Properties

Label 2535.2.a.bj.1.4
Level $2535$
Weight $2$
Character 2535.1
Self dual yes
Analytic conductor $20.242$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2535,2,Mod(1,2535)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2535, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2535.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2535 = 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2535.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(20.2420769124\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.13824.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.17533\) of defining polynomial
Character \(\chi\) \(=\) 2535.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.17533 q^{2} -1.00000 q^{3} +2.73205 q^{4} -1.00000 q^{5} -2.17533 q^{6} -0.443277 q^{7} +1.59245 q^{8} +1.00000 q^{9} -2.17533 q^{10} +1.59245 q^{11} -2.73205 q^{12} -0.964273 q^{14} +1.00000 q^{15} -2.00000 q^{16} +3.76778 q^{17} +2.17533 q^{18} +1.54715 q^{19} -2.73205 q^{20} +0.443277 q^{21} +3.46410 q^{22} +0.705897 q^{23} -1.59245 q^{24} +1.00000 q^{25} -1.00000 q^{27} -1.21106 q^{28} +2.49983 q^{29} +2.17533 q^{30} +6.18490 q^{31} -7.53556 q^{32} -1.59245 q^{33} +8.19615 q^{34} +0.443277 q^{35} +2.73205 q^{36} +10.3507 q^{37} +3.36556 q^{38} -1.59245 q^{40} +6.02082 q^{41} +0.964273 q^{42} +4.72248 q^{43} +4.35066 q^{44} -1.00000 q^{45} +1.53556 q^{46} +5.41712 q^{47} +2.00000 q^{48} -6.80351 q^{49} +2.17533 q^{50} -3.76778 q^{51} +5.51641 q^{53} -2.17533 q^{54} -1.59245 q^{55} -0.705897 q^{56} -1.54715 q^{57} +5.43795 q^{58} +8.72214 q^{59} +2.73205 q^{60} -9.73205 q^{61} +13.4542 q^{62} -0.443277 q^{63} -12.3923 q^{64} -3.46410 q^{66} -13.6960 q^{67} +10.2938 q^{68} -0.705897 q^{69} +0.964273 q^{70} -15.1488 q^{71} +1.59245 q^{72} +10.7939 q^{73} +22.5161 q^{74} -1.00000 q^{75} +4.22689 q^{76} -0.705897 q^{77} +10.7317 q^{79} +2.00000 q^{80} +1.00000 q^{81} +13.0973 q^{82} -9.12801 q^{83} +1.21106 q^{84} -3.76778 q^{85} +10.2729 q^{86} -2.49983 q^{87} +2.53590 q^{88} +4.75653 q^{89} -2.17533 q^{90} +1.92855 q^{92} -6.18490 q^{93} +11.7840 q^{94} -1.54715 q^{95} +7.53556 q^{96} +8.41712 q^{97} -14.7999 q^{98} +1.59245 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{4} - 4 q^{5} + 4 q^{9} - 4 q^{12} - 12 q^{14} + 4 q^{15} - 8 q^{16} + 12 q^{19} - 4 q^{20} + 4 q^{25} - 4 q^{27} + 12 q^{28} - 12 q^{29} + 12 q^{31} + 12 q^{34} + 4 q^{36} + 24 q^{37}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.17533 1.53819 0.769095 0.639135i \(-0.220708\pi\)
0.769095 + 0.639135i \(0.220708\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.73205 1.36603
\(5\) −1.00000 −0.447214
\(6\) −2.17533 −0.888074
\(7\) −0.443277 −0.167543 −0.0837715 0.996485i \(-0.526697\pi\)
−0.0837715 + 0.996485i \(0.526697\pi\)
\(8\) 1.59245 0.563016
\(9\) 1.00000 0.333333
\(10\) −2.17533 −0.687899
\(11\) 1.59245 0.480142 0.240071 0.970755i \(-0.422829\pi\)
0.240071 + 0.970755i \(0.422829\pi\)
\(12\) −2.73205 −0.788675
\(13\) 0 0
\(14\) −0.964273 −0.257713
\(15\) 1.00000 0.258199
\(16\) −2.00000 −0.500000
\(17\) 3.76778 0.913820 0.456910 0.889513i \(-0.348956\pi\)
0.456910 + 0.889513i \(0.348956\pi\)
\(18\) 2.17533 0.512730
\(19\) 1.54715 0.354941 0.177470 0.984126i \(-0.443209\pi\)
0.177470 + 0.984126i \(0.443209\pi\)
\(20\) −2.73205 −0.610905
\(21\) 0.443277 0.0967310
\(22\) 3.46410 0.738549
\(23\) 0.705897 0.147190 0.0735948 0.997288i \(-0.476553\pi\)
0.0735948 + 0.997288i \(0.476553\pi\)
\(24\) −1.59245 −0.325058
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) −1.21106 −0.228868
\(29\) 2.49983 0.464207 0.232103 0.972691i \(-0.425439\pi\)
0.232103 + 0.972691i \(0.425439\pi\)
\(30\) 2.17533 0.397159
\(31\) 6.18490 1.11084 0.555420 0.831570i \(-0.312557\pi\)
0.555420 + 0.831570i \(0.312557\pi\)
\(32\) −7.53556 −1.33211
\(33\) −1.59245 −0.277210
\(34\) 8.19615 1.40563
\(35\) 0.443277 0.0749275
\(36\) 2.73205 0.455342
\(37\) 10.3507 1.70164 0.850819 0.525459i \(-0.176107\pi\)
0.850819 + 0.525459i \(0.176107\pi\)
\(38\) 3.36556 0.545966
\(39\) 0 0
\(40\) −1.59245 −0.251789
\(41\) 6.02082 0.940295 0.470147 0.882588i \(-0.344201\pi\)
0.470147 + 0.882588i \(0.344201\pi\)
\(42\) 0.964273 0.148790
\(43\) 4.72248 0.720171 0.360086 0.932919i \(-0.382748\pi\)
0.360086 + 0.932919i \(0.382748\pi\)
\(44\) 4.35066 0.655886
\(45\) −1.00000 −0.149071
\(46\) 1.53556 0.226405
\(47\) 5.41712 0.790169 0.395084 0.918645i \(-0.370715\pi\)
0.395084 + 0.918645i \(0.370715\pi\)
\(48\) 2.00000 0.288675
\(49\) −6.80351 −0.971929
\(50\) 2.17533 0.307638
\(51\) −3.76778 −0.527594
\(52\) 0 0
\(53\) 5.51641 0.757737 0.378869 0.925450i \(-0.376313\pi\)
0.378869 + 0.925450i \(0.376313\pi\)
\(54\) −2.17533 −0.296025
\(55\) −1.59245 −0.214726
\(56\) −0.705897 −0.0943294
\(57\) −1.54715 −0.204925
\(58\) 5.43795 0.714037
\(59\) 8.72214 1.13553 0.567763 0.823192i \(-0.307809\pi\)
0.567763 + 0.823192i \(0.307809\pi\)
\(60\) 2.73205 0.352706
\(61\) −9.73205 −1.24606 −0.623031 0.782197i \(-0.714099\pi\)
−0.623031 + 0.782197i \(0.714099\pi\)
\(62\) 13.4542 1.70868
\(63\) −0.443277 −0.0558476
\(64\) −12.3923 −1.54904
\(65\) 0 0
\(66\) −3.46410 −0.426401
\(67\) −13.6960 −1.67323 −0.836615 0.547791i \(-0.815469\pi\)
−0.836615 + 0.547791i \(0.815469\pi\)
\(68\) 10.2938 1.24830
\(69\) −0.705897 −0.0849800
\(70\) 0.964273 0.115253
\(71\) −15.1488 −1.79784 −0.898918 0.438117i \(-0.855645\pi\)
−0.898918 + 0.438117i \(0.855645\pi\)
\(72\) 1.59245 0.187672
\(73\) 10.7939 1.26333 0.631667 0.775240i \(-0.282371\pi\)
0.631667 + 0.775240i \(0.282371\pi\)
\(74\) 22.5161 2.61744
\(75\) −1.00000 −0.115470
\(76\) 4.22689 0.484858
\(77\) −0.705897 −0.0804444
\(78\) 0 0
\(79\) 10.7317 1.20741 0.603706 0.797207i \(-0.293690\pi\)
0.603706 + 0.797207i \(0.293690\pi\)
\(80\) 2.00000 0.223607
\(81\) 1.00000 0.111111
\(82\) 13.0973 1.44635
\(83\) −9.12801 −1.00193 −0.500964 0.865468i \(-0.667021\pi\)
−0.500964 + 0.865468i \(0.667021\pi\)
\(84\) 1.21106 0.132137
\(85\) −3.76778 −0.408673
\(86\) 10.2729 1.10776
\(87\) −2.49983 −0.268010
\(88\) 2.53590 0.270328
\(89\) 4.75653 0.504191 0.252095 0.967702i \(-0.418880\pi\)
0.252095 + 0.967702i \(0.418880\pi\)
\(90\) −2.17533 −0.229300
\(91\) 0 0
\(92\) 1.92855 0.201065
\(93\) −6.18490 −0.641344
\(94\) 11.7840 1.21543
\(95\) −1.54715 −0.158734
\(96\) 7.53556 0.769095
\(97\) 8.41712 0.854629 0.427315 0.904103i \(-0.359460\pi\)
0.427315 + 0.904103i \(0.359460\pi\)
\(98\) −14.7999 −1.49501
\(99\) 1.59245 0.160047
\(100\) 2.73205 0.273205
\(101\) −6.70590 −0.667262 −0.333631 0.942704i \(-0.608274\pi\)
−0.333631 + 0.942704i \(0.608274\pi\)
\(102\) −8.19615 −0.811540
\(103\) 1.74197 0.171641 0.0858205 0.996311i \(-0.472649\pi\)
0.0858205 + 0.996311i \(0.472649\pi\)
\(104\) 0 0
\(105\) −0.443277 −0.0432594
\(106\) 12.0000 1.16554
\(107\) 11.9186 1.15222 0.576109 0.817373i \(-0.304570\pi\)
0.576109 + 0.817373i \(0.304570\pi\)
\(108\) −2.73205 −0.262892
\(109\) 17.0407 1.63220 0.816102 0.577908i \(-0.196131\pi\)
0.816102 + 0.577908i \(0.196131\pi\)
\(110\) −3.46410 −0.330289
\(111\) −10.3507 −0.982441
\(112\) 0.886554 0.0837715
\(113\) −3.46410 −0.325875 −0.162938 0.986636i \(-0.552097\pi\)
−0.162938 + 0.986636i \(0.552097\pi\)
\(114\) −3.36556 −0.315213
\(115\) −0.705897 −0.0658252
\(116\) 6.82966 0.634118
\(117\) 0 0
\(118\) 18.9735 1.74665
\(119\) −1.67017 −0.153104
\(120\) 1.59245 0.145370
\(121\) −8.46410 −0.769464
\(122\) −21.1704 −1.91668
\(123\) −6.02082 −0.542879
\(124\) 16.8975 1.51744
\(125\) −1.00000 −0.0894427
\(126\) −0.964273 −0.0859042
\(127\) 14.2510 1.26457 0.632287 0.774734i \(-0.282116\pi\)
0.632287 + 0.774734i \(0.282116\pi\)
\(128\) −11.8862 −1.05060
\(129\) −4.72248 −0.415791
\(130\) 0 0
\(131\) 10.0354 0.876796 0.438398 0.898781i \(-0.355546\pi\)
0.438398 + 0.898781i \(0.355546\pi\)
\(132\) −4.35066 −0.378676
\(133\) −0.685816 −0.0594678
\(134\) −29.7932 −2.57374
\(135\) 1.00000 0.0860663
\(136\) 6.00000 0.514496
\(137\) −9.28419 −0.793202 −0.396601 0.917991i \(-0.629810\pi\)
−0.396601 + 0.917991i \(0.629810\pi\)
\(138\) −1.53556 −0.130715
\(139\) −6.51641 −0.552715 −0.276357 0.961055i \(-0.589127\pi\)
−0.276357 + 0.961055i \(0.589127\pi\)
\(140\) 1.21106 0.102353
\(141\) −5.41712 −0.456204
\(142\) −32.9537 −2.76541
\(143\) 0 0
\(144\) −2.00000 −0.166667
\(145\) −2.49983 −0.207599
\(146\) 23.4803 1.94325
\(147\) 6.80351 0.561144
\(148\) 28.2785 2.32448
\(149\) 0.0568941 0.00466094 0.00233047 0.999997i \(-0.499258\pi\)
0.00233047 + 0.999997i \(0.499258\pi\)
\(150\) −2.17533 −0.177615
\(151\) −17.3004 −1.40789 −0.703944 0.710255i \(-0.748580\pi\)
−0.703944 + 0.710255i \(0.748580\pi\)
\(152\) 2.46376 0.199837
\(153\) 3.76778 0.304607
\(154\) −1.53556 −0.123739
\(155\) −6.18490 −0.496783
\(156\) 0 0
\(157\) −1.34898 −0.107660 −0.0538300 0.998550i \(-0.517143\pi\)
−0.0538300 + 0.998550i \(0.517143\pi\)
\(158\) 23.3450 1.85723
\(159\) −5.51641 −0.437480
\(160\) 7.53556 0.595738
\(161\) −0.312908 −0.0246606
\(162\) 2.17533 0.170910
\(163\) 2.97918 0.233347 0.116674 0.993170i \(-0.462777\pi\)
0.116674 + 0.993170i \(0.462777\pi\)
\(164\) 16.4492 1.28447
\(165\) 1.59245 0.123972
\(166\) −19.8564 −1.54116
\(167\) 23.8141 1.84279 0.921394 0.388629i \(-0.127051\pi\)
0.921394 + 0.388629i \(0.127051\pi\)
\(168\) 0.705897 0.0544611
\(169\) 0 0
\(170\) −8.19615 −0.628616
\(171\) 1.54715 0.118314
\(172\) 12.9020 0.983772
\(173\) −24.6762 −1.87609 −0.938047 0.346509i \(-0.887367\pi\)
−0.938047 + 0.346509i \(0.887367\pi\)
\(174\) −5.43795 −0.412250
\(175\) −0.443277 −0.0335086
\(176\) −3.18490 −0.240071
\(177\) −8.72214 −0.655596
\(178\) 10.3470 0.775541
\(179\) −2.88488 −0.215626 −0.107813 0.994171i \(-0.534385\pi\)
−0.107813 + 0.994171i \(0.534385\pi\)
\(180\) −2.73205 −0.203635
\(181\) 7.41086 0.550845 0.275422 0.961323i \(-0.411182\pi\)
0.275422 + 0.961323i \(0.411182\pi\)
\(182\) 0 0
\(183\) 9.73205 0.719414
\(184\) 1.12411 0.0828701
\(185\) −10.3507 −0.760995
\(186\) −13.4542 −0.986509
\(187\) 6.00000 0.438763
\(188\) 14.7999 1.07939
\(189\) 0.443277 0.0322437
\(190\) −3.36556 −0.244163
\(191\) −16.2577 −1.17637 −0.588183 0.808728i \(-0.700156\pi\)
−0.588183 + 0.808728i \(0.700156\pi\)
\(192\) 12.3923 0.894338
\(193\) 11.2775 0.811774 0.405887 0.913923i \(-0.366963\pi\)
0.405887 + 0.913923i \(0.366963\pi\)
\(194\) 18.3100 1.31458
\(195\) 0 0
\(196\) −18.5875 −1.32768
\(197\) −24.6669 −1.75745 −0.878723 0.477333i \(-0.841604\pi\)
−0.878723 + 0.477333i \(0.841604\pi\)
\(198\) 3.46410 0.246183
\(199\) −22.0711 −1.56458 −0.782290 0.622915i \(-0.785948\pi\)
−0.782290 + 0.622915i \(0.785948\pi\)
\(200\) 1.59245 0.112603
\(201\) 13.6960 0.966040
\(202\) −14.5875 −1.02637
\(203\) −1.10812 −0.0777745
\(204\) −10.2938 −0.720707
\(205\) −6.02082 −0.420513
\(206\) 3.78935 0.264016
\(207\) 0.705897 0.0490632
\(208\) 0 0
\(209\) 2.46376 0.170422
\(210\) −0.964273 −0.0665411
\(211\) −21.5161 −1.48123 −0.740614 0.671931i \(-0.765465\pi\)
−0.740614 + 0.671931i \(0.765465\pi\)
\(212\) 15.0711 1.03509
\(213\) 15.1488 1.03798
\(214\) 25.9269 1.77233
\(215\) −4.72248 −0.322070
\(216\) −1.59245 −0.108353
\(217\) −2.74162 −0.186114
\(218\) 37.0691 2.51064
\(219\) −10.7939 −0.729386
\(220\) −4.35066 −0.293321
\(221\) 0 0
\(222\) −22.5161 −1.51118
\(223\) 21.2365 1.42210 0.711051 0.703140i \(-0.248219\pi\)
0.711051 + 0.703140i \(0.248219\pi\)
\(224\) 3.34034 0.223186
\(225\) 1.00000 0.0666667
\(226\) −7.53556 −0.501258
\(227\) −10.4499 −0.693587 −0.346794 0.937941i \(-0.612730\pi\)
−0.346794 + 0.937941i \(0.612730\pi\)
\(228\) −4.22689 −0.279933
\(229\) 21.4135 1.41505 0.707523 0.706690i \(-0.249813\pi\)
0.707523 + 0.706690i \(0.249813\pi\)
\(230\) −1.53556 −0.101252
\(231\) 0.705897 0.0464446
\(232\) 3.98085 0.261356
\(233\) 3.24179 0.212377 0.106189 0.994346i \(-0.466135\pi\)
0.106189 + 0.994346i \(0.466135\pi\)
\(234\) 0 0
\(235\) −5.41712 −0.353374
\(236\) 23.8293 1.55116
\(237\) −10.7317 −0.697099
\(238\) −3.63317 −0.235503
\(239\) −18.3129 −1.18456 −0.592282 0.805731i \(-0.701773\pi\)
−0.592282 + 0.805731i \(0.701773\pi\)
\(240\) −2.00000 −0.129099
\(241\) −6.63741 −0.427553 −0.213777 0.976883i \(-0.568576\pi\)
−0.213777 + 0.976883i \(0.568576\pi\)
\(242\) −18.4122 −1.18358
\(243\) −1.00000 −0.0641500
\(244\) −26.5885 −1.70215
\(245\) 6.80351 0.434660
\(246\) −13.0973 −0.835051
\(247\) 0 0
\(248\) 9.84915 0.625422
\(249\) 9.12801 0.578464
\(250\) −2.17533 −0.137580
\(251\) −19.8816 −1.25492 −0.627459 0.778650i \(-0.715905\pi\)
−0.627459 + 0.778650i \(0.715905\pi\)
\(252\) −1.21106 −0.0762893
\(253\) 1.12411 0.0706719
\(254\) 31.0007 1.94515
\(255\) 3.76778 0.235947
\(256\) −1.07180 −0.0669873
\(257\) 1.00957 0.0629754 0.0314877 0.999504i \(-0.489975\pi\)
0.0314877 + 0.999504i \(0.489975\pi\)
\(258\) −10.2729 −0.639565
\(259\) −4.58821 −0.285097
\(260\) 0 0
\(261\) 2.49983 0.154736
\(262\) 21.8303 1.34868
\(263\) −21.5719 −1.33018 −0.665089 0.746764i \(-0.731607\pi\)
−0.665089 + 0.746764i \(0.731607\pi\)
\(264\) −2.53590 −0.156074
\(265\) −5.51641 −0.338870
\(266\) −1.49187 −0.0914727
\(267\) −4.75653 −0.291095
\(268\) −37.4181 −2.28568
\(269\) −4.65068 −0.283557 −0.141779 0.989898i \(-0.545282\pi\)
−0.141779 + 0.989898i \(0.545282\pi\)
\(270\) 2.17533 0.132386
\(271\) −5.31992 −0.323162 −0.161581 0.986859i \(-0.551659\pi\)
−0.161581 + 0.986859i \(0.551659\pi\)
\(272\) −7.53556 −0.456910
\(273\) 0 0
\(274\) −20.1962 −1.22009
\(275\) 1.59245 0.0960284
\(276\) −1.92855 −0.116085
\(277\) 9.35948 0.562357 0.281178 0.959655i \(-0.409275\pi\)
0.281178 + 0.959655i \(0.409275\pi\)
\(278\) −14.1753 −0.850180
\(279\) 6.18490 0.370280
\(280\) 0.705897 0.0421854
\(281\) 13.1449 0.784161 0.392080 0.919931i \(-0.371756\pi\)
0.392080 + 0.919931i \(0.371756\pi\)
\(282\) −11.7840 −0.701728
\(283\) −3.64367 −0.216594 −0.108297 0.994119i \(-0.534540\pi\)
−0.108297 + 0.994119i \(0.534540\pi\)
\(284\) −41.3874 −2.45589
\(285\) 1.54715 0.0916453
\(286\) 0 0
\(287\) −2.66889 −0.157540
\(288\) −7.53556 −0.444037
\(289\) −2.80385 −0.164932
\(290\) −5.43795 −0.319327
\(291\) −8.41712 −0.493420
\(292\) 29.4896 1.72575
\(293\) 19.6348 1.14708 0.573540 0.819178i \(-0.305570\pi\)
0.573540 + 0.819178i \(0.305570\pi\)
\(294\) 14.7999 0.863145
\(295\) −8.72214 −0.507822
\(296\) 16.4829 0.958049
\(297\) −1.59245 −0.0924033
\(298\) 0.123763 0.00716941
\(299\) 0 0
\(300\) −2.73205 −0.157735
\(301\) −2.09337 −0.120660
\(302\) −37.6341 −2.16560
\(303\) 6.70590 0.385244
\(304\) −3.09430 −0.177470
\(305\) 9.73205 0.557256
\(306\) 8.19615 0.468543
\(307\) 4.74863 0.271019 0.135509 0.990776i \(-0.456733\pi\)
0.135509 + 0.990776i \(0.456733\pi\)
\(308\) −1.92855 −0.109889
\(309\) −1.74197 −0.0990970
\(310\) −13.4542 −0.764146
\(311\) 5.45512 0.309332 0.154666 0.987967i \(-0.450570\pi\)
0.154666 + 0.987967i \(0.450570\pi\)
\(312\) 0 0
\(313\) −7.23855 −0.409147 −0.204573 0.978851i \(-0.565581\pi\)
−0.204573 + 0.978851i \(0.565581\pi\)
\(314\) −2.93447 −0.165602
\(315\) 0.443277 0.0249758
\(316\) 29.3196 1.64935
\(317\) −21.0142 −1.18028 −0.590138 0.807302i \(-0.700927\pi\)
−0.590138 + 0.807302i \(0.700927\pi\)
\(318\) −12.0000 −0.672927
\(319\) 3.98085 0.222885
\(320\) 12.3923 0.692751
\(321\) −11.9186 −0.665233
\(322\) −0.680677 −0.0379326
\(323\) 5.82932 0.324352
\(324\) 2.73205 0.151781
\(325\) 0 0
\(326\) 6.48068 0.358932
\(327\) −17.0407 −0.942354
\(328\) 9.58786 0.529401
\(329\) −2.40129 −0.132387
\(330\) 3.46410 0.190693
\(331\) 15.5136 0.852707 0.426354 0.904557i \(-0.359798\pi\)
0.426354 + 0.904557i \(0.359798\pi\)
\(332\) −24.9382 −1.36866
\(333\) 10.3507 0.567212
\(334\) 51.8034 2.83456
\(335\) 13.6960 0.748291
\(336\) −0.886554 −0.0483655
\(337\) −32.8124 −1.78741 −0.893703 0.448660i \(-0.851901\pi\)
−0.893703 + 0.448660i \(0.851901\pi\)
\(338\) 0 0
\(339\) 3.46410 0.188144
\(340\) −10.2938 −0.558258
\(341\) 9.84915 0.533361
\(342\) 3.36556 0.181989
\(343\) 6.11878 0.330383
\(344\) 7.52031 0.405468
\(345\) 0.705897 0.0380042
\(346\) −53.6787 −2.88579
\(347\) −19.4634 −1.04485 −0.522426 0.852685i \(-0.674973\pi\)
−0.522426 + 0.852685i \(0.674973\pi\)
\(348\) −6.82966 −0.366108
\(349\) 9.72114 0.520361 0.260180 0.965560i \(-0.416218\pi\)
0.260180 + 0.965560i \(0.416218\pi\)
\(350\) −0.964273 −0.0515425
\(351\) 0 0
\(352\) −12.0000 −0.639602
\(353\) 23.0176 1.22510 0.612551 0.790431i \(-0.290143\pi\)
0.612551 + 0.790431i \(0.290143\pi\)
\(354\) −18.9735 −1.00843
\(355\) 15.1488 0.804016
\(356\) 12.9951 0.688737
\(357\) 1.67017 0.0883947
\(358\) −6.27555 −0.331673
\(359\) 10.4131 0.549584 0.274792 0.961504i \(-0.411391\pi\)
0.274792 + 0.961504i \(0.411391\pi\)
\(360\) −1.59245 −0.0839295
\(361\) −16.6063 −0.874017
\(362\) 16.1210 0.847303
\(363\) 8.46410 0.444250
\(364\) 0 0
\(365\) −10.7939 −0.564980
\(366\) 21.1704 1.10659
\(367\) −3.63153 −0.189565 −0.0947823 0.995498i \(-0.530215\pi\)
−0.0947823 + 0.995498i \(0.530215\pi\)
\(368\) −1.41179 −0.0735948
\(369\) 6.02082 0.313432
\(370\) −22.5161 −1.17055
\(371\) −2.44530 −0.126954
\(372\) −16.8975 −0.876093
\(373\) 19.8389 1.02722 0.513609 0.858024i \(-0.328308\pi\)
0.513609 + 0.858024i \(0.328308\pi\)
\(374\) 13.0520 0.674901
\(375\) 1.00000 0.0516398
\(376\) 8.62650 0.444878
\(377\) 0 0
\(378\) 0.964273 0.0495968
\(379\) −6.83390 −0.351034 −0.175517 0.984476i \(-0.556160\pi\)
−0.175517 + 0.984476i \(0.556160\pi\)
\(380\) −4.22689 −0.216835
\(381\) −14.2510 −0.730102
\(382\) −35.3658 −1.80947
\(383\) 38.8839 1.98687 0.993437 0.114379i \(-0.0364879\pi\)
0.993437 + 0.114379i \(0.0364879\pi\)
\(384\) 11.8862 0.606566
\(385\) 0.705897 0.0359758
\(386\) 24.5323 1.24866
\(387\) 4.72248 0.240057
\(388\) 22.9960 1.16745
\(389\) 8.84881 0.448652 0.224326 0.974514i \(-0.427982\pi\)
0.224326 + 0.974514i \(0.427982\pi\)
\(390\) 0 0
\(391\) 2.65966 0.134505
\(392\) −10.8342 −0.547212
\(393\) −10.0354 −0.506218
\(394\) −53.6586 −2.70328
\(395\) −10.7317 −0.539971
\(396\) 4.35066 0.218629
\(397\) −17.0378 −0.855103 −0.427552 0.903991i \(-0.640624\pi\)
−0.427552 + 0.903991i \(0.640624\pi\)
\(398\) −48.0119 −2.40662
\(399\) 0.685816 0.0343337
\(400\) −2.00000 −0.100000
\(401\) 7.69099 0.384070 0.192035 0.981388i \(-0.438491\pi\)
0.192035 + 0.981388i \(0.438491\pi\)
\(402\) 29.7932 1.48595
\(403\) 0 0
\(404\) −18.3209 −0.911496
\(405\) −1.00000 −0.0496904
\(406\) −2.41052 −0.119632
\(407\) 16.4829 0.817027
\(408\) −6.00000 −0.297044
\(409\) −9.08330 −0.449140 −0.224570 0.974458i \(-0.572098\pi\)
−0.224570 + 0.974458i \(0.572098\pi\)
\(410\) −13.0973 −0.646828
\(411\) 9.28419 0.457955
\(412\) 4.75914 0.234466
\(413\) −3.86632 −0.190249
\(414\) 1.53556 0.0754685
\(415\) 9.12801 0.448076
\(416\) 0 0
\(417\) 6.51641 0.319110
\(418\) 5.35948 0.262141
\(419\) −12.9907 −0.634636 −0.317318 0.948319i \(-0.602782\pi\)
−0.317318 + 0.948319i \(0.602782\pi\)
\(420\) −1.21106 −0.0590934
\(421\) −19.8859 −0.969178 −0.484589 0.874742i \(-0.661031\pi\)
−0.484589 + 0.874742i \(0.661031\pi\)
\(422\) −46.8045 −2.27841
\(423\) 5.41712 0.263390
\(424\) 8.78461 0.426618
\(425\) 3.76778 0.182764
\(426\) 32.9537 1.59661
\(427\) 4.31399 0.208769
\(428\) 32.5623 1.57396
\(429\) 0 0
\(430\) −10.2729 −0.495405
\(431\) −39.1280 −1.88473 −0.942365 0.334587i \(-0.891403\pi\)
−0.942365 + 0.334587i \(0.891403\pi\)
\(432\) 2.00000 0.0962250
\(433\) 38.1399 1.83289 0.916444 0.400164i \(-0.131047\pi\)
0.916444 + 0.400164i \(0.131047\pi\)
\(434\) −5.96393 −0.286278
\(435\) 2.49983 0.119858
\(436\) 46.5561 2.22963
\(437\) 1.09213 0.0522436
\(438\) −23.4803 −1.12193
\(439\) 6.75086 0.322201 0.161100 0.986938i \(-0.448496\pi\)
0.161100 + 0.986938i \(0.448496\pi\)
\(440\) −2.53590 −0.120894
\(441\) −6.80351 −0.323976
\(442\) 0 0
\(443\) −12.2647 −0.582713 −0.291357 0.956614i \(-0.594107\pi\)
−0.291357 + 0.956614i \(0.594107\pi\)
\(444\) −28.2785 −1.34204
\(445\) −4.75653 −0.225481
\(446\) 46.1964 2.18746
\(447\) −0.0568941 −0.00269100
\(448\) 5.49322 0.259530
\(449\) 23.4026 1.10444 0.552219 0.833699i \(-0.313781\pi\)
0.552219 + 0.833699i \(0.313781\pi\)
\(450\) 2.17533 0.102546
\(451\) 9.58786 0.451475
\(452\) −9.46410 −0.445154
\(453\) 17.3004 0.812845
\(454\) −22.7321 −1.06687
\(455\) 0 0
\(456\) −2.46376 −0.115376
\(457\) 29.5630 1.38290 0.691451 0.722424i \(-0.256972\pi\)
0.691451 + 0.722424i \(0.256972\pi\)
\(458\) 46.5814 2.17661
\(459\) −3.76778 −0.175865
\(460\) −1.92855 −0.0899189
\(461\) 9.57498 0.445951 0.222976 0.974824i \(-0.428423\pi\)
0.222976 + 0.974824i \(0.428423\pi\)
\(462\) 1.53556 0.0714405
\(463\) 20.0241 0.930600 0.465300 0.885153i \(-0.345946\pi\)
0.465300 + 0.885153i \(0.345946\pi\)
\(464\) −4.99966 −0.232103
\(465\) 6.18490 0.286818
\(466\) 7.05197 0.326676
\(467\) 15.7942 0.730868 0.365434 0.930837i \(-0.380921\pi\)
0.365434 + 0.930837i \(0.380921\pi\)
\(468\) 0 0
\(469\) 6.07111 0.280338
\(470\) −11.7840 −0.543556
\(471\) 1.34898 0.0621576
\(472\) 13.8896 0.639319
\(473\) 7.52031 0.345784
\(474\) −23.3450 −1.07227
\(475\) 1.54715 0.0709881
\(476\) −4.56299 −0.209144
\(477\) 5.51641 0.252579
\(478\) −39.8366 −1.82208
\(479\) −26.7485 −1.22217 −0.611086 0.791564i \(-0.709267\pi\)
−0.611086 + 0.791564i \(0.709267\pi\)
\(480\) −7.53556 −0.343950
\(481\) 0 0
\(482\) −14.4385 −0.657657
\(483\) 0.312908 0.0142378
\(484\) −23.1244 −1.05111
\(485\) −8.41712 −0.382202
\(486\) −2.17533 −0.0986749
\(487\) −28.3238 −1.28347 −0.641737 0.766925i \(-0.721786\pi\)
−0.641737 + 0.766925i \(0.721786\pi\)
\(488\) −15.4978 −0.701553
\(489\) −2.97918 −0.134723
\(490\) 14.7999 0.668589
\(491\) 9.50017 0.428737 0.214368 0.976753i \(-0.431231\pi\)
0.214368 + 0.976753i \(0.431231\pi\)
\(492\) −16.4492 −0.741587
\(493\) 9.41880 0.424201
\(494\) 0 0
\(495\) −1.59245 −0.0715753
\(496\) −12.3698 −0.555420
\(497\) 6.71513 0.301215
\(498\) 19.8564 0.889787
\(499\) 23.1767 1.03753 0.518765 0.854917i \(-0.326392\pi\)
0.518765 + 0.854917i \(0.326392\pi\)
\(500\) −2.73205 −0.122181
\(501\) −23.8141 −1.06393
\(502\) −43.2491 −1.93030
\(503\) −40.3533 −1.79927 −0.899633 0.436647i \(-0.856166\pi\)
−0.899633 + 0.436647i \(0.856166\pi\)
\(504\) −0.705897 −0.0314431
\(505\) 6.70590 0.298408
\(506\) 2.44530 0.108707
\(507\) 0 0
\(508\) 38.9345 1.72744
\(509\) −10.2938 −0.456263 −0.228131 0.973630i \(-0.573262\pi\)
−0.228131 + 0.973630i \(0.573262\pi\)
\(510\) 8.19615 0.362932
\(511\) −4.78470 −0.211663
\(512\) 21.4409 0.947564
\(513\) −1.54715 −0.0683083
\(514\) 2.19615 0.0968681
\(515\) −1.74197 −0.0767602
\(516\) −12.9020 −0.567981
\(517\) 8.62650 0.379393
\(518\) −9.98085 −0.438534
\(519\) 24.6762 1.08316
\(520\) 0 0
\(521\) 43.7218 1.91549 0.957743 0.287624i \(-0.0928655\pi\)
0.957743 + 0.287624i \(0.0928655\pi\)
\(522\) 5.43795 0.238012
\(523\) 7.19556 0.314640 0.157320 0.987548i \(-0.449715\pi\)
0.157320 + 0.987548i \(0.449715\pi\)
\(524\) 27.4172 1.19773
\(525\) 0.443277 0.0193462
\(526\) −46.9259 −2.04607
\(527\) 23.3033 1.01511
\(528\) 3.18490 0.138605
\(529\) −22.5017 −0.978335
\(530\) −12.0000 −0.521247
\(531\) 8.72214 0.378508
\(532\) −1.87368 −0.0812345
\(533\) 0 0
\(534\) −10.3470 −0.447759
\(535\) −11.9186 −0.515287
\(536\) −21.8102 −0.942056
\(537\) 2.88488 0.124492
\(538\) −10.1168 −0.436164
\(539\) −10.8342 −0.466664
\(540\) 2.73205 0.117569
\(541\) −24.7159 −1.06262 −0.531310 0.847177i \(-0.678300\pi\)
−0.531310 + 0.847177i \(0.678300\pi\)
\(542\) −11.5726 −0.497084
\(543\) −7.41086 −0.318030
\(544\) −28.3923 −1.21731
\(545\) −17.0407 −0.729944
\(546\) 0 0
\(547\) −6.97187 −0.298096 −0.149048 0.988830i \(-0.547621\pi\)
−0.149048 + 0.988830i \(0.547621\pi\)
\(548\) −25.3649 −1.08353
\(549\) −9.73205 −0.415354
\(550\) 3.46410 0.147710
\(551\) 3.86761 0.164766
\(552\) −1.12411 −0.0478451
\(553\) −4.75712 −0.202293
\(554\) 20.3599 0.865011
\(555\) 10.3507 0.439361
\(556\) −17.8032 −0.755022
\(557\) 1.67575 0.0710038 0.0355019 0.999370i \(-0.488697\pi\)
0.0355019 + 0.999370i \(0.488697\pi\)
\(558\) 13.4542 0.569561
\(559\) 0 0
\(560\) −0.886554 −0.0374637
\(561\) −6.00000 −0.253320
\(562\) 28.5945 1.20619
\(563\) 2.05231 0.0864945 0.0432472 0.999064i \(-0.486230\pi\)
0.0432472 + 0.999064i \(0.486230\pi\)
\(564\) −14.7999 −0.623186
\(565\) 3.46410 0.145736
\(566\) −7.92618 −0.333162
\(567\) −0.443277 −0.0186159
\(568\) −24.1238 −1.01221
\(569\) −41.2191 −1.72799 −0.863996 0.503498i \(-0.832046\pi\)
−0.863996 + 0.503498i \(0.832046\pi\)
\(570\) 3.36556 0.140968
\(571\) 30.7115 1.28524 0.642619 0.766186i \(-0.277848\pi\)
0.642619 + 0.766186i \(0.277848\pi\)
\(572\) 0 0
\(573\) 16.2577 0.679175
\(574\) −5.80572 −0.242326
\(575\) 0.705897 0.0294379
\(576\) −12.3923 −0.516346
\(577\) 44.8752 1.86818 0.934090 0.357038i \(-0.116213\pi\)
0.934090 + 0.357038i \(0.116213\pi\)
\(578\) −6.09929 −0.253697
\(579\) −11.2775 −0.468678
\(580\) −6.82966 −0.283586
\(581\) 4.04623 0.167866
\(582\) −18.3100 −0.758974
\(583\) 8.78461 0.363821
\(584\) 17.1888 0.711278
\(585\) 0 0
\(586\) 42.7122 1.76443
\(587\) −23.8717 −0.985291 −0.492645 0.870230i \(-0.663970\pi\)
−0.492645 + 0.870230i \(0.663970\pi\)
\(588\) 18.5875 0.766537
\(589\) 9.56897 0.394282
\(590\) −18.9735 −0.781127
\(591\) 24.6669 1.01466
\(592\) −20.7013 −0.850819
\(593\) −26.8263 −1.10162 −0.550811 0.834630i \(-0.685682\pi\)
−0.550811 + 0.834630i \(0.685682\pi\)
\(594\) −3.46410 −0.142134
\(595\) 1.67017 0.0684703
\(596\) 0.155437 0.00636697
\(597\) 22.0711 0.903311
\(598\) 0 0
\(599\) −26.4919 −1.08243 −0.541215 0.840885i \(-0.682035\pi\)
−0.541215 + 0.840885i \(0.682035\pi\)
\(600\) −1.59245 −0.0650115
\(601\) 23.2290 0.947530 0.473765 0.880651i \(-0.342895\pi\)
0.473765 + 0.880651i \(0.342895\pi\)
\(602\) −4.55376 −0.185597
\(603\) −13.6960 −0.557743
\(604\) −47.2656 −1.92321
\(605\) 8.46410 0.344115
\(606\) 14.5875 0.592578
\(607\) 10.5812 0.429478 0.214739 0.976672i \(-0.431110\pi\)
0.214739 + 0.976672i \(0.431110\pi\)
\(608\) −11.6586 −0.472820
\(609\) 1.10812 0.0449031
\(610\) 21.1704 0.857164
\(611\) 0 0
\(612\) 10.2938 0.416101
\(613\) 6.31735 0.255155 0.127578 0.991829i \(-0.459280\pi\)
0.127578 + 0.991829i \(0.459280\pi\)
\(614\) 10.3298 0.416878
\(615\) 6.02082 0.242783
\(616\) −1.12411 −0.0452915
\(617\) −32.7277 −1.31757 −0.658784 0.752332i \(-0.728929\pi\)
−0.658784 + 0.752332i \(0.728929\pi\)
\(618\) −3.78935 −0.152430
\(619\) 21.0143 0.844635 0.422317 0.906448i \(-0.361217\pi\)
0.422317 + 0.906448i \(0.361217\pi\)
\(620\) −16.8975 −0.678618
\(621\) −0.705897 −0.0283267
\(622\) 11.8667 0.475810
\(623\) −2.10846 −0.0844736
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −15.7462 −0.629345
\(627\) −2.46376 −0.0983931
\(628\) −3.68547 −0.147066
\(629\) 38.9990 1.55499
\(630\) 0.964273 0.0384175
\(631\) 15.5657 0.619661 0.309830 0.950792i \(-0.399728\pi\)
0.309830 + 0.950792i \(0.399728\pi\)
\(632\) 17.0897 0.679792
\(633\) 21.5161 0.855187
\(634\) −45.7128 −1.81549
\(635\) −14.2510 −0.565535
\(636\) −15.0711 −0.597608
\(637\) 0 0
\(638\) 8.65966 0.342839
\(639\) −15.1488 −0.599279
\(640\) 11.8862 0.469844
\(641\) 13.7910 0.544713 0.272356 0.962196i \(-0.412197\pi\)
0.272356 + 0.962196i \(0.412197\pi\)
\(642\) −25.9269 −1.02325
\(643\) −27.6698 −1.09119 −0.545596 0.838049i \(-0.683697\pi\)
−0.545596 + 0.838049i \(0.683697\pi\)
\(644\) −0.854880 −0.0336870
\(645\) 4.72248 0.185947
\(646\) 12.6807 0.498915
\(647\) −35.8293 −1.40860 −0.704298 0.709905i \(-0.748738\pi\)
−0.704298 + 0.709905i \(0.748738\pi\)
\(648\) 1.59245 0.0625574
\(649\) 13.8896 0.545213
\(650\) 0 0
\(651\) 2.74162 0.107453
\(652\) 8.13926 0.318758
\(653\) −45.2305 −1.77001 −0.885003 0.465585i \(-0.845844\pi\)
−0.885003 + 0.465585i \(0.845844\pi\)
\(654\) −37.0691 −1.44952
\(655\) −10.0354 −0.392115
\(656\) −12.0416 −0.470147
\(657\) 10.7939 0.421111
\(658\) −5.22358 −0.203636
\(659\) −2.37316 −0.0924451 −0.0462226 0.998931i \(-0.514718\pi\)
−0.0462226 + 0.998931i \(0.514718\pi\)
\(660\) 4.35066 0.169349
\(661\) −13.1763 −0.512500 −0.256250 0.966611i \(-0.582487\pi\)
−0.256250 + 0.966611i \(0.582487\pi\)
\(662\) 33.7473 1.31162
\(663\) 0 0
\(664\) −14.5359 −0.564102
\(665\) 0.685816 0.0265948
\(666\) 22.5161 0.872480
\(667\) 1.76462 0.0683264
\(668\) 65.0613 2.51730
\(669\) −21.2365 −0.821052
\(670\) 29.7932 1.15101
\(671\) −15.4978 −0.598286
\(672\) −3.34034 −0.128856
\(673\) 12.7869 0.492900 0.246450 0.969156i \(-0.420736\pi\)
0.246450 + 0.969156i \(0.420736\pi\)
\(674\) −71.3777 −2.74937
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 16.0794 0.617981 0.308991 0.951065i \(-0.400009\pi\)
0.308991 + 0.951065i \(0.400009\pi\)
\(678\) 7.53556 0.289401
\(679\) −3.73112 −0.143187
\(680\) −6.00000 −0.230089
\(681\) 10.4499 0.400443
\(682\) 21.4251 0.820410
\(683\) −6.31162 −0.241507 −0.120754 0.992682i \(-0.538531\pi\)
−0.120754 + 0.992682i \(0.538531\pi\)
\(684\) 4.22689 0.161619
\(685\) 9.28419 0.354731
\(686\) 13.3103 0.508191
\(687\) −21.4135 −0.816977
\(688\) −9.44496 −0.360086
\(689\) 0 0
\(690\) 1.53556 0.0584576
\(691\) −36.7143 −1.39668 −0.698339 0.715767i \(-0.746077\pi\)
−0.698339 + 0.715767i \(0.746077\pi\)
\(692\) −67.4165 −2.56279
\(693\) −0.705897 −0.0268148
\(694\) −42.3393 −1.60718
\(695\) 6.51641 0.247182
\(696\) −3.98085 −0.150894
\(697\) 22.6851 0.859261
\(698\) 21.1467 0.800413
\(699\) −3.24179 −0.122616
\(700\) −1.21106 −0.0457736
\(701\) −52.0509 −1.96594 −0.982968 0.183774i \(-0.941168\pi\)
−0.982968 + 0.183774i \(0.941168\pi\)
\(702\) 0 0
\(703\) 16.0140 0.603980
\(704\) −19.7341 −0.743758
\(705\) 5.41712 0.204021
\(706\) 50.0708 1.88444
\(707\) 2.97257 0.111795
\(708\) −23.8293 −0.895561
\(709\) 0.936098 0.0351559 0.0175779 0.999845i \(-0.494404\pi\)
0.0175779 + 0.999845i \(0.494404\pi\)
\(710\) 32.9537 1.23673
\(711\) 10.7317 0.402471
\(712\) 7.57453 0.283868
\(713\) 4.36590 0.163504
\(714\) 3.63317 0.135968
\(715\) 0 0
\(716\) −7.88163 −0.294550
\(717\) 18.3129 0.683908
\(718\) 22.6520 0.845364
\(719\) 0.997435 0.0371980 0.0185990 0.999827i \(-0.494079\pi\)
0.0185990 + 0.999827i \(0.494079\pi\)
\(720\) 2.00000 0.0745356
\(721\) −0.772173 −0.0287572
\(722\) −36.1242 −1.34440
\(723\) 6.63741 0.246848
\(724\) 20.2468 0.752468
\(725\) 2.49983 0.0928413
\(726\) 18.4122 0.683341
\(727\) 15.4879 0.574416 0.287208 0.957868i \(-0.407273\pi\)
0.287208 + 0.957868i \(0.407273\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −23.4803 −0.869046
\(731\) 17.7932 0.658107
\(732\) 26.5885 0.982738
\(733\) −3.34533 −0.123562 −0.0617812 0.998090i \(-0.519678\pi\)
−0.0617812 + 0.998090i \(0.519678\pi\)
\(734\) −7.89978 −0.291586
\(735\) −6.80351 −0.250951
\(736\) −5.31932 −0.196073
\(737\) −21.8102 −0.803388
\(738\) 13.0973 0.482117
\(739\) 13.0936 0.481656 0.240828 0.970568i \(-0.422581\pi\)
0.240828 + 0.970568i \(0.422581\pi\)
\(740\) −28.2785 −1.03954
\(741\) 0 0
\(742\) −5.31932 −0.195279
\(743\) 5.07373 0.186137 0.0930685 0.995660i \(-0.470332\pi\)
0.0930685 + 0.995660i \(0.470332\pi\)
\(744\) −9.84915 −0.361087
\(745\) −0.0568941 −0.00208444
\(746\) 43.1561 1.58006
\(747\) −9.12801 −0.333976
\(748\) 16.3923 0.599362
\(749\) −5.28325 −0.193046
\(750\) 2.17533 0.0794317
\(751\) 19.0338 0.694552 0.347276 0.937763i \(-0.387107\pi\)
0.347276 + 0.937763i \(0.387107\pi\)
\(752\) −10.8342 −0.395084
\(753\) 19.8816 0.724527
\(754\) 0 0
\(755\) 17.3004 0.629627
\(756\) 1.21106 0.0440456
\(757\) 44.8089 1.62861 0.814303 0.580439i \(-0.197119\pi\)
0.814303 + 0.580439i \(0.197119\pi\)
\(758\) −14.8660 −0.539957
\(759\) −1.12411 −0.0408024
\(760\) −2.46376 −0.0893700
\(761\) 37.9623 1.37613 0.688065 0.725649i \(-0.258460\pi\)
0.688065 + 0.725649i \(0.258460\pi\)
\(762\) −31.0007 −1.12304
\(763\) −7.55376 −0.273464
\(764\) −44.4168 −1.60694
\(765\) −3.76778 −0.136224
\(766\) 84.5852 3.05619
\(767\) 0 0
\(768\) 1.07180 0.0386751
\(769\) 24.8650 0.896654 0.448327 0.893870i \(-0.352020\pi\)
0.448327 + 0.893870i \(0.352020\pi\)
\(770\) 1.53556 0.0553376
\(771\) −1.00957 −0.0363589
\(772\) 30.8108 1.10890
\(773\) 29.3026 1.05394 0.526970 0.849884i \(-0.323328\pi\)
0.526970 + 0.849884i \(0.323328\pi\)
\(774\) 10.2729 0.369253
\(775\) 6.18490 0.222168
\(776\) 13.4039 0.481170
\(777\) 4.58821 0.164601
\(778\) 19.2491 0.690112
\(779\) 9.31512 0.333749
\(780\) 0 0
\(781\) −24.1238 −0.863216
\(782\) 5.78564 0.206894
\(783\) −2.49983 −0.0893366
\(784\) 13.6070 0.485965
\(785\) 1.34898 0.0481471
\(786\) −21.8303 −0.778659
\(787\) 10.6702 0.380350 0.190175 0.981750i \(-0.439094\pi\)
0.190175 + 0.981750i \(0.439094\pi\)
\(788\) −67.3913 −2.40071
\(789\) 21.5719 0.767979
\(790\) −23.3450 −0.830577
\(791\) 1.53556 0.0545981
\(792\) 2.53590 0.0901092
\(793\) 0 0
\(794\) −37.0628 −1.31531
\(795\) 5.51641 0.195647
\(796\) −60.2994 −2.13726
\(797\) 18.8800 0.668764 0.334382 0.942438i \(-0.391472\pi\)
0.334382 + 0.942438i \(0.391472\pi\)
\(798\) 1.49187 0.0528118
\(799\) 20.4105 0.722072
\(800\) −7.53556 −0.266422
\(801\) 4.75653 0.168064
\(802\) 16.7304 0.590772
\(803\) 17.1888 0.606580
\(804\) 37.4181 1.31964
\(805\) 0.312908 0.0110285
\(806\) 0 0
\(807\) 4.65068 0.163712
\(808\) −10.6788 −0.375679
\(809\) 43.6203 1.53361 0.766805 0.641880i \(-0.221845\pi\)
0.766805 + 0.641880i \(0.221845\pi\)
\(810\) −2.17533 −0.0764332
\(811\) 3.31656 0.116460 0.0582301 0.998303i \(-0.481454\pi\)
0.0582301 + 0.998303i \(0.481454\pi\)
\(812\) −3.02743 −0.106242
\(813\) 5.31992 0.186578
\(814\) 35.8557 1.25674
\(815\) −2.97918 −0.104356
\(816\) 7.53556 0.263797
\(817\) 7.30638 0.255618
\(818\) −19.7592 −0.690863
\(819\) 0 0
\(820\) −16.4492 −0.574431
\(821\) 7.20740 0.251540 0.125770 0.992059i \(-0.459860\pi\)
0.125770 + 0.992059i \(0.459860\pi\)
\(822\) 20.1962 0.704422
\(823\) 9.80291 0.341708 0.170854 0.985296i \(-0.445347\pi\)
0.170854 + 0.985296i \(0.445347\pi\)
\(824\) 2.77399 0.0966367
\(825\) −1.59245 −0.0554420
\(826\) −8.41052 −0.292639
\(827\) −3.92322 −0.136424 −0.0682118 0.997671i \(-0.521729\pi\)
−0.0682118 + 0.997671i \(0.521729\pi\)
\(828\) 1.92855 0.0670216
\(829\) 10.4242 0.362047 0.181024 0.983479i \(-0.442059\pi\)
0.181024 + 0.983479i \(0.442059\pi\)
\(830\) 19.8564 0.689226
\(831\) −9.35948 −0.324677
\(832\) 0 0
\(833\) −25.6341 −0.888169
\(834\) 14.1753 0.490851
\(835\) −23.8141 −0.824120
\(836\) 6.73112 0.232801
\(837\) −6.18490 −0.213781
\(838\) −28.2590 −0.976190
\(839\) −10.2521 −0.353942 −0.176971 0.984216i \(-0.556630\pi\)
−0.176971 + 0.984216i \(0.556630\pi\)
\(840\) −0.705897 −0.0243557
\(841\) −22.7509 −0.784512
\(842\) −43.2583 −1.49078
\(843\) −13.1449 −0.452735
\(844\) −58.7830 −2.02339
\(845\) 0 0
\(846\) 11.7840 0.405143
\(847\) 3.75194 0.128918
\(848\) −11.0328 −0.378869
\(849\) 3.64367 0.125051
\(850\) 8.19615 0.281126
\(851\) 7.30649 0.250463
\(852\) 41.3874 1.41791
\(853\) −26.3671 −0.902792 −0.451396 0.892324i \(-0.649074\pi\)
−0.451396 + 0.892324i \(0.649074\pi\)
\(854\) 9.38435 0.321126
\(855\) −1.54715 −0.0529114
\(856\) 18.9798 0.648717
\(857\) 1.04855 0.0358178 0.0179089 0.999840i \(-0.494299\pi\)
0.0179089 + 0.999840i \(0.494299\pi\)
\(858\) 0 0
\(859\) −19.6076 −0.669003 −0.334501 0.942395i \(-0.608568\pi\)
−0.334501 + 0.942395i \(0.608568\pi\)
\(860\) −12.9020 −0.439956
\(861\) 2.66889 0.0909556
\(862\) −85.1162 −2.89907
\(863\) −25.6925 −0.874582 −0.437291 0.899320i \(-0.644062\pi\)
−0.437291 + 0.899320i \(0.644062\pi\)
\(864\) 7.53556 0.256365
\(865\) 24.6762 0.839014
\(866\) 82.9668 2.81933
\(867\) 2.80385 0.0952237
\(868\) −7.49026 −0.254236
\(869\) 17.0897 0.579729
\(870\) 5.43795 0.184364
\(871\) 0 0
\(872\) 27.1365 0.918958
\(873\) 8.41712 0.284876
\(874\) 2.37574 0.0803605
\(875\) 0.443277 0.0149855
\(876\) −29.4896 −0.996360
\(877\) 36.4141 1.22962 0.614809 0.788676i \(-0.289233\pi\)
0.614809 + 0.788676i \(0.289233\pi\)
\(878\) 14.6853 0.495606
\(879\) −19.6348 −0.662267
\(880\) 3.18490 0.107363
\(881\) 16.0383 0.540344 0.270172 0.962812i \(-0.412919\pi\)
0.270172 + 0.962812i \(0.412919\pi\)
\(882\) −14.7999 −0.498337
\(883\) 27.4548 0.923927 0.461963 0.886899i \(-0.347145\pi\)
0.461963 + 0.886899i \(0.347145\pi\)
\(884\) 0 0
\(885\) 8.72214 0.293191
\(886\) −26.6797 −0.896323
\(887\) −31.9642 −1.07325 −0.536626 0.843820i \(-0.680301\pi\)
−0.536626 + 0.843820i \(0.680301\pi\)
\(888\) −16.4829 −0.553130
\(889\) −6.31715 −0.211870
\(890\) −10.3470 −0.346832
\(891\) 1.59245 0.0533491
\(892\) 58.0193 1.94263
\(893\) 8.38110 0.280463
\(894\) −0.123763 −0.00413926
\(895\) 2.88488 0.0964308
\(896\) 5.26888 0.176021
\(897\) 0 0
\(898\) 50.9084 1.69883
\(899\) 15.4612 0.515660
\(900\) 2.73205 0.0910684
\(901\) 20.7846 0.692436
\(902\) 20.8567 0.694454
\(903\) 2.09337 0.0696628
\(904\) −5.51641 −0.183473
\(905\) −7.41086 −0.246345
\(906\) 37.6341 1.25031
\(907\) 31.6797 1.05191 0.525953 0.850514i \(-0.323709\pi\)
0.525953 + 0.850514i \(0.323709\pi\)
\(908\) −28.5498 −0.947458
\(909\) −6.70590 −0.222421
\(910\) 0 0
\(911\) −25.9227 −0.858858 −0.429429 0.903101i \(-0.641285\pi\)
−0.429429 + 0.903101i \(0.641285\pi\)
\(912\) 3.09430 0.102463
\(913\) −14.5359 −0.481068
\(914\) 64.3093 2.12716
\(915\) −9.73205 −0.321732
\(916\) 58.5029 1.93299
\(917\) −4.44845 −0.146901
\(918\) −8.19615 −0.270513
\(919\) −12.0194 −0.396483 −0.198242 0.980153i \(-0.563523\pi\)
−0.198242 + 0.980153i \(0.563523\pi\)
\(920\) −1.12411 −0.0370607
\(921\) −4.74863 −0.156473
\(922\) 20.8287 0.685958
\(923\) 0 0
\(924\) 1.92855 0.0634445
\(925\) 10.3507 0.340327
\(926\) 43.5591 1.43144
\(927\) 1.74197 0.0572137
\(928\) −18.8376 −0.618375
\(929\) 21.3576 0.700721 0.350360 0.936615i \(-0.386059\pi\)
0.350360 + 0.936615i \(0.386059\pi\)
\(930\) 13.4542 0.441180
\(931\) −10.5260 −0.344977
\(932\) 8.85675 0.290112
\(933\) −5.45512 −0.178593
\(934\) 34.3575 1.12421
\(935\) −6.00000 −0.196221
\(936\) 0 0
\(937\) 15.8029 0.516259 0.258129 0.966110i \(-0.416894\pi\)
0.258129 + 0.966110i \(0.416894\pi\)
\(938\) 13.2067 0.431213
\(939\) 7.23855 0.236221
\(940\) −14.7999 −0.482718
\(941\) 6.50590 0.212086 0.106043 0.994362i \(-0.466182\pi\)
0.106043 + 0.994362i \(0.466182\pi\)
\(942\) 2.93447 0.0956101
\(943\) 4.25008 0.138402
\(944\) −17.4443 −0.567763
\(945\) −0.443277 −0.0144198
\(946\) 16.3591 0.531882
\(947\) −27.8836 −0.906095 −0.453048 0.891486i \(-0.649663\pi\)
−0.453048 + 0.891486i \(0.649663\pi\)
\(948\) −29.3196 −0.952255
\(949\) 0 0
\(950\) 3.36556 0.109193
\(951\) 21.0142 0.681433
\(952\) −2.65966 −0.0862001
\(953\) 51.8861 1.68075 0.840377 0.542002i \(-0.182333\pi\)
0.840377 + 0.542002i \(0.182333\pi\)
\(954\) 12.0000 0.388514
\(955\) 16.2577 0.526087
\(956\) −50.0318 −1.61814
\(957\) −3.98085 −0.128683
\(958\) −58.1868 −1.87993
\(959\) 4.11547 0.132895
\(960\) −12.3923 −0.399960
\(961\) 7.25300 0.233968
\(962\) 0 0
\(963\) 11.9186 0.384072
\(964\) −18.1337 −0.584048
\(965\) −11.2775 −0.363036
\(966\) 0.680677 0.0219004
\(967\) 21.4251 0.688986 0.344493 0.938789i \(-0.388051\pi\)
0.344493 + 0.938789i \(0.388051\pi\)
\(968\) −13.4787 −0.433221
\(969\) −5.82932 −0.187265
\(970\) −18.3100 −0.587899
\(971\) −6.67273 −0.214138 −0.107069 0.994252i \(-0.534147\pi\)
−0.107069 + 0.994252i \(0.534147\pi\)
\(972\) −2.73205 −0.0876306
\(973\) 2.88857 0.0926034
\(974\) −61.6136 −1.97423
\(975\) 0 0
\(976\) 19.4641 0.623031
\(977\) 9.82542 0.314343 0.157171 0.987571i \(-0.449762\pi\)
0.157171 + 0.987571i \(0.449762\pi\)
\(978\) −6.48068 −0.207229
\(979\) 7.57453 0.242083
\(980\) 18.5875 0.593757
\(981\) 17.0407 0.544068
\(982\) 20.6660 0.659478
\(983\) 8.83034 0.281644 0.140822 0.990035i \(-0.455025\pi\)
0.140822 + 0.990035i \(0.455025\pi\)
\(984\) −9.58786 −0.305650
\(985\) 24.6669 0.785953
\(986\) 20.4890 0.652502
\(987\) 2.40129 0.0764338
\(988\) 0 0
\(989\) 3.33358 0.106002
\(990\) −3.46410 −0.110096
\(991\) 12.3332 0.391779 0.195889 0.980626i \(-0.437241\pi\)
0.195889 + 0.980626i \(0.437241\pi\)
\(992\) −46.6067 −1.47976
\(993\) −15.5136 −0.492311
\(994\) 14.6076 0.463325
\(995\) 22.0711 0.699701
\(996\) 24.9382 0.790196
\(997\) −13.0503 −0.413308 −0.206654 0.978414i \(-0.566257\pi\)
−0.206654 + 0.978414i \(0.566257\pi\)
\(998\) 50.4168 1.59592
\(999\) −10.3507 −0.327480
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2535.2.a.bj.1.4 4
3.2 odd 2 7605.2.a.ci.1.1 4
13.2 odd 12 195.2.bb.b.121.4 8
13.7 odd 12 195.2.bb.b.166.4 yes 8
13.12 even 2 2535.2.a.bk.1.1 4
39.2 even 12 585.2.bu.d.316.1 8
39.20 even 12 585.2.bu.d.361.1 8
39.38 odd 2 7605.2.a.ch.1.4 4
65.2 even 12 975.2.w.h.199.1 8
65.7 even 12 975.2.w.i.49.4 8
65.28 even 12 975.2.w.i.199.4 8
65.33 even 12 975.2.w.h.49.1 8
65.54 odd 12 975.2.bc.j.901.1 8
65.59 odd 12 975.2.bc.j.751.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bb.b.121.4 8 13.2 odd 12
195.2.bb.b.166.4 yes 8 13.7 odd 12
585.2.bu.d.316.1 8 39.2 even 12
585.2.bu.d.361.1 8 39.20 even 12
975.2.w.h.49.1 8 65.33 even 12
975.2.w.h.199.1 8 65.2 even 12
975.2.w.i.49.4 8 65.7 even 12
975.2.w.i.199.4 8 65.28 even 12
975.2.bc.j.751.1 8 65.59 odd 12
975.2.bc.j.901.1 8 65.54 odd 12
2535.2.a.bj.1.4 4 1.1 even 1 trivial
2535.2.a.bk.1.1 4 13.12 even 2
7605.2.a.ch.1.4 4 39.38 odd 2
7605.2.a.ci.1.1 4 3.2 odd 2