Properties

Label 2700.2.i.c.1801.2
Level $2700$
Weight $2$
Character 2700.1801
Analytic conductor $21.560$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,2,Mod(901,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1801.2
Root \(1.71903 + 0.211943i\) of defining polynomial
Character \(\chi\) \(=\) 2700.1801
Dual form 2700.2.i.c.901.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36710 - 2.36788i) q^{7} +(2.76210 - 4.78410i) q^{11} +(-1.76210 - 3.05205i) q^{13} -5.52420 q^{17} +7.52420 q^{19} +(-0.367095 - 0.635828i) q^{23} +(-2.23419 + 3.86973i) q^{29} +(-3.76210 - 6.51615i) q^{31} -6.05582 q^{37} +(-0.527909 - 0.914365i) q^{41} +(-1.76210 + 3.05205i) q^{43} +(-0.604996 + 1.04788i) q^{47} +(-0.237900 - 0.412055i) q^{49} +1.46838 q^{53} +(-0.734191 - 1.27166i) q^{59} +(-4.52791 + 7.84257i) q^{61} +(-2.12920 - 3.68787i) q^{67} -10.0558 q^{71} -8.00000 q^{73} +(-7.55211 - 13.0806i) q^{77} +(-1.00000 + 1.73205i) q^{79} +(2.63290 - 4.56032i) q^{83} +3.00000 q^{89} -9.63583 q^{91} +(4.73419 - 8.19986i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{7} + 6 q^{13} + 12 q^{19} + 3 q^{23} - 3 q^{29} - 6 q^{31} - 24 q^{37} + 3 q^{41} + 6 q^{43} - 15 q^{47} - 18 q^{49} - 12 q^{53} + 6 q^{59} - 21 q^{61} + 9 q^{67} - 48 q^{71} - 48 q^{73} - 6 q^{77}+ \cdots + 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.36710 2.36788i 0.516714 0.894974i −0.483098 0.875566i \(-0.660489\pi\)
0.999812 0.0194079i \(-0.00617810\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.76210 4.78410i 0.832804 1.44246i −0.0630012 0.998013i \(-0.520067\pi\)
0.895806 0.444446i \(-0.146599\pi\)
\(12\) 0 0
\(13\) −1.76210 3.05205i −0.488719 0.846485i 0.511197 0.859463i \(-0.329202\pi\)
−0.999916 + 0.0129781i \(0.995869\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −5.52420 −1.33982 −0.669908 0.742444i \(-0.733666\pi\)
−0.669908 + 0.742444i \(0.733666\pi\)
\(18\) 0 0
\(19\) 7.52420 1.72617 0.863085 0.505059i \(-0.168529\pi\)
0.863085 + 0.505059i \(0.168529\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.367095 0.635828i −0.0765447 0.132579i 0.825212 0.564823i \(-0.191055\pi\)
−0.901757 + 0.432243i \(0.857722\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.23419 + 3.86973i −0.414879 + 0.718591i −0.995416 0.0956427i \(-0.969509\pi\)
0.580537 + 0.814234i \(0.302843\pi\)
\(30\) 0 0
\(31\) −3.76210 6.51615i −0.675693 1.17033i −0.976266 0.216576i \(-0.930511\pi\)
0.300573 0.953759i \(-0.402822\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.05582 −0.995570 −0.497785 0.867300i \(-0.665853\pi\)
−0.497785 + 0.867300i \(0.665853\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.527909 0.914365i −0.0824455 0.142800i 0.821854 0.569698i \(-0.192940\pi\)
−0.904300 + 0.426898i \(0.859606\pi\)
\(42\) 0 0
\(43\) −1.76210 + 3.05205i −0.268718 + 0.465433i −0.968531 0.248893i \(-0.919933\pi\)
0.699813 + 0.714326i \(0.253267\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.604996 + 1.04788i −0.0882477 + 0.152849i −0.906771 0.421625i \(-0.861460\pi\)
0.818523 + 0.574474i \(0.194793\pi\)
\(48\) 0 0
\(49\) −0.237900 0.412055i −0.0339857 0.0588650i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.46838 0.201698 0.100849 0.994902i \(-0.467844\pi\)
0.100849 + 0.994902i \(0.467844\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.734191 1.27166i −0.0955835 0.165556i 0.814268 0.580488i \(-0.197138\pi\)
−0.909852 + 0.414933i \(0.863805\pi\)
\(60\) 0 0
\(61\) −4.52791 + 7.84257i −0.579739 + 1.00414i 0.415770 + 0.909470i \(0.363512\pi\)
−0.995509 + 0.0946680i \(0.969821\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.12920 3.68787i −0.260123 0.450546i 0.706152 0.708061i \(-0.250430\pi\)
−0.966274 + 0.257515i \(0.917096\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.0558 −1.19341 −0.596703 0.802462i \(-0.703523\pi\)
−0.596703 + 0.802462i \(0.703523\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −7.55211 13.0806i −0.860643 1.49068i
\(78\) 0 0
\(79\) −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i \(-0.869222\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.63290 4.56032i 0.288999 0.500561i −0.684572 0.728945i \(-0.740011\pi\)
0.973571 + 0.228384i \(0.0733443\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) −9.63583 −1.01011
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.73419 8.19986i 0.480684 0.832570i −0.519070 0.854732i \(-0.673722\pi\)
0.999754 + 0.0221621i \(0.00705499\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.73419 11.6640i 0.670077 1.16061i −0.307805 0.951450i \(-0.599594\pi\)
0.977882 0.209158i \(-0.0670723\pi\)
\(102\) 0 0
\(103\) 9.28630 + 16.0843i 0.915006 + 1.58484i 0.806892 + 0.590699i \(0.201148\pi\)
0.108114 + 0.994138i \(0.465519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.2510 1.86106 0.930531 0.366213i \(-0.119346\pi\)
0.930531 + 0.366213i \(0.119346\pi\)
\(108\) 0 0
\(109\) −0.524200 −0.0502092 −0.0251046 0.999685i \(-0.507992\pi\)
−0.0251046 + 0.999685i \(0.507992\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 3.73419 + 6.46781i 0.351283 + 0.608440i 0.986475 0.163915i \(-0.0524121\pi\)
−0.635191 + 0.772355i \(0.719079\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.55211 + 13.0806i −0.692301 + 1.19910i
\(120\) 0 0
\(121\) −9.75839 16.9020i −0.887126 1.53655i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.25839 −0.732814 −0.366407 0.930455i \(-0.619412\pi\)
−0.366407 + 0.930455i \(0.619412\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.04840 13.9402i −0.703192 1.21796i −0.967340 0.253482i \(-0.918424\pi\)
0.264148 0.964482i \(-0.414909\pi\)
\(132\) 0 0
\(133\) 10.2863 17.8164i 0.891935 1.54488i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.25839 16.0360i 0.790998 1.37005i −0.134352 0.990934i \(-0.542895\pi\)
0.925350 0.379115i \(-0.123771\pi\)
\(138\) 0 0
\(139\) 2.00000 + 3.46410i 0.169638 + 0.293821i 0.938293 0.345843i \(-0.112407\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −19.4684 −1.62803
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.78630 + 11.7542i 0.555955 + 0.962943i 0.997829 + 0.0658653i \(0.0209808\pi\)
−0.441873 + 0.897078i \(0.645686\pi\)
\(150\) 0 0
\(151\) 6.23048 10.7915i 0.507029 0.878201i −0.492937 0.870065i \(-0.664077\pi\)
0.999967 0.00813598i \(-0.00258979\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.790009 1.36834i −0.0630496 0.109205i 0.832778 0.553608i \(-0.186749\pi\)
−0.895827 + 0.444403i \(0.853416\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00742 −0.158207
\(162\) 0 0
\(163\) 4.47580 0.350572 0.175286 0.984518i \(-0.443915\pi\)
0.175286 + 0.984518i \(0.443915\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −8.39500 14.5406i −0.649625 1.12518i −0.983212 0.182464i \(-0.941593\pi\)
0.333588 0.942719i \(-0.391741\pi\)
\(168\) 0 0
\(169\) 0.290009 0.502310i 0.0223084 0.0386392i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 11.5242 19.9605i 0.876169 1.51757i 0.0206561 0.999787i \(-0.493424\pi\)
0.855513 0.517782i \(-0.173242\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.9926 −0.971111 −0.485556 0.874206i \(-0.661383\pi\)
−0.485556 + 0.874206i \(0.661383\pi\)
\(180\) 0 0
\(181\) −24.5652 −1.82592 −0.912958 0.408054i \(-0.866207\pi\)
−0.912958 + 0.408054i \(0.866207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −15.2584 + 26.4283i −1.11580 + 1.93263i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.55211 13.0806i 0.546451 0.946482i −0.452063 0.891986i \(-0.649312\pi\)
0.998514 0.0544954i \(-0.0173550\pi\)
\(192\) 0 0
\(193\) −7.28630 12.6202i −0.524479 0.908425i −0.999594 0.0285008i \(-0.990927\pi\)
0.475114 0.879924i \(-0.342407\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.53162 −0.322864 −0.161432 0.986884i \(-0.551611\pi\)
−0.161432 + 0.986884i \(0.551611\pi\)
\(198\) 0 0
\(199\) −7.41256 −0.525463 −0.262731 0.964869i \(-0.584623\pi\)
−0.262731 + 0.964869i \(0.584623\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 6.10870 + 10.5806i 0.428747 + 0.742612i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.7826 35.9965i 1.43756 2.48993i
\(210\) 0 0
\(211\) 6.70628 + 11.6156i 0.461680 + 0.799652i 0.999045 0.0436972i \(-0.0139137\pi\)
−0.537365 + 0.843350i \(0.680580\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −20.5726 −1.39656
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.73419 + 16.8601i 0.654793 + 1.13413i
\(222\) 0 0
\(223\) −4.39500 + 7.61237i −0.294311 + 0.509762i −0.974824 0.222974i \(-0.928424\pi\)
0.680513 + 0.732736i \(0.261757\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2.02791 + 3.51244i −0.134597 + 0.233129i −0.925443 0.378886i \(-0.876307\pi\)
0.790846 + 0.612015i \(0.209641\pi\)
\(228\) 0 0
\(229\) −1.29001 2.23436i −0.0852462 0.147651i 0.820250 0.572005i \(-0.193834\pi\)
−0.905496 + 0.424355i \(0.860501\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.94418 −0.127368 −0.0636838 0.997970i \(-0.520285\pi\)
−0.0636838 + 0.997970i \(0.520285\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.73419 + 6.46781i 0.241545 + 0.418368i 0.961154 0.276011i \(-0.0890126\pi\)
−0.719610 + 0.694379i \(0.755679\pi\)
\(240\) 0 0
\(241\) −1.20628 + 2.08934i −0.0777035 + 0.134586i −0.902259 0.431195i \(-0.858092\pi\)
0.824555 + 0.565781i \(0.191425\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −13.2584 22.9642i −0.843611 1.46118i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.99258 0.441368 0.220684 0.975345i \(-0.429171\pi\)
0.220684 + 0.975345i \(0.429171\pi\)
\(252\) 0 0
\(253\) −4.05582 −0.254987
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.0484 + 24.3325i 0.876315 + 1.51782i 0.855355 + 0.518042i \(0.173339\pi\)
0.0209598 + 0.999780i \(0.493328\pi\)
\(258\) 0 0
\(259\) −8.27888 + 14.3394i −0.514425 + 0.891010i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −3.81792 + 6.61283i −0.235423 + 0.407764i −0.959395 0.282064i \(-0.908981\pi\)
0.723973 + 0.689829i \(0.242314\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 18.6210 1.13534 0.567671 0.823255i \(-0.307845\pi\)
0.567671 + 0.823255i \(0.307845\pi\)
\(270\) 0 0
\(271\) 6.57260 0.399257 0.199628 0.979872i \(-0.436026\pi\)
0.199628 + 0.979872i \(0.436026\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.762100 1.32000i 0.0457901 0.0793108i −0.842222 0.539131i \(-0.818753\pi\)
0.888012 + 0.459820i \(0.152086\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.26210 12.5783i 0.433221 0.750360i −0.563928 0.825824i \(-0.690710\pi\)
0.997149 + 0.0754640i \(0.0240438\pi\)
\(282\) 0 0
\(283\) −8.36710 14.4922i −0.497372 0.861474i 0.502623 0.864506i \(-0.332368\pi\)
−0.999995 + 0.00303167i \(0.999035\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.88681 −0.170403
\(288\) 0 0
\(289\) 13.5168 0.795105
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 10.2305 + 17.7197i 0.597671 + 1.03520i 0.993164 + 0.116728i \(0.0372405\pi\)
−0.395493 + 0.918469i \(0.629426\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.29372 + 2.24078i −0.0748176 + 0.129588i
\(300\) 0 0
\(301\) 4.81792 + 8.34488i 0.277700 + 0.480991i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 18.2026 1.03888 0.519438 0.854508i \(-0.326141\pi\)
0.519438 + 0.854508i \(0.326141\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.55211 + 2.68833i 0.0880120 + 0.152441i 0.906671 0.421839i \(-0.138615\pi\)
−0.818659 + 0.574280i \(0.805282\pi\)
\(312\) 0 0
\(313\) −9.55211 + 16.5447i −0.539917 + 0.935164i 0.458991 + 0.888441i \(0.348211\pi\)
−0.998908 + 0.0467228i \(0.985122\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.50371 + 4.33655i −0.140622 + 0.243565i −0.927731 0.373249i \(-0.878244\pi\)
0.787109 + 0.616814i \(0.211577\pi\)
\(318\) 0 0
\(319\) 12.3421 + 21.3772i 0.691026 + 1.19689i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −41.5652 −2.31275
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.65417 + 2.86511i 0.0911976 + 0.157959i
\(330\) 0 0
\(331\) 1.74161 3.01656i 0.0957275 0.165805i −0.814184 0.580606i \(-0.802816\pi\)
0.909912 + 0.414801i \(0.136149\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5.79001 + 10.0286i 0.315402 + 0.546292i 0.979523 0.201333i \(-0.0645274\pi\)
−0.664121 + 0.747625i \(0.731194\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −41.5652 −2.25088
\(342\) 0 0
\(343\) 17.8384 0.963183
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −13.2305 22.9159i −0.710249 1.23019i −0.964763 0.263119i \(-0.915249\pi\)
0.254514 0.967069i \(-0.418085\pi\)
\(348\) 0 0
\(349\) 13.0168 22.5457i 0.696772 1.20685i −0.272807 0.962069i \(-0.587952\pi\)
0.969580 0.244776i \(-0.0787145\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.04098 −0.318831 −0.159415 0.987212i \(-0.550961\pi\)
−0.159415 + 0.987212i \(0.550961\pi\)
\(360\) 0 0
\(361\) 37.6136 1.97966
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.2305 19.4518i 0.586226 1.01537i −0.408495 0.912761i \(-0.633946\pi\)
0.994721 0.102613i \(-0.0327204\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.00742 3.47695i 0.104220 0.180514i
\(372\) 0 0
\(373\) −1.26581 2.19245i −0.0655411 0.113521i 0.831393 0.555685i \(-0.187544\pi\)
−0.896934 + 0.442165i \(0.854211\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.7475 0.811036
\(378\) 0 0
\(379\) −21.0484 −1.08118 −0.540592 0.841285i \(-0.681800\pi\)
−0.540592 + 0.841285i \(0.681800\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.81792 + 6.61283i 0.195086 + 0.337900i 0.946929 0.321443i \(-0.104168\pi\)
−0.751842 + 0.659343i \(0.770835\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −9.46467 + 16.3933i −0.479878 + 0.831173i −0.999734 0.0230811i \(-0.992652\pi\)
0.519856 + 0.854254i \(0.325986\pi\)
\(390\) 0 0
\(391\) 2.02791 + 3.51244i 0.102556 + 0.177632i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 29.1600 1.46350 0.731750 0.681573i \(-0.238704\pi\)
0.731750 + 0.681573i \(0.238704\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.3142 + 28.2570i 0.814693 + 1.41109i 0.909548 + 0.415598i \(0.136428\pi\)
−0.0948557 + 0.995491i \(0.530239\pi\)
\(402\) 0 0
\(403\) −13.2584 + 22.9642i −0.660447 + 1.14393i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −16.7268 + 28.9716i −0.829115 + 1.43607i
\(408\) 0 0
\(409\) −16.1042 27.8933i −0.796302 1.37924i −0.922009 0.387169i \(-0.873453\pi\)
0.125707 0.992067i \(-0.459880\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −4.01484 −0.197557
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.7063 18.5438i −0.523036 0.905925i −0.999641 0.0268073i \(-0.991466\pi\)
0.476605 0.879118i \(-0.341867\pi\)
\(420\) 0 0
\(421\) 0.944182 1.63537i 0.0460166 0.0797031i −0.842100 0.539322i \(-0.818681\pi\)
0.888116 + 0.459619i \(0.152014\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.3802 + 21.4431i 0.599118 + 1.03770i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.11164 0.101714 0.0508569 0.998706i \(-0.483805\pi\)
0.0508569 + 0.998706i \(0.483805\pi\)
\(432\) 0 0
\(433\) 9.52420 0.457704 0.228852 0.973461i \(-0.426503\pi\)
0.228852 + 0.973461i \(0.426503\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.76210 4.78410i −0.132129 0.228854i
\(438\) 0 0
\(439\) 7.20257 12.4752i 0.343760 0.595410i −0.641368 0.767234i \(-0.721633\pi\)
0.985128 + 0.171824i \(0.0549660\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 9.60500 16.6363i 0.456347 0.790416i −0.542417 0.840109i \(-0.682491\pi\)
0.998765 + 0.0496927i \(0.0158242\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −33.5800 −1.58474 −0.792369 0.610041i \(-0.791153\pi\)
−0.792369 + 0.610041i \(0.791153\pi\)
\(450\) 0 0
\(451\) −5.83255 −0.274644
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.08373 1.87707i 0.0506946 0.0878056i −0.839565 0.543260i \(-0.817190\pi\)
0.890259 + 0.455454i \(0.150523\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.8700 + 22.2915i −0.599417 + 1.03822i 0.393490 + 0.919329i \(0.371267\pi\)
−0.992907 + 0.118892i \(0.962066\pi\)
\(462\) 0 0
\(463\) 6.02791 + 10.4406i 0.280141 + 0.485218i 0.971419 0.237371i \(-0.0762855\pi\)
−0.691279 + 0.722588i \(0.742952\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.4610 −0.669174 −0.334587 0.942365i \(-0.608597\pi\)
−0.334587 + 0.942365i \(0.608597\pi\)
\(468\) 0 0
\(469\) −11.6433 −0.537635
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.73419 + 16.8601i 0.447579 + 0.775229i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.99258 + 17.3077i −0.456573 + 0.790807i −0.998777 0.0494395i \(-0.984257\pi\)
0.542204 + 0.840247i \(0.317590\pi\)
\(480\) 0 0
\(481\) 10.6710 + 18.4826i 0.486554 + 0.842736i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.1526 0.822574 0.411287 0.911506i \(-0.365079\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.7900 + 34.2773i 0.893111 + 1.54691i 0.836126 + 0.548538i \(0.184815\pi\)
0.0569849 + 0.998375i \(0.481851\pi\)
\(492\) 0 0
\(493\) 12.3421 21.3772i 0.555861 0.962779i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −13.7473 + 23.8110i −0.616649 + 1.06807i
\(498\) 0 0
\(499\) 21.3142 + 36.9173i 0.954155 + 1.65264i 0.736290 + 0.676666i \(0.236576\pi\)
0.217865 + 0.975979i \(0.430091\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.1952 0.945045 0.472523 0.881319i \(-0.343343\pi\)
0.472523 + 0.881319i \(0.343343\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −11.0168 19.0816i −0.488310 0.845778i 0.511599 0.859224i \(-0.329053\pi\)
−0.999910 + 0.0134460i \(0.995720\pi\)
\(510\) 0 0
\(511\) −10.9368 + 18.9430i −0.483814 + 0.837990i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.34212 + 5.78872i 0.146986 + 0.254587i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.40515 −0.0615606 −0.0307803 0.999526i \(-0.509799\pi\)
−0.0307803 + 0.999526i \(0.509799\pi\)
\(522\) 0 0
\(523\) 11.8532 0.518306 0.259153 0.965836i \(-0.416557\pi\)
0.259153 + 0.965836i \(0.416557\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.7826 + 35.9965i 0.905304 + 1.56803i
\(528\) 0 0
\(529\) 11.2305 19.4518i 0.488282 0.845729i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.86046 + 3.22240i −0.0805853 + 0.139578i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.62842 −0.113214
\(540\) 0 0
\(541\) −8.98516 −0.386302 −0.193151 0.981169i \(-0.561871\pi\)
−0.193151 + 0.981169i \(0.561871\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −3.10129 + 5.37159i −0.132601 + 0.229672i −0.924679 0.380749i \(-0.875666\pi\)
0.792077 + 0.610421i \(0.209000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.8105 + 29.1166i −0.716151 + 1.24041i
\(552\) 0 0
\(553\) 2.73419 + 4.73576i 0.116270 + 0.201385i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.00000 0.254228 0.127114 0.991888i \(-0.459429\pi\)
0.127114 + 0.991888i \(0.459429\pi\)
\(558\) 0 0
\(559\) 12.4200 0.525309
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.13661 + 3.70072i 0.0900475 + 0.155967i 0.907531 0.419985i \(-0.137965\pi\)
−0.817483 + 0.575952i \(0.804631\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8.04840 13.9402i 0.337406 0.584405i −0.646538 0.762882i \(-0.723784\pi\)
0.983944 + 0.178477i \(0.0571170\pi\)
\(570\) 0 0
\(571\) −5.46838 9.47152i −0.228845 0.396371i 0.728621 0.684917i \(-0.240161\pi\)
−0.957466 + 0.288546i \(0.906828\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 37.6620 1.56789 0.783944 0.620831i \(-0.213205\pi\)
0.783944 + 0.620831i \(0.213205\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.19886 12.4688i −0.298659 0.517293i
\(582\) 0 0
\(583\) 4.05582 7.02488i 0.167975 0.290941i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.8987 + 18.8771i −0.449838 + 0.779142i −0.998375 0.0569839i \(-0.981852\pi\)
0.548537 + 0.836126i \(0.315185\pi\)
\(588\) 0 0
\(589\) −28.3068 49.0288i −1.16636 2.02020i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.2643 1.16067 0.580337 0.814377i \(-0.302921\pi\)
0.580337 + 0.814377i \(0.302921\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.05582 + 12.2210i 0.288293 + 0.499338i 0.973402 0.229102i \(-0.0735790\pi\)
−0.685109 + 0.728440i \(0.740246\pi\)
\(600\) 0 0
\(601\) 14.1042 24.4292i 0.575323 0.996489i −0.420683 0.907207i \(-0.638210\pi\)
0.996006 0.0892812i \(-0.0284570\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14.1850 + 24.5692i 0.575752 + 0.997232i 0.995959 + 0.0898036i \(0.0286239\pi\)
−0.420208 + 0.907428i \(0.638043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.26425 0.172513
\(612\) 0 0
\(613\) −24.5726 −0.992478 −0.496239 0.868186i \(-0.665286\pi\)
−0.496239 + 0.868186i \(0.665286\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 13.3142 + 23.0609i 0.536010 + 0.928396i 0.999114 + 0.0420923i \(0.0134023\pi\)
−0.463104 + 0.886304i \(0.653264\pi\)
\(618\) 0 0
\(619\) −15.2863 + 26.4766i −0.614408 + 1.06419i 0.376080 + 0.926587i \(0.377272\pi\)
−0.990488 + 0.137599i \(0.956061\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.10129 7.10364i 0.164315 0.284601i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 33.4535 1.33388
\(630\) 0 0
\(631\) 27.4684 1.09350 0.546750 0.837296i \(-0.315865\pi\)
0.546750 + 0.837296i \(0.315865\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.838408 + 1.45216i −0.0332189 + 0.0575369i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.26952 10.8591i 0.247631 0.428910i −0.715237 0.698882i \(-0.753681\pi\)
0.962868 + 0.269972i \(0.0870146\pi\)
\(642\) 0 0
\(643\) −5.12920 8.88403i −0.202276 0.350352i 0.746986 0.664840i \(-0.231500\pi\)
−0.949261 + 0.314488i \(0.898167\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.7900 0.660083 0.330042 0.943966i \(-0.392937\pi\)
0.330042 + 0.943966i \(0.392937\pi\)
\(648\) 0 0
\(649\) −8.11164 −0.318410
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.0131 43.3239i −0.978837 1.69540i −0.666643 0.745377i \(-0.732269\pi\)
−0.312194 0.950018i \(-0.601064\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.78259 4.81959i 0.108394 0.187744i −0.806726 0.590926i \(-0.798762\pi\)
0.915120 + 0.403182i \(0.132096\pi\)
\(660\) 0 0
\(661\) 19.6284 + 33.9974i 0.763457 + 1.32235i 0.941059 + 0.338244i \(0.109833\pi\)
−0.177602 + 0.984102i \(0.556834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.28065 0.127027
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.0131 + 43.3239i 0.965619 + 1.67250i
\(672\) 0 0
\(673\) 7.97209 13.8081i 0.307302 0.532262i −0.670470 0.741937i \(-0.733907\pi\)
0.977771 + 0.209675i \(0.0672406\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.4479 18.0963i 0.401545 0.695497i −0.592368 0.805668i \(-0.701807\pi\)
0.993913 + 0.110171i \(0.0351400\pi\)
\(678\) 0 0
\(679\) −12.9442 22.4200i −0.496752 0.860400i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.6358 −0.751344 −0.375672 0.926753i \(-0.622588\pi\)
−0.375672 + 0.926753i \(0.622588\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.58744 4.48157i −0.0985734 0.170734i
\(690\) 0 0
\(691\) 21.5726 37.3648i 0.820660 1.42143i −0.0845309 0.996421i \(-0.526939\pi\)
0.905191 0.425005i \(-0.139728\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.91627 + 5.05113i 0.110462 + 0.191325i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −27.0410 −1.02132 −0.510662 0.859782i \(-0.670600\pi\)
−0.510662 + 0.859782i \(0.670600\pi\)
\(702\) 0 0
\(703\) −45.5652 −1.71852
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −18.4126 31.8915i −0.692476 1.19940i
\(708\) 0 0
\(709\) −21.7510 + 37.6738i −0.816875 + 1.41487i 0.0910989 + 0.995842i \(0.470962\pi\)
−0.907974 + 0.419027i \(0.862371\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −2.76210 + 4.78410i −0.103441 + 0.179166i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.40515 0.164284 0.0821421 0.996621i \(-0.473824\pi\)
0.0821421 + 0.996621i \(0.473824\pi\)
\(720\) 0 0
\(721\) 50.7810 1.89118
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.24083 10.8094i 0.231460 0.400900i −0.726778 0.686872i \(-0.758983\pi\)
0.958238 + 0.285972i \(0.0923166\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.73419 16.8601i 0.360032 0.623594i
\(732\) 0 0
\(733\) 19.5168 + 33.8041i 0.720869 + 1.24858i 0.960652 + 0.277755i \(0.0895903\pi\)
−0.239783 + 0.970826i \(0.577076\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −23.5242 −0.866525
\(738\) 0 0
\(739\) −12.2935 −0.452224 −0.226112 0.974101i \(-0.572602\pi\)
−0.226112 + 0.974101i \(0.572602\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.4155 + 35.3607i 0.748972 + 1.29726i 0.948316 + 0.317328i \(0.102786\pi\)
−0.199344 + 0.979930i \(0.563881\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 26.3179 45.5840i 0.961636 1.66560i
\(750\) 0 0
\(751\) 7.54469 + 13.0678i 0.275310 + 0.476850i 0.970213 0.242253i \(-0.0778863\pi\)
−0.694904 + 0.719103i \(0.744553\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34.4610 −1.25251 −0.626253 0.779620i \(-0.715412\pi\)
−0.626253 + 0.779620i \(0.715412\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.17837 7.23716i −0.151466 0.262347i 0.780301 0.625405i \(-0.215066\pi\)
−0.931767 + 0.363058i \(0.881733\pi\)
\(762\) 0 0
\(763\) −0.716631 + 1.24124i −0.0259438 + 0.0449359i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.58744 + 4.48157i −0.0934269 + 0.161820i
\(768\) 0 0
\(769\) 9.17837 + 15.8974i 0.330981 + 0.573275i 0.982704 0.185181i \(-0.0592872\pi\)
−0.651724 + 0.758456i \(0.725954\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −10.0968 −0.363157 −0.181578 0.983376i \(-0.558121\pi\)
−0.181578 + 0.983376i \(0.558121\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.97209 6.87986i −0.142315 0.246497i
\(780\) 0 0
\(781\) −27.7752 + 48.1080i −0.993874 + 1.72144i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −7.28630 12.6202i −0.259729 0.449863i 0.706441 0.707772i \(-0.250300\pi\)
−0.966169 + 0.257909i \(0.916966\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20.4200 0.726051
\(792\) 0 0
\(793\) 31.9145 1.13332
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.03533 + 1.79324i 0.0366732 + 0.0635198i 0.883779 0.467904i \(-0.154991\pi\)
−0.847106 + 0.531424i \(0.821657\pi\)
\(798\) 0 0
\(799\) 3.34212 5.78872i 0.118236 0.204790i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −22.0968 + 38.2728i −0.779779 + 1.35062i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.37158 −0.118539 −0.0592693 0.998242i \(-0.518877\pi\)
−0.0592693 + 0.998242i \(0.518877\pi\)
\(810\) 0 0
\(811\) −12.9368 −0.454271 −0.227136 0.973863i \(-0.572936\pi\)
−0.227136 + 0.973863i \(0.572936\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −13.2584 + 22.9642i −0.463852 + 0.803416i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.9963 + 19.0461i −0.383773 + 0.664715i −0.991598 0.129356i \(-0.958709\pi\)
0.607825 + 0.794071i \(0.292042\pi\)
\(822\) 0 0
\(823\) 7.45082 + 12.9052i 0.259719 + 0.449847i 0.966167 0.257919i \(-0.0830366\pi\)
−0.706447 + 0.707766i \(0.749703\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.5785 1.96743 0.983713 0.179747i \(-0.0575279\pi\)
0.983713 + 0.179747i \(0.0575279\pi\)
\(828\) 0 0
\(829\) 27.0558 0.939687 0.469844 0.882750i \(-0.344310\pi\)
0.469844 + 0.882750i \(0.344310\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.31421 + 2.27628i 0.0455346 + 0.0788683i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.2863 + 29.9407i −0.596789 + 1.03367i 0.396502 + 0.918034i \(0.370224\pi\)
−0.993292 + 0.115636i \(0.963109\pi\)
\(840\) 0 0
\(841\) 4.51678 + 7.82329i 0.155751 + 0.269769i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −53.3626 −1.83356
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.22306 + 3.85046i 0.0762056 + 0.131992i
\(852\) 0 0
\(853\) 8.48887 14.7032i 0.290653 0.503427i −0.683311 0.730127i \(-0.739461\pi\)
0.973964 + 0.226701i \(0.0727940\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.70628 + 2.95537i −0.0582855 + 0.100953i −0.893696 0.448673i \(-0.851897\pi\)
0.835410 + 0.549627i \(0.185230\pi\)
\(858\) 0 0
\(859\) 4.91627 + 8.51524i 0.167741 + 0.290536i 0.937625 0.347647i \(-0.113019\pi\)
−0.769884 + 0.638184i \(0.779686\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −48.9836 −1.66742 −0.833711 0.552202i \(-0.813788\pi\)
−0.833711 + 0.552202i \(0.813788\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.52420 + 9.56819i 0.187396 + 0.324579i
\(870\) 0 0
\(871\) −7.50371 + 12.9968i −0.254253 + 0.440380i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.33470 10.9720i −0.213908 0.370499i 0.739027 0.673676i \(-0.235286\pi\)
−0.952934 + 0.303178i \(0.901952\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.0894 0.878974 0.439487 0.898249i \(-0.355160\pi\)
0.439487 + 0.898249i \(0.355160\pi\)
\(882\) 0 0
\(883\) −2.69321 −0.0906337 −0.0453169 0.998973i \(-0.514430\pi\)
−0.0453169 + 0.998973i \(0.514430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 12.2789 + 21.2676i 0.412284 + 0.714098i 0.995139 0.0984788i \(-0.0313977\pi\)
−0.582855 + 0.812576i \(0.698064\pi\)
\(888\) 0 0
\(889\) −11.2900 + 19.5549i −0.378655 + 0.655849i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.55211 + 7.88448i −0.152330 + 0.263844i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 33.6210 1.12132
\(900\) 0 0
\(901\) −8.11164 −0.270238
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 17.1850 29.7653i 0.570619 0.988341i −0.425884 0.904778i \(-0.640037\pi\)
0.996502 0.0835631i \(-0.0266300\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18.7752 32.5196i 0.622049 1.07742i −0.367054 0.930199i \(-0.619634\pi\)
0.989104 0.147221i \(-0.0470330\pi\)
\(912\) 0 0
\(913\) −14.5447 25.1921i −0.481359 0.833738i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −44.0117 −1.45340
\(918\) 0 0
\(919\) 10.1116 0.333552 0.166776 0.985995i \(-0.446664\pi\)
0.166776 + 0.985995i \(0.446664\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 17.7194 + 30.6908i 0.583240 + 1.01020i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.4126 21.4992i 0.407243 0.705366i −0.587337 0.809343i \(-0.699824\pi\)
0.994580 + 0.103977i \(0.0331569\pi\)
\(930\) 0 0
\(931\) −1.79001 3.10039i −0.0586652 0.101611i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.56518 −0.0511322 −0.0255661 0.999673i \(-0.508139\pi\)
−0.0255661 + 0.999673i \(0.508139\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −5.23419 9.06588i −0.170630 0.295539i 0.768010 0.640437i \(-0.221247\pi\)
−0.938640 + 0.344898i \(0.887914\pi\)
\(942\) 0 0
\(943\) −0.387586 + 0.671318i −0.0126215 + 0.0218611i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.59758 2.76709i 0.0519143 0.0899182i −0.838900 0.544285i \(-0.816801\pi\)
0.890815 + 0.454367i \(0.150134\pi\)
\(948\) 0 0
\(949\) 14.0968 + 24.4164i 0.457601 + 0.792589i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −33.9293 −1.09908 −0.549540 0.835468i \(-0.685197\pi\)
−0.549540 + 0.835468i \(0.685197\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −25.3142 43.8455i −0.817438 1.41584i
\(960\) 0 0
\(961\) −12.8068 + 22.1820i −0.413122 + 0.715549i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 19.2129 + 33.2778i 0.617846 + 1.07014i 0.989878 + 0.141921i \(0.0453278\pi\)
−0.372032 + 0.928220i \(0.621339\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −29.7326 −0.954166 −0.477083 0.878858i \(-0.658306\pi\)
−0.477083 + 0.878858i \(0.658306\pi\)
\(972\) 0 0
\(973\) 10.9368 0.350617
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 16.4889 + 28.5596i 0.527526 + 0.913701i 0.999485 + 0.0320812i \(0.0102135\pi\)
−0.471960 + 0.881620i \(0.656453\pi\)
\(978\) 0 0
\(979\) 8.28630 14.3523i 0.264831 0.458701i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 3.68872 6.38905i 0.117652 0.203779i −0.801185 0.598417i \(-0.795797\pi\)
0.918837 + 0.394638i \(0.129130\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.58744 0.0822757
\(990\) 0 0
\(991\) −4.51678 −0.143480 −0.0717401 0.997423i \(-0.522855\pi\)
−0.0717401 + 0.997423i \(0.522855\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −24.3142 + 42.1134i −0.770039 + 1.33375i 0.167502 + 0.985872i \(0.446430\pi\)
−0.937541 + 0.347874i \(0.886904\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.i.c.1801.2 6
3.2 odd 2 900.2.i.c.601.3 6
5.2 odd 4 2700.2.s.c.2449.4 12
5.3 odd 4 2700.2.s.c.2449.3 12
5.4 even 2 540.2.i.b.181.2 6
9.2 odd 6 8100.2.a.v.1.2 3
9.4 even 3 inner 2700.2.i.c.901.2 6
9.5 odd 6 900.2.i.c.301.3 6
9.7 even 3 8100.2.a.u.1.2 3
15.2 even 4 900.2.s.c.349.3 12
15.8 even 4 900.2.s.c.349.4 12
15.14 odd 2 180.2.i.b.61.1 6
20.19 odd 2 2160.2.q.i.721.2 6
45.2 even 12 8100.2.d.p.649.3 6
45.4 even 6 540.2.i.b.361.2 6
45.7 odd 12 8100.2.d.o.649.3 6
45.13 odd 12 2700.2.s.c.1549.4 12
45.14 odd 6 180.2.i.b.121.1 yes 6
45.22 odd 12 2700.2.s.c.1549.3 12
45.23 even 12 900.2.s.c.49.3 12
45.29 odd 6 1620.2.a.i.1.2 3
45.32 even 12 900.2.s.c.49.4 12
45.34 even 6 1620.2.a.j.1.2 3
45.38 even 12 8100.2.d.p.649.4 6
45.43 odd 12 8100.2.d.o.649.4 6
60.59 even 2 720.2.q.k.241.3 6
180.59 even 6 720.2.q.k.481.3 6
180.79 odd 6 6480.2.a.bw.1.2 3
180.119 even 6 6480.2.a.bt.1.2 3
180.139 odd 6 2160.2.q.i.1441.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.b.61.1 6 15.14 odd 2
180.2.i.b.121.1 yes 6 45.14 odd 6
540.2.i.b.181.2 6 5.4 even 2
540.2.i.b.361.2 6 45.4 even 6
720.2.q.k.241.3 6 60.59 even 2
720.2.q.k.481.3 6 180.59 even 6
900.2.i.c.301.3 6 9.5 odd 6
900.2.i.c.601.3 6 3.2 odd 2
900.2.s.c.49.3 12 45.23 even 12
900.2.s.c.49.4 12 45.32 even 12
900.2.s.c.349.3 12 15.2 even 4
900.2.s.c.349.4 12 15.8 even 4
1620.2.a.i.1.2 3 45.29 odd 6
1620.2.a.j.1.2 3 45.34 even 6
2160.2.q.i.721.2 6 20.19 odd 2
2160.2.q.i.1441.2 6 180.139 odd 6
2700.2.i.c.901.2 6 9.4 even 3 inner
2700.2.i.c.1801.2 6 1.1 even 1 trivial
2700.2.s.c.1549.3 12 45.22 odd 12
2700.2.s.c.1549.4 12 45.13 odd 12
2700.2.s.c.2449.3 12 5.3 odd 4
2700.2.s.c.2449.4 12 5.2 odd 4
6480.2.a.bt.1.2 3 180.119 even 6
6480.2.a.bw.1.2 3 180.79 odd 6
8100.2.a.u.1.2 3 9.7 even 3
8100.2.a.v.1.2 3 9.2 odd 6
8100.2.d.o.649.3 6 45.7 odd 12
8100.2.d.o.649.4 6 45.43 odd 12
8100.2.d.p.649.3 6 45.2 even 12
8100.2.d.p.649.4 6 45.38 even 12