Properties

Label 2700.2.s.c.2449.3
Level $2700$
Weight $2$
Character 2700.2449
Analytic conductor $21.560$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2700,2,Mod(1549,2700)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2700, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2700.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{8} - 24x^{7} + 96x^{5} + 304x^{4} + 384x^{3} + 288x^{2} + 144x + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{6} \)
Twist minimal: no (minimal twist has level 180)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2449.3
Root \(0.583700 - 2.17840i\) of defining polynomial
Character \(\chi\) \(=\) 2700.2449
Dual form 2700.2.s.c.1549.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.36788 - 1.36710i) q^{7} +(2.76210 - 4.78410i) q^{11} +(3.05205 - 1.76210i) q^{13} +5.52420i q^{17} -7.52420 q^{19} +(0.635828 - 0.367095i) q^{23} +(2.23419 - 3.86973i) q^{29} +(-3.76210 - 6.51615i) q^{31} +6.05582i q^{37} +(-0.527909 - 0.914365i) q^{41} +(-3.05205 - 1.76210i) q^{43} +(1.04788 + 0.604996i) q^{47} +(0.237900 + 0.412055i) q^{49} +1.46838i q^{53} +(0.734191 + 1.27166i) q^{59} +(-4.52791 + 7.84257i) q^{61} +(-3.68787 + 2.12920i) q^{67} -10.0558 q^{71} -8.00000i q^{73} +(-13.0806 + 7.55211i) q^{77} +(1.00000 - 1.73205i) q^{79} +(4.56032 + 2.63290i) q^{83} -3.00000 q^{89} -9.63583 q^{91} +(-8.19986 - 4.73419i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{19} + 6 q^{29} - 12 q^{31} + 6 q^{41} + 36 q^{49} - 12 q^{59} - 42 q^{61} - 96 q^{71} + 12 q^{79} - 36 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.36788 1.36710i −0.894974 0.516714i −0.0194079 0.999812i \(-0.506178\pi\)
−0.875566 + 0.483098i \(0.839511\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.76210 4.78410i 0.832804 1.44246i −0.0630012 0.998013i \(-0.520067\pi\)
0.895806 0.444446i \(-0.146599\pi\)
\(12\) 0 0
\(13\) 3.05205 1.76210i 0.846485 0.488719i −0.0129781 0.999916i \(-0.504131\pi\)
0.859463 + 0.511197i \(0.170798\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.52420i 1.33982i 0.742444 + 0.669908i \(0.233666\pi\)
−0.742444 + 0.669908i \(0.766334\pi\)
\(18\) 0 0
\(19\) −7.52420 −1.72617 −0.863085 0.505059i \(-0.831471\pi\)
−0.863085 + 0.505059i \(0.831471\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.635828 0.367095i 0.132579 0.0765447i −0.432243 0.901757i \(-0.642278\pi\)
0.564823 + 0.825212i \(0.308945\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.23419 3.86973i 0.414879 0.718591i −0.580537 0.814234i \(-0.697157\pi\)
0.995416 + 0.0956427i \(0.0304906\pi\)
\(30\) 0 0
\(31\) −3.76210 6.51615i −0.675693 1.17033i −0.976266 0.216576i \(-0.930511\pi\)
0.300573 0.953759i \(-0.402822\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.05582i 0.995570i 0.867300 + 0.497785i \(0.165853\pi\)
−0.867300 + 0.497785i \(0.834147\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.527909 0.914365i −0.0824455 0.142800i 0.821854 0.569698i \(-0.192940\pi\)
−0.904300 + 0.426898i \(0.859606\pi\)
\(42\) 0 0
\(43\) −3.05205 1.76210i −0.465433 0.268718i 0.248893 0.968531i \(-0.419933\pi\)
−0.714326 + 0.699813i \(0.753267\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1.04788 + 0.604996i 0.152849 + 0.0882477i 0.574474 0.818523i \(-0.305207\pi\)
−0.421625 + 0.906771i \(0.638540\pi\)
\(48\) 0 0
\(49\) 0.237900 + 0.412055i 0.0339857 + 0.0588650i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.46838i 0.201698i 0.994902 + 0.100849i \(0.0321559\pi\)
−0.994902 + 0.100849i \(0.967844\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.734191 + 1.27166i 0.0955835 + 0.165556i 0.909852 0.414933i \(-0.136195\pi\)
−0.814268 + 0.580488i \(0.802862\pi\)
\(60\) 0 0
\(61\) −4.52791 + 7.84257i −0.579739 + 1.00414i 0.415770 + 0.909470i \(0.363512\pi\)
−0.995509 + 0.0946680i \(0.969821\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −3.68787 + 2.12920i −0.450546 + 0.260123i −0.708061 0.706152i \(-0.750430\pi\)
0.257515 + 0.966274i \(0.417096\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.0558 −1.19341 −0.596703 0.802462i \(-0.703523\pi\)
−0.596703 + 0.802462i \(0.703523\pi\)
\(72\) 0 0
\(73\) 8.00000i 0.936329i −0.883641 0.468165i \(-0.844915\pi\)
0.883641 0.468165i \(-0.155085\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −13.0806 + 7.55211i −1.49068 + 0.860643i
\(78\) 0 0
\(79\) 1.00000 1.73205i 0.112509 0.194871i −0.804272 0.594261i \(-0.797445\pi\)
0.916781 + 0.399390i \(0.130778\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.56032 + 2.63290i 0.500561 + 0.288999i 0.728945 0.684572i \(-0.240011\pi\)
−0.228384 + 0.973571i \(0.573344\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) −9.63583 −1.01011
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.19986 4.73419i −0.832570 0.480684i 0.0221621 0.999754i \(-0.492945\pi\)
−0.854732 + 0.519070i \(0.826278\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.73419 11.6640i 0.670077 1.16061i −0.307805 0.951450i \(-0.599594\pi\)
0.977882 0.209158i \(-0.0670723\pi\)
\(102\) 0 0
\(103\) −16.0843 + 9.28630i −1.58484 + 0.915006i −0.590699 + 0.806892i \(0.701148\pi\)
−0.994138 + 0.108114i \(0.965519\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.2510i 1.86106i −0.366213 0.930531i \(-0.619346\pi\)
0.366213 0.930531i \(-0.380654\pi\)
\(108\) 0 0
\(109\) 0.524200 0.0502092 0.0251046 0.999685i \(-0.492008\pi\)
0.0251046 + 0.999685i \(0.492008\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.46781 + 3.73419i −0.608440 + 0.351283i −0.772355 0.635191i \(-0.780921\pi\)
0.163915 + 0.986475i \(0.447588\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.55211 13.0806i 0.692301 1.19910i
\(120\) 0 0
\(121\) −9.75839 16.9020i −0.887126 1.53655i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 8.25839i 0.732814i 0.930455 + 0.366407i \(0.119412\pi\)
−0.930455 + 0.366407i \(0.880588\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −8.04840 13.9402i −0.703192 1.21796i −0.967340 0.253482i \(-0.918424\pi\)
0.264148 0.964482i \(-0.414909\pi\)
\(132\) 0 0
\(133\) 17.8164 + 10.2863i 1.54488 + 0.891935i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −16.0360 9.25839i −1.37005 0.790998i −0.379115 0.925350i \(-0.623771\pi\)
−0.990934 + 0.134352i \(0.957105\pi\)
\(138\) 0 0
\(139\) −2.00000 3.46410i −0.169638 0.293821i 0.768655 0.639664i \(-0.220926\pi\)
−0.938293 + 0.345843i \(0.887593\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 19.4684i 1.62803i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −6.78630 11.7542i −0.555955 0.962943i −0.997829 0.0658653i \(-0.979019\pi\)
0.441873 0.897078i \(-0.354314\pi\)
\(150\) 0 0
\(151\) 6.23048 10.7915i 0.507029 0.878201i −0.492937 0.870065i \(-0.664077\pi\)
0.999967 0.00813598i \(-0.00258979\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −1.36834 + 0.790009i −0.109205 + 0.0630496i −0.553608 0.832778i \(-0.686749\pi\)
0.444403 + 0.895827i \(0.353416\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.00742 −0.158207
\(162\) 0 0
\(163\) 4.47580i 0.350572i 0.984518 + 0.175286i \(0.0560850\pi\)
−0.984518 + 0.175286i \(0.943915\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.5406 + 8.39500i −1.12518 + 0.649625i −0.942719 0.333588i \(-0.891741\pi\)
−0.182464 + 0.983212i \(0.558407\pi\)
\(168\) 0 0
\(169\) −0.290009 + 0.502310i −0.0223084 + 0.0386392i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 19.9605 + 11.5242i 1.51757 + 0.876169i 0.999787 + 0.0206561i \(0.00657550\pi\)
0.517782 + 0.855513i \(0.326758\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.9926 0.971111 0.485556 0.874206i \(-0.338617\pi\)
0.485556 + 0.874206i \(0.338617\pi\)
\(180\) 0 0
\(181\) −24.5652 −1.82592 −0.912958 0.408054i \(-0.866207\pi\)
−0.912958 + 0.408054i \(0.866207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 26.4283 + 15.2584i 1.93263 + 1.11580i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.55211 13.0806i 0.546451 0.946482i −0.452063 0.891986i \(-0.649312\pi\)
0.998514 0.0544954i \(-0.0173550\pi\)
\(192\) 0 0
\(193\) 12.6202 7.28630i 0.908425 0.524479i 0.0285008 0.999594i \(-0.490927\pi\)
0.879924 + 0.475114i \(0.157593\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.53162i 0.322864i 0.986884 + 0.161432i \(0.0516113\pi\)
−0.986884 + 0.161432i \(0.948389\pi\)
\(198\) 0 0
\(199\) 7.41256 0.525463 0.262731 0.964869i \(-0.415377\pi\)
0.262731 + 0.964869i \(0.415377\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −10.5806 + 6.10870i −0.742612 + 0.428747i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −20.7826 + 35.9965i −1.43756 + 2.48993i
\(210\) 0 0
\(211\) 6.70628 + 11.6156i 0.461680 + 0.799652i 0.999045 0.0436972i \(-0.0139137\pi\)
−0.537365 + 0.843350i \(0.680580\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 20.5726i 1.39656i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.73419 + 16.8601i 0.654793 + 1.13413i
\(222\) 0 0
\(223\) −7.61237 4.39500i −0.509762 0.294311i 0.222974 0.974824i \(-0.428424\pi\)
−0.732736 + 0.680513i \(0.761757\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.51244 + 2.02791i 0.233129 + 0.134597i 0.612015 0.790846i \(-0.290359\pi\)
−0.378886 + 0.925443i \(0.623693\pi\)
\(228\) 0 0
\(229\) 1.29001 + 2.23436i 0.0852462 + 0.147651i 0.905496 0.424355i \(-0.139499\pi\)
−0.820250 + 0.572005i \(0.806166\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.94418i 0.127368i −0.997970 0.0636838i \(-0.979715\pi\)
0.997970 0.0636838i \(-0.0202849\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.73419 6.46781i −0.241545 0.418368i 0.719610 0.694379i \(-0.244321\pi\)
−0.961154 + 0.276011i \(0.910987\pi\)
\(240\) 0 0
\(241\) −1.20628 + 2.08934i −0.0777035 + 0.134586i −0.902259 0.431195i \(-0.858092\pi\)
0.824555 + 0.565781i \(0.191425\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −22.9642 + 13.2584i −1.46118 + 0.843611i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.99258 0.441368 0.220684 0.975345i \(-0.429171\pi\)
0.220684 + 0.975345i \(0.429171\pi\)
\(252\) 0 0
\(253\) 4.05582i 0.254987i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.3325 14.0484i 1.51782 0.876315i 0.518042 0.855355i \(-0.326661\pi\)
0.999780 0.0209598i \(-0.00667221\pi\)
\(258\) 0 0
\(259\) 8.27888 14.3394i 0.514425 0.891010i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.61283 3.81792i −0.407764 0.235423i 0.282064 0.959395i \(-0.408981\pi\)
−0.689829 + 0.723973i \(0.742314\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.6210 −1.13534 −0.567671 0.823255i \(-0.692155\pi\)
−0.567671 + 0.823255i \(0.692155\pi\)
\(270\) 0 0
\(271\) 6.57260 0.399257 0.199628 0.979872i \(-0.436026\pi\)
0.199628 + 0.979872i \(0.436026\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −1.32000 0.762100i −0.0793108 0.0457901i 0.459820 0.888012i \(-0.347914\pi\)
−0.539131 + 0.842222i \(0.681247\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.26210 12.5783i 0.433221 0.750360i −0.563928 0.825824i \(-0.690710\pi\)
0.997149 + 0.0754640i \(0.0240438\pi\)
\(282\) 0 0
\(283\) 14.4922 8.36710i 0.861474 0.497372i −0.00303167 0.999995i \(-0.500965\pi\)
0.864506 + 0.502623i \(0.167632\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.88681i 0.170403i
\(288\) 0 0
\(289\) −13.5168 −0.795105
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −17.7197 + 10.2305i −1.03520 + 0.597671i −0.918469 0.395493i \(-0.870574\pi\)
−0.116728 + 0.993164i \(0.537240\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.29372 2.24078i 0.0748176 0.129588i
\(300\) 0 0
\(301\) 4.81792 + 8.34488i 0.277700 + 0.480991i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 18.2026i 1.03888i −0.854508 0.519438i \(-0.826141\pi\)
0.854508 0.519438i \(-0.173859\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.55211 + 2.68833i 0.0880120 + 0.152441i 0.906671 0.421839i \(-0.138615\pi\)
−0.818659 + 0.574280i \(0.805282\pi\)
\(312\) 0 0
\(313\) −16.5447 9.55211i −0.935164 0.539917i −0.0467228 0.998908i \(-0.514878\pi\)
−0.888441 + 0.458991i \(0.848211\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.33655 + 2.50371i 0.243565 + 0.140622i 0.616814 0.787109i \(-0.288423\pi\)
−0.373249 + 0.927731i \(0.621756\pi\)
\(318\) 0 0
\(319\) −12.3421 21.3772i −0.691026 1.19689i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 41.5652i 2.31275i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.65417 2.86511i −0.0911976 0.157959i
\(330\) 0 0
\(331\) 1.74161 3.01656i 0.0957275 0.165805i −0.814184 0.580606i \(-0.802816\pi\)
0.909912 + 0.414801i \(0.136149\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 10.0286 5.79001i 0.546292 0.315402i −0.201333 0.979523i \(-0.564527\pi\)
0.747625 + 0.664121i \(0.231194\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −41.5652 −2.25088
\(342\) 0 0
\(343\) 17.8384i 0.963183i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −22.9159 + 13.2305i −1.23019 + 0.710249i −0.967069 0.254514i \(-0.918085\pi\)
−0.263119 + 0.964763i \(0.584751\pi\)
\(348\) 0 0
\(349\) −13.0168 + 22.5457i −0.696772 + 1.20685i 0.272807 + 0.962069i \(0.412048\pi\)
−0.969580 + 0.244776i \(0.921285\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 20.7846 + 12.0000i 1.10625 + 0.638696i 0.937856 0.347024i \(-0.112808\pi\)
0.168397 + 0.985719i \(0.446141\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.04098 0.318831 0.159415 0.987212i \(-0.449039\pi\)
0.159415 + 0.987212i \(0.449039\pi\)
\(360\) 0 0
\(361\) 37.6136 1.97966
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −19.4518 11.2305i −1.01537 0.586226i −0.102613 0.994721i \(-0.532720\pi\)
−0.912761 + 0.408495i \(0.866054\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2.00742 3.47695i 0.104220 0.180514i
\(372\) 0 0
\(373\) 2.19245 1.26581i 0.113521 0.0655411i −0.442165 0.896934i \(-0.645789\pi\)
0.555685 + 0.831393i \(0.312456\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.7475i 0.811036i
\(378\) 0 0
\(379\) 21.0484 1.08118 0.540592 0.841285i \(-0.318200\pi\)
0.540592 + 0.841285i \(0.318200\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −6.61283 + 3.81792i −0.337900 + 0.195086i −0.659343 0.751842i \(-0.729165\pi\)
0.321443 + 0.946929i \(0.395832\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 9.46467 16.3933i 0.479878 0.831173i −0.519856 0.854254i \(-0.674014\pi\)
0.999734 + 0.0230811i \(0.00734760\pi\)
\(390\) 0 0
\(391\) 2.02791 + 3.51244i 0.102556 + 0.177632i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 29.1600i 1.46350i −0.681573 0.731750i \(-0.738704\pi\)
0.681573 0.731750i \(-0.261296\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.3142 + 28.2570i 0.814693 + 1.41109i 0.909548 + 0.415598i \(0.136428\pi\)
−0.0948557 + 0.995491i \(0.530239\pi\)
\(402\) 0 0
\(403\) −22.9642 13.2584i −1.14393 0.660447i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 28.9716 + 16.7268i 1.43607 + 0.829115i
\(408\) 0 0
\(409\) 16.1042 + 27.8933i 0.796302 + 1.37924i 0.922009 + 0.387169i \(0.126547\pi\)
−0.125707 + 0.992067i \(0.540120\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 4.01484i 0.197557i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.7063 + 18.5438i 0.523036 + 0.905925i 0.999641 + 0.0268073i \(0.00853405\pi\)
−0.476605 + 0.879118i \(0.658133\pi\)
\(420\) 0 0
\(421\) 0.944182 1.63537i 0.0460166 0.0797031i −0.842100 0.539322i \(-0.818681\pi\)
0.888116 + 0.459619i \(0.152014\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 21.4431 12.3802i 1.03770 0.599118i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.11164 0.101714 0.0508569 0.998706i \(-0.483805\pi\)
0.0508569 + 0.998706i \(0.483805\pi\)
\(432\) 0 0
\(433\) 9.52420i 0.457704i 0.973461 + 0.228852i \(0.0734972\pi\)
−0.973461 + 0.228852i \(0.926503\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.78410 + 2.76210i −0.228854 + 0.132129i
\(438\) 0 0
\(439\) −7.20257 + 12.4752i −0.343760 + 0.595410i −0.985128 0.171824i \(-0.945034\pi\)
0.641368 + 0.767234i \(0.278367\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.6363 + 9.60500i 0.790416 + 0.456347i 0.840109 0.542417i \(-0.182491\pi\)
−0.0496927 + 0.998765i \(0.515824\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 33.5800 1.58474 0.792369 0.610041i \(-0.208847\pi\)
0.792369 + 0.610041i \(0.208847\pi\)
\(450\) 0 0
\(451\) −5.83255 −0.274644
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.87707 1.08373i −0.0878056 0.0506946i 0.455454 0.890259i \(-0.349477\pi\)
−0.543260 + 0.839565i \(0.682810\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −12.8700 + 22.2915i −0.599417 + 1.03822i 0.393490 + 0.919329i \(0.371267\pi\)
−0.992907 + 0.118892i \(0.962066\pi\)
\(462\) 0 0
\(463\) −10.4406 + 6.02791i −0.485218 + 0.280141i −0.722588 0.691279i \(-0.757048\pi\)
0.237371 + 0.971419i \(0.423714\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14.4610i 0.669174i 0.942365 + 0.334587i \(0.108597\pi\)
−0.942365 + 0.334587i \(0.891403\pi\)
\(468\) 0 0
\(469\) 11.6433 0.537635
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −16.8601 + 9.73419i −0.775229 + 0.447579i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.99258 17.3077i 0.456573 0.790807i −0.542204 0.840247i \(-0.682410\pi\)
0.998777 + 0.0494395i \(0.0157435\pi\)
\(480\) 0 0
\(481\) 10.6710 + 18.4826i 0.486554 + 0.842736i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 18.1526i 0.822574i −0.911506 0.411287i \(-0.865079\pi\)
0.911506 0.411287i \(-0.134921\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.7900 + 34.2773i 0.893111 + 1.54691i 0.836126 + 0.548538i \(0.184815\pi\)
0.0569849 + 0.998375i \(0.481851\pi\)
\(492\) 0 0
\(493\) 21.3772 + 12.3421i 0.962779 + 0.555861i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 23.8110 + 13.7473i 1.06807 + 0.616649i
\(498\) 0 0
\(499\) −21.3142 36.9173i −0.954155 1.65264i −0.736290 0.676666i \(-0.763424\pi\)
−0.217865 0.975979i \(-0.569909\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 21.1952i 0.945045i 0.881319 + 0.472523i \(0.156657\pi\)
−0.881319 + 0.472523i \(0.843343\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 11.0168 + 19.0816i 0.488310 + 0.845778i 0.999910 0.0134460i \(-0.00428012\pi\)
−0.511599 + 0.859224i \(0.670947\pi\)
\(510\) 0 0
\(511\) −10.9368 + 18.9430i −0.483814 + 0.837990i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5.78872 3.34212i 0.254587 0.146986i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.40515 −0.0615606 −0.0307803 0.999526i \(-0.509799\pi\)
−0.0307803 + 0.999526i \(0.509799\pi\)
\(522\) 0 0
\(523\) 11.8532i 0.518306i 0.965836 + 0.259153i \(0.0834434\pi\)
−0.965836 + 0.259153i \(0.916557\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 35.9965 20.7826i 1.56803 0.905304i
\(528\) 0 0
\(529\) −11.2305 + 19.4518i −0.488282 + 0.845729i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −3.22240 1.86046i −0.139578 0.0805853i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.62842 0.113214
\(540\) 0 0
\(541\) −8.98516 −0.386302 −0.193151 0.981169i \(-0.561871\pi\)
−0.193151 + 0.981169i \(0.561871\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 5.37159 + 3.10129i 0.229672 + 0.132601i 0.610421 0.792077i \(-0.291000\pi\)
−0.380749 + 0.924679i \(0.624334\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −16.8105 + 29.1166i −0.716151 + 1.24041i
\(552\) 0 0
\(553\) −4.73576 + 2.73419i −0.201385 + 0.116270i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.00000i 0.254228i −0.991888 0.127114i \(-0.959429\pi\)
0.991888 0.127114i \(-0.0405714\pi\)
\(558\) 0 0
\(559\) −12.4200 −0.525309
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −3.70072 + 2.13661i −0.155967 + 0.0900475i −0.575952 0.817483i \(-0.695369\pi\)
0.419985 + 0.907531i \(0.362035\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.04840 + 13.9402i −0.337406 + 0.584405i −0.983944 0.178477i \(-0.942883\pi\)
0.646538 + 0.762882i \(0.276216\pi\)
\(570\) 0 0
\(571\) −5.46838 9.47152i −0.228845 0.396371i 0.728621 0.684917i \(-0.240161\pi\)
−0.957466 + 0.288546i \(0.906828\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 37.6620i 1.56789i −0.620831 0.783944i \(-0.713205\pi\)
0.620831 0.783944i \(-0.286795\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −7.19886 12.4688i −0.298659 0.517293i
\(582\) 0 0
\(583\) 7.02488 + 4.05582i 0.290941 + 0.167975i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 18.8771 + 10.8987i 0.779142 + 0.449838i 0.836126 0.548537i \(-0.184815\pi\)
−0.0569839 + 0.998375i \(0.518148\pi\)
\(588\) 0 0
\(589\) 28.3068 + 49.0288i 1.16636 + 2.02020i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.2643i 1.16067i 0.814377 + 0.580337i \(0.197079\pi\)
−0.814377 + 0.580337i \(0.802921\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −7.05582 12.2210i −0.288293 0.499338i 0.685109 0.728440i \(-0.259754\pi\)
−0.973402 + 0.229102i \(0.926421\pi\)
\(600\) 0 0
\(601\) 14.1042 24.4292i 0.575323 0.996489i −0.420683 0.907207i \(-0.638210\pi\)
0.996006 0.0892812i \(-0.0284570\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 24.5692 14.1850i 0.997232 0.575752i 0.0898036 0.995959i \(-0.471376\pi\)
0.907428 + 0.420208i \(0.138043\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.26425 0.172513
\(612\) 0 0
\(613\) 24.5726i 0.992478i −0.868186 0.496239i \(-0.834714\pi\)
0.868186 0.496239i \(-0.165286\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 23.0609 13.3142i 0.928396 0.536010i 0.0420923 0.999114i \(-0.486598\pi\)
0.886304 + 0.463104i \(0.153264\pi\)
\(618\) 0 0
\(619\) 15.2863 26.4766i 0.614408 1.06419i −0.376080 0.926587i \(-0.622728\pi\)
0.990488 0.137599i \(-0.0439385\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.10364 + 4.10129i 0.284601 + 0.164315i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −33.4535 −1.33388
\(630\) 0 0
\(631\) 27.4684 1.09350 0.546750 0.837296i \(-0.315865\pi\)
0.546750 + 0.837296i \(0.315865\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.45216 + 0.838408i 0.0575369 + 0.0332189i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.26952 10.8591i 0.247631 0.428910i −0.715237 0.698882i \(-0.753681\pi\)
0.962868 + 0.269972i \(0.0870146\pi\)
\(642\) 0 0
\(643\) 8.88403 5.12920i 0.350352 0.202276i −0.314488 0.949261i \(-0.601833\pi\)
0.664840 + 0.746986i \(0.268500\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.7900i 0.660083i −0.943966 0.330042i \(-0.892937\pi\)
0.943966 0.330042i \(-0.107063\pi\)
\(648\) 0 0
\(649\) 8.11164 0.318410
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 43.3239 25.0131i 1.69540 0.978837i 0.745377 0.666643i \(-0.232269\pi\)
0.950018 0.312194i \(-0.101064\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2.78259 + 4.81959i −0.108394 + 0.187744i −0.915120 0.403182i \(-0.867904\pi\)
0.806726 + 0.590926i \(0.201238\pi\)
\(660\) 0 0
\(661\) 19.6284 + 33.9974i 0.763457 + 1.32235i 0.941059 + 0.338244i \(0.109833\pi\)
−0.177602 + 0.984102i \(0.556834\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.28065i 0.127027i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 25.0131 + 43.3239i 0.965619 + 1.67250i
\(672\) 0 0
\(673\) 13.8081 + 7.97209i 0.532262 + 0.307302i 0.741937 0.670470i \(-0.233907\pi\)
−0.209675 + 0.977771i \(0.567241\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.0963 10.4479i −0.695497 0.401545i 0.110171 0.993913i \(-0.464860\pi\)
−0.805668 + 0.592368i \(0.798193\pi\)
\(678\) 0 0
\(679\) 12.9442 + 22.4200i 0.496752 + 0.860400i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 19.6358i 0.751344i −0.926753 0.375672i \(-0.877412\pi\)
0.926753 0.375672i \(-0.122588\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.58744 + 4.48157i 0.0985734 + 0.170734i
\(690\) 0 0
\(691\) 21.5726 37.3648i 0.820660 1.42143i −0.0845309 0.996421i \(-0.526939\pi\)
0.905191 0.425005i \(-0.139728\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5.05113 2.91627i 0.191325 0.110462i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −27.0410 −1.02132 −0.510662 0.859782i \(-0.670600\pi\)
−0.510662 + 0.859782i \(0.670600\pi\)
\(702\) 0 0
\(703\) 45.5652i 1.71852i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31.8915 + 18.4126i −1.19940 + 0.692476i
\(708\) 0 0
\(709\) 21.7510 37.6738i 0.816875 1.41487i −0.0910989 0.995842i \(-0.529038\pi\)
0.907974 0.419027i \(-0.137629\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.78410 2.76210i −0.179166 0.103441i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.40515 −0.164284 −0.0821421 0.996621i \(-0.526176\pi\)
−0.0821421 + 0.996621i \(0.526176\pi\)
\(720\) 0 0
\(721\) 50.7810 1.89118
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −10.8094 6.24083i −0.400900 0.231460i 0.285972 0.958238i \(-0.407683\pi\)
−0.686872 + 0.726778i \(0.741017\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 9.73419 16.8601i 0.360032 0.623594i
\(732\) 0 0
\(733\) −33.8041 + 19.5168i −1.24858 + 0.720869i −0.970826 0.239783i \(-0.922924\pi\)
−0.277755 + 0.960652i \(0.589590\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.5242i 0.866525i
\(738\) 0 0
\(739\) 12.2935 0.452224 0.226112 0.974101i \(-0.427398\pi\)
0.226112 + 0.974101i \(0.427398\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −35.3607 + 20.4155i −1.29726 + 0.748972i −0.979930 0.199344i \(-0.936119\pi\)
−0.317328 + 0.948316i \(0.602786\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −26.3179 + 45.5840i −0.961636 + 1.66560i
\(750\) 0 0
\(751\) 7.54469 + 13.0678i 0.275310 + 0.476850i 0.970213 0.242253i \(-0.0778863\pi\)
−0.694904 + 0.719103i \(0.744553\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 34.4610i 1.25251i 0.779620 + 0.626253i \(0.215412\pi\)
−0.779620 + 0.626253i \(0.784588\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −4.17837 7.23716i −0.151466 0.262347i 0.780301 0.625405i \(-0.215066\pi\)
−0.931767 + 0.363058i \(0.881733\pi\)
\(762\) 0 0
\(763\) −1.24124 0.716631i −0.0449359 0.0259438i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.48157 + 2.58744i 0.161820 + 0.0934269i
\(768\) 0 0
\(769\) −9.17837 15.8974i −0.330981 0.573275i 0.651724 0.758456i \(-0.274046\pi\)
−0.982704 + 0.185181i \(0.940713\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.0968i 0.363157i −0.983376 0.181578i \(-0.941879\pi\)
0.983376 0.181578i \(-0.0581206\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.97209 + 6.87986i 0.142315 + 0.246497i
\(780\) 0 0
\(781\) −27.7752 + 48.1080i −0.993874 + 1.72144i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −12.6202 + 7.28630i −0.449863 + 0.259729i −0.707772 0.706441i \(-0.750300\pi\)
0.257909 + 0.966169i \(0.416966\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 20.4200 0.726051
\(792\) 0 0
\(793\) 31.9145i 1.13332i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.79324 1.03533i 0.0635198 0.0366732i −0.467904 0.883779i \(-0.654991\pi\)
0.531424 + 0.847106i \(0.321657\pi\)
\(798\) 0 0
\(799\) −3.34212 + 5.78872i −0.118236 + 0.204790i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −38.2728 22.0968i −1.35062 0.779779i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.37158 0.118539 0.0592693 0.998242i \(-0.481123\pi\)
0.0592693 + 0.998242i \(0.481123\pi\)
\(810\) 0 0
\(811\) −12.9368 −0.454271 −0.227136 0.973863i \(-0.572936\pi\)
−0.227136 + 0.973863i \(0.572936\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 22.9642 + 13.2584i 0.803416 + 0.463852i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.9963 + 19.0461i −0.383773 + 0.664715i −0.991598 0.129356i \(-0.958709\pi\)
0.607825 + 0.794071i \(0.292042\pi\)
\(822\) 0 0
\(823\) −12.9052 + 7.45082i −0.449847 + 0.259719i −0.707766 0.706447i \(-0.750297\pi\)
0.257919 + 0.966167i \(0.416963\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 56.5785i 1.96743i −0.179747 0.983713i \(-0.557528\pi\)
0.179747 0.983713i \(-0.442472\pi\)
\(828\) 0 0
\(829\) −27.0558 −0.939687 −0.469844 0.882750i \(-0.655690\pi\)
−0.469844 + 0.882750i \(0.655690\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.27628 + 1.31421i −0.0788683 + 0.0455346i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 17.2863 29.9407i 0.596789 1.03367i −0.396502 0.918034i \(-0.629776\pi\)
0.993292 0.115636i \(-0.0368905\pi\)
\(840\) 0 0
\(841\) 4.51678 + 7.82329i 0.155751 + 0.269769i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 53.3626i 1.83356i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.22306 + 3.85046i 0.0762056 + 0.131992i
\(852\) 0 0
\(853\) 14.7032 + 8.48887i 0.503427 + 0.290653i 0.730127 0.683311i \(-0.239461\pi\)
−0.226701 + 0.973964i \(0.572794\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.95537 + 1.70628i 0.100953 + 0.0582855i 0.549627 0.835410i \(-0.314770\pi\)
−0.448673 + 0.893696i \(0.648103\pi\)
\(858\) 0 0
\(859\) −4.91627 8.51524i −0.167741 0.290536i 0.769884 0.638184i \(-0.220314\pi\)
−0.937625 + 0.347647i \(0.886981\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 48.9836i 1.66742i −0.552202 0.833711i \(-0.686212\pi\)
0.552202 0.833711i \(-0.313788\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.52420 9.56819i −0.187396 0.324579i
\(870\) 0 0
\(871\) −7.50371 + 12.9968i −0.254253 + 0.440380i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −10.9720 + 6.33470i −0.370499 + 0.213908i −0.673676 0.739027i \(-0.735286\pi\)
0.303178 + 0.952934i \(0.401952\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 26.0894 0.878974 0.439487 0.898249i \(-0.355160\pi\)
0.439487 + 0.898249i \(0.355160\pi\)
\(882\) 0 0
\(883\) 2.69321i 0.0906337i −0.998973 0.0453169i \(-0.985570\pi\)
0.998973 0.0453169i \(-0.0144297\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 21.2676 12.2789i 0.714098 0.412284i −0.0984788 0.995139i \(-0.531398\pi\)
0.812576 + 0.582855i \(0.198064\pi\)
\(888\) 0 0
\(889\) 11.2900 19.5549i 0.378655 0.655849i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.88448 4.55211i −0.263844 0.152330i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −33.6210 −1.12132
\(900\) 0 0
\(901\) −8.11164 −0.270238
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −29.7653 17.1850i −0.988341 0.570619i −0.0835631 0.996502i \(-0.526630\pi\)
−0.904778 + 0.425884i \(0.859963\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 18.7752 32.5196i 0.622049 1.07742i −0.367054 0.930199i \(-0.619634\pi\)
0.989104 0.147221i \(-0.0470330\pi\)
\(912\) 0 0
\(913\) 25.1921 14.5447i 0.833738 0.481359i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 44.0117i 1.45340i
\(918\) 0 0
\(919\) −10.1116 −0.333552 −0.166776 0.985995i \(-0.553336\pi\)
−0.166776 + 0.985995i \(0.553336\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −30.6908 + 17.7194i −1.01020 + 0.583240i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −12.4126 + 21.4992i −0.407243 + 0.705366i −0.994580 0.103977i \(-0.966843\pi\)
0.587337 + 0.809343i \(0.300176\pi\)
\(930\) 0 0
\(931\) −1.79001 3.10039i −0.0586652 0.101611i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.56518i 0.0511322i 0.999673 + 0.0255661i \(0.00813883\pi\)
−0.999673 + 0.0255661i \(0.991861\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −5.23419 9.06588i −0.170630 0.295539i 0.768010 0.640437i \(-0.221247\pi\)
−0.938640 + 0.344898i \(0.887914\pi\)
\(942\) 0 0
\(943\) −0.671318 0.387586i −0.0218611 0.0126215i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.76709 1.59758i −0.0899182 0.0519143i 0.454367 0.890815i \(-0.349866\pi\)
−0.544285 + 0.838900i \(0.683199\pi\)
\(948\) 0 0
\(949\) −14.0968 24.4164i −0.457601 0.792589i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33.9293i 1.09908i −0.835468 0.549540i \(-0.814803\pi\)
0.835468 0.549540i \(-0.185197\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 25.3142 + 43.8455i 0.817438 + 1.41584i
\(960\) 0 0
\(961\) −12.8068 + 22.1820i −0.413122 + 0.715549i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 33.2778 19.2129i 1.07014 0.617846i 0.141921 0.989878i \(-0.454672\pi\)
0.928220 + 0.372032i \(0.121339\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −29.7326 −0.954166 −0.477083 0.878858i \(-0.658306\pi\)
−0.477083 + 0.878858i \(0.658306\pi\)
\(972\) 0 0
\(973\) 10.9368i 0.350617i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 28.5596 16.4889i 0.913701 0.527526i 0.0320812 0.999485i \(-0.489786\pi\)
0.881620 + 0.471960i \(0.156453\pi\)
\(978\) 0 0
\(979\) −8.28630 + 14.3523i −0.264831 + 0.458701i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.38905 + 3.68872i 0.203779 + 0.117652i 0.598417 0.801185i \(-0.295797\pi\)
−0.394638 + 0.918837i \(0.629130\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.58744 −0.0822757
\(990\) 0 0
\(991\) −4.51678 −0.143480 −0.0717401 0.997423i \(-0.522855\pi\)
−0.0717401 + 0.997423i \(0.522855\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 42.1134 + 24.3142i 1.33375 + 0.770039i 0.985872 0.167502i \(-0.0535702\pi\)
0.347874 + 0.937541i \(0.386904\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.s.c.2449.3 12
3.2 odd 2 900.2.s.c.349.4 12
5.2 odd 4 2700.2.i.c.1801.2 6
5.3 odd 4 540.2.i.b.181.2 6
5.4 even 2 inner 2700.2.s.c.2449.4 12
9.2 odd 6 8100.2.d.p.649.4 6
9.4 even 3 inner 2700.2.s.c.1549.4 12
9.5 odd 6 900.2.s.c.49.3 12
9.7 even 3 8100.2.d.o.649.4 6
15.2 even 4 900.2.i.c.601.3 6
15.8 even 4 180.2.i.b.61.1 6
15.14 odd 2 900.2.s.c.349.3 12
20.3 even 4 2160.2.q.i.721.2 6
45.2 even 12 8100.2.a.v.1.2 3
45.4 even 6 inner 2700.2.s.c.1549.3 12
45.7 odd 12 8100.2.a.u.1.2 3
45.13 odd 12 540.2.i.b.361.2 6
45.14 odd 6 900.2.s.c.49.4 12
45.22 odd 12 2700.2.i.c.901.2 6
45.23 even 12 180.2.i.b.121.1 yes 6
45.29 odd 6 8100.2.d.p.649.3 6
45.32 even 12 900.2.i.c.301.3 6
45.34 even 6 8100.2.d.o.649.3 6
45.38 even 12 1620.2.a.i.1.2 3
45.43 odd 12 1620.2.a.j.1.2 3
60.23 odd 4 720.2.q.k.241.3 6
180.23 odd 12 720.2.q.k.481.3 6
180.43 even 12 6480.2.a.bw.1.2 3
180.83 odd 12 6480.2.a.bt.1.2 3
180.103 even 12 2160.2.q.i.1441.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
180.2.i.b.61.1 6 15.8 even 4
180.2.i.b.121.1 yes 6 45.23 even 12
540.2.i.b.181.2 6 5.3 odd 4
540.2.i.b.361.2 6 45.13 odd 12
720.2.q.k.241.3 6 60.23 odd 4
720.2.q.k.481.3 6 180.23 odd 12
900.2.i.c.301.3 6 45.32 even 12
900.2.i.c.601.3 6 15.2 even 4
900.2.s.c.49.3 12 9.5 odd 6
900.2.s.c.49.4 12 45.14 odd 6
900.2.s.c.349.3 12 15.14 odd 2
900.2.s.c.349.4 12 3.2 odd 2
1620.2.a.i.1.2 3 45.38 even 12
1620.2.a.j.1.2 3 45.43 odd 12
2160.2.q.i.721.2 6 20.3 even 4
2160.2.q.i.1441.2 6 180.103 even 12
2700.2.i.c.901.2 6 45.22 odd 12
2700.2.i.c.1801.2 6 5.2 odd 4
2700.2.s.c.1549.3 12 45.4 even 6 inner
2700.2.s.c.1549.4 12 9.4 even 3 inner
2700.2.s.c.2449.3 12 1.1 even 1 trivial
2700.2.s.c.2449.4 12 5.4 even 2 inner
6480.2.a.bt.1.2 3 180.83 odd 12
6480.2.a.bw.1.2 3 180.43 even 12
8100.2.a.u.1.2 3 45.7 odd 12
8100.2.a.v.1.2 3 45.2 even 12
8100.2.d.o.649.3 6 45.34 even 6
8100.2.d.o.649.4 6 9.7 even 3
8100.2.d.p.649.3 6 45.29 odd 6
8100.2.d.p.649.4 6 9.2 odd 6