Properties

Label 2268.2.x.d.1889.1
Level 22682268
Weight 22
Character 2268.1889
Analytic conductor 18.11018.110
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2268,2,Mod(377,2268)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2268, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2268.377");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2268=22347 2268 = 2^{2} \cdot 3^{4} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2268.x (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 18.110071178418.1100711784
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 756)
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

Embedding invariants

Embedding label 1889.1
Root 0.500000+0.866025i0.500000 + 0.866025i of defining polynomial
Character χ\chi == 2268.1889
Dual form 2268.2.x.d.377.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000002.59808i)q7+(1.500000.866025i)q13+8.66025iq19+(2.500004.33013i)q25+(9.000005.19615i)q31+1.00000q37+(4.000006.92820i)q43+(6.500002.59808i)q49+(7.500004.33013i)q61+(5.500009.52628i)q671.73205iq73+(6.5000011.2583i)q79+(1.500004.33013i)q91+(16.5000+9.52628i)q97+O(q100)q+(0.500000 - 2.59808i) q^{7} +(1.50000 - 0.866025i) q^{13} +8.66025i q^{19} +(2.50000 - 4.33013i) q^{25} +(9.00000 - 5.19615i) q^{31} +1.00000 q^{37} +(4.00000 - 6.92820i) q^{43} +(-6.50000 - 2.59808i) q^{49} +(-7.50000 - 4.33013i) q^{61} +(-5.50000 - 9.52628i) q^{67} -1.73205i q^{73} +(6.50000 - 11.2583i) q^{79} +(-1.50000 - 4.33013i) q^{91} +(16.5000 + 9.52628i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q7+3q13+5q25+18q31+2q37+8q4313q4915q6111q67+13q793q91+33q97+O(q100) 2 q + q^{7} + 3 q^{13} + 5 q^{25} + 18 q^{31} + 2 q^{37} + 8 q^{43} - 13 q^{49} - 15 q^{61} - 11 q^{67} + 13 q^{79} - 3 q^{91} + 33 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2268Z)×\left(\mathbb{Z}/2268\mathbb{Z}\right)^\times.

nn 325325 11351135 15411541
χ(n)\chi(n) 1-1 11 e(16)e\left(\frac{1}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
66 0 0
77 0.500000 2.59808i 0.188982 0.981981i
88 0 0
99 0 0
1010 0 0
1111 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1212 0 0
1313 1.50000 0.866025i 0.416025 0.240192i −0.277350 0.960769i 0.589456π-0.589456\pi
0.693375 + 0.720577i 0.256123π0.256123\pi
1414 0 0
1515 0 0
1616 0 0
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 8.66025i 1.98680i 0.114708 + 0.993399i 0.463407π0.463407\pi
−0.114708 + 0.993399i 0.536593π0.536593\pi
2020 0 0
2121 0 0
2222 0 0
2323 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
2424 0 0
2525 2.50000 4.33013i 0.500000 0.866025i
2626 0 0
2727 0 0
2828 0 0
2929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 0 0
3131 9.00000 5.19615i 1.61645 0.933257i 0.628619 0.777714i 0.283621π-0.283621\pi
0.987829 0.155543i 0.0497126π-0.0497126\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 1.00000 0.164399 0.0821995 0.996616i 0.473806π-0.473806\pi
0.0821995 + 0.996616i 0.473806π0.473806\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
4242 0 0
4343 4.00000 6.92820i 0.609994 1.05654i −0.381246 0.924473i 0.624505π-0.624505\pi
0.991241 0.132068i 0.0421616π-0.0421616\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
4848 0 0
4949 −6.50000 2.59808i −0.928571 0.371154i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 0 0
6161 −7.50000 4.33013i −0.960277 0.554416i −0.0640184 0.997949i 0.520392π-0.520392\pi
−0.896258 + 0.443533i 0.853725π0.853725\pi
6262 0 0
6363 0 0
6464 0 0
6565 0 0
6666 0 0
6767 −5.50000 9.52628i −0.671932 1.16382i −0.977356 0.211604i 0.932131π-0.932131\pi
0.305424 0.952217i 0.401202π-0.401202\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 1.73205i 0.202721i −0.994850 0.101361i 0.967680π-0.967680\pi
0.994850 0.101361i 0.0323196π-0.0323196\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 6.50000 11.2583i 0.731307 1.26666i −0.225018 0.974355i 0.572244π-0.572244\pi
0.956325 0.292306i 0.0944227π-0.0944227\pi
8080 0 0
8181 0 0
8282 0 0
8383 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
8484 0 0
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
9090 0 0
9191 −1.50000 4.33013i −0.157243 0.453921i
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 16.5000 + 9.52628i 1.67532 + 0.967247i 0.964579 + 0.263795i 0.0849741π0.0849741\pi
0.710742 + 0.703452i 0.248359π0.248359\pi
9898 0 0
9999 0 0
100100 0 0
101101 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
102102 0 0
103103 16.5000 9.52628i 1.62579 0.938652i 0.640464 0.767988i 0.278742π-0.278742\pi
0.985329 0.170664i 0.0545913π-0.0545913\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 −2.00000 −0.191565 −0.0957826 0.995402i 0.530535π-0.530535\pi
−0.0957826 + 0.995402i 0.530535π0.530535\pi
110110 0 0
111111 0 0
112112 0 0
113113 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −5.50000 9.52628i −0.500000 0.866025i
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 20.0000 1.77471 0.887357 0.461084i 0.152539π-0.152539\pi
0.887357 + 0.461084i 0.152539π0.152539\pi
128128 0 0
129129 0 0
130130 0 0
131131 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
132132 0 0
133133 22.5000 + 4.33013i 1.95100 + 0.375470i
134134 0 0
135135 0 0
136136 0 0
137137 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
138138 0 0
139139 −19.5000 + 11.2583i −1.65397 + 0.954919i −0.678551 + 0.734553i 0.737392π0.737392\pi
−0.975417 + 0.220366i 0.929275π0.929275\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
150150 0 0
151151 11.5000 19.9186i 0.935857 1.62095i 0.162758 0.986666i 0.447961π-0.447961\pi
0.773099 0.634285i 0.218706π-0.218706\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −18.0000 + 10.3923i −1.43656 + 0.829396i −0.997609 0.0691164i 0.977982π-0.977982\pi
−0.438948 + 0.898513i 0.644649π0.644649\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 17.0000 1.33154 0.665771 0.746156i 0.268103π-0.268103\pi
0.665771 + 0.746156i 0.268103π0.268103\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
168168 0 0
169169 −5.00000 + 8.66025i −0.384615 + 0.666173i
170170 0 0
171171 0 0
172172 0 0
173173 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
174174 0 0
175175 −10.0000 8.66025i −0.755929 0.654654i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 19.0526i 1.41617i −0.706129 0.708083i 0.749560π-0.749560\pi
0.706129 0.708083i 0.250440π-0.250440\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0 0
193193 −12.5000 21.6506i −0.899770 1.55845i −0.827788 0.561041i 0.810401π-0.810401\pi
−0.0719816 0.997406i 0.522932π-0.522932\pi
194194 0 0
195195 0 0
196196 0 0
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 22.5167i 1.59616i 0.602549 + 0.798082i 0.294152π0.294152\pi
−0.602549 + 0.798082i 0.705848π0.705848\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 14.5000 + 25.1147i 0.998221 + 1.72897i 0.550743 + 0.834675i 0.314345π0.314345\pi
0.447478 + 0.894295i 0.352322π0.352322\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 −9.00000 25.9808i −0.610960 1.76369i
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 9.00000 + 5.19615i 0.602685 + 0.347960i 0.770097 0.637927i 0.220208π-0.220208\pi
−0.167412 + 0.985887i 0.553541π0.553541\pi
224224 0 0
225225 0 0
226226 0 0
227227 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
228228 0 0
229229 18.0000 10.3923i 1.18947 0.686743i 0.231287 0.972886i 0.425707π-0.425707\pi
0.958187 + 0.286143i 0.0923732π0.0923732\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000 00
−1.00000 π\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
240240 0 0
241241 1.50000 + 0.866025i 0.0966235 + 0.0557856i 0.547533 0.836784i 0.315567π-0.315567\pi
−0.450910 + 0.892570i 0.648900π0.648900\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 7.50000 + 12.9904i 0.477214 + 0.826558i
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0 0
257257 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
258258 0 0
259259 0.500000 2.59808i 0.0310685 0.161437i
260260 0 0
261261 0 0
262262 0 0
263263 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
270270 0 0
271271 32.9090i 1.99908i 0.0303728 + 0.999539i 0.490331π0.490331\pi
−0.0303728 + 0.999539i 0.509669π0.509669\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 −13.0000 + 22.5167i −0.781094 + 1.35290i 0.150210 + 0.988654i 0.452005π0.452005\pi
−0.931305 + 0.364241i 0.881328π0.881328\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 0 0
283283 9.00000 5.19615i 0.534994 0.308879i −0.208053 0.978117i 0.566713π-0.566713\pi
0.743048 + 0.669238i 0.233379π0.233379\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 0 0
292292 0 0
293293 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −16.0000 13.8564i −0.922225 0.798670i
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 31.1769i 1.77936i −0.456584 0.889680i 0.650927π-0.650927\pi
0.456584 0.889680i 0.349073π-0.349073\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
312312 0 0
313313 −28.5000 16.4545i −1.61092 0.930062i −0.989158 0.146852i 0.953086π-0.953086\pi
−0.621757 0.783210i 0.713581π-0.713581\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 8.66025i 0.480384i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −15.5000 + 26.8468i −0.851957 + 1.47563i 0.0274825 + 0.999622i 0.491251π0.491251\pi
−0.879440 + 0.476011i 0.842082π0.842082\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 14.5000 + 25.1147i 0.789865 + 1.36809i 0.926049 + 0.377403i 0.123183π0.123183\pi
−0.136184 + 0.990684i 0.543484π0.543484\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −10.0000 + 15.5885i −0.539949 + 0.841698i
344344 0 0
345345 0 0
346346 0 0
347347 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
348348 0 0
349349 −25.5000 14.7224i −1.36498 0.788074i −0.374701 0.927146i 0.622255π-0.622255\pi
−0.990282 + 0.139072i 0.955588π0.955588\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 −56.0000 −2.94737
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 −19.5000 11.2583i −1.01789 0.587680i −0.104399 0.994535i 0.533292π-0.533292\pi
−0.913493 + 0.406855i 0.866625π0.866625\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 12.5000 + 21.6506i 0.647225 + 1.12103i 0.983783 + 0.179364i 0.0574041π0.0574041\pi
−0.336557 + 0.941663i 0.609263π0.609263\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 37.0000 1.90056 0.950281 0.311393i 0.100796π-0.100796\pi
0.950281 + 0.311393i 0.100796π0.100796\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 20.7846i 1.04315i 0.853206 + 0.521575i 0.174655π0.174655\pi
−0.853206 + 0.521575i 0.825345π0.825345\pi
398398 0 0
399399 0 0
400400 0 0
401401 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
402402 0 0
403403 9.00000 15.5885i 0.448322 0.776516i
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 34.5000 19.9186i 1.70592 0.984911i 0.766426 0.642333i 0.222033π-0.222033\pi
0.939490 0.342578i 0.111300π-0.111300\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 0 0
419419 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
420420 0 0
421421 −20.5000 + 35.5070i −0.999109 + 1.73051i −0.463002 + 0.886357i 0.653228π0.653228\pi
−0.536107 + 0.844150i 0.680106π0.680106\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 −15.0000 + 17.3205i −0.725901 + 0.838198i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 41.5692i 1.99769i 0.0480569 + 0.998845i 0.484697π0.484697\pi
−0.0480569 + 0.998845i 0.515303π0.515303\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 −27.0000 15.5885i −1.28864 0.743996i −0.310228 0.950662i 0.600405π-0.600405\pi
−0.978412 + 0.206666i 0.933739π0.933739\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −5.00000 + 8.66025i −0.233890 + 0.405110i −0.958950 0.283577i 0.908479π-0.908479\pi
0.725059 + 0.688686i 0.241812π0.241812\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
462462 0 0
463463 21.5000 + 37.2391i 0.999190 + 1.73065i 0.534450 + 0.845200i 0.320519π0.320519\pi
0.464739 + 0.885448i 0.346148π0.346148\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 −27.5000 + 9.52628i −1.26983 + 0.439883i
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 37.5000 + 21.6506i 1.72062 + 0.993399i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
480480 0 0
481481 1.50000 0.866025i 0.0683941 0.0394874i
482482 0 0
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 19.0000 0.860972 0.430486 0.902597i 0.358342π-0.358342\pi
0.430486 + 0.902597i 0.358342π0.358342\pi
488488 0 0
489489 0 0
490490 0 0
491491 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 16.0000 + 27.7128i 0.716258 + 1.24060i 0.962472 + 0.271380i 0.0874801π0.0874801\pi
−0.246214 + 0.969216i 0.579187π0.579187\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
510510 0 0
511511 −4.50000 0.866025i −0.199068 0.0383107i
512512 0 0
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
522522 0 0
523523 29.4449i 1.28753i −0.765222 0.643767i 0.777371π-0.777371\pi
0.765222 0.643767i 0.222629π-0.222629\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 −11.5000 + 19.9186i −0.500000 + 0.866025i
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 17.0000 0.730887 0.365444 0.930834i 0.380917π-0.380917\pi
0.365444 + 0.930834i 0.380917π0.380917\pi
542542 0 0
543543 0 0
544544 0 0
545545 0 0
546546 0 0
547547 −20.5000 + 35.5070i −0.876517 + 1.51817i −0.0213785 + 0.999771i 0.506805π0.506805\pi
−0.855138 + 0.518400i 0.826528π0.826528\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 −26.0000 22.5167i −1.10563 0.957506i
554554 0 0
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 13.8564i 0.586064i
560560 0 0
561561 0 0
562562 0 0
563563 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
564564 0 0
565565 0 0
566566 0 0
567567 0 0
568568 0 0
569569 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 0 0
571571 −23.5000 40.7032i −0.983444 1.70338i −0.648655 0.761083i 0.724668π-0.724668\pi
−0.334790 0.942293i 0.608665π-0.608665\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 32.9090i 1.37002i −0.728535 0.685009i 0.759798π-0.759798\pi
0.728535 0.685009i 0.240202π-0.240202\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
588588 0 0
589589 45.0000 + 77.9423i 1.85419 + 3.21156i
590590 0 0
591591 0 0
592592 0 0
593593 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 −36.0000 20.7846i −1.46847 0.847822i −0.469095 0.883148i 0.655420π-0.655420\pi
−0.999376 + 0.0353259i 0.988753π0.988753\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 −34.5000 + 19.9186i −1.40031 + 0.808470i −0.994424 0.105453i 0.966371π-0.966371\pi
−0.405887 + 0.913923i 0.633038π0.633038\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 −37.0000 −1.49442 −0.747208 0.664590i 0.768606π-0.768606\pi
−0.747208 + 0.664590i 0.768606π0.768606\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
618618 0 0
619619 7.50000 + 4.33013i 0.301450 + 0.174042i 0.643094 0.765787i 0.277650π-0.277650\pi
−0.341644 + 0.939829i 0.610984π0.610984\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −12.5000 21.6506i −0.500000 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 −1.00000 −0.0398094 −0.0199047 0.999802i 0.506336π-0.506336\pi
−0.0199047 + 0.999802i 0.506336π0.506336\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −12.0000 + 1.73205i −0.475457 + 0.0686264i
638638 0 0
639639 0 0
640640 0 0
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 −27.0000 + 15.5885i −1.06478 + 0.614749i −0.926750 0.375680i 0.877409π-0.877409\pi
−0.138027 + 0.990429i 0.544076π0.544076\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 −43.5000 + 25.1147i −1.69195 + 0.976850i −0.739014 + 0.673690i 0.764708π0.764708\pi
−0.952940 + 0.303160i 0.901958π0.901958\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −6.50000 + 11.2583i −0.250557 + 0.433977i −0.963679 0.267063i 0.913947π-0.913947\pi
0.713123 + 0.701039i 0.247280π0.247280\pi
674674 0 0
675675 0 0
676676 0 0
677677 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
678678 0 0
679679 33.0000 38.1051i 1.26642 1.46234i
680680 0 0
681681 0 0
682682 0 0
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 45.0000 + 25.9808i 1.71188 + 0.988355i 0.932024 + 0.362397i 0.118041π0.118041\pi
0.779857 + 0.625958i 0.215292π0.215292\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 8.66025i 0.326628i
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −15.5000 + 26.8468i −0.582115 + 1.00825i 0.413114 + 0.910679i 0.364441π0.364441\pi
−0.995228 + 0.0975728i 0.968892π0.968892\pi
710710 0 0
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 −16.5000 47.6314i −0.614492 1.77389i
722722 0 0
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 27.0000 + 15.5885i 1.00137 + 0.578144i 0.908655 0.417548i 0.137111π-0.137111\pi
0.0927199 + 0.995692i 0.470444π0.470444\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 18.0000 10.3923i 0.664845 0.383849i −0.129275 0.991609i 0.541265π-0.541265\pi
0.794121 + 0.607760i 0.207932π0.207932\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 −16.0000 −0.588570 −0.294285 0.955718i 0.595081π-0.595081\pi
−0.294285 + 0.955718i 0.595081π0.595081\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 5.50000 + 9.52628i 0.200698 + 0.347619i 0.948753 0.316017i 0.102346π-0.102346\pi
−0.748056 + 0.663636i 0.769012π0.769012\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 55.0000 1.99901 0.999505 0.0314762i 0.0100208π-0.0100208\pi
0.999505 + 0.0314762i 0.0100208π0.0100208\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
762762 0 0
763763 −1.00000 + 5.19615i −0.0362024 + 0.188113i
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 25.5000 14.7224i 0.919554 0.530904i 0.0360609 0.999350i 0.488519π-0.488519\pi
0.883493 + 0.468445i 0.155186π0.155186\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
774774 0 0
775775 51.9615i 1.86651i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 0 0
785785 0 0
786786 0 0
787787 −43.5000 + 25.1147i −1.55061 + 0.895244i −0.552515 + 0.833503i 0.686332π0.686332\pi
−0.998092 + 0.0617409i 0.980335π0.980335\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −15.0000 −0.532666
794794 0 0
795795 0 0
796796 0 0
797797 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 10.3923i 0.364923i −0.983213 0.182462i 0.941593π-0.941593\pi
0.983213 0.182462i 0.0584065π-0.0584065\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 60.0000 + 34.6410i 2.09913 + 1.21194i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 0 0
823823 −23.5000 40.7032i −0.819159 1.41882i −0.906303 0.422628i 0.861108π-0.861108\pi
0.0871445 0.996196i 0.472226π-0.472226\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 22.5167i 0.782036i 0.920383 + 0.391018i 0.127877π0.127877\pi
−0.920383 + 0.391018i 0.872123π0.872123\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
840840 0 0
841841 −14.5000 25.1147i −0.500000 0.866025i
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 −27.5000 + 9.52628i −0.944911 + 0.327327i
848848 0 0
849849 0 0
850850 0 0
851851 0 0
852852 0 0
853853 −46.5000 26.8468i −1.59213 0.919216i −0.992941 0.118609i 0.962157π-0.962157\pi
−0.599189 0.800608i 0.704510π-0.704510\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
858858 0 0
859859 −34.5000 + 19.9186i −1.17712 + 0.679613i −0.955348 0.295484i 0.904519π-0.904519\pi
−0.221777 + 0.975097i 0.571186π0.571186\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 −16.5000 9.52628i −0.559081 0.322786i
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 12.5000 + 21.6506i 0.422095 + 0.731090i 0.996144 0.0877308i 0.0279615π-0.0279615\pi
−0.574049 + 0.818821i 0.694628π0.694628\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 55.0000 1.85090 0.925449 0.378873i 0.123688π-0.123688\pi
0.925449 + 0.378873i 0.123688π0.123688\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
888888 0 0
889889 10.0000 51.9615i 0.335389 1.74273i
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 0 0
906906 0 0
907907 29.5000 51.0955i 0.979531 1.69660i 0.315442 0.948945i 0.397847π-0.397847\pi
0.664089 0.747653i 0.268820π-0.268820\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 52.0000 1.71532 0.857661 0.514216i 0.171917π-0.171917\pi
0.857661 + 0.514216i 0.171917π0.171917\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 2.50000 4.33013i 0.0821995 0.142374i
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
930930 0 0
931931 22.5000 56.2917i 0.737408 1.84488i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 50.2295i 1.64093i 0.571700 + 0.820463i 0.306284π0.306284\pi
−0.571700 + 0.820463i 0.693716π0.693716\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 −1.50000 2.59808i −0.0486921 0.0843371i
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 38.5000 66.6840i 1.24194 2.15110i
962962 0 0
963963 0 0
964964 0 0
965965 0 0
966966 0 0
967967 30.5000 + 52.8275i 0.980814 + 1.69882i 0.659236 + 0.751936i 0.270880π0.270880\pi
0.321578 + 0.946883i 0.395787π0.395787\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
972972 0 0
973973 19.5000 + 56.2917i 0.625141 + 1.80463i
974974 0 0
975975 0 0
976976 0 0
977977 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
978978 0 0
979979 0 0
980980 0 0
981981 0 0
982982 0 0
983983 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −17.0000 −0.540023 −0.270011 0.962857i 0.587027π-0.587027\pi
−0.270011 + 0.962857i 0.587027π0.587027\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 54.0000 + 31.1769i 1.71020 + 0.987383i 0.934274 + 0.356555i 0.116049π0.116049\pi
0.775923 + 0.630828i 0.217285π0.217285\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2268.2.x.d.1889.1 2
3.2 odd 2 CM 2268.2.x.d.1889.1 2
7.6 odd 2 2268.2.x.f.1889.1 2
9.2 odd 6 756.2.f.b.377.2 yes 2
9.4 even 3 2268.2.x.f.377.1 2
9.5 odd 6 2268.2.x.f.377.1 2
9.7 even 3 756.2.f.b.377.2 yes 2
21.20 even 2 2268.2.x.f.1889.1 2
36.7 odd 6 3024.2.k.c.1889.1 2
36.11 even 6 3024.2.k.c.1889.1 2
63.13 odd 6 inner 2268.2.x.d.377.1 2
63.20 even 6 756.2.f.b.377.1 2
63.34 odd 6 756.2.f.b.377.1 2
63.41 even 6 inner 2268.2.x.d.377.1 2
252.83 odd 6 3024.2.k.c.1889.2 2
252.223 even 6 3024.2.k.c.1889.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
756.2.f.b.377.1 2 63.20 even 6
756.2.f.b.377.1 2 63.34 odd 6
756.2.f.b.377.2 yes 2 9.2 odd 6
756.2.f.b.377.2 yes 2 9.7 even 3
2268.2.x.d.377.1 2 63.13 odd 6 inner
2268.2.x.d.377.1 2 63.41 even 6 inner
2268.2.x.d.1889.1 2 1.1 even 1 trivial
2268.2.x.d.1889.1 2 3.2 odd 2 CM
2268.2.x.f.377.1 2 9.4 even 3
2268.2.x.f.377.1 2 9.5 odd 6
2268.2.x.f.1889.1 2 7.6 odd 2
2268.2.x.f.1889.1 2 21.20 even 2
3024.2.k.c.1889.1 2 36.7 odd 6
3024.2.k.c.1889.1 2 36.11 even 6
3024.2.k.c.1889.2 2 252.83 odd 6
3024.2.k.c.1889.2 2 252.223 even 6