Properties

Label 900.2.i.c.601.3
Level $900$
Weight $2$
Character 900.601
Analytic conductor $7.187$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [900,2,Mod(301,900)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(900, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("900.301");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 900 = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 900.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.18653618192\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 601.3
Root \(1.71903 + 0.211943i\) of defining polynomial
Character \(\chi\) \(=\) 900.601
Dual form 900.2.i.c.301.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71903 - 0.211943i) q^{3} +(1.36710 - 2.36788i) q^{7} +(2.91016 - 0.728674i) q^{9} +(-2.76210 + 4.78410i) q^{11} +(-1.76210 - 3.05205i) q^{13} +5.52420 q^{17} +7.52420 q^{19} +(1.84823 - 4.36021i) q^{21} +(0.367095 + 0.635828i) q^{23} +(4.84823 - 1.86940i) q^{27} +(2.23419 - 3.86973i) q^{29} +(-3.76210 - 6.51615i) q^{31} +(-3.73419 + 8.80944i) q^{33} -6.05582 q^{37} +(-3.67597 - 4.87311i) q^{39} +(0.527909 + 0.914365i) q^{41} +(-1.76210 + 3.05205i) q^{43} +(0.604996 - 1.04788i) q^{47} +(-0.237900 - 0.412055i) q^{49} +(9.49629 - 1.17081i) q^{51} -1.46838 q^{53} +(12.9344 - 1.59470i) q^{57} +(0.734191 + 1.27166i) q^{59} +(-4.52791 + 7.84257i) q^{61} +(2.25306 - 7.88707i) q^{63} +(-2.12920 - 3.68787i) q^{67} +(0.765809 + 1.01521i) q^{69} +10.0558 q^{71} -8.00000 q^{73} +(7.55211 + 13.0806i) q^{77} +(-1.00000 + 1.73205i) q^{79} +(7.93807 - 4.24111i) q^{81} +(-2.63290 + 4.56032i) q^{83} +(3.02049 - 7.12572i) q^{87} -3.00000 q^{89} -9.63583 q^{91} +(-7.84823 - 10.4041i) q^{93} +(4.73419 - 8.19986i) q^{97} +(-4.55211 + 15.9352i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{3} + 3 q^{7} + 5 q^{9} + 6 q^{13} + 12 q^{19} - 20 q^{21} - 3 q^{23} - 2 q^{27} + 3 q^{29} - 6 q^{31} - 12 q^{33} - 24 q^{37} - 20 q^{39} - 3 q^{41} + 6 q^{43} + 15 q^{47} - 18 q^{49} + 30 q^{51}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/900\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(451\) \(577\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.71903 0.211943i 0.992485 0.122365i
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.36710 2.36788i 0.516714 0.894974i −0.483098 0.875566i \(-0.660489\pi\)
0.999812 0.0194079i \(-0.00617810\pi\)
\(8\) 0 0
\(9\) 2.91016 0.728674i 0.970054 0.242891i
\(10\) 0 0
\(11\) −2.76210 + 4.78410i −0.832804 + 1.44246i 0.0630012 + 0.998013i \(0.479933\pi\)
−0.895806 + 0.444446i \(0.853401\pi\)
\(12\) 0 0
\(13\) −1.76210 3.05205i −0.488719 0.846485i 0.511197 0.859463i \(-0.329202\pi\)
−0.999916 + 0.0129781i \(0.995869\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.52420 1.33982 0.669908 0.742444i \(-0.266334\pi\)
0.669908 + 0.742444i \(0.266334\pi\)
\(18\) 0 0
\(19\) 7.52420 1.72617 0.863085 0.505059i \(-0.168529\pi\)
0.863085 + 0.505059i \(0.168529\pi\)
\(20\) 0 0
\(21\) 1.84823 4.36021i 0.403317 0.951476i
\(22\) 0 0
\(23\) 0.367095 + 0.635828i 0.0765447 + 0.132579i 0.901757 0.432243i \(-0.142278\pi\)
−0.825212 + 0.564823i \(0.808945\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.84823 1.86940i 0.933042 0.359767i
\(28\) 0 0
\(29\) 2.23419 3.86973i 0.414879 0.718591i −0.580537 0.814234i \(-0.697157\pi\)
0.995416 + 0.0956427i \(0.0304906\pi\)
\(30\) 0 0
\(31\) −3.76210 6.51615i −0.675693 1.17033i −0.976266 0.216576i \(-0.930511\pi\)
0.300573 0.953759i \(-0.402822\pi\)
\(32\) 0 0
\(33\) −3.73419 + 8.80944i −0.650039 + 1.53353i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.05582 −0.995570 −0.497785 0.867300i \(-0.665853\pi\)
−0.497785 + 0.867300i \(0.665853\pi\)
\(38\) 0 0
\(39\) −3.67597 4.87311i −0.588626 0.780322i
\(40\) 0 0
\(41\) 0.527909 + 0.914365i 0.0824455 + 0.142800i 0.904300 0.426898i \(-0.140394\pi\)
−0.821854 + 0.569698i \(0.807060\pi\)
\(42\) 0 0
\(43\) −1.76210 + 3.05205i −0.268718 + 0.465433i −0.968531 0.248893i \(-0.919933\pi\)
0.699813 + 0.714326i \(0.253267\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0.604996 1.04788i 0.0882477 0.152849i −0.818523 0.574474i \(-0.805207\pi\)
0.906771 + 0.421625i \(0.138540\pi\)
\(48\) 0 0
\(49\) −0.237900 0.412055i −0.0339857 0.0588650i
\(50\) 0 0
\(51\) 9.49629 1.17081i 1.32975 0.163947i
\(52\) 0 0
\(53\) −1.46838 −0.201698 −0.100849 0.994902i \(-0.532156\pi\)
−0.100849 + 0.994902i \(0.532156\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.9344 1.59470i 1.71320 0.211223i
\(58\) 0 0
\(59\) 0.734191 + 1.27166i 0.0955835 + 0.165556i 0.909852 0.414933i \(-0.136195\pi\)
−0.814268 + 0.580488i \(0.802862\pi\)
\(60\) 0 0
\(61\) −4.52791 + 7.84257i −0.579739 + 1.00414i 0.415770 + 0.909470i \(0.363512\pi\)
−0.995509 + 0.0946680i \(0.969821\pi\)
\(62\) 0 0
\(63\) 2.25306 7.88707i 0.283858 0.993678i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.12920 3.68787i −0.260123 0.450546i 0.706152 0.708061i \(-0.250430\pi\)
−0.966274 + 0.257515i \(0.917096\pi\)
\(68\) 0 0
\(69\) 0.765809 + 1.01521i 0.0921926 + 0.122217i
\(70\) 0 0
\(71\) 10.0558 1.19341 0.596703 0.802462i \(-0.296477\pi\)
0.596703 + 0.802462i \(0.296477\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.55211 + 13.0806i 0.860643 + 1.49068i
\(78\) 0 0
\(79\) −1.00000 + 1.73205i −0.112509 + 0.194871i −0.916781 0.399390i \(-0.869222\pi\)
0.804272 + 0.594261i \(0.202555\pi\)
\(80\) 0 0
\(81\) 7.93807 4.24111i 0.882008 0.471235i
\(82\) 0 0
\(83\) −2.63290 + 4.56032i −0.288999 + 0.500561i −0.973571 0.228384i \(-0.926656\pi\)
0.684572 + 0.728945i \(0.259989\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.02049 7.12572i 0.323831 0.763958i
\(88\) 0 0
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) −9.63583 −1.01011
\(92\) 0 0
\(93\) −7.84823 10.4041i −0.813824 1.07886i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 4.73419 8.19986i 0.480684 0.832570i −0.519070 0.854732i \(-0.673722\pi\)
0.999754 + 0.0221621i \(0.00705499\pi\)
\(98\) 0 0
\(99\) −4.55211 + 15.9352i −0.457504 + 1.60154i
\(100\) 0 0
\(101\) −6.73419 + 11.6640i −0.670077 + 1.16061i 0.307805 + 0.951450i \(0.400406\pi\)
−0.977882 + 0.209158i \(0.932928\pi\)
\(102\) 0 0
\(103\) 9.28630 + 16.0843i 0.915006 + 1.58484i 0.806892 + 0.590699i \(0.201148\pi\)
0.108114 + 0.994138i \(0.465519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −19.2510 −1.86106 −0.930531 0.366213i \(-0.880654\pi\)
−0.930531 + 0.366213i \(0.880654\pi\)
\(108\) 0 0
\(109\) −0.524200 −0.0502092 −0.0251046 0.999685i \(-0.507992\pi\)
−0.0251046 + 0.999685i \(0.507992\pi\)
\(110\) 0 0
\(111\) −10.4102 + 1.28349i −0.988089 + 0.121823i
\(112\) 0 0
\(113\) −3.73419 6.46781i −0.351283 0.608440i 0.635191 0.772355i \(-0.280921\pi\)
−0.986475 + 0.163915i \(0.947588\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −7.35194 7.59795i −0.679687 0.702431i
\(118\) 0 0
\(119\) 7.55211 13.0806i 0.692301 1.19910i
\(120\) 0 0
\(121\) −9.75839 16.9020i −0.887126 1.53655i
\(122\) 0 0
\(123\) 1.10129 + 1.45994i 0.0992997 + 0.131638i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −8.25839 −0.732814 −0.366407 0.930455i \(-0.619412\pi\)
−0.366407 + 0.930455i \(0.619412\pi\)
\(128\) 0 0
\(129\) −2.38225 + 5.62004i −0.209746 + 0.494817i
\(130\) 0 0
\(131\) 8.04840 + 13.9402i 0.703192 + 1.21796i 0.967340 + 0.253482i \(0.0815759\pi\)
−0.264148 + 0.964482i \(0.585091\pi\)
\(132\) 0 0
\(133\) 10.2863 17.8164i 0.891935 1.54488i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.25839 + 16.0360i −0.790998 + 1.37005i 0.134352 + 0.990934i \(0.457105\pi\)
−0.925350 + 0.379115i \(0.876229\pi\)
\(138\) 0 0
\(139\) 2.00000 + 3.46410i 0.169638 + 0.293821i 0.938293 0.345843i \(-0.112407\pi\)
−0.768655 + 0.639664i \(0.779074\pi\)
\(140\) 0 0
\(141\) 0.817917 1.92957i 0.0688811 0.162499i
\(142\) 0 0
\(143\) 19.4684 1.62803
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −0.496291 0.657916i −0.0409334 0.0542640i
\(148\) 0 0
\(149\) −6.78630 11.7542i −0.555955 0.962943i −0.997829 0.0658653i \(-0.979019\pi\)
0.441873 0.897078i \(-0.354314\pi\)
\(150\) 0 0
\(151\) 6.23048 10.7915i 0.507029 0.878201i −0.492937 0.870065i \(-0.664077\pi\)
0.999967 0.00813598i \(-0.00258979\pi\)
\(152\) 0 0
\(153\) 16.0763 4.02534i 1.29969 0.325429i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −0.790009 1.36834i −0.0630496 0.109205i 0.832778 0.553608i \(-0.186749\pi\)
−0.895827 + 0.444403i \(0.853416\pi\)
\(158\) 0 0
\(159\) −2.52420 + 0.311213i −0.200182 + 0.0246808i
\(160\) 0 0
\(161\) 2.00742 0.158207
\(162\) 0 0
\(163\) 4.47580 0.350572 0.175286 0.984518i \(-0.443915\pi\)
0.175286 + 0.984518i \(0.443915\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.39500 + 14.5406i 0.649625 + 1.12518i 0.983212 + 0.182464i \(0.0584074\pi\)
−0.333588 + 0.942719i \(0.608259\pi\)
\(168\) 0 0
\(169\) 0.290009 0.502310i 0.0223084 0.0386392i
\(170\) 0 0
\(171\) 21.8966 5.48269i 1.67448 0.419271i
\(172\) 0 0
\(173\) −11.5242 + 19.9605i −0.876169 + 1.51757i −0.0206561 + 0.999787i \(0.506576\pi\)
−0.855513 + 0.517782i \(0.826758\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.53162 + 2.03041i 0.115123 + 0.152615i
\(178\) 0 0
\(179\) 12.9926 0.971111 0.485556 0.874206i \(-0.338617\pi\)
0.485556 + 0.874206i \(0.338617\pi\)
\(180\) 0 0
\(181\) −24.5652 −1.82592 −0.912958 0.408054i \(-0.866207\pi\)
−0.912958 + 0.408054i \(0.866207\pi\)
\(182\) 0 0
\(183\) −6.12146 + 14.4413i −0.452511 + 1.06753i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −15.2584 + 26.4283i −1.11580 + 1.93263i
\(188\) 0 0
\(189\) 2.20147 14.0357i 0.160134 1.02094i
\(190\) 0 0
\(191\) −7.55211 + 13.0806i −0.546451 + 0.946482i 0.452063 + 0.891986i \(0.350688\pi\)
−0.998514 + 0.0544954i \(0.982645\pi\)
\(192\) 0 0
\(193\) −7.28630 12.6202i −0.524479 0.908425i −0.999594 0.0285008i \(-0.990927\pi\)
0.475114 0.879924i \(-0.342407\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.53162 0.322864 0.161432 0.986884i \(-0.448389\pi\)
0.161432 + 0.986884i \(0.448389\pi\)
\(198\) 0 0
\(199\) −7.41256 −0.525463 −0.262731 0.964869i \(-0.584623\pi\)
−0.262731 + 0.964869i \(0.584623\pi\)
\(200\) 0 0
\(201\) −4.44178 5.88832i −0.313299 0.415330i
\(202\) 0 0
\(203\) −6.10870 10.5806i −0.428747 0.742612i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1.53162 + 1.58287i 0.106455 + 0.110017i
\(208\) 0 0
\(209\) −20.7826 + 35.9965i −1.43756 + 2.48993i
\(210\) 0 0
\(211\) 6.70628 + 11.6156i 0.461680 + 0.799652i 0.999045 0.0436972i \(-0.0139137\pi\)
−0.537365 + 0.843350i \(0.680580\pi\)
\(212\) 0 0
\(213\) 17.2863 2.13126i 1.18444 0.146031i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −20.5726 −1.39656
\(218\) 0 0
\(219\) −13.7523 + 1.69554i −0.929293 + 0.114574i
\(220\) 0 0
\(221\) −9.73419 16.8601i −0.654793 1.13413i
\(222\) 0 0
\(223\) −4.39500 + 7.61237i −0.294311 + 0.509762i −0.974824 0.222974i \(-0.928424\pi\)
0.680513 + 0.732736i \(0.261757\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.02791 3.51244i 0.134597 0.233129i −0.790846 0.612015i \(-0.790359\pi\)
0.925443 + 0.378886i \(0.123693\pi\)
\(228\) 0 0
\(229\) −1.29001 2.23436i −0.0852462 0.147651i 0.820250 0.572005i \(-0.193834\pi\)
−0.905496 + 0.424355i \(0.860501\pi\)
\(230\) 0 0
\(231\) 15.7547 + 20.8855i 1.03658 + 1.37416i
\(232\) 0 0
\(233\) 1.94418 0.127368 0.0636838 0.997970i \(-0.479715\pi\)
0.0636838 + 0.997970i \(0.479715\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −1.35194 + 3.18940i −0.0878179 + 0.207174i
\(238\) 0 0
\(239\) −3.73419 6.46781i −0.241545 0.418368i 0.719610 0.694379i \(-0.244321\pi\)
−0.961154 + 0.276011i \(0.910987\pi\)
\(240\) 0 0
\(241\) −1.20628 + 2.08934i −0.0777035 + 0.134586i −0.902259 0.431195i \(-0.858092\pi\)
0.824555 + 0.565781i \(0.191425\pi\)
\(242\) 0 0
\(243\) 12.7469 8.97304i 0.817717 0.575621i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −13.2584 22.9642i −0.843611 1.46118i
\(248\) 0 0
\(249\) −3.55953 + 8.39738i −0.225576 + 0.532162i
\(250\) 0 0
\(251\) −6.99258 −0.441368 −0.220684 0.975345i \(-0.570829\pi\)
−0.220684 + 0.975345i \(0.570829\pi\)
\(252\) 0 0
\(253\) −4.05582 −0.254987
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.0484 24.3325i −0.876315 1.51782i −0.855355 0.518042i \(-0.826661\pi\)
−0.0209598 0.999780i \(-0.506672\pi\)
\(258\) 0 0
\(259\) −8.27888 + 14.3394i −0.514425 + 0.891010i
\(260\) 0 0
\(261\) 3.68208 12.8895i 0.227915 0.797842i
\(262\) 0 0
\(263\) 3.81792 6.61283i 0.235423 0.407764i −0.723973 0.689829i \(-0.757686\pi\)
0.959395 + 0.282064i \(0.0910192\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −5.15710 + 0.635828i −0.315610 + 0.0389120i
\(268\) 0 0
\(269\) −18.6210 −1.13534 −0.567671 0.823255i \(-0.692155\pi\)
−0.567671 + 0.823255i \(0.692155\pi\)
\(270\) 0 0
\(271\) 6.57260 0.399257 0.199628 0.979872i \(-0.436026\pi\)
0.199628 + 0.979872i \(0.436026\pi\)
\(272\) 0 0
\(273\) −16.5643 + 2.04224i −1.00252 + 0.123602i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.762100 1.32000i 0.0457901 0.0793108i −0.842222 0.539131i \(-0.818753\pi\)
0.888012 + 0.459820i \(0.152086\pi\)
\(278\) 0 0
\(279\) −15.6965 16.2217i −0.939722 0.971167i
\(280\) 0 0
\(281\) −7.26210 + 12.5783i −0.433221 + 0.750360i −0.997149 0.0754640i \(-0.975956\pi\)
0.563928 + 0.825824i \(0.309290\pi\)
\(282\) 0 0
\(283\) −8.36710 14.4922i −0.497372 0.861474i 0.502623 0.864506i \(-0.332368\pi\)
−0.999995 + 0.00303167i \(0.999035\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.88681 0.170403
\(288\) 0 0
\(289\) 13.5168 0.795105
\(290\) 0 0
\(291\) 6.40034 15.0992i 0.375194 0.885132i
\(292\) 0 0
\(293\) −10.2305 17.7197i −0.597671 1.03520i −0.993164 0.116728i \(-0.962760\pi\)
0.395493 0.918469i \(-0.370574\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −4.44789 + 28.3579i −0.258093 + 1.64549i
\(298\) 0 0
\(299\) 1.29372 2.24078i 0.0748176 0.129588i
\(300\) 0 0
\(301\) 4.81792 + 8.34488i 0.277700 + 0.480991i
\(302\) 0 0
\(303\) −9.10422 + 21.4780i −0.523024 + 1.23388i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 18.2026 1.03888 0.519438 0.854508i \(-0.326141\pi\)
0.519438 + 0.854508i \(0.326141\pi\)
\(308\) 0 0
\(309\) 19.3724 + 25.6814i 1.10206 + 1.46096i
\(310\) 0 0
\(311\) −1.55211 2.68833i −0.0880120 0.152441i 0.818659 0.574280i \(-0.194718\pi\)
−0.906671 + 0.421839i \(0.861385\pi\)
\(312\) 0 0
\(313\) −9.55211 + 16.5447i −0.539917 + 0.935164i 0.458991 + 0.888441i \(0.348211\pi\)
−0.998908 + 0.0467228i \(0.985122\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.50371 4.33655i 0.140622 0.243565i −0.787109 0.616814i \(-0.788423\pi\)
0.927731 + 0.373249i \(0.121756\pi\)
\(318\) 0 0
\(319\) 12.3421 + 21.3772i 0.691026 + 1.19689i
\(320\) 0 0
\(321\) −33.0931 + 4.08010i −1.84708 + 0.227729i
\(322\) 0 0
\(323\) 41.5652 2.31275
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.901117 + 0.111100i −0.0498319 + 0.00614386i
\(328\) 0 0
\(329\) −1.65417 2.86511i −0.0911976 0.157959i
\(330\) 0 0
\(331\) 1.74161 3.01656i 0.0957275 0.165805i −0.814184 0.580606i \(-0.802816\pi\)
0.909912 + 0.414801i \(0.136149\pi\)
\(332\) 0 0
\(333\) −17.6234 + 4.41271i −0.965756 + 0.241815i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 5.79001 + 10.0286i 0.315402 + 0.546292i 0.979523 0.201333i \(-0.0645274\pi\)
−0.664121 + 0.747625i \(0.731194\pi\)
\(338\) 0 0
\(339\) −7.79001 10.3270i −0.423095 0.560883i
\(340\) 0 0
\(341\) 41.5652 2.25088
\(342\) 0 0
\(343\) 17.8384 0.963183
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 13.2305 + 22.9159i 0.710249 + 1.23019i 0.964763 + 0.263119i \(0.0847512\pi\)
−0.254514 + 0.967069i \(0.581915\pi\)
\(348\) 0 0
\(349\) 13.0168 22.5457i 0.696772 1.20685i −0.272807 0.962069i \(-0.587952\pi\)
0.969580 0.244776i \(-0.0787145\pi\)
\(350\) 0 0
\(351\) −14.2486 11.5029i −0.760532 0.613982i
\(352\) 0 0
\(353\) −12.0000 + 20.7846i −0.638696 + 1.10625i 0.347024 + 0.937856i \(0.387192\pi\)
−0.985719 + 0.168397i \(0.946141\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 10.2100 24.0867i 0.540370 1.27480i
\(358\) 0 0
\(359\) 6.04098 0.318831 0.159415 0.987212i \(-0.449039\pi\)
0.159415 + 0.987212i \(0.449039\pi\)
\(360\) 0 0
\(361\) 37.6136 1.97966
\(362\) 0 0
\(363\) −20.3573 26.9870i −1.06848 1.41645i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 11.2305 19.4518i 0.586226 1.01537i −0.408495 0.912761i \(-0.633946\pi\)
0.994721 0.102613i \(-0.0327204\pi\)
\(368\) 0 0
\(369\) 2.20257 + 2.27628i 0.114661 + 0.118498i
\(370\) 0 0
\(371\) −2.00742 + 3.47695i −0.104220 + 0.180514i
\(372\) 0 0
\(373\) −1.26581 2.19245i −0.0655411 0.113521i 0.831393 0.555685i \(-0.187544\pi\)
−0.896934 + 0.442165i \(0.854211\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −15.7475 −0.811036
\(378\) 0 0
\(379\) −21.0484 −1.08118 −0.540592 0.841285i \(-0.681800\pi\)
−0.540592 + 0.841285i \(0.681800\pi\)
\(380\) 0 0
\(381\) −14.1965 + 1.75031i −0.727307 + 0.0896709i
\(382\) 0 0
\(383\) −3.81792 6.61283i −0.195086 0.337900i 0.751842 0.659343i \(-0.229165\pi\)
−0.946929 + 0.321443i \(0.895832\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.90405 + 10.1659i −0.147621 + 0.516764i
\(388\) 0 0
\(389\) 9.46467 16.3933i 0.479878 0.831173i −0.519856 0.854254i \(-0.674014\pi\)
0.999734 + 0.0230811i \(0.00734760\pi\)
\(390\) 0 0
\(391\) 2.02791 + 3.51244i 0.102556 + 0.177632i
\(392\) 0 0
\(393\) 16.7900 + 22.2580i 0.846944 + 1.12277i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 29.1600 1.46350 0.731750 0.681573i \(-0.238704\pi\)
0.731750 + 0.681573i \(0.238704\pi\)
\(398\) 0 0
\(399\) 13.9065 32.8071i 0.696193 1.64241i
\(400\) 0 0
\(401\) −16.3142 28.2570i −0.814693 1.41109i −0.909548 0.415598i \(-0.863572\pi\)
0.0948557 0.995491i \(-0.469761\pi\)
\(402\) 0 0
\(403\) −13.2584 + 22.9642i −0.660447 + 1.14393i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 16.7268 28.9716i 0.829115 1.43607i
\(408\) 0 0
\(409\) −16.1042 27.8933i −0.796302 1.37924i −0.922009 0.387169i \(-0.873453\pi\)
0.125707 0.992067i \(-0.459880\pi\)
\(410\) 0 0
\(411\) −12.5168 + 29.5287i −0.617407 + 1.45654i
\(412\) 0 0
\(413\) 4.01484 0.197557
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4.17226 + 5.53103i 0.204316 + 0.270855i
\(418\) 0 0
\(419\) 10.7063 + 18.5438i 0.523036 + 0.905925i 0.999641 + 0.0268073i \(0.00853405\pi\)
−0.476605 + 0.879118i \(0.658133\pi\)
\(420\) 0 0
\(421\) 0.944182 1.63537i 0.0460166 0.0797031i −0.842100 0.539322i \(-0.818681\pi\)
0.888116 + 0.459619i \(0.152014\pi\)
\(422\) 0 0
\(423\) 0.997070 3.49035i 0.0484792 0.169707i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 12.3802 + 21.4431i 0.599118 + 1.03770i
\(428\) 0 0
\(429\) 33.4668 4.12618i 1.61579 0.199214i
\(430\) 0 0
\(431\) −2.11164 −0.101714 −0.0508569 0.998706i \(-0.516195\pi\)
−0.0508569 + 0.998706i \(0.516195\pi\)
\(432\) 0 0
\(433\) 9.52420 0.457704 0.228852 0.973461i \(-0.426503\pi\)
0.228852 + 0.973461i \(0.426503\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.76210 + 4.78410i 0.132129 + 0.228854i
\(438\) 0 0
\(439\) 7.20257 12.4752i 0.343760 0.595410i −0.641368 0.767234i \(-0.721633\pi\)
0.985128 + 0.171824i \(0.0549660\pi\)
\(440\) 0 0
\(441\) −0.992582 1.02580i −0.0472658 0.0488474i
\(442\) 0 0
\(443\) −9.60500 + 16.6363i −0.456347 + 0.790416i −0.998765 0.0496927i \(-0.984176\pi\)
0.542417 + 0.840109i \(0.317509\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −14.1571 18.7676i −0.669608 0.887677i
\(448\) 0 0
\(449\) 33.5800 1.58474 0.792369 0.610041i \(-0.208847\pi\)
0.792369 + 0.610041i \(0.208847\pi\)
\(450\) 0 0
\(451\) −5.83255 −0.274644
\(452\) 0 0
\(453\) 8.42323 19.8715i 0.395758 0.933644i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.08373 1.87707i 0.0506946 0.0878056i −0.839565 0.543260i \(-0.817190\pi\)
0.890259 + 0.455454i \(0.150523\pi\)
\(458\) 0 0
\(459\) 26.7826 10.3270i 1.25010 0.482021i
\(460\) 0 0
\(461\) 12.8700 22.2915i 0.599417 1.03822i −0.393490 0.919329i \(-0.628733\pi\)
0.992907 0.118892i \(-0.0379341\pi\)
\(462\) 0 0
\(463\) 6.02791 + 10.4406i 0.280141 + 0.485218i 0.971419 0.237371i \(-0.0762855\pi\)
−0.691279 + 0.722588i \(0.742952\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.4610 0.669174 0.334587 0.942365i \(-0.391403\pi\)
0.334587 + 0.942365i \(0.391403\pi\)
\(468\) 0 0
\(469\) −11.6433 −0.537635
\(470\) 0 0
\(471\) −1.64806 2.18478i −0.0759386 0.100669i
\(472\) 0 0
\(473\) −9.73419 16.8601i −0.447579 0.775229i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −4.27323 + 1.06997i −0.195658 + 0.0489906i
\(478\) 0 0
\(479\) 9.99258 17.3077i 0.456573 0.790807i −0.542204 0.840247i \(-0.682410\pi\)
0.998777 + 0.0494395i \(0.0157435\pi\)
\(480\) 0 0
\(481\) 10.6710 + 18.4826i 0.486554 + 0.842736i
\(482\) 0 0
\(483\) 3.45082 0.425458i 0.157018 0.0193590i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.1526 0.822574 0.411287 0.911506i \(-0.365079\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(488\) 0 0
\(489\) 7.69406 0.948613i 0.347937 0.0428978i
\(490\) 0 0
\(491\) −19.7900 34.2773i −0.893111 1.54691i −0.836126 0.548538i \(-0.815185\pi\)
−0.0569849 0.998375i \(-0.518149\pi\)
\(492\) 0 0
\(493\) 12.3421 21.3772i 0.555861 0.962779i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 13.7473 23.8110i 0.616649 1.06807i
\(498\) 0 0
\(499\) 21.3142 + 36.9173i 0.954155 + 1.65264i 0.736290 + 0.676666i \(0.236576\pi\)
0.217865 + 0.975979i \(0.430091\pi\)
\(500\) 0 0
\(501\) 17.5131 + 23.2165i 0.782426 + 1.03724i
\(502\) 0 0
\(503\) −21.1952 −0.945045 −0.472523 0.881319i \(-0.656657\pi\)
−0.472523 + 0.881319i \(0.656657\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.392074 0.924953i 0.0174126 0.0410786i
\(508\) 0 0
\(509\) 11.0168 + 19.0816i 0.488310 + 0.845778i 0.999910 0.0134460i \(-0.00428012\pi\)
−0.511599 + 0.859224i \(0.670947\pi\)
\(510\) 0 0
\(511\) −10.9368 + 18.9430i −0.483814 + 0.837990i
\(512\) 0 0
\(513\) 36.4791 14.0658i 1.61059 0.621018i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 3.34212 + 5.78872i 0.146986 + 0.254587i
\(518\) 0 0
\(519\) −15.5800 + 36.7553i −0.683887 + 1.61338i
\(520\) 0 0
\(521\) 1.40515 0.0615606 0.0307803 0.999526i \(-0.490201\pi\)
0.0307803 + 0.999526i \(0.490201\pi\)
\(522\) 0 0
\(523\) 11.8532 0.518306 0.259153 0.965836i \(-0.416557\pi\)
0.259153 + 0.965836i \(0.416557\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −20.7826 35.9965i −0.905304 1.56803i
\(528\) 0 0
\(529\) 11.2305 19.4518i 0.488282 0.845729i
\(530\) 0 0
\(531\) 3.06324 + 3.16574i 0.132933 + 0.137381i
\(532\) 0 0
\(533\) 1.86046 3.22240i 0.0805853 0.139578i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 22.3347 2.75368i 0.963813 0.118830i
\(538\) 0 0
\(539\) 2.62842 0.113214
\(540\) 0 0
\(541\) −8.98516 −0.386302 −0.193151 0.981169i \(-0.561871\pi\)
−0.193151 + 0.981169i \(0.561871\pi\)
\(542\) 0 0
\(543\) −42.2284 + 5.20641i −1.81219 + 0.223428i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −3.10129 + 5.37159i −0.132601 + 0.229672i −0.924679 0.380749i \(-0.875666\pi\)
0.792077 + 0.610421i \(0.209000\pi\)
\(548\) 0 0
\(549\) −7.46227 + 26.1225i −0.318482 + 1.11488i
\(550\) 0 0
\(551\) 16.8105 29.1166i 0.716151 1.24041i
\(552\) 0 0
\(553\) 2.73419 + 4.73576i 0.116270 + 0.201385i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −6.00000 −0.254228 −0.127114 0.991888i \(-0.540571\pi\)
−0.127114 + 0.991888i \(0.540571\pi\)
\(558\) 0 0
\(559\) 12.4200 0.525309
\(560\) 0 0
\(561\) −20.6284 + 48.6651i −0.870932 + 2.05464i
\(562\) 0 0
\(563\) −2.13661 3.70072i −0.0900475 0.155967i 0.817483 0.575952i \(-0.195369\pi\)
−0.907531 + 0.419985i \(0.862035\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.809653 24.5944i 0.0340022 1.03287i
\(568\) 0 0
\(569\) −8.04840 + 13.9402i −0.337406 + 0.584405i −0.983944 0.178477i \(-0.942883\pi\)
0.646538 + 0.762882i \(0.276216\pi\)
\(570\) 0 0
\(571\) −5.46838 9.47152i −0.228845 0.396371i 0.728621 0.684917i \(-0.240161\pi\)
−0.957466 + 0.288546i \(0.906828\pi\)
\(572\) 0 0
\(573\) −10.2100 + 24.0867i −0.426529 + 1.00624i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 37.6620 1.56789 0.783944 0.620831i \(-0.213205\pi\)
0.783944 + 0.620831i \(0.213205\pi\)
\(578\) 0 0
\(579\) −15.2002 20.1504i −0.631697 0.837420i
\(580\) 0 0
\(581\) 7.19886 + 12.4688i 0.298659 + 0.517293i
\(582\) 0 0
\(583\) 4.05582 7.02488i 0.167975 0.290941i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.8987 18.8771i 0.449838 0.779142i −0.548537 0.836126i \(-0.684815\pi\)
0.998375 + 0.0569839i \(0.0181484\pi\)
\(588\) 0 0
\(589\) −28.3068 49.0288i −1.16636 2.02020i
\(590\) 0 0
\(591\) 7.79001 0.960443i 0.320438 0.0395074i
\(592\) 0 0
\(593\) −28.2643 −1.16067 −0.580337 0.814377i \(-0.697079\pi\)
−0.580337 + 0.814377i \(0.697079\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −12.7425 + 1.57104i −0.521514 + 0.0642983i
\(598\) 0 0
\(599\) −7.05582 12.2210i −0.288293 0.499338i 0.685109 0.728440i \(-0.259754\pi\)
−0.973402 + 0.229102i \(0.926421\pi\)
\(600\) 0 0
\(601\) 14.1042 24.4292i 0.575323 0.996489i −0.420683 0.907207i \(-0.638210\pi\)
0.996006 0.0892812i \(-0.0284570\pi\)
\(602\) 0 0
\(603\) −8.88356 9.18082i −0.361766 0.373872i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 14.1850 + 24.5692i 0.575752 + 0.997232i 0.995959 + 0.0898036i \(0.0286239\pi\)
−0.420208 + 0.907428i \(0.638043\pi\)
\(608\) 0 0
\(609\) −12.7436 16.8937i −0.516395 0.684567i
\(610\) 0 0
\(611\) −4.26425 −0.172513
\(612\) 0 0
\(613\) −24.5726 −0.992478 −0.496239 0.868186i \(-0.665286\pi\)
−0.496239 + 0.868186i \(0.665286\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −13.3142 23.0609i −0.536010 0.928396i −0.999114 0.0420923i \(-0.986598\pi\)
0.463104 0.886304i \(-0.346736\pi\)
\(618\) 0 0
\(619\) −15.2863 + 26.4766i −0.614408 + 1.06419i 0.376080 + 0.926587i \(0.377272\pi\)
−0.990488 + 0.137599i \(0.956061\pi\)
\(620\) 0 0
\(621\) 2.96838 + 2.39639i 0.119117 + 0.0961639i
\(622\) 0 0
\(623\) −4.10129 + 7.10364i −0.164315 + 0.284601i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −28.0968 + 66.2840i −1.12208 + 2.64713i
\(628\) 0 0
\(629\) −33.4535 −1.33388
\(630\) 0 0
\(631\) 27.4684 1.09350 0.546750 0.837296i \(-0.315865\pi\)
0.546750 + 0.837296i \(0.315865\pi\)
\(632\) 0 0
\(633\) 13.9902 + 18.5463i 0.556060 + 0.737150i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.838408 + 1.45216i −0.0332189 + 0.0575369i
\(638\) 0 0
\(639\) 29.2640 7.32741i 1.15767 0.289868i
\(640\) 0 0
\(641\) −6.26952 + 10.8591i −0.247631 + 0.428910i −0.962868 0.269972i \(-0.912985\pi\)
0.715237 + 0.698882i \(0.246319\pi\)
\(642\) 0 0
\(643\) −5.12920 8.88403i −0.202276 0.350352i 0.746986 0.664840i \(-0.231500\pi\)
−0.949261 + 0.314488i \(0.898167\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.7900 −0.660083 −0.330042 0.943966i \(-0.607063\pi\)
−0.330042 + 0.943966i \(0.607063\pi\)
\(648\) 0 0
\(649\) −8.11164 −0.318410
\(650\) 0 0
\(651\) −35.3650 + 4.36021i −1.38606 + 0.170890i
\(652\) 0 0
\(653\) 25.0131 + 43.3239i 0.978837 + 1.69540i 0.666643 + 0.745377i \(0.267731\pi\)
0.312194 + 0.950018i \(0.398936\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −23.2813 + 5.82939i −0.908289 + 0.227426i
\(658\) 0 0
\(659\) −2.78259 + 4.81959i −0.108394 + 0.187744i −0.915120 0.403182i \(-0.867904\pi\)
0.806726 + 0.590926i \(0.201238\pi\)
\(660\) 0 0
\(661\) 19.6284 + 33.9974i 0.763457 + 1.32235i 0.941059 + 0.338244i \(0.109833\pi\)
−0.177602 + 0.984102i \(0.556834\pi\)
\(662\) 0 0
\(663\) −20.3068 26.9200i −0.788650 1.04549i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.28065 0.127027
\(668\) 0 0
\(669\) −5.94178 + 14.0174i −0.229722 + 0.541945i
\(670\) 0 0
\(671\) −25.0131 43.3239i −0.965619 1.67250i
\(672\) 0 0
\(673\) 7.97209 13.8081i 0.307302 0.532262i −0.670470 0.741937i \(-0.733907\pi\)
0.977771 + 0.209675i \(0.0672406\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.4479 + 18.0963i −0.401545 + 0.695497i −0.993913 0.110171i \(-0.964860\pi\)
0.592368 + 0.805668i \(0.298193\pi\)
\(678\) 0 0
\(679\) −12.9442 22.4200i −0.496752 0.860400i
\(680\) 0 0
\(681\) 2.74161 6.46781i 0.105059 0.247847i
\(682\) 0 0
\(683\) 19.6358 0.751344 0.375672 0.926753i \(-0.377412\pi\)
0.375672 + 0.926753i \(0.377412\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −2.69113 3.56754i −0.102673 0.136110i
\(688\) 0 0
\(689\) 2.58744 + 4.48157i 0.0985734 + 0.170734i
\(690\) 0 0
\(691\) 21.5726 37.3648i 0.820660 1.42143i −0.0845309 0.996421i \(-0.526939\pi\)
0.905191 0.425005i \(-0.139728\pi\)
\(692\) 0 0
\(693\) 31.5094 + 32.5637i 1.19694 + 1.23699i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 2.91627 + 5.05113i 0.110462 + 0.191325i
\(698\) 0 0
\(699\) 3.34212 0.412055i 0.126410 0.0155854i
\(700\) 0 0
\(701\) 27.0410 1.02132 0.510662 0.859782i \(-0.329400\pi\)
0.510662 + 0.859782i \(0.329400\pi\)
\(702\) 0 0
\(703\) −45.5652 −1.71852
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 18.4126 + 31.8915i 0.692476 + 1.19940i
\(708\) 0 0
\(709\) −21.7510 + 37.6738i −0.816875 + 1.41487i 0.0910989 + 0.995842i \(0.470962\pi\)
−0.907974 + 0.419027i \(0.862371\pi\)
\(710\) 0 0
\(711\) −1.64806 + 5.76922i −0.0618071 + 0.216363i
\(712\) 0 0
\(713\) 2.76210 4.78410i 0.103441 0.179166i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −7.79001 10.3270i −0.290923 0.385667i
\(718\) 0 0
\(719\) −4.40515 −0.164284 −0.0821421 0.996621i \(-0.526176\pi\)
−0.0821421 + 0.996621i \(0.526176\pi\)
\(720\) 0 0
\(721\) 50.7810 1.89118
\(722\) 0 0
\(723\) −1.63082 + 3.84731i −0.0606509 + 0.143083i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 6.24083 10.8094i 0.231460 0.400900i −0.726778 0.686872i \(-0.758983\pi\)
0.958238 + 0.285972i \(0.0923166\pi\)
\(728\) 0 0
\(729\) 20.0107 18.1266i 0.741136 0.671355i
\(730\) 0 0
\(731\) −9.73419 + 16.8601i −0.360032 + 0.623594i
\(732\) 0 0
\(733\) 19.5168 + 33.8041i 0.720869 + 1.24858i 0.960652 + 0.277755i \(0.0895903\pi\)
−0.239783 + 0.970826i \(0.577076\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.5242 0.866525
\(738\) 0 0
\(739\) −12.2935 −0.452224 −0.226112 0.974101i \(-0.572602\pi\)
−0.226112 + 0.974101i \(0.572602\pi\)
\(740\) 0 0
\(741\) −27.6587 36.6662i −1.01607 1.34697i
\(742\) 0 0
\(743\) −20.4155 35.3607i −0.748972 1.29726i −0.948316 0.317328i \(-0.897214\pi\)
0.199344 0.979930i \(-0.436119\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −4.33919 + 15.1898i −0.158763 + 0.555766i
\(748\) 0 0
\(749\) −26.3179 + 45.5840i −0.961636 + 1.66560i
\(750\) 0 0
\(751\) 7.54469 + 13.0678i 0.275310 + 0.476850i 0.970213 0.242253i \(-0.0778863\pi\)
−0.694904 + 0.719103i \(0.744553\pi\)
\(752\) 0 0
\(753\) −12.0205 + 1.48203i −0.438051 + 0.0540080i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34.4610 −1.25251 −0.626253 0.779620i \(-0.715412\pi\)
−0.626253 + 0.779620i \(0.715412\pi\)
\(758\) 0 0
\(759\) −6.97209 + 0.859601i −0.253071 + 0.0312015i
\(760\) 0 0
\(761\) 4.17837 + 7.23716i 0.151466 + 0.262347i 0.931767 0.363058i \(-0.118267\pi\)
−0.780301 + 0.625405i \(0.784934\pi\)
\(762\) 0 0
\(763\) −0.716631 + 1.24124i −0.0259438 + 0.0449359i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.58744 4.48157i 0.0934269 0.161820i
\(768\) 0 0
\(769\) 9.17837 + 15.8974i 0.330981 + 0.573275i 0.982704 0.185181i \(-0.0592872\pi\)
−0.651724 + 0.758456i \(0.725954\pi\)
\(770\) 0 0
\(771\) −29.3068 38.8510i −1.05546 1.39919i
\(772\) 0 0
\(773\) 10.0968 0.363157 0.181578 0.983376i \(-0.441879\pi\)
0.181578 + 0.983376i \(0.441879\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −11.1925 + 26.4046i −0.401530 + 0.947261i
\(778\) 0 0
\(779\) 3.97209 + 6.87986i 0.142315 + 0.246497i
\(780\) 0 0
\(781\) −27.7752 + 48.1080i −0.993874 + 1.72144i
\(782\) 0 0
\(783\) 3.59778 22.9380i 0.128574 0.819736i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −7.28630 12.6202i −0.259729 0.449863i 0.706441 0.707772i \(-0.250300\pi\)
−0.966169 + 0.257909i \(0.916966\pi\)
\(788\) 0 0
\(789\) 5.16159 12.1769i 0.183758 0.433508i
\(790\) 0 0
\(791\) −20.4200 −0.726051
\(792\) 0 0
\(793\) 31.9145 1.13332
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −1.03533 1.79324i −0.0366732 0.0635198i 0.847106 0.531424i \(-0.178343\pi\)
−0.883779 + 0.467904i \(0.845009\pi\)
\(798\) 0 0
\(799\) 3.34212 5.78872i 0.118236 0.204790i
\(800\) 0 0
\(801\) −8.73048 + 2.18602i −0.308476 + 0.0772393i
\(802\) 0 0
\(803\) 22.0968 38.2728i 0.779779 1.35062i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −32.0101 + 3.94658i −1.12681 + 0.138926i
\(808\) 0 0
\(809\) 3.37158 0.118539 0.0592693 0.998242i \(-0.481123\pi\)
0.0592693 + 0.998242i \(0.481123\pi\)
\(810\) 0 0
\(811\) −12.9368 −0.454271 −0.227136 0.973863i \(-0.572936\pi\)
−0.227136 + 0.973863i \(0.572936\pi\)
\(812\) 0 0
\(813\) 11.2985 1.39301i 0.396257 0.0488551i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −13.2584 + 22.9642i −0.463852 + 0.803416i
\(818\) 0 0
\(819\) −28.0418 + 7.02138i −0.979861 + 0.245347i
\(820\) 0 0
\(821\) 10.9963 19.0461i 0.383773 0.664715i −0.607825 0.794071i \(-0.707958\pi\)
0.991598 + 0.129356i \(0.0412911\pi\)
\(822\) 0 0
\(823\) 7.45082 + 12.9052i 0.259719 + 0.449847i 0.966167 0.257919i \(-0.0830366\pi\)
−0.706447 + 0.707766i \(0.749703\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −56.5785 −1.96743 −0.983713 0.179747i \(-0.942472\pi\)
−0.983713 + 0.179747i \(0.942472\pi\)
\(828\) 0 0
\(829\) 27.0558 0.939687 0.469844 0.882750i \(-0.344310\pi\)
0.469844 + 0.882750i \(0.344310\pi\)
\(830\) 0 0
\(831\) 1.03031 2.43064i 0.0357411 0.0843180i
\(832\) 0 0
\(833\) −1.31421 2.27628i −0.0455346 0.0788683i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −30.4208 24.5589i −1.05150 0.848880i
\(838\) 0 0
\(839\) 17.2863 29.9407i 0.596789 1.03367i −0.396502 0.918034i \(-0.629776\pi\)
0.993292 0.115636i \(-0.0368905\pi\)
\(840\) 0 0
\(841\) 4.51678 + 7.82329i 0.155751 + 0.269769i
\(842\) 0 0
\(843\) −9.81792 + 23.1617i −0.338147 + 0.797732i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −53.3626 −1.83356
\(848\) 0 0
\(849\) −17.4549 23.1393i −0.599049 0.794139i
\(850\) 0 0
\(851\) −2.22306 3.85046i −0.0762056 0.131992i
\(852\) 0 0
\(853\) 8.48887 14.7032i 0.290653 0.503427i −0.683311 0.730127i \(-0.739461\pi\)
0.973964 + 0.226701i \(0.0727940\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.70628 2.95537i 0.0582855 0.100953i −0.835410 0.549627i \(-0.814770\pi\)
0.893696 + 0.448673i \(0.148103\pi\)
\(858\) 0 0
\(859\) 4.91627 + 8.51524i 0.167741 + 0.290536i 0.937625 0.347647i \(-0.113019\pi\)
−0.769884 + 0.638184i \(0.779686\pi\)
\(860\) 0 0
\(861\) 4.96252 0.611838i 0.169122 0.0208514i
\(862\) 0 0
\(863\) 48.9836 1.66742 0.833711 0.552202i \(-0.186212\pi\)
0.833711 + 0.552202i \(0.186212\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 23.2358 2.86478i 0.789130 0.0972931i
\(868\) 0 0
\(869\) −5.52420 9.56819i −0.187396 0.324579i
\(870\) 0 0
\(871\) −7.50371 + 12.9968i −0.254253 + 0.440380i
\(872\) 0 0
\(873\) 7.80223 27.3126i 0.264066 0.924391i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.33470 10.9720i −0.213908 0.370499i 0.739027 0.673676i \(-0.235286\pi\)
−0.952934 + 0.303178i \(0.901952\pi\)
\(878\) 0 0
\(879\) −21.3421 28.2925i −0.719852 0.954283i
\(880\) 0 0
\(881\) −26.0894 −0.878974 −0.439487 0.898249i \(-0.644840\pi\)
−0.439487 + 0.898249i \(0.644840\pi\)
\(882\) 0 0
\(883\) −2.69321 −0.0906337 −0.0453169 0.998973i \(-0.514430\pi\)
−0.0453169 + 0.998973i \(0.514430\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −12.2789 21.2676i −0.412284 0.714098i 0.582855 0.812576i \(-0.301936\pi\)
−0.995139 + 0.0984788i \(0.968602\pi\)
\(888\) 0 0
\(889\) −11.2900 + 19.5549i −0.378655 + 0.655849i
\(890\) 0 0
\(891\) −1.63583 + 49.6909i −0.0548025 + 1.66471i
\(892\) 0 0
\(893\) 4.55211 7.88448i 0.152330 0.263844i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 1.74903 4.12618i 0.0583983 0.137769i
\(898\) 0 0
\(899\) −33.6210 −1.12132
\(900\) 0 0
\(901\) −8.11164 −0.270238
\(902\) 0 0
\(903\) 10.0508 + 13.3240i 0.334470 + 0.443395i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 17.1850 29.7653i 0.570619 0.988341i −0.425884 0.904778i \(-0.640037\pi\)
0.996502 0.0835631i \(-0.0266300\pi\)
\(908\) 0 0
\(909\) −11.0984 + 38.8510i −0.368109 + 1.28861i
\(910\) 0 0
\(911\) −18.7752 + 32.5196i −0.622049 + 1.07742i 0.367054 + 0.930199i \(0.380366\pi\)
−0.989104 + 0.147221i \(0.952967\pi\)
\(912\) 0 0
\(913\) −14.5447 25.1921i −0.481359 0.833738i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 44.0117 1.45340
\(918\) 0 0
\(919\) 10.1116 0.333552 0.166776 0.985995i \(-0.446664\pi\)
0.166776 + 0.985995i \(0.446664\pi\)
\(920\) 0 0
\(921\) 31.2909 3.85790i 1.03107 0.127122i
\(922\) 0 0
\(923\) −17.7194 30.6908i −0.583240 1.01020i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 38.7449 + 40.0413i 1.27255 + 1.31513i
\(928\) 0 0
\(929\) −12.4126 + 21.4992i −0.407243 + 0.705366i −0.994580 0.103977i \(-0.966843\pi\)
0.587337 + 0.809343i \(0.300176\pi\)
\(930\) 0 0
\(931\) −1.79001 3.10039i −0.0586652 0.101611i
\(932\) 0 0
\(933\) −3.23790 4.29238i −0.106004 0.140526i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1.56518 −0.0511322 −0.0255661 0.999673i \(-0.508139\pi\)
−0.0255661 + 0.999673i \(0.508139\pi\)
\(938\) 0 0
\(939\) −12.9139 + 30.4655i −0.421428 + 0.994203i
\(940\) 0 0
\(941\) 5.23419 + 9.06588i 0.170630 + 0.295539i 0.938640 0.344898i \(-0.112086\pi\)
−0.768010 + 0.640437i \(0.778753\pi\)
\(942\) 0 0
\(943\) −0.387586 + 0.671318i −0.0126215 + 0.0218611i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.59758 + 2.76709i −0.0519143 + 0.0899182i −0.890815 0.454367i \(-0.849866\pi\)
0.838900 + 0.544285i \(0.183199\pi\)
\(948\) 0 0
\(949\) 14.0968 + 24.4164i 0.457601 + 0.792589i
\(950\) 0 0
\(951\) 3.38486 7.98533i 0.109762 0.258942i
\(952\) 0 0
\(953\) 33.9293 1.09908 0.549540 0.835468i \(-0.314803\pi\)
0.549540 + 0.835468i \(0.314803\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 25.7473 + 34.1323i 0.832291 + 1.10334i
\(958\) 0 0
\(959\) 25.3142 + 43.8455i 0.817438 + 1.41584i
\(960\) 0 0
\(961\) −12.8068 + 22.1820i −0.413122 + 0.715549i
\(962\) 0 0
\(963\) −56.0234 + 14.0277i −1.80533 + 0.452036i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 19.2129 + 33.2778i 0.617846 + 1.07014i 0.989878 + 0.141921i \(0.0453278\pi\)
−0.372032 + 0.928220i \(0.621339\pi\)
\(968\) 0 0
\(969\) 71.4520 8.80944i 2.29537 0.283000i
\(970\) 0 0
\(971\) 29.7326 0.954166 0.477083 0.878858i \(-0.341694\pi\)
0.477083 + 0.878858i \(0.341694\pi\)
\(972\) 0 0
\(973\) 10.9368 0.350617
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −16.4889 28.5596i −0.527526 0.913701i −0.999485 0.0320812i \(-0.989786\pi\)
0.471960 0.881620i \(-0.343547\pi\)
\(978\) 0 0
\(979\) 8.28630 14.3523i 0.264831 0.458701i
\(980\) 0 0
\(981\) −1.52551 + 0.381970i −0.0487056 + 0.0121954i
\(982\) 0 0
\(983\) −3.68872 + 6.38905i −0.117652 + 0.203779i −0.918837 0.394638i \(-0.870870\pi\)
0.801185 + 0.598417i \(0.204203\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −3.45082 4.57464i −0.109841 0.145612i
\(988\) 0 0
\(989\) −2.58744 −0.0822757
\(990\) 0 0
\(991\) −4.51678 −0.143480 −0.0717401 0.997423i \(-0.522855\pi\)
−0.0717401 + 0.997423i \(0.522855\pi\)
\(992\) 0 0
\(993\) 2.35455 5.55469i 0.0747194 0.176273i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −24.3142 + 42.1134i −0.770039 + 1.33375i 0.167502 + 0.985872i \(0.446430\pi\)
−0.937541 + 0.347874i \(0.886904\pi\)
\(998\) 0 0
\(999\) −29.3600 + 11.3208i −0.928909 + 0.358173i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 900.2.i.c.601.3 6
3.2 odd 2 2700.2.i.c.1801.2 6
5.2 odd 4 900.2.s.c.349.3 12
5.3 odd 4 900.2.s.c.349.4 12
5.4 even 2 180.2.i.b.61.1 6
9.2 odd 6 8100.2.a.u.1.2 3
9.4 even 3 inner 900.2.i.c.301.3 6
9.5 odd 6 2700.2.i.c.901.2 6
9.7 even 3 8100.2.a.v.1.2 3
15.2 even 4 2700.2.s.c.2449.4 12
15.8 even 4 2700.2.s.c.2449.3 12
15.14 odd 2 540.2.i.b.181.2 6
20.19 odd 2 720.2.q.k.241.3 6
45.2 even 12 8100.2.d.o.649.3 6
45.4 even 6 180.2.i.b.121.1 yes 6
45.7 odd 12 8100.2.d.p.649.3 6
45.13 odd 12 900.2.s.c.49.3 12
45.14 odd 6 540.2.i.b.361.2 6
45.22 odd 12 900.2.s.c.49.4 12
45.23 even 12 2700.2.s.c.1549.4 12
45.29 odd 6 1620.2.a.j.1.2 3
45.32 even 12 2700.2.s.c.1549.3 12
45.34 even 6 1620.2.a.i.1.2 3
45.38 even 12 8100.2.d.o.649.4 6
45.43 odd 12 8100.2.d.p.649.4 6
60.59 even 2 2160.2.q.i.721.2 6
180.59 even 6 2160.2.q.i.1441.2 6
180.79 odd 6 6480.2.a.bt.1.2 3
180.119 even 6 6480.2.a.bw.1.2 3
180.139 odd 6 720.2.q.k.481.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.b.61.1 6 5.4 even 2
180.2.i.b.121.1 yes 6 45.4 even 6
540.2.i.b.181.2 6 15.14 odd 2
540.2.i.b.361.2 6 45.14 odd 6
720.2.q.k.241.3 6 20.19 odd 2
720.2.q.k.481.3 6 180.139 odd 6
900.2.i.c.301.3 6 9.4 even 3 inner
900.2.i.c.601.3 6 1.1 even 1 trivial
900.2.s.c.49.3 12 45.13 odd 12
900.2.s.c.49.4 12 45.22 odd 12
900.2.s.c.349.3 12 5.2 odd 4
900.2.s.c.349.4 12 5.3 odd 4
1620.2.a.i.1.2 3 45.34 even 6
1620.2.a.j.1.2 3 45.29 odd 6
2160.2.q.i.721.2 6 60.59 even 2
2160.2.q.i.1441.2 6 180.59 even 6
2700.2.i.c.901.2 6 9.5 odd 6
2700.2.i.c.1801.2 6 3.2 odd 2
2700.2.s.c.1549.3 12 45.32 even 12
2700.2.s.c.1549.4 12 45.23 even 12
2700.2.s.c.2449.3 12 15.8 even 4
2700.2.s.c.2449.4 12 15.2 even 4
6480.2.a.bt.1.2 3 180.79 odd 6
6480.2.a.bw.1.2 3 180.119 even 6
8100.2.a.u.1.2 3 9.2 odd 6
8100.2.a.v.1.2 3 9.7 even 3
8100.2.d.o.649.3 6 45.2 even 12
8100.2.d.o.649.4 6 45.38 even 12
8100.2.d.p.649.3 6 45.7 odd 12
8100.2.d.p.649.4 6 45.43 odd 12