840i \(-0.231500\pi\)
−0.949261 + 0.314488i \(0.898167\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.7900 0.660083 0.330042 0.943966i \(-0.392937\pi\)
0.330042 + 0.943966i \(0.392937\pi\)
\(648\) 0 0
\(649\) −8.11164 −0.318410
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 25.0131 + 43.3239i 0.978837 + 1.69540i 0.666643 + 0.745377i \(0.267731\pi\)
0.312194 + 0.950018i \(0.398936\pi\)
\(654\) 0 0
\(655\) 8.04840 13.9402i 0.314477 0.544690i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.78259 + 4.81959i −0.108394 + 0.187744i −0.915120 0.403182i \(-0.867904\pi\)
0.806726 + 0.590926i \(0.201238\pi\)
\(660\) 0 0
\(661\) 19.6284 + 33.9974i 0.763457 + 1.32235i 0.941059 + 0.338244i \(0.109833\pi\)
−0.177602 + 0.984102i \(0.556834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 20.5726 0.797771
\(666\) 0 0
\(667\) 3.28065 0.127027
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −25.0131 43.3239i −0.965619 1.67250i
\(672\) 0 0
\(673\) −7.97209 + 13.8081i −0.307302 + 0.532262i −0.977771 0.209675i \(-0.932759\pi\)
0.670470 + 0.741937i \(0.266093\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.4479 + 18.0963i −0.401545 + 0.695497i −0.993913 0.110171i \(-0.964860\pi\)
0.592368 + 0.805668i \(0.298193\pi\)
\(678\) 0 0
\(679\) 12.9442 + 22.4200i 0.496752 + 0.860400i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.6358 −0.751344 −0.375672 0.926753i \(-0.622588\pi\)
−0.375672 + 0.926753i \(0.622588\pi\)
\(684\) 0 0
\(685\) 18.5168 0.707490
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.58744 4.48157i −0.0985734 0.170734i
\(690\) 0 0
\(691\) −21.5726 + 37.3648i −0.820660 + 1.42143i 0.0845309 + 0.996421i \(0.473061\pi\)
−0.905191 + 0.425005i \(0.860272\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.00000 + 3.46410i −0.0758643 + 0.131401i
\(696\) 0 0
\(697\) −2.91627 5.05113i −0.110462 0.191325i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −27.0410 −1.02132 −0.510662 0.859782i \(-0.670600\pi\)
−0.510662 + 0.859782i \(0.670600\pi\)
\(702\) 0 0
\(703\) −45.5652 −1.71852
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18.4126 31.8915i −0.692476 1.19940i
\(708\) 0 0
\(709\) −21.7510 + 37.6738i −0.816875 + 1.41487i 0.0910989 + 0.995842i \(0.470962\pi\)
−0.907974 + 0.419027i \(0.862371\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.76210 4.78410i 0.103441 0.179166i
\(714\) 0 0
\(715\) 9.73419 + 16.8601i 0.364038 + 0.630532i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.40515 −0.164284 −0.0821421 0.996621i \(-0.526176\pi\)
−0.0821421 + 0.996621i \(0.526176\pi\)
\(720\) 0 0
\(721\) 50.7810 1.89118
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.23419 3.86973i −0.0829758 0.143718i
\(726\) 0 0
\(727\) 6.24083 10.8094i 0.231460 0.400900i −0.726778 0.686872i \(-0.758983\pi\)
0.958238 + 0.285972i \(0.0923166\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −9.73419 + 16.8601i −0.360032 + 0.623594i
\(732\) 0 0
\(733\) −19.5168 33.8041i −0.720869 1.24858i −0.960652 0.277755i \(-0.910410\pi\)
0.239783 0.970826i \(-0.422924\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.5242 0.866525
\(738\) 0 0
\(739\) 12.2935 0.452224 0.226112 0.974101i \(-0.427398\pi\)
0.226112 + 0.974101i \(0.427398\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.4155 + 35.3607i 0.748972 + 1.29726i 0.948316 + 0.317328i \(0.102786\pi\)
−0.199344 + 0.979930i \(0.563881\pi\)
\(744\) 0 0
\(745\) 6.78630 11.7542i 0.248631 0.430641i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 26.3179 45.5840i 0.961636 1.66560i
\(750\) 0 0
\(751\) −7.54469 13.0678i −0.275310 0.476850i 0.694904 0.719103i \(-0.255447\pi\)
−0.970213 + 0.242253i \(0.922114\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.4610 0.453501
\(756\) 0 0
\(757\) 34.4610 1.25251 0.626253 0.779620i \(-0.284588\pi\)
0.626253 + 0.779620i \(0.284588\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.17837 7.23716i −0.151466 0.262347i 0.780301 0.625405i \(-0.215066\pi\)
−0.931767 + 0.363058i \(0.881733\pi\)
\(762\) 0 0
\(763\) −0.716631 + 1.24124i −0.0259438 + 0.0449359i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.58744 + 4.48157i −0.0934269 + 0.161820i
\(768\) 0 0
\(769\) 9.17837 + 15.8974i 0.330981 + 0.573275i 0.982704 0.185181i \(-0.0592872\pi\)
−0.651724 + 0.758456i \(0.725954\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.0968 0.363157 0.181578 0.983376i \(-0.441879\pi\)
0.181578 + 0.983376i \(0.441879\pi\)
\(774\) 0 0
\(775\) −7.52420 −0.270277
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.97209 + 6.87986i 0.142315 + 0.246497i
\(780\) 0 0
\(781\) −27.7752 + 48.1080i −0.993874 + 1.72144i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0.790009 1.36834i 0.0281966 0.0488380i
\(786\) 0 0
\(787\) −7.28630 12.6202i −0.259729 0.449863i 0.706441 0.707772i \(-0.250300\pi\)
−0.966169 + 0.257909i \(0.916966\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −20.4200 −0.726051
\(792\) 0 0
\(793\) −31.9145 −1.13332
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.03533 1.79324i −0.0366732 0.0635198i 0.847106 0.531424i \(-0.178343\pi\)
−0.883779 + 0.467904i \(0.845009\pi\)
\(798\) 0 0
\(799\) −3.34212 + 5.78872i −0.118236 + 0.204790i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −22.0968 + 38.2728i −0.779779 + 1.35062i
\(804\) 0 0
\(805\) 1.00371 + 1.73848i 0.0353761 + 0.0612732i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.37158 −0.118539 −0.0592693 0.998242i \(-0.518877\pi\)
−0.0592693 + 0.998242i \(0.518877\pi\)
\(810\) 0 0
\(811\) 12.9368 0.454271 0.227136 0.973863i \(-0.427064\pi\)
0.227136 + 0.973863i \(0.427064\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.23790 3.87616i −0.0783902 0.135776i
\(816\) 0 0
\(817\) 13.2584 22.9642i 0.463852 0.803416i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.9963 + 19.0461i −0.383773 + 0.664715i −0.991598 0.129356i \(-0.958709\pi\)
0.607825 + 0.794071i \(0.292042\pi\)
\(822\) 0 0
\(823\) 7.45082 + 12.9052i 0.259719 + 0.449847i 0.966167 0.257919i \(-0.0830366\pi\)
−0.706447 + 0.707766i \(0.749703\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.5785 1.96743 0.983713 0.179747i \(-0.0575279\pi\)
0.983713 + 0.179747i \(0.0575279\pi\)
\(828\) 0 0
\(829\) 27.0558 0.939687 0.469844 0.882750i \(-0.344310\pi\)
0.469844 + 0.882750i \(0.344310\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.31421 2.27628i −0.0455346 0.0788683i
\(834\) 0 0
\(835\) −8.39500 + 14.5406i −0.290521 + 0.503197i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.2863 29.9407i 0.596789 1.03367i −0.396502 0.918034i \(-0.629776\pi\)
0.993292 0.115636i \(-0.0368905\pi\)
\(840\) 0 0
\(841\) 4.51678 + 7.82329i 0.155751 + 0.269769i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.580017 −0.0199532
\(846\) 0 0
\(847\) −53.3626 −1.83356
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.22306 3.85046i −0.0762056 0.131992i
\(852\) 0 0
\(853\) −8.48887 + 14.7032i −0.290653 + 0.503427i −0.973964 0.226701i \(-0.927206\pi\)
0.683311 + 0.730127i \(0.260539\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.70628 2.95537i 0.0582855 0.100953i −0.835410 0.549627i \(-0.814770\pi\)
0.893696 + 0.448673i \(0.148103\pi\)
\(858\) 0 0
\(859\) −4.91627 8.51524i −0.167741 0.290536i 0.769884 0.638184i \(-0.220314\pi\)
−0.937625 + 0.347647i \(0.886981\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −48.9836 −1.66742 −0.833711 0.552202i \(-0.813788\pi\)
−0.833711 + 0.552202i \(0.813788\pi\)
\(864\) 0 0
\(865\) 23.0484 0.783669
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.52420 + 9.56819i 0.187396 + 0.324579i
\(870\) 0 0
\(871\) 7.50371 12.9968i 0.254253 0.440380i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.36710 2.36788i 0.0462163 0.0800489i
\(876\) 0 0
\(877\) 6.33470 + 10.9720i 0.213908 + 0.370499i 0.952934 0.303178i \(-0.0980475\pi\)
−0.739027 + 0.673676i \(0.764714\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.0894 0.878974 0.439487 0.898249i \(-0.355160\pi\)
0.439487 + 0.898249i \(0.355160\pi\)
\(882\) 0 0
\(883\) −2.69321 −0.0906337 −0.0453169 0.998973i \(-0.514430\pi\)
−0.0453169 + 0.998973i \(0.514430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.2789 + 21.2676i 0.412284 + 0.714098i 0.995139 0.0984788i \(-0.0313977\pi\)
−0.582855 + 0.812576i \(0.698064\pi\)
\(888\) 0 0
\(889\) −11.2900 + 19.5549i −0.378655 + 0.655849i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.55211 7.88448i 0.152330 0.263844i
\(894\) 0 0
\(895\) −6.49629 11.2519i −0.217147 0.376110i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −33.6210 −1.12132
\(900\) 0 0
\(901\) −8.11164 −0.270238
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 12.2826 + 21.2741i 0.408287 + 0.707174i
\(906\) 0 0
\(907\) 17.1850 29.7653i 0.570619 0.988341i −0.425884 0.904778i \(-0.640037\pi\)
0.996502 0.0835631i \(-0.0266300\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −18.7752 + 32.5196i −0.622049 + 1.07742i 0.367054 + 0.930199i \(0.380366\pi\)
−0.989104 + 0.147221i \(0.952967\pi\)
\(912\) 0 0
\(913\) 14.5447 + 25.1921i 0.481359 + 0.833738i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 44.0117 1.45340
\(918\) 0 0
\(919\) −10.1116 −0.333552 −0.166776 0.985995i \(-0.553336\pi\)
−0.166776 + 0.985995i \(0.553336\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.7194 + 30.6908i 0.583240 + 1.01020i
\(924\) 0 0
\(925\) −3.02791 + 5.24449i −0.0995570 + 0.172438i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.4126 21.4992i 0.407243 0.705366i −0.587337 0.809343i \(-0.699824\pi\)
0.994580 + 0.103977i \(0.0331569\pi\)
\(930\) 0 0
\(931\) 1.79001 + 3.10039i 0.0586652 + 0.101611i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 30.5168 0.998005
\(936\) 0 0
\(937\) 1.56518 0.0511322 0.0255661 0.999673i \(-0.491861\pi\)
0.0255661 + 0.999673i \(0.491861\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −5.23419 9.06588i −0.170630 0.295539i 0.768010 0.640437i \(-0.221247\pi\)
−0.938640 + 0.344898i \(0.887914\pi\)
\(942\) 0 0
\(943\) −0.387586 + 0.671318i −0.0126215 + 0.0218611i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.59758 2.76709i 0.0519143 0.0899182i −0.838900 0.544285i \(-0.816801\pi\)
0.890815 + 0.454367i \(0.150134\pi\)
\(948\) 0 0
\(949\) 14.0968 + 24.4164i 0.457601 + 0.792589i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33.9293 1.09908 0.549540 0.835468i \(-0.314803\pi\)
0.549540 + 0.835468i \(0.314803\pi\)
\(954\) 0 0
\(955\) 15.1042 0.488761
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 25.3142 + 43.8455i 0.817438 + 1.41584i
\(960\) 0 0
\(961\) −12.8068 + 22.1820i −0.413122 + 0.715549i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.28630 12.6202i 0.234554 0.406260i
\(966\) 0 0
\(967\) 19.2129 + 33.2778i 0.617846 + 1.07014i 0.989878 + 0.141921i \(0.0453278\pi\)
−0.372032 + 0.928220i \(0.621339\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.7326 0.954166 0.477083 0.878858i \(-0.341694\pi\)
0.477083 + 0.878858i \(0.341694\pi\)
\(972\) 0 0
\(973\) −10.9368 −0.350617
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −16.4889 28.5596i −0.527526 0.913701i −0.999485 0.0320812i \(-0.989786\pi\)
0.471960 0.881620i \(-0.343547\pi\)
\(978\) 0 0
\(979\) −8.28630 + 14.3523i −0.264831 + 0.458701i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.68872 6.38905i 0.117652 0.203779i −0.801185 0.598417i \(-0.795797\pi\)
0.918837 + 0.394638i \(0.129130\pi\)
\(984\) 0 0
\(985\) −2.26581 3.92450i −0.0721947 0.125045i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.58744 0.0822757
\(990\) 0 0
\(991\) 4.51678 0.143480 0.0717401 0.997423i \(-0.477145\pi\)
0.0717401 + 0.997423i \(0.477145\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −3.70628 6.41947i −0.117497 0.203511i
\(996\) 0 0
\(997\) 24.3142 42.1134i 0.770039 1.33375i −0.167502 0.985872i \(-0.553570\pi\)
0.937541 0.347874i \(-0.113096\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2160.2.q.i.721.2 6
3.2 odd 2 720.2.q.k.241.3 6
4.3 odd 2 540.2.i.b.181.2 6
9.2 odd 6 6480.2.a.bt.1.2 3
9.4 even 3 inner 2160.2.q.i.1441.2 6
9.5 odd 6 720.2.q.k.481.3 6
9.7 even 3 6480.2.a.bw.1.2 3
12.11 even 2 180.2.i.b.61.1 6
20.3 even 4 2700.2.s.c.2449.4 12
20.7 even 4 2700.2.s.c.2449.3 12
20.19 odd 2 2700.2.i.c.1801.2 6
36.7 odd 6 1620.2.a.j.1.2 3
36.11 even 6 1620.2.a.i.1.2 3
36.23 even 6 180.2.i.b.121.1 yes 6
36.31 odd 6 540.2.i.b.361.2 6
60.23 odd 4 900.2.s.c.349.3 12
60.47 odd 4 900.2.s.c.349.4 12
60.59 even 2 900.2.i.c.601.3 6
180.7 even 12 8100.2.d.o.649.4 6
180.23 odd 12 900.2.s.c.49.4 12
180.43 even 12 8100.2.d.o.649.3 6
180.47 odd 12 8100.2.d.p.649.4 6
180.59 even 6 900.2.i.c.301.3 6
180.67 even 12 2700.2.s.c.1549.4 12
180.79 odd 6 8100.2.a.u.1.2 3
180.83 odd 12 8100.2.d.p.649.3 6
180.103 even 12 2700.2.s.c.1549.3 12
180.119 even 6 8100.2.a.v.1.2 3
180.139 odd 6 2700.2.i.c.901.2 6
180.167 odd 12 900.2.s.c.49.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.b.61.1 6 12.11 even 2
180.2.i.b.121.1 yes 6 36.23 even 6
540.2.i.b.181.2 6 4.3 odd 2
540.2.i.b.361.2 6 36.31 odd 6
720.2.q.k.241.3 6 3.2 odd 2
720.2.q.k.481.3 6 9.5 odd 6
900.2.i.c.301.3 6 180.59 even 6
900.2.i.c.601.3 6 60.59 even 2
900.2.s.c.49.3 12 180.167 odd 12
900.2.s.c.49.4 12 180.23 odd 12
900.2.s.c.349.3 12 60.23 odd 4
900.2.s.c.349.4 12 60.47 odd 4
1620.2.a.i.1.2 3 36.11 even 6
1620.2.a.j.1.2 3 36.7 odd 6
2160.2.q.i.721.2 6 1.1 even 1 trivial
2160.2.q.i.1441.2 6 9.4 even 3 inner
2700.2.i.c.901.2 6 180.139 odd 6
2700.2.i.c.1801.2 6 20.19 odd 2
2700.2.s.c.1549.3 12 180.103 even 12
2700.2.s.c.1549.4 12 180.67 even 12
2700.2.s.c.2449.3 12 20.7 even 4
2700.2.s.c.2449.4 12 20.3 even 4
6480.2.a.bt.1.2 3 9.2 odd 6
6480.2.a.bw.1.2 3 9.7 even 3
8100.2.a.u.1.2 3 180.79 odd 6
8100.2.a.v.1.2 3 180.119 even 6
8100.2.d.o.649.3 6 180.43 even 12
8100.2.d.o.649.4 6 180.7 even 12
8100.2.d.p.649.3 6 180.83 odd 12
8100.2.d.p.649.4 6 180.47 odd 12