Properties

Label 975.2.bc.j.901.1
Level $975$
Weight $2$
Character 975.901
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(751,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.751");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.191102976.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 6x^{4} + 36x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 901.1
Root \(0.291439 - 1.08766i\) of defining polynomial
Character \(\chi\) \(=\) 975.901
Dual form 975.2.bc.j.751.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.88389 - 1.08766i) q^{2} +(-0.500000 + 0.866025i) q^{3} +(1.36603 + 2.36603i) q^{4} +(1.88389 - 1.08766i) q^{6} +(0.383889 - 0.221638i) q^{7} -1.59245i q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.37910 - 0.796225i) q^{11} -2.73205 q^{12} +(3.39697 + 1.20856i) q^{13} -0.964273 q^{14} +(1.00000 - 1.73205i) q^{16} +(-1.88389 - 3.26299i) q^{17} +2.17533i q^{18} +(-1.33987 + 0.773575i) q^{19} +0.443277i q^{21} +(1.73205 + 3.00000i) q^{22} +(-0.352948 + 0.611324i) q^{23} +(1.37910 + 0.796225i) q^{24} +(-5.08500 - 5.97155i) q^{26} +1.00000 q^{27} +(1.04880 + 0.605528i) q^{28} +(-1.24991 + 2.16492i) q^{29} -6.18490i q^{31} +(-6.52598 + 3.76778i) q^{32} +(1.37910 - 0.796225i) q^{33} +8.19615i q^{34} +(1.36603 - 2.36603i) q^{36} +(8.96393 + 5.17533i) q^{37} +3.36556 q^{38} +(-2.74513 + 2.33758i) q^{39} +(5.21419 + 3.01041i) q^{41} +(0.482136 - 0.835085i) q^{42} +(-2.36124 - 4.08979i) q^{43} -4.35066i q^{44} +(1.32983 - 0.767778i) q^{46} -5.41712i q^{47} +(1.00000 + 1.73205i) q^{48} +(-3.40175 + 5.89201i) q^{49} +3.76778 q^{51} +(1.78086 + 9.68823i) q^{52} -5.51641 q^{53} +(-1.88389 - 1.08766i) q^{54} +(-0.352948 - 0.611324i) q^{56} -1.54715i q^{57} +(4.70940 - 2.71897i) q^{58} +(7.55359 - 4.36107i) q^{59} +(4.86603 + 8.42820i) q^{61} +(-6.72709 + 11.6517i) q^{62} +(-0.383889 - 0.221638i) q^{63} +12.3923 q^{64} -3.46410 q^{66} +(11.8611 + 6.84799i) q^{67} +(5.14688 - 8.91466i) q^{68} +(-0.352948 - 0.611324i) q^{69} +(13.1193 - 7.57442i) q^{71} +(-1.37910 + 0.796225i) q^{72} -10.7939i q^{73} +(-11.2580 - 19.4995i) q^{74} +(-3.66060 - 2.11345i) q^{76} -0.705897 q^{77} +(7.71402 - 1.41796i) q^{78} +10.7317 q^{79} +(-0.500000 + 0.866025i) q^{81} +(-6.54863 - 11.3426i) q^{82} -9.12801i q^{83} +(-1.04880 + 0.605528i) q^{84} +10.2729i q^{86} +(-1.24991 - 2.16492i) q^{87} +(-1.26795 + 2.19615i) q^{88} +(-4.11927 - 2.37826i) q^{89} +(1.57192 - 0.288945i) q^{91} -1.92855 q^{92} +(5.35628 + 3.09245i) q^{93} +(-5.89201 + 10.2053i) q^{94} -7.53556i q^{96} +(7.28944 - 4.20856i) q^{97} +(12.8170 - 7.39993i) q^{98} +1.59245i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 4 q^{4} - 12 q^{7} - 4 q^{9} - 8 q^{12} + 8 q^{13} - 24 q^{14} + 8 q^{16} - 12 q^{19} - 24 q^{26} + 8 q^{27} - 12 q^{28} + 12 q^{29} + 4 q^{36} - 4 q^{39} + 36 q^{41} + 12 q^{42} - 16 q^{43}+ \cdots + 72 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.88389 1.08766i −1.33211 0.769095i −0.346488 0.938054i \(-0.612626\pi\)
−0.985623 + 0.168960i \(0.945959\pi\)
\(3\) −0.500000 + 0.866025i −0.288675 + 0.500000i
\(4\) 1.36603 + 2.36603i 0.683013 + 1.18301i
\(5\) 0 0
\(6\) 1.88389 1.08766i 0.769095 0.444037i
\(7\) 0.383889 0.221638i 0.145096 0.0837715i −0.425694 0.904867i \(-0.639970\pi\)
0.570791 + 0.821096i \(0.306637\pi\)
\(8\) 1.59245i 0.563016i
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 0 0
\(11\) −1.37910 0.796225i −0.415815 0.240071i 0.277470 0.960734i \(-0.410504\pi\)
−0.693285 + 0.720663i \(0.743837\pi\)
\(12\) −2.73205 −0.788675
\(13\) 3.39697 + 1.20856i 0.942149 + 0.335195i
\(14\) −0.964273 −0.257713
\(15\) 0 0
\(16\) 1.00000 1.73205i 0.250000 0.433013i
\(17\) −1.88389 3.26299i −0.456910 0.791392i 0.541886 0.840452i \(-0.317711\pi\)
−0.998796 + 0.0490606i \(0.984377\pi\)
\(18\) 2.17533i 0.512730i
\(19\) −1.33987 + 0.773575i −0.307388 + 0.177470i −0.645757 0.763543i \(-0.723458\pi\)
0.338369 + 0.941013i \(0.390125\pi\)
\(20\) 0 0
\(21\) 0.443277i 0.0967310i
\(22\) 1.73205 + 3.00000i 0.369274 + 0.639602i
\(23\) −0.352948 + 0.611324i −0.0735948 + 0.127470i −0.900474 0.434909i \(-0.856780\pi\)
0.826880 + 0.562379i \(0.190114\pi\)
\(24\) 1.37910 + 0.796225i 0.281508 + 0.162529i
\(25\) 0 0
\(26\) −5.08500 5.97155i −0.997250 1.17112i
\(27\) 1.00000 0.192450
\(28\) 1.04880 + 0.605528i 0.198205 + 0.114434i
\(29\) −1.24991 + 2.16492i −0.232103 + 0.402015i −0.958427 0.285338i \(-0.907894\pi\)
0.726324 + 0.687353i \(0.241227\pi\)
\(30\) 0 0
\(31\) 6.18490i 1.11084i −0.831570 0.555420i \(-0.812557\pi\)
0.831570 0.555420i \(-0.187443\pi\)
\(32\) −6.52598 + 3.76778i −1.15364 + 0.666055i
\(33\) 1.37910 0.796225i 0.240071 0.138605i
\(34\) 8.19615i 1.40563i
\(35\) 0 0
\(36\) 1.36603 2.36603i 0.227671 0.394338i
\(37\) 8.96393 + 5.17533i 1.47366 + 0.850819i 0.999560 0.0296519i \(-0.00943988\pi\)
0.474101 + 0.880471i \(0.342773\pi\)
\(38\) 3.36556 0.545966
\(39\) −2.74513 + 2.33758i −0.439572 + 0.374312i
\(40\) 0 0
\(41\) 5.21419 + 3.01041i 0.814319 + 0.470147i 0.848454 0.529270i \(-0.177534\pi\)
−0.0341343 + 0.999417i \(0.510867\pi\)
\(42\) 0.482136 0.835085i 0.0743952 0.128856i
\(43\) −2.36124 4.08979i −0.360086 0.623686i 0.627889 0.778303i \(-0.283919\pi\)
−0.987975 + 0.154616i \(0.950586\pi\)
\(44\) 4.35066i 0.655886i
\(45\) 0 0
\(46\) 1.32983 0.767778i 0.196073 0.113203i
\(47\) 5.41712i 0.790169i −0.918645 0.395084i \(-0.870715\pi\)
0.918645 0.395084i \(-0.129285\pi\)
\(48\) 1.00000 + 1.73205i 0.144338 + 0.250000i
\(49\) −3.40175 + 5.89201i −0.485965 + 0.841716i
\(50\) 0 0
\(51\) 3.76778 0.527594
\(52\) 1.78086 + 9.68823i 0.246960 + 1.34352i
\(53\) −5.51641 −0.757737 −0.378869 0.925450i \(-0.623687\pi\)
−0.378869 + 0.925450i \(0.623687\pi\)
\(54\) −1.88389 1.08766i −0.256365 0.148012i
\(55\) 0 0
\(56\) −0.352948 0.611324i −0.0471647 0.0816917i
\(57\) 1.54715i 0.204925i
\(58\) 4.70940 2.71897i 0.618375 0.357019i
\(59\) 7.55359 4.36107i 0.983394 0.567763i 0.0801008 0.996787i \(-0.474476\pi\)
0.903293 + 0.429024i \(0.141142\pi\)
\(60\) 0 0
\(61\) 4.86603 + 8.42820i 0.623031 + 1.07912i 0.988918 + 0.148462i \(0.0474322\pi\)
−0.365887 + 0.930659i \(0.619234\pi\)
\(62\) −6.72709 + 11.6517i −0.854342 + 1.47976i
\(63\) −0.383889 0.221638i −0.0483655 0.0279238i
\(64\) 12.3923 1.54904
\(65\) 0 0
\(66\) −3.46410 −0.426401
\(67\) 11.8611 + 6.84799i 1.44906 + 0.836615i 0.998426 0.0560933i \(-0.0178644\pi\)
0.450635 + 0.892709i \(0.351198\pi\)
\(68\) 5.14688 8.91466i 0.624151 1.08106i
\(69\) −0.352948 0.611324i −0.0424900 0.0735948i
\(70\) 0 0
\(71\) 13.1193 7.57442i 1.55697 0.898918i 0.559427 0.828880i \(-0.311021\pi\)
0.997544 0.0700381i \(-0.0223121\pi\)
\(72\) −1.37910 + 0.796225i −0.162529 + 0.0938360i
\(73\) 10.7939i 1.26333i −0.775240 0.631667i \(-0.782371\pi\)
0.775240 0.631667i \(-0.217629\pi\)
\(74\) −11.2580 19.4995i −1.30872 2.26677i
\(75\) 0 0
\(76\) −3.66060 2.11345i −0.419899 0.242429i
\(77\) −0.705897 −0.0804444
\(78\) 7.71402 1.41796i 0.873440 0.160553i
\(79\) 10.7317 1.20741 0.603706 0.797207i \(-0.293690\pi\)
0.603706 + 0.797207i \(0.293690\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −6.54863 11.3426i −0.723176 1.25258i
\(83\) 9.12801i 1.00193i −0.865468 0.500964i \(-0.832979\pi\)
0.865468 0.500964i \(-0.167021\pi\)
\(84\) −1.04880 + 0.605528i −0.114434 + 0.0660685i
\(85\) 0 0
\(86\) 10.2729i 1.10776i
\(87\) −1.24991 2.16492i −0.134005 0.232103i
\(88\) −1.26795 + 2.19615i −0.135164 + 0.234111i
\(89\) −4.11927 2.37826i −0.436642 0.252095i 0.265530 0.964103i \(-0.414453\pi\)
−0.702172 + 0.712007i \(0.747786\pi\)
\(90\) 0 0
\(91\) 1.57192 0.288945i 0.164782 0.0302897i
\(92\) −1.92855 −0.201065
\(93\) 5.35628 + 3.09245i 0.555420 + 0.320672i
\(94\) −5.89201 + 10.2053i −0.607714 + 1.05259i
\(95\) 0 0
\(96\) 7.53556i 0.769095i
\(97\) 7.28944 4.20856i 0.740131 0.427315i −0.0819861 0.996633i \(-0.526126\pi\)
0.822117 + 0.569319i \(0.192793\pi\)
\(98\) 12.8170 7.39993i 1.29472 0.747506i
\(99\) 1.59245i 0.160047i
\(100\) 0 0
\(101\) −3.35295 + 5.80748i −0.333631 + 0.577866i −0.983221 0.182419i \(-0.941607\pi\)
0.649590 + 0.760285i \(0.274941\pi\)
\(102\) −7.09808 4.09808i −0.702814 0.405770i
\(103\) 1.74197 0.171641 0.0858205 0.996311i \(-0.472649\pi\)
0.0858205 + 0.996311i \(0.472649\pi\)
\(104\) 1.92457 5.40950i 0.188720 0.530445i
\(105\) 0 0
\(106\) 10.3923 + 6.00000i 1.00939 + 0.582772i
\(107\) 5.95932 10.3218i 0.576109 0.997850i −0.419811 0.907611i \(-0.637904\pi\)
0.995920 0.0902383i \(-0.0287629\pi\)
\(108\) 1.36603 + 2.36603i 0.131446 + 0.227671i
\(109\) 17.0407i 1.63220i −0.577908 0.816102i \(-0.696131\pi\)
0.577908 0.816102i \(-0.303869\pi\)
\(110\) 0 0
\(111\) −8.96393 + 5.17533i −0.850819 + 0.491220i
\(112\) 0.886554i 0.0837715i
\(113\) −1.73205 3.00000i −0.162938 0.282216i 0.772983 0.634426i \(-0.218764\pi\)
−0.935921 + 0.352210i \(0.885430\pi\)
\(114\) −1.68278 + 2.91466i −0.157607 + 0.272983i
\(115\) 0 0
\(116\) −6.82966 −0.634118
\(117\) −0.651838 3.54614i −0.0602625 0.327841i
\(118\) −18.9735 −1.74665
\(119\) −1.44641 0.835085i −0.132592 0.0765521i
\(120\) 0 0
\(121\) −4.23205 7.33013i −0.384732 0.666375i
\(122\) 21.1704i 1.91668i
\(123\) −5.21419 + 3.01041i −0.470147 + 0.271440i
\(124\) 14.6336 8.44873i 1.31414 0.758719i
\(125\) 0 0
\(126\) 0.482136 + 0.835085i 0.0429521 + 0.0743952i
\(127\) −7.12551 + 12.3418i −0.632287 + 1.09515i 0.354796 + 0.934944i \(0.384550\pi\)
−0.987083 + 0.160210i \(0.948783\pi\)
\(128\) −10.2938 5.94311i −0.909849 0.525301i
\(129\) 4.72248 0.415791
\(130\) 0 0
\(131\) 10.0354 0.876796 0.438398 0.898781i \(-0.355546\pi\)
0.438398 + 0.898781i \(0.355546\pi\)
\(132\) 3.76778 + 2.17533i 0.327943 + 0.189338i
\(133\) −0.342908 + 0.593934i −0.0297339 + 0.0515006i
\(134\) −14.8966 25.8017i −1.28687 2.22893i
\(135\) 0 0
\(136\) −5.19615 + 3.00000i −0.445566 + 0.257248i
\(137\) 8.04034 4.64209i 0.686933 0.396601i −0.115529 0.993304i \(-0.536856\pi\)
0.802462 + 0.596703i \(0.203523\pi\)
\(138\) 1.53556i 0.130715i
\(139\) 3.25821 + 5.64338i 0.276357 + 0.478665i 0.970477 0.241195i \(-0.0775393\pi\)
−0.694119 + 0.719860i \(0.744206\pi\)
\(140\) 0 0
\(141\) 4.69137 + 2.70856i 0.395084 + 0.228102i
\(142\) −32.9537 −2.76541
\(143\) −3.72248 4.37148i −0.311289 0.365562i
\(144\) −2.00000 −0.166667
\(145\) 0 0
\(146\) −11.7402 + 20.3346i −0.971623 + 1.68290i
\(147\) −3.40175 5.89201i −0.280572 0.485965i
\(148\) 28.2785i 2.32448i
\(149\) −0.0492717 + 0.0284470i −0.00403650 + 0.00233047i −0.502017 0.864858i \(-0.667408\pi\)
0.497980 + 0.867188i \(0.334075\pi\)
\(150\) 0 0
\(151\) 17.3004i 1.40789i −0.710255 0.703944i \(-0.751420\pi\)
0.710255 0.703944i \(-0.248580\pi\)
\(152\) 1.23188 + 2.13368i 0.0999186 + 0.173064i
\(153\) −1.88389 + 3.26299i −0.152303 + 0.263797i
\(154\) 1.32983 + 0.767778i 0.107161 + 0.0618693i
\(155\) 0 0
\(156\) −9.28068 3.30185i −0.743049 0.264360i
\(157\) 1.34898 0.107660 0.0538300 0.998550i \(-0.482857\pi\)
0.0538300 + 0.998550i \(0.482857\pi\)
\(158\) −20.2173 11.6725i −1.60841 0.928614i
\(159\) 2.75821 4.77735i 0.218740 0.378869i
\(160\) 0 0
\(161\) 0.312908i 0.0246606i
\(162\) 1.88389 1.08766i 0.148012 0.0854549i
\(163\) −2.58004 + 1.48959i −0.202084 + 0.116674i −0.597627 0.801774i \(-0.703890\pi\)
0.395543 + 0.918447i \(0.370556\pi\)
\(164\) 16.4492i 1.28447i
\(165\) 0 0
\(166\) −9.92820 + 17.1962i −0.770578 + 1.33468i
\(167\) 20.6236 + 11.9070i 1.59590 + 0.921394i 0.992265 + 0.124134i \(0.0396153\pi\)
0.603636 + 0.797260i \(0.293718\pi\)
\(168\) 0.705897 0.0544611
\(169\) 10.0788 + 8.21088i 0.775289 + 0.631606i
\(170\) 0 0
\(171\) 1.33987 + 0.773575i 0.102463 + 0.0591568i
\(172\) 6.45102 11.1735i 0.491886 0.851972i
\(173\) 12.3381 + 21.3702i 0.938047 + 1.62474i 0.769109 + 0.639117i \(0.220700\pi\)
0.168937 + 0.985627i \(0.445966\pi\)
\(174\) 5.43795i 0.412250i
\(175\) 0 0
\(176\) −2.75821 + 1.59245i −0.207908 + 0.120035i
\(177\) 8.72214i 0.655596i
\(178\) 5.17350 + 8.96077i 0.387770 + 0.671638i
\(179\) −1.44244 + 2.49838i −0.107813 + 0.186737i −0.914884 0.403717i \(-0.867718\pi\)
0.807071 + 0.590454i \(0.201051\pi\)
\(180\) 0 0
\(181\) −7.41086 −0.550845 −0.275422 0.961323i \(-0.588818\pi\)
−0.275422 + 0.961323i \(0.588818\pi\)
\(182\) −3.27560 1.16538i −0.242804 0.0863839i
\(183\) −9.73205 −0.719414
\(184\) 0.973504 + 0.562053i 0.0717676 + 0.0414351i
\(185\) 0 0
\(186\) −6.72709 11.6517i −0.493254 0.854342i
\(187\) 6.00000i 0.438763i
\(188\) 12.8170 7.39993i 0.934779 0.539695i
\(189\) 0.383889 0.221638i 0.0279238 0.0161218i
\(190\) 0 0
\(191\) 8.12885 + 14.0796i 0.588183 + 1.01876i 0.994470 + 0.105017i \(0.0334897\pi\)
−0.406288 + 0.913745i \(0.633177\pi\)
\(192\) −6.19615 + 10.7321i −0.447169 + 0.774519i
\(193\) 9.76662 + 5.63876i 0.703017 + 0.405887i 0.808470 0.588537i \(-0.200296\pi\)
−0.105453 + 0.994424i \(0.533629\pi\)
\(194\) −18.3100 −1.31458
\(195\) 0 0
\(196\) −18.5875 −1.32768
\(197\) 21.3622 + 12.3335i 1.52199 + 0.878723i 0.999662 + 0.0259791i \(0.00827032\pi\)
0.522330 + 0.852744i \(0.325063\pi\)
\(198\) 1.73205 3.00000i 0.123091 0.213201i
\(199\) −11.0356 19.1141i −0.782290 1.35497i −0.930605 0.366026i \(-0.880718\pi\)
0.148315 0.988940i \(-0.452615\pi\)
\(200\) 0 0
\(201\) −11.8611 + 6.84799i −0.836615 + 0.483020i
\(202\) 12.6332 7.29376i 0.888866 0.513187i
\(203\) 1.10812i 0.0777745i
\(204\) 5.14688 + 8.91466i 0.360354 + 0.624151i
\(205\) 0 0
\(206\) −3.28167 1.89467i −0.228645 0.132008i
\(207\) 0.705897 0.0490632
\(208\) 5.49026 4.67516i 0.380681 0.324164i
\(209\) 2.46376 0.170422
\(210\) 0 0
\(211\) 10.7580 18.6335i 0.740614 1.28278i −0.211603 0.977356i \(-0.567868\pi\)
0.952216 0.305425i \(-0.0987984\pi\)
\(212\) −7.53556 13.0520i −0.517544 0.896413i
\(213\) 15.1488i 1.03798i
\(214\) −22.4534 + 12.9635i −1.53488 + 0.886164i
\(215\) 0 0
\(216\) 1.59245i 0.108353i
\(217\) −1.37081 2.37432i −0.0930568 0.161179i
\(218\) −18.5346 + 32.1028i −1.25532 + 2.17428i
\(219\) 9.34782 + 5.39697i 0.631667 + 0.364693i
\(220\) 0 0
\(221\) −2.45598 13.3611i −0.165207 0.898763i
\(222\) 22.5161 1.51118
\(223\) −18.3914 10.6183i −1.23158 0.711051i −0.264219 0.964463i \(-0.585114\pi\)
−0.967359 + 0.253411i \(0.918447\pi\)
\(224\) −1.67017 + 2.89282i −0.111593 + 0.193285i
\(225\) 0 0
\(226\) 7.53556i 0.501258i
\(227\) −9.04992 + 5.22497i −0.600664 + 0.346794i −0.769303 0.638884i \(-0.779396\pi\)
0.168639 + 0.985678i \(0.446063\pi\)
\(228\) 3.66060 2.11345i 0.242429 0.139966i
\(229\) 21.4135i 1.41505i 0.706690 + 0.707523i \(0.250187\pi\)
−0.706690 + 0.707523i \(0.749813\pi\)
\(230\) 0 0
\(231\) 0.352948 0.611324i 0.0232223 0.0402222i
\(232\) 3.44752 + 1.99043i 0.226341 + 0.130678i
\(233\) 3.24179 0.212377 0.106189 0.994346i \(-0.466135\pi\)
0.106189 + 0.994346i \(0.466135\pi\)
\(234\) −2.62902 + 7.38951i −0.171864 + 0.483068i
\(235\) 0 0
\(236\) 20.6368 + 11.9147i 1.34334 + 0.775578i
\(237\) −5.36585 + 9.29393i −0.348550 + 0.603706i
\(238\) 1.81658 + 3.14641i 0.117752 + 0.203952i
\(239\) 18.3129i 1.18456i 0.805731 + 0.592282i \(0.201773\pi\)
−0.805731 + 0.592282i \(0.798227\pi\)
\(240\) 0 0
\(241\) −5.74816 + 3.31870i −0.370272 + 0.213777i −0.673577 0.739117i \(-0.735243\pi\)
0.303305 + 0.952893i \(0.401910\pi\)
\(242\) 18.4122i 1.18358i
\(243\) −0.500000 0.866025i −0.0320750 0.0555556i
\(244\) −13.2942 + 23.0263i −0.851076 + 1.47411i
\(245\) 0 0
\(246\) 13.0973 0.835051
\(247\) −5.48641 + 1.00849i −0.349092 + 0.0641688i
\(248\) −9.84915 −0.625422
\(249\) 7.90509 + 4.56400i 0.500964 + 0.289232i
\(250\) 0 0
\(251\) −9.94081 17.2180i −0.627459 1.08679i −0.988060 0.154070i \(-0.950762\pi\)
0.360601 0.932720i \(-0.382571\pi\)
\(252\) 1.21106i 0.0762893i
\(253\) 0.973504 0.562053i 0.0612037 0.0353359i
\(254\) 26.8474 15.5003i 1.68455 0.972577i
\(255\) 0 0
\(256\) 0.535898 + 0.928203i 0.0334936 + 0.0580127i
\(257\) −0.504787 + 0.874316i −0.0314877 + 0.0545383i −0.881340 0.472483i \(-0.843358\pi\)
0.849852 + 0.527021i \(0.176691\pi\)
\(258\) −8.89662 5.13647i −0.553880 0.319783i
\(259\) 4.58821 0.285097
\(260\) 0 0
\(261\) 2.49983 0.154736
\(262\) −18.9056 10.9151i −1.16799 0.674339i
\(263\) −10.7859 + 18.6818i −0.665089 + 1.15197i 0.314172 + 0.949366i \(0.398273\pi\)
−0.979261 + 0.202602i \(0.935060\pi\)
\(264\) −1.26795 2.19615i −0.0780369 0.135164i
\(265\) 0 0
\(266\) 1.29200 0.745937i 0.0792177 0.0457363i
\(267\) 4.11927 2.37826i 0.252095 0.145547i
\(268\) 37.4181i 2.28568i
\(269\) 2.32534 + 4.02761i 0.141779 + 0.245568i 0.928166 0.372165i \(-0.121385\pi\)
−0.786388 + 0.617733i \(0.788051\pi\)
\(270\) 0 0
\(271\) 4.60718 + 2.65996i 0.279866 + 0.161581i 0.633363 0.773855i \(-0.281674\pi\)
−0.353497 + 0.935436i \(0.615007\pi\)
\(272\) −7.53556 −0.456910
\(273\) −0.535727 + 1.50580i −0.0324237 + 0.0911350i
\(274\) −20.1962 −1.22009
\(275\) 0 0
\(276\) 0.964273 1.67017i 0.0580424 0.100532i
\(277\) −4.67974 8.10555i −0.281178 0.487015i 0.690497 0.723335i \(-0.257392\pi\)
−0.971675 + 0.236320i \(0.924059\pi\)
\(278\) 14.1753i 0.850180i
\(279\) −5.35628 + 3.09245i −0.320672 + 0.185140i
\(280\) 0 0
\(281\) 13.1449i 0.784161i 0.919931 + 0.392080i \(0.128244\pi\)
−0.919931 + 0.392080i \(0.871756\pi\)
\(282\) −5.89201 10.2053i −0.350864 0.607714i
\(283\) 1.82184 3.15551i 0.108297 0.187576i −0.806783 0.590847i \(-0.798794\pi\)
0.915080 + 0.403271i \(0.132127\pi\)
\(284\) 35.8425 + 20.6937i 2.12686 + 1.22794i
\(285\) 0 0
\(286\) 2.25803 + 12.2842i 0.133520 + 0.726379i
\(287\) 2.66889 0.157540
\(288\) 6.52598 + 3.76778i 0.384547 + 0.222018i
\(289\) 1.40192 2.42820i 0.0824661 0.142835i
\(290\) 0 0
\(291\) 8.41712i 0.493420i
\(292\) 25.5387 14.7448i 1.49454 0.862873i
\(293\) −17.0043 + 9.81742i −0.993400 + 0.573540i −0.906289 0.422659i \(-0.861097\pi\)
−0.0871113 + 0.996199i \(0.527764\pi\)
\(294\) 14.7999i 0.863145i
\(295\) 0 0
\(296\) 8.24145 14.2746i 0.479025 0.829695i
\(297\) −1.37910 0.796225i −0.0800236 0.0462017i
\(298\) 0.123763 0.00716941
\(299\) −1.93778 + 1.65009i −0.112064 + 0.0954271i
\(300\) 0 0
\(301\) −1.81291 1.04668i −0.104494 0.0603298i
\(302\) −18.8170 + 32.5921i −1.08280 + 1.87546i
\(303\) −3.35295 5.80748i −0.192622 0.333631i
\(304\) 3.09430i 0.177470i
\(305\) 0 0
\(306\) 7.09808 4.09808i 0.405770 0.234271i
\(307\) 4.74863i 0.271019i −0.990776 0.135509i \(-0.956733\pi\)
0.990776 0.135509i \(-0.0432671\pi\)
\(308\) −0.964273 1.67017i −0.0549445 0.0951667i
\(309\) −0.870983 + 1.50859i −0.0495485 + 0.0858205i
\(310\) 0 0
\(311\) −5.45512 −0.309332 −0.154666 0.987967i \(-0.549430\pi\)
−0.154666 + 0.987967i \(0.549430\pi\)
\(312\) 3.72248 + 4.37148i 0.210744 + 0.247486i
\(313\) 7.23855 0.409147 0.204573 0.978851i \(-0.434419\pi\)
0.204573 + 0.978851i \(0.434419\pi\)
\(314\) −2.54132 1.46723i −0.143415 0.0828008i
\(315\) 0 0
\(316\) 14.6598 + 25.3915i 0.824677 + 1.42838i
\(317\) 21.0142i 1.18028i −0.807302 0.590138i \(-0.799073\pi\)
0.807302 0.590138i \(-0.200927\pi\)
\(318\) −10.3923 + 6.00000i −0.582772 + 0.336463i
\(319\) 3.44752 1.99043i 0.193024 0.111443i
\(320\) 0 0
\(321\) 5.95932 + 10.3218i 0.332617 + 0.576109i
\(322\) 0.340338 0.589483i 0.0189663 0.0328506i
\(323\) 5.04834 + 2.91466i 0.280897 + 0.162176i
\(324\) −2.73205 −0.151781
\(325\) 0 0
\(326\) 6.48068 0.358932
\(327\) 14.7577 + 8.52036i 0.816102 + 0.471177i
\(328\) 4.79393 8.30333i 0.264701 0.458475i
\(329\) −1.20064 2.07957i −0.0661936 0.114651i
\(330\) 0 0
\(331\) −13.4352 + 7.75682i −0.738466 + 0.426354i −0.821511 0.570192i \(-0.806869\pi\)
0.0830453 + 0.996546i \(0.473535\pi\)
\(332\) 21.5971 12.4691i 1.18529 0.684330i
\(333\) 10.3507i 0.567212i
\(334\) −25.9017 44.8631i −1.41728 2.45480i
\(335\) 0 0
\(336\) 0.767778 + 0.443277i 0.0418857 + 0.0241827i
\(337\) −32.8124 −1.78741 −0.893703 0.448660i \(-0.851901\pi\)
−0.893703 + 0.448660i \(0.851901\pi\)
\(338\) −10.0566 26.4307i −0.547006 1.43764i
\(339\) 3.46410 0.188144
\(340\) 0 0
\(341\) −4.92457 + 8.52961i −0.266681 + 0.461904i
\(342\) −1.68278 2.91466i −0.0909943 0.157607i
\(343\) 6.11878i 0.330383i
\(344\) −6.51278 + 3.76016i −0.351146 + 0.202734i
\(345\) 0 0
\(346\) 53.6787i 2.88579i
\(347\) −9.73171 16.8558i −0.522426 0.904868i −0.999660 0.0260913i \(-0.991694\pi\)
0.477234 0.878776i \(-0.341639\pi\)
\(348\) 3.41483 5.91466i 0.183054 0.317059i
\(349\) −8.41876 4.86057i −0.450646 0.260180i 0.257457 0.966290i \(-0.417115\pi\)
−0.708103 + 0.706109i \(0.750449\pi\)
\(350\) 0 0
\(351\) 3.39697 + 1.20856i 0.181317 + 0.0645082i
\(352\) 12.0000 0.639602
\(353\) −19.9338 11.5088i −1.06097 0.612551i −0.135269 0.990809i \(-0.543190\pi\)
−0.925700 + 0.378258i \(0.876523\pi\)
\(354\) 9.48675 16.4315i 0.504215 0.873326i
\(355\) 0 0
\(356\) 12.9951i 0.688737i
\(357\) 1.44641 0.835085i 0.0765521 0.0441974i
\(358\) 5.43479 3.13777i 0.287237 0.165837i
\(359\) 10.4131i 0.549584i 0.961504 + 0.274792i \(0.0886090\pi\)
−0.961504 + 0.274792i \(0.911391\pi\)
\(360\) 0 0
\(361\) −8.30316 + 14.3815i −0.437009 + 0.756921i
\(362\) 13.9612 + 8.06052i 0.733786 + 0.423652i
\(363\) 8.46410 0.444250
\(364\) 2.83094 + 3.32450i 0.148381 + 0.174251i
\(365\) 0 0
\(366\) 18.3341 + 10.5852i 0.958339 + 0.553297i
\(367\) −1.81577 + 3.14500i −0.0947823 + 0.164168i −0.909518 0.415665i \(-0.863549\pi\)
0.814735 + 0.579833i \(0.196882\pi\)
\(368\) 0.705897 + 1.22265i 0.0367974 + 0.0637350i
\(369\) 6.02082i 0.313432i
\(370\) 0 0
\(371\) −2.11769 + 1.22265i −0.109945 + 0.0634768i
\(372\) 16.8975i 0.876093i
\(373\) 9.91945 + 17.1810i 0.513609 + 0.889598i 0.999875 + 0.0157867i \(0.00502529\pi\)
−0.486266 + 0.873811i \(0.661641\pi\)
\(374\) 6.52598 11.3033i 0.337451 0.584482i
\(375\) 0 0
\(376\) −8.62650 −0.444878
\(377\) −6.86235 + 5.84355i −0.353429 + 0.300958i
\(378\) −0.964273 −0.0495968
\(379\) −5.91833 3.41695i −0.304004 0.175517i 0.340236 0.940340i \(-0.389493\pi\)
−0.644240 + 0.764823i \(0.722826\pi\)
\(380\) 0 0
\(381\) −7.12551 12.3418i −0.365051 0.632287i
\(382\) 35.3658i 1.80947i
\(383\) 33.6744 19.4419i 1.72068 0.993437i 0.803152 0.595774i \(-0.203155\pi\)
0.917531 0.397663i \(-0.130179\pi\)
\(384\) 10.2938 5.94311i 0.525301 0.303283i
\(385\) 0 0
\(386\) −12.2662 21.2456i −0.624331 1.08137i
\(387\) −2.36124 + 4.08979i −0.120029 + 0.207895i
\(388\) 19.9151 + 11.4980i 1.01104 + 0.583723i
\(389\) −8.84881 −0.448652 −0.224326 0.974514i \(-0.572018\pi\)
−0.224326 + 0.974514i \(0.572018\pi\)
\(390\) 0 0
\(391\) 2.65966 0.134505
\(392\) 9.38273 + 5.41712i 0.473900 + 0.273606i
\(393\) −5.01769 + 8.69090i −0.253109 + 0.438398i
\(394\) −26.8293 46.4697i −1.35164 2.34111i
\(395\) 0 0
\(396\) −3.76778 + 2.17533i −0.189338 + 0.109314i
\(397\) 14.7552 8.51890i 0.740541 0.427552i −0.0817250 0.996655i \(-0.526043\pi\)
0.822266 + 0.569103i \(0.192710\pi\)
\(398\) 48.0119i 2.40662i
\(399\) −0.342908 0.593934i −0.0171669 0.0297339i
\(400\) 0 0
\(401\) −6.66060 3.84550i −0.332614 0.192035i 0.324387 0.945924i \(-0.394842\pi\)
−0.657001 + 0.753890i \(0.728175\pi\)
\(402\) 29.7932 1.48595
\(403\) 7.47483 21.0099i 0.372348 1.04658i
\(404\) −18.3209 −0.911496
\(405\) 0 0
\(406\) 1.20526 2.08757i 0.0598160 0.103604i
\(407\) −8.24145 14.2746i −0.408514 0.707566i
\(408\) 6.00000i 0.297044i
\(409\) 7.86637 4.54165i 0.388967 0.224570i −0.292746 0.956190i \(-0.594569\pi\)
0.681712 + 0.731620i \(0.261236\pi\)
\(410\) 0 0
\(411\) 9.28419i 0.457955i
\(412\) 2.37957 + 4.12154i 0.117233 + 0.203053i
\(413\) 1.93316 3.34833i 0.0951246 0.164761i
\(414\) −1.32983 0.767778i −0.0653576 0.0377342i
\(415\) 0 0
\(416\) −26.7221 + 4.91196i −1.31016 + 0.240829i
\(417\) −6.51641 −0.319110
\(418\) −4.64145 2.67974i −0.227021 0.131070i
\(419\) 6.49534 11.2503i 0.317318 0.549611i −0.662609 0.748965i \(-0.730551\pi\)
0.979928 + 0.199354i \(0.0638844\pi\)
\(420\) 0 0
\(421\) 19.8859i 0.969178i 0.874742 + 0.484589i \(0.161031\pi\)
−0.874742 + 0.484589i \(0.838969\pi\)
\(422\) −40.5339 + 23.4022i −1.97316 + 1.13920i
\(423\) −4.69137 + 2.70856i −0.228102 + 0.131695i
\(424\) 8.78461i 0.426618i
\(425\) 0 0
\(426\) 16.4768 28.5387i 0.798305 1.38271i
\(427\) 3.73603 + 2.15700i 0.180799 + 0.104384i
\(428\) 32.5623 1.57396
\(429\) 5.64705 1.03802i 0.272642 0.0501161i
\(430\) 0 0
\(431\) −33.8858 19.5640i −1.63222 0.942365i −0.983405 0.181422i \(-0.941930\pi\)
−0.648818 0.760943i \(-0.724737\pi\)
\(432\) 1.00000 1.73205i 0.0481125 0.0833333i
\(433\) −19.0700 33.0301i −0.916444 1.58733i −0.804774 0.593581i \(-0.797713\pi\)
−0.111670 0.993745i \(-0.535620\pi\)
\(434\) 5.96393i 0.286278i
\(435\) 0 0
\(436\) 40.3188 23.2780i 1.93092 1.11482i
\(437\) 1.09213i 0.0522436i
\(438\) −11.7402 20.3346i −0.560967 0.971623i
\(439\) 3.37543 5.84641i 0.161100 0.279034i −0.774163 0.632986i \(-0.781829\pi\)
0.935264 + 0.353952i \(0.115162\pi\)
\(440\) 0 0
\(441\) 6.80351 0.323976
\(442\) −9.90555 + 27.8421i −0.471159 + 1.32431i
\(443\) 12.2647 0.582713 0.291357 0.956614i \(-0.405893\pi\)
0.291357 + 0.956614i \(0.405893\pi\)
\(444\) −24.4899 14.1393i −1.16224 0.671020i
\(445\) 0 0
\(446\) 23.0982 + 40.0073i 1.09373 + 1.89440i
\(447\) 0.0568941i 0.00269100i
\(448\) 4.75727 2.74661i 0.224760 0.129765i
\(449\) 20.2673 11.7013i 0.956471 0.552219i 0.0613861 0.998114i \(-0.480448\pi\)
0.895085 + 0.445895i \(0.147115\pi\)
\(450\) 0 0
\(451\) −4.79393 8.30333i −0.225737 0.390989i
\(452\) 4.73205 8.19615i 0.222577 0.385515i
\(453\) 14.9826 + 8.65021i 0.703944 + 0.406422i
\(454\) 22.7321 1.06687
\(455\) 0 0
\(456\) −2.46376 −0.115376
\(457\) −25.6023 14.7815i −1.19763 0.691451i −0.237602 0.971363i \(-0.576361\pi\)
−0.960026 + 0.279912i \(0.909695\pi\)
\(458\) 23.2907 40.3407i 1.08830 1.88500i
\(459\) −1.88389 3.26299i −0.0879324 0.152303i
\(460\) 0 0
\(461\) −8.29218 + 4.78749i −0.386205 + 0.222976i −0.680515 0.732735i \(-0.738244\pi\)
0.294309 + 0.955710i \(0.404910\pi\)
\(462\) −1.32983 + 0.767778i −0.0618693 + 0.0357203i
\(463\) 20.0241i 0.930600i −0.885153 0.465300i \(-0.845946\pi\)
0.885153 0.465300i \(-0.154054\pi\)
\(464\) 2.49983 + 4.32983i 0.116052 + 0.201007i
\(465\) 0 0
\(466\) −6.10718 3.52598i −0.282910 0.163338i
\(467\) 15.7942 0.730868 0.365434 0.930837i \(-0.380921\pi\)
0.365434 + 0.930837i \(0.380921\pi\)
\(468\) 7.49983 6.38638i 0.346680 0.295211i
\(469\) 6.07111 0.280338
\(470\) 0 0
\(471\) −0.674489 + 1.16825i −0.0310788 + 0.0538300i
\(472\) −6.94478 12.0287i −0.319660 0.553667i
\(473\) 7.52031i 0.345784i
\(474\) 20.2173 11.6725i 0.928614 0.536135i
\(475\) 0 0
\(476\) 4.56299i 0.209144i
\(477\) 2.75821 + 4.77735i 0.126290 + 0.218740i
\(478\) 19.9183 34.4995i 0.911041 1.57797i
\(479\) 23.1649 + 13.3743i 1.05843 + 0.611086i 0.924998 0.379972i \(-0.124066\pi\)
0.133434 + 0.991058i \(0.457400\pi\)
\(480\) 0 0
\(481\) 24.1955 + 28.4139i 1.10322 + 1.29556i
\(482\) 14.4385 0.657657
\(483\) −0.270986 0.156454i −0.0123303 0.00711890i
\(484\) 11.5622 20.0263i 0.525554 0.910285i
\(485\) 0 0
\(486\) 2.17533i 0.0986749i
\(487\) −24.5291 + 14.1619i −1.11152 + 0.641737i −0.939223 0.343307i \(-0.888453\pi\)
−0.172299 + 0.985045i \(0.555119\pi\)
\(488\) 13.4215 7.74890i 0.607563 0.350776i
\(489\) 2.97918i 0.134723i
\(490\) 0 0
\(491\) 4.75009 8.22739i 0.214368 0.371297i −0.738709 0.674025i \(-0.764564\pi\)
0.953077 + 0.302728i \(0.0978974\pi\)
\(492\) −14.2454 8.22460i −0.642233 0.370794i
\(493\) 9.41880 0.424201
\(494\) 11.4327 + 4.06748i 0.514381 + 0.183005i
\(495\) 0 0
\(496\) −10.7126 6.18490i −0.481008 0.277710i
\(497\) 3.35756 5.81547i 0.150607 0.260860i
\(498\) −9.92820 17.1962i −0.444893 0.770578i
\(499\) 23.1767i 1.03753i −0.854917 0.518765i \(-0.826392\pi\)
0.854917 0.518765i \(-0.173608\pi\)
\(500\) 0 0
\(501\) −20.6236 + 11.9070i −0.921394 + 0.531967i
\(502\) 43.2491i 1.93030i
\(503\) −20.1767 34.9470i −0.899633 1.55821i −0.827964 0.560782i \(-0.810501\pi\)
−0.0716692 0.997428i \(-0.522833\pi\)
\(504\) −0.352948 + 0.611324i −0.0157216 + 0.0272306i
\(505\) 0 0
\(506\) −2.44530 −0.108707
\(507\) −12.1502 + 4.62302i −0.539610 + 0.205315i
\(508\) −38.9345 −1.72744
\(509\) −8.91466 5.14688i −0.395135 0.228131i 0.289248 0.957254i \(-0.406595\pi\)
−0.684383 + 0.729123i \(0.739928\pi\)
\(510\) 0 0
\(511\) −2.39235 4.14367i −0.105831 0.183305i
\(512\) 21.4409i 0.947564i
\(513\) −1.33987 + 0.773575i −0.0591568 + 0.0341542i
\(514\) 1.90192 1.09808i 0.0838903 0.0484341i
\(515\) 0 0
\(516\) 6.45102 + 11.1735i 0.283991 + 0.491886i
\(517\) −4.31325 + 7.47077i −0.189697 + 0.328564i
\(518\) −8.64367 4.99043i −0.379781 0.219267i
\(519\) −24.6762 −1.08316
\(520\) 0 0
\(521\) 43.7218 1.91549 0.957743 0.287624i \(-0.0928655\pi\)
0.957743 + 0.287624i \(0.0928655\pi\)
\(522\) −4.70940 2.71897i −0.206125 0.119006i
\(523\) 3.59778 6.23154i 0.157320 0.272486i −0.776581 0.630017i \(-0.783048\pi\)
0.933901 + 0.357531i \(0.116381\pi\)
\(524\) 13.7086 + 23.7440i 0.598863 + 1.03726i
\(525\) 0 0
\(526\) 40.6390 23.4630i 1.77195 1.02303i
\(527\) −20.1813 + 11.6517i −0.879110 + 0.507555i
\(528\) 3.18490i 0.138605i
\(529\) 11.2509 + 19.4871i 0.489168 + 0.847263i
\(530\) 0 0
\(531\) −7.55359 4.36107i −0.327798 0.189254i
\(532\) −1.87368 −0.0812345
\(533\) 14.0741 + 16.5279i 0.609619 + 0.715904i
\(534\) −10.3470 −0.447759
\(535\) 0 0
\(536\) 10.9051 18.8882i 0.471028 0.815844i
\(537\) −1.44244 2.49838i −0.0622458 0.107813i
\(538\) 10.1168i 0.436164i
\(539\) 9.38273 5.41712i 0.404143 0.233332i
\(540\) 0 0
\(541\) 24.7159i 1.06262i −0.847177 0.531310i \(-0.821700\pi\)
0.847177 0.531310i \(-0.178300\pi\)
\(542\) −5.78628 10.0221i −0.248542 0.430487i
\(543\) 3.70543 6.41799i 0.159015 0.275422i
\(544\) 24.5885 + 14.1962i 1.05422 + 0.608655i
\(545\) 0 0
\(546\) 2.64705 2.25406i 0.113283 0.0964650i
\(547\) 6.97187 0.298096 0.149048 0.988830i \(-0.452379\pi\)
0.149048 + 0.988830i \(0.452379\pi\)
\(548\) 21.9666 + 12.6824i 0.938368 + 0.541767i
\(549\) 4.86603 8.42820i 0.207677 0.359707i
\(550\) 0 0
\(551\) 3.86761i 0.164766i
\(552\) −0.973504 + 0.562053i −0.0414351 + 0.0239225i
\(553\) 4.11979 2.37856i 0.175191 0.101147i
\(554\) 20.3599i 0.865011i
\(555\) 0 0
\(556\) −8.90158 + 15.4180i −0.377511 + 0.653869i
\(557\) 1.45124 + 0.837875i 0.0614911 + 0.0355019i 0.530430 0.847729i \(-0.322030\pi\)
−0.468939 + 0.883230i \(0.655364\pi\)
\(558\) 13.4542 0.569561
\(559\) −3.07829 16.7466i −0.130198 0.708304i
\(560\) 0 0
\(561\) −5.19615 3.00000i −0.219382 0.126660i
\(562\) 14.2973 24.7636i 0.603094 1.04459i
\(563\) −1.02615 1.77735i −0.0432472 0.0749064i 0.843592 0.536985i \(-0.180437\pi\)
−0.886839 + 0.462079i \(0.847104\pi\)
\(564\) 14.7999i 0.623186i
\(565\) 0 0
\(566\) −6.86428 + 3.96309i −0.288527 + 0.166581i
\(567\) 0.443277i 0.0186159i
\(568\) −12.0619 20.8918i −0.506105 0.876600i
\(569\) −20.6095 + 35.6968i −0.863996 + 1.49649i 0.00404386 + 0.999992i \(0.498713\pi\)
−0.868040 + 0.496494i \(0.834621\pi\)
\(570\) 0 0
\(571\) −30.7115 −1.28524 −0.642619 0.766186i \(-0.722152\pi\)
−0.642619 + 0.766186i \(0.722152\pi\)
\(572\) 5.25803 14.7790i 0.219849 0.617942i
\(573\) −16.2577 −0.679175
\(574\) −5.02790 2.90286i −0.209860 0.121163i
\(575\) 0 0
\(576\) −6.19615 10.7321i −0.258173 0.447169i
\(577\) 44.8752i 1.86818i 0.357038 + 0.934090i \(0.383787\pi\)
−0.357038 + 0.934090i \(0.616213\pi\)
\(578\) −5.28214 + 3.04964i −0.219708 + 0.126848i
\(579\) −9.76662 + 5.63876i −0.405887 + 0.234339i
\(580\) 0 0
\(581\) −2.02312 3.50414i −0.0839331 0.145376i
\(582\) 9.15500 15.8569i 0.379487 0.657291i
\(583\) 7.60770 + 4.39230i 0.315079 + 0.181911i
\(584\) −17.1888 −0.711278
\(585\) 0 0
\(586\) 42.7122 1.76443
\(587\) 20.6735 + 11.9359i 0.853287 + 0.492645i 0.861759 0.507319i \(-0.169363\pi\)
−0.00847155 + 0.999964i \(0.502697\pi\)
\(588\) 9.29376 16.0973i 0.383268 0.663840i
\(589\) 4.78448 + 8.28697i 0.197141 + 0.341459i
\(590\) 0 0
\(591\) −21.3622 + 12.3335i −0.878723 + 0.507331i
\(592\) 17.9279 10.3507i 0.736831 0.425409i
\(593\) 26.8263i 1.10162i 0.834630 + 0.550811i \(0.185682\pi\)
−0.834630 + 0.550811i \(0.814318\pi\)
\(594\) 1.73205 + 3.00000i 0.0710669 + 0.123091i
\(595\) 0 0
\(596\) −0.134613 0.0777187i −0.00551396 0.00318348i
\(597\) 22.0711 0.903311
\(598\) 5.44530 1.00093i 0.222675 0.0409313i
\(599\) −26.4919 −1.08243 −0.541215 0.840885i \(-0.682035\pi\)
−0.541215 + 0.840885i \(0.682035\pi\)
\(600\) 0 0
\(601\) −11.6145 + 20.1169i −0.473765 + 0.820585i −0.999549 0.0300334i \(-0.990439\pi\)
0.525784 + 0.850618i \(0.323772\pi\)
\(602\) 2.27688 + 3.94367i 0.0927986 + 0.160732i
\(603\) 13.6960i 0.557743i
\(604\) 40.9333 23.6328i 1.66555 0.961606i
\(605\) 0 0
\(606\) 14.5875i 0.592578i
\(607\) 5.29060 + 9.16359i 0.214739 + 0.371939i 0.953192 0.302366i \(-0.0977766\pi\)
−0.738453 + 0.674305i \(0.764443\pi\)
\(608\) 5.82932 10.0967i 0.236410 0.409474i
\(609\) −0.959657 0.554058i −0.0388873 0.0224516i
\(610\) 0 0
\(611\) 6.54693 18.4018i 0.264860 0.744456i
\(612\) −10.2938 −0.416101
\(613\) −5.47099 3.15868i −0.220971 0.127578i 0.385429 0.922738i \(-0.374054\pi\)
−0.606400 + 0.795160i \(0.707387\pi\)
\(614\) −5.16492 + 8.94590i −0.208439 + 0.361027i
\(615\) 0 0
\(616\) 1.12411i 0.0452915i
\(617\) −28.3430 + 16.3639i −1.14105 + 0.658784i −0.946690 0.322147i \(-0.895596\pi\)
−0.194358 + 0.980931i \(0.562262\pi\)
\(618\) 3.28167 1.89467i 0.132008 0.0762149i
\(619\) 21.0143i 0.844635i 0.906448 + 0.422317i \(0.138783\pi\)
−0.906448 + 0.422317i \(0.861217\pi\)
\(620\) 0 0
\(621\) −0.352948 + 0.611324i −0.0141633 + 0.0245316i
\(622\) 10.2768 + 5.93334i 0.412064 + 0.237905i
\(623\) −2.10846 −0.0844736
\(624\) 1.30368 + 7.09228i 0.0521888 + 0.283918i
\(625\) 0 0
\(626\) −13.6366 7.87310i −0.545029 0.314673i
\(627\) −1.23188 + 2.13368i −0.0491965 + 0.0852109i
\(628\) 1.84274 + 3.19171i 0.0735332 + 0.127363i
\(629\) 38.9990i 1.55499i
\(630\) 0 0
\(631\) 13.4803 7.78285i 0.536642 0.309830i −0.207075 0.978325i \(-0.566394\pi\)
0.743717 + 0.668495i \(0.233061\pi\)
\(632\) 17.0897i 0.679792i
\(633\) 10.7580 + 18.6335i 0.427593 + 0.740614i
\(634\) −22.8564 + 39.5885i −0.907744 + 1.57226i
\(635\) 0 0
\(636\) 15.0711 0.597608
\(637\) −18.6765 + 15.9037i −0.739990 + 0.630129i
\(638\) −8.65966 −0.342839
\(639\) −13.1193 7.57442i −0.518990 0.299639i
\(640\) 0 0
\(641\) 6.89551 + 11.9434i 0.272356 + 0.471735i 0.969465 0.245231i \(-0.0788637\pi\)
−0.697108 + 0.716966i \(0.745530\pi\)
\(642\) 25.9269i 1.02325i
\(643\) −23.9628 + 13.8349i −0.945000 + 0.545596i −0.891524 0.452973i \(-0.850363\pi\)
−0.0534755 + 0.998569i \(0.517030\pi\)
\(644\) −0.740347 + 0.427440i −0.0291738 + 0.0168435i
\(645\) 0 0
\(646\) −6.34034 10.9818i −0.249457 0.432073i
\(647\) 17.9147 31.0291i 0.704298 1.21988i −0.262646 0.964892i \(-0.584595\pi\)
0.966944 0.254988i \(-0.0820714\pi\)
\(648\) 1.37910 + 0.796225i 0.0541763 + 0.0312787i
\(649\) −13.8896 −0.545213
\(650\) 0 0
\(651\) 2.74162 0.107453
\(652\) −7.04880 4.06963i −0.276052 0.159379i
\(653\) −22.6153 + 39.1708i −0.885003 + 1.53287i −0.0392935 + 0.999228i \(0.512511\pi\)
−0.845710 + 0.533643i \(0.820823\pi\)
\(654\) −18.5346 32.1028i −0.724759 1.25532i
\(655\) 0 0
\(656\) 10.4284 6.02082i 0.407160 0.235074i
\(657\) −9.34782 + 5.39697i −0.364693 + 0.210556i
\(658\) 5.22358i 0.203636i
\(659\) 1.18658 + 2.05522i 0.0462226 + 0.0800598i 0.888211 0.459436i \(-0.151948\pi\)
−0.841988 + 0.539496i \(0.818615\pi\)
\(660\) 0 0
\(661\) 11.4110 + 6.58816i 0.443838 + 0.256250i 0.705224 0.708984i \(-0.250846\pi\)
−0.261386 + 0.965234i \(0.584180\pi\)
\(662\) 33.7473 1.31162
\(663\) 12.7990 + 4.55359i 0.497073 + 0.176847i
\(664\) −14.5359 −0.564102
\(665\) 0 0
\(666\) −11.2580 + 19.4995i −0.436240 + 0.755590i
\(667\) −0.882310 1.52821i −0.0341632 0.0591724i
\(668\) 65.0613i 2.51730i
\(669\) 18.3914 10.6183i 0.711051 0.410526i
\(670\) 0 0
\(671\) 15.4978i 0.598286i
\(672\) −1.67017 2.89282i −0.0644282 0.111593i
\(673\) −6.39346 + 11.0738i −0.246450 + 0.426864i −0.962538 0.271146i \(-0.912597\pi\)
0.716088 + 0.698010i \(0.245931\pi\)
\(674\) 61.8149 + 35.6889i 2.38102 + 1.37468i
\(675\) 0 0
\(676\) −5.65932 + 35.0629i −0.217666 + 1.34857i
\(677\) −16.0794 −0.617981 −0.308991 0.951065i \(-0.599991\pi\)
−0.308991 + 0.951065i \(0.599991\pi\)
\(678\) −6.52598 3.76778i −0.250629 0.144701i
\(679\) 1.86556 3.23124i 0.0715936 0.124004i
\(680\) 0 0
\(681\) 10.4499i 0.400443i
\(682\) 18.5547 10.7126i 0.710496 0.410205i
\(683\) 5.46602 3.15581i 0.209152 0.120754i −0.391765 0.920065i \(-0.628136\pi\)
0.600917 + 0.799311i \(0.294802\pi\)
\(684\) 4.22689i 0.161619i
\(685\) 0 0
\(686\) 6.65517 11.5271i 0.254096 0.440107i
\(687\) −18.5447 10.7068i −0.707523 0.408489i
\(688\) −9.44496 −0.360086
\(689\) −18.7391 6.66692i −0.713901 0.253989i
\(690\) 0 0
\(691\) −31.7955 18.3572i −1.20956 0.698339i −0.246896 0.969042i \(-0.579410\pi\)
−0.962663 + 0.270703i \(0.912744\pi\)
\(692\) −33.7082 + 58.3844i −1.28140 + 2.21944i
\(693\) 0.352948 + 0.611324i 0.0134074 + 0.0232223i
\(694\) 42.3393i 1.60718i
\(695\) 0 0
\(696\) −3.44752 + 1.99043i −0.130678 + 0.0754469i
\(697\) 22.6851i 0.859261i
\(698\) 10.5733 + 18.3136i 0.400207 + 0.693178i
\(699\) −1.62090 + 2.80748i −0.0613080 + 0.106189i
\(700\) 0 0
\(701\) 52.0509 1.96594 0.982968 0.183774i \(-0.0588316\pi\)
0.982968 + 0.183774i \(0.0588316\pi\)
\(702\) −5.08500 5.97155i −0.191921 0.225382i
\(703\) −16.0140 −0.603980
\(704\) −17.0903 9.86707i −0.644113 0.371879i
\(705\) 0 0
\(706\) 25.0354 + 43.3626i 0.942219 + 1.63197i
\(707\) 2.97257i 0.111795i
\(708\) −20.6368 + 11.9147i −0.775578 + 0.447780i
\(709\) 0.810685 0.468049i 0.0304459 0.0175779i −0.484700 0.874681i \(-0.661071\pi\)
0.515146 + 0.857103i \(0.327738\pi\)
\(710\) 0 0
\(711\) −5.36585 9.29393i −0.201235 0.348550i
\(712\) −3.78727 + 6.55974i −0.141934 + 0.245837i
\(713\) 3.78098 + 2.18295i 0.141599 + 0.0817521i
\(714\) −3.63317 −0.135968
\(715\) 0 0
\(716\) −7.88163 −0.294550
\(717\) −15.8594 9.15645i −0.592282 0.341954i
\(718\) 11.3260 19.6172i 0.422682 0.732107i
\(719\) 0.498717 + 0.863804i 0.0185990 + 0.0322145i 0.875175 0.483806i \(-0.160746\pi\)
−0.856576 + 0.516021i \(0.827413\pi\)
\(720\) 0 0
\(721\) 0.668722 0.386087i 0.0249045 0.0143786i
\(722\) 31.2845 18.0621i 1.16429 0.672202i
\(723\) 6.63741i 0.246848i
\(724\) −10.1234 17.5343i −0.376234 0.651656i
\(725\) 0 0
\(726\) −15.9454 9.20610i −0.591790 0.341670i
\(727\) 15.4879 0.574416 0.287208 0.957868i \(-0.407273\pi\)
0.287208 + 0.957868i \(0.407273\pi\)
\(728\) −0.460130 2.50321i −0.0170536 0.0927751i
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −8.89662 + 15.4094i −0.329054 + 0.569937i
\(732\) −13.2942 23.0263i −0.491369 0.851076i
\(733\) 3.34533i 0.123562i −0.998090 0.0617812i \(-0.980322\pi\)
0.998090 0.0617812i \(-0.0196781\pi\)
\(734\) 6.84141 3.94989i 0.252521 0.145793i
\(735\) 0 0
\(736\) 5.31932i 0.196073i
\(737\) −10.9051 18.8882i −0.401694 0.695754i
\(738\) −6.54863 + 11.3426i −0.241059 + 0.417526i
\(739\) −11.3394 6.54681i −0.417127 0.240828i 0.276721 0.960950i \(-0.410752\pi\)
−0.693847 + 0.720122i \(0.744086\pi\)
\(740\) 0 0
\(741\) 1.86983 5.25562i 0.0686898 0.193070i
\(742\) 5.31932 0.195279
\(743\) −4.39398 2.53686i −0.161199 0.0930685i 0.417230 0.908801i \(-0.363001\pi\)
−0.578430 + 0.815732i \(0.696334\pi\)
\(744\) 4.92457 8.52961i 0.180544 0.312711i
\(745\) 0 0
\(746\) 43.1561i 1.58006i
\(747\) −7.90509 + 4.56400i −0.289232 + 0.166988i
\(748\) −14.1962 + 8.19615i −0.519063 + 0.299681i
\(749\) 5.28325i 0.193046i
\(750\) 0 0
\(751\) 9.51688 16.4837i 0.347276 0.601499i −0.638489 0.769631i \(-0.720440\pi\)
0.985765 + 0.168132i \(0.0537734\pi\)
\(752\) −9.38273 5.41712i −0.342153 0.197542i
\(753\) 19.8816 0.724527
\(754\) 19.2837 3.54466i 0.702272 0.129089i
\(755\) 0 0
\(756\) 1.04880 + 0.605528i 0.0381447 + 0.0220228i
\(757\) 22.4044 38.8056i 0.814303 1.41042i −0.0955235 0.995427i \(-0.530452\pi\)
0.909827 0.414988i \(-0.136214\pi\)
\(758\) 7.43299 + 12.8743i 0.269978 + 0.467616i
\(759\) 1.12411i 0.0408024i
\(760\) 0 0
\(761\) 32.8763 18.9811i 1.19176 0.688065i 0.233058 0.972463i \(-0.425127\pi\)
0.958706 + 0.284398i \(0.0917936\pi\)
\(762\) 31.0007i 1.12304i
\(763\) −3.77688 6.54174i −0.136732 0.236827i
\(764\) −22.2084 + 38.4661i −0.803472 + 1.39166i
\(765\) 0 0
\(766\) −84.5852 −3.05619
\(767\) 30.9299 5.68542i 1.11681 0.205289i
\(768\) −1.07180 −0.0386751
\(769\) 21.5337 + 12.4325i 0.776525 + 0.448327i 0.835197 0.549950i \(-0.185353\pi\)
−0.0586721 + 0.998277i \(0.518687\pi\)
\(770\) 0 0
\(771\) −0.504787 0.874316i −0.0181794 0.0314877i
\(772\) 30.8108i 1.10890i
\(773\) 25.3768 14.6513i 0.912740 0.526970i 0.0314280 0.999506i \(-0.489995\pi\)
0.881312 + 0.472536i \(0.156661\pi\)
\(774\) 8.89662 5.13647i 0.319783 0.184627i
\(775\) 0 0
\(776\) −6.70193 11.6081i −0.240585 0.416706i
\(777\) −2.29410 + 3.97350i −0.0823005 + 0.142549i
\(778\) 16.6702 + 9.62453i 0.597655 + 0.345056i
\(779\) −9.31512 −0.333749
\(780\) 0 0
\(781\) −24.1238 −0.863216
\(782\) −5.01051 2.89282i −0.179175 0.103447i
\(783\) −1.24991 + 2.16492i −0.0446683 + 0.0773678i
\(784\) 6.80351 + 11.7840i 0.242982 + 0.420858i
\(785\) 0 0
\(786\) 18.9056 10.9151i 0.674339 0.389330i
\(787\) −9.24064 + 5.33508i −0.329393 + 0.190175i −0.655572 0.755133i \(-0.727572\pi\)
0.326179 + 0.945308i \(0.394239\pi\)
\(788\) 67.3913i 2.40071i
\(789\) −10.7859 18.6818i −0.383990 0.665089i
\(790\) 0 0
\(791\) −1.32983 0.767778i −0.0472833 0.0272990i
\(792\) 2.53590 0.0901092
\(793\) 6.34372 + 34.5112i 0.225272 + 1.22553i
\(794\) −37.0628 −1.31531
\(795\) 0 0
\(796\) 30.1497 52.2208i 1.06863 1.85092i
\(797\) −9.44000 16.3506i −0.334382 0.579166i 0.648984 0.760802i \(-0.275194\pi\)
−0.983366 + 0.181636i \(0.941861\pi\)
\(798\) 1.49187i 0.0528118i
\(799\) −17.6760 + 10.2053i −0.625333 + 0.361036i
\(800\) 0 0
\(801\) 4.75653i 0.168064i
\(802\) 8.36522 + 14.4890i 0.295386 + 0.511624i
\(803\) −8.59440 + 14.8859i −0.303290 + 0.525313i
\(804\) −32.4050 18.7091i −1.14284 0.659818i
\(805\) 0 0
\(806\) −36.9335 + 31.4502i −1.30093 + 1.10779i
\(807\) −4.65068 −0.163712
\(808\) 9.24812 + 5.33940i 0.325348 + 0.187840i
\(809\) −21.8102 + 37.7763i −0.766805 + 1.32814i 0.172482 + 0.985013i \(0.444821\pi\)
−0.939287 + 0.343132i \(0.888512\pi\)
\(810\) 0 0
\(811\) 3.31656i 0.116460i −0.998303 0.0582301i \(-0.981454\pi\)
0.998303 0.0582301i \(-0.0185457\pi\)
\(812\) −2.62183 + 1.51372i −0.0920083 + 0.0531210i
\(813\) −4.60718 + 2.65996i −0.161581 + 0.0932888i
\(814\) 35.8557i 1.25674i
\(815\) 0 0
\(816\) 3.76778 6.52598i 0.131899 0.228455i
\(817\) 6.32751 + 3.65319i 0.221372 + 0.127809i
\(818\) −19.7592 −0.690863
\(819\) −1.03619 1.21685i −0.0362076 0.0425202i
\(820\) 0 0
\(821\) 6.24179 + 3.60370i 0.217840 + 0.125770i 0.604950 0.796264i \(-0.293193\pi\)
−0.387110 + 0.922034i \(0.626527\pi\)
\(822\) 10.0981 17.4904i 0.352211 0.610047i
\(823\) −4.90146 8.48957i −0.170854 0.295928i 0.767865 0.640612i \(-0.221319\pi\)
−0.938719 + 0.344684i \(0.887986\pi\)
\(824\) 2.77399i 0.0966367i
\(825\) 0 0
\(826\) −7.28372 + 4.20526i −0.253433 + 0.146320i
\(827\) 3.92322i 0.136424i 0.997671 + 0.0682118i \(0.0217294\pi\)
−0.997671 + 0.0682118i \(0.978271\pi\)
\(828\) 0.964273 + 1.67017i 0.0335108 + 0.0580424i
\(829\) 5.21210 9.02761i 0.181024 0.313542i −0.761206 0.648510i \(-0.775392\pi\)
0.942229 + 0.334968i \(0.108726\pi\)
\(830\) 0 0
\(831\) 9.35948 0.324677
\(832\) 42.0962 + 14.9769i 1.45942 + 0.519229i
\(833\) 25.6341 0.888169
\(834\) 12.2762 + 7.08766i 0.425090 + 0.245426i
\(835\) 0 0
\(836\) 3.36556 + 5.82932i 0.116400 + 0.201611i
\(837\) 6.18490i 0.213781i
\(838\) −24.4730 + 14.1295i −0.845406 + 0.488095i
\(839\) −8.87859 + 5.12606i −0.306523 + 0.176971i −0.645369 0.763871i \(-0.723297\pi\)
0.338847 + 0.940842i \(0.389963\pi\)
\(840\) 0 0
\(841\) 11.3754 + 19.7028i 0.392256 + 0.679408i
\(842\) 21.6291 37.4628i 0.745389 1.29105i
\(843\) −11.3838 6.57246i −0.392080 0.226368i
\(844\) 58.7830 2.02339
\(845\) 0 0
\(846\) 11.7840 0.405143
\(847\) −3.24928 1.87597i −0.111646 0.0644591i
\(848\) −5.51641 + 9.55470i −0.189434 + 0.328110i
\(849\) 1.82184 + 3.15551i 0.0625253 + 0.108297i
\(850\) 0 0
\(851\) −6.32761 + 3.65325i −0.216908 + 0.125232i
\(852\) −35.8425 + 20.6937i −1.22794 + 0.708954i
\(853\) 26.3671i 0.902792i 0.892324 + 0.451396i \(0.149074\pi\)
−0.892324 + 0.451396i \(0.850926\pi\)
\(854\) −4.69218 8.12709i −0.160563 0.278103i
\(855\) 0 0
\(856\) −16.4370 9.48991i −0.561806 0.324359i
\(857\) 1.04855 0.0358178 0.0179089 0.999840i \(-0.494299\pi\)
0.0179089 + 0.999840i \(0.494299\pi\)
\(858\) −11.7674 4.18658i −0.401734 0.142927i
\(859\) −19.6076 −0.669003 −0.334501 0.942395i \(-0.608568\pi\)
−0.334501 + 0.942395i \(0.608568\pi\)
\(860\) 0 0
\(861\) −1.33445 + 2.31133i −0.0454778 + 0.0787699i
\(862\) 42.5581 + 73.7128i 1.44954 + 2.51067i
\(863\) 25.6925i 0.874582i −0.899320 0.437291i \(-0.855938\pi\)
0.899320 0.437291i \(-0.144062\pi\)
\(864\) −6.52598 + 3.76778i −0.222018 + 0.128182i
\(865\) 0 0
\(866\) 82.9668i 2.81933i
\(867\) 1.40192 + 2.42820i 0.0476118 + 0.0824661i
\(868\) 3.74513 6.48675i 0.127118 0.220175i
\(869\) −14.8001 8.54486i −0.502060 0.289864i
\(870\) 0 0
\(871\) 32.0154 + 37.5972i 1.08480 + 1.27393i
\(872\) −27.1365 −0.918958
\(873\) −7.28944 4.20856i −0.246710 0.142438i
\(874\) −1.18787 + 2.05745i −0.0401802 + 0.0695942i
\(875\) 0 0
\(876\) 29.4896i 0.996360i
\(877\) 31.5356 18.2071i 1.06488 0.614809i 0.138102 0.990418i \(-0.455900\pi\)
0.926778 + 0.375609i \(0.122567\pi\)
\(878\) −12.7179 + 7.34266i −0.429207 + 0.247803i
\(879\) 19.6348i 0.662267i
\(880\) 0 0
\(881\) 8.01915 13.8896i 0.270172 0.467951i −0.698734 0.715382i \(-0.746253\pi\)
0.968906 + 0.247430i \(0.0795861\pi\)
\(882\) −12.8170 7.39993i −0.431573 0.249169i
\(883\) 27.4548 0.923927 0.461963 0.886899i \(-0.347145\pi\)
0.461963 + 0.886899i \(0.347145\pi\)
\(884\) 28.2577 24.0625i 0.950409 0.809309i
\(885\) 0 0
\(886\) −23.1053 13.3399i −0.776239 0.448162i
\(887\) −15.9821 + 27.6818i −0.536626 + 0.929464i 0.462457 + 0.886642i \(0.346968\pi\)
−0.999083 + 0.0428217i \(0.986365\pi\)
\(888\) 8.24145 + 14.2746i 0.276565 + 0.479025i
\(889\) 6.31715i 0.211870i
\(890\) 0 0
\(891\) 1.37910 0.796225i 0.0462017 0.0266745i
\(892\) 58.0193i 1.94263i
\(893\) 4.19055 + 7.25825i 0.140231 + 0.242888i
\(894\) −0.0618816 + 0.107182i −0.00206963 + 0.00358471i
\(895\) 0 0
\(896\) −5.26888 −0.176021
\(897\) −0.460130 2.50321i −0.0153633 0.0835797i
\(898\) −50.9084 −1.69883
\(899\) 13.3898 + 7.73060i 0.446574 + 0.257830i
\(900\) 0 0
\(901\) 10.3923 + 18.0000i 0.346218 + 0.599667i
\(902\) 20.8567i 0.694454i
\(903\) 1.81291 1.04668i 0.0603298 0.0348314i
\(904\) −4.77735 + 2.75821i −0.158892 + 0.0917365i
\(905\) 0 0
\(906\) −18.8170 32.5921i −0.625155 1.08280i
\(907\) −15.8398 + 27.4354i −0.525953 + 0.910977i 0.473590 + 0.880745i \(0.342958\pi\)
−0.999543 + 0.0302317i \(0.990375\pi\)
\(908\) −24.7248 14.2749i −0.820522 0.473729i
\(909\) 6.70590 0.222421
\(910\) 0 0
\(911\) −25.9227 −0.858858 −0.429429 0.903101i \(-0.641285\pi\)
−0.429429 + 0.903101i \(0.641285\pi\)
\(912\) −2.67974 1.54715i −0.0887351 0.0512313i
\(913\) −7.26795 + 12.5885i −0.240534 + 0.416617i
\(914\) 32.1547 + 55.6935i 1.06358 + 1.84218i
\(915\) 0 0
\(916\) −50.6650 + 29.2514i −1.67402 + 0.966494i
\(917\) 3.85247 2.22423i 0.127220 0.0734505i
\(918\) 8.19615i 0.270513i
\(919\) 6.00970 + 10.4091i 0.198242 + 0.343365i 0.947958 0.318394i \(-0.103144\pi\)
−0.749717 + 0.661759i \(0.769810\pi\)
\(920\) 0 0
\(921\) 4.11244 + 2.37432i 0.135509 + 0.0782364i
\(922\) 20.8287 0.685958
\(923\) 53.7199 9.87459i 1.76821 0.325026i
\(924\) 1.92855 0.0634445
\(925\) 0 0
\(926\) −21.7795 + 37.7232i −0.715720 + 1.23966i
\(927\) −0.870983 1.50859i −0.0286068 0.0495485i
\(928\) 18.8376i 0.618375i
\(929\) −18.4962 + 10.6788i −0.606842 + 0.350360i −0.771728 0.635952i \(-0.780608\pi\)
0.164887 + 0.986313i \(0.447274\pi\)
\(930\) 0 0
\(931\) 10.5260i 0.344977i
\(932\) 4.42837 + 7.67017i 0.145056 + 0.251245i
\(933\) 2.72756 4.72427i 0.0892963 0.154666i
\(934\) −29.7545 17.1788i −0.973597 0.562106i
\(935\) 0 0
\(936\) −5.64705 + 1.03802i −0.184580 + 0.0339288i
\(937\) −15.8029 −0.516259 −0.258129 0.966110i \(-0.583106\pi\)
−0.258129 + 0.966110i \(0.583106\pi\)
\(938\) −11.4373 6.60333i −0.373441 0.215606i
\(939\) −3.61927 + 6.26876i −0.118111 + 0.204573i
\(940\) 0 0
\(941\) 6.50590i 0.212086i −0.994362 0.106043i \(-0.966182\pi\)
0.994362 0.106043i \(-0.0338182\pi\)
\(942\) 2.54132 1.46723i 0.0828008 0.0478051i
\(943\) −3.68068 + 2.12504i −0.119859 + 0.0692008i
\(944\) 17.4443i 0.567763i
\(945\) 0 0
\(946\) 8.17957 14.1674i 0.265941 0.460623i
\(947\) −24.1479 13.9418i −0.784701 0.453048i 0.0533924 0.998574i \(-0.482997\pi\)
−0.838094 + 0.545526i \(0.816330\pi\)
\(948\) −29.3196 −0.952255
\(949\) 13.0451 36.6666i 0.423463 1.19025i
\(950\) 0 0
\(951\) 18.1988 + 10.5071i 0.590138 + 0.340716i
\(952\) −1.32983 + 2.30333i −0.0431001 + 0.0746515i
\(953\) −25.9430 44.9347i −0.840377 1.45558i −0.889576 0.456787i \(-0.849000\pi\)
0.0491986 0.998789i \(-0.484333\pi\)
\(954\) 12.0000i 0.388514i
\(955\) 0 0
\(956\) −43.3288 + 25.0159i −1.40135 + 0.809072i
\(957\) 3.98085i 0.128683i
\(958\) −29.0934 50.3913i −0.939966 1.62807i
\(959\) 2.05773 3.56410i 0.0664477 0.115091i
\(960\) 0 0
\(961\) −7.25300 −0.233968
\(962\) −14.6768 79.8451i −0.473200 2.57431i
\(963\) −11.9186 −0.384072
\(964\) −15.7043 9.06687i −0.505801 0.292024i
\(965\) 0 0
\(966\) 0.340338 + 0.589483i 0.0109502 + 0.0189663i
\(967\) 21.4251i 0.688986i 0.938789 + 0.344493i \(0.111949\pi\)
−0.938789 + 0.344493i \(0.888051\pi\)
\(968\) −11.6729 + 6.73933i −0.375180 + 0.216610i
\(969\) −5.04834 + 2.91466i −0.162176 + 0.0936323i
\(970\) 0 0
\(971\) 3.33637 + 5.77876i 0.107069 + 0.185449i 0.914582 0.404401i \(-0.132520\pi\)
−0.807513 + 0.589850i \(0.799187\pi\)
\(972\) 1.36603 2.36603i 0.0438153 0.0758903i
\(973\) 2.50158 + 1.44429i 0.0801969 + 0.0463017i
\(974\) 61.6136 1.97423
\(975\) 0 0
\(976\) 19.4641 0.623031
\(977\) −8.50906 4.91271i −0.272229 0.157171i 0.357671 0.933848i \(-0.383571\pi\)
−0.629900 + 0.776676i \(0.716904\pi\)
\(978\) −3.24034 + 5.61244i −0.103615 + 0.179466i
\(979\) 3.78727 + 6.55974i 0.121042 + 0.209650i
\(980\) 0 0
\(981\) −14.7577 + 8.52036i −0.471177 + 0.272034i
\(982\) −17.8973 + 10.3330i −0.571125 + 0.329739i
\(983\) 8.83034i 0.281644i −0.990035 0.140822i \(-0.955025\pi\)
0.990035 0.140822i \(-0.0449746\pi\)
\(984\) 4.79393 + 8.30333i 0.152825 + 0.264701i
\(985\) 0 0
\(986\) −17.7440 10.2445i −0.565083 0.326251i
\(987\) 2.40129 0.0764338
\(988\) −9.88069 11.6034i −0.314347 0.369152i
\(989\) 3.33358 0.106002
\(990\) 0 0
\(991\) −6.16662 + 10.6809i −0.195889 + 0.339290i −0.947192 0.320668i \(-0.896093\pi\)
0.751302 + 0.659958i \(0.229426\pi\)
\(992\) 23.3033 + 40.3626i 0.739882 + 1.28151i
\(993\) 15.5136i 0.492311i
\(994\) −12.6506 + 7.30380i −0.401251 + 0.231663i
\(995\) 0 0
\(996\) 24.9382i 0.790196i
\(997\) −6.52517 11.3019i −0.206654 0.357935i 0.744004 0.668175i \(-0.232924\pi\)
−0.950658 + 0.310239i \(0.899591\pi\)
\(998\) −25.2084 + 43.6623i −0.797959 + 1.38210i
\(999\) 8.96393 + 5.17533i 0.283606 + 0.163740i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bc.j.901.1 8
5.2 odd 4 975.2.w.i.199.4 8
5.3 odd 4 975.2.w.h.199.1 8
5.4 even 2 195.2.bb.b.121.4 8
13.10 even 6 inner 975.2.bc.j.751.1 8
15.14 odd 2 585.2.bu.d.316.1 8
65.19 odd 12 2535.2.a.bk.1.1 4
65.23 odd 12 975.2.w.i.49.4 8
65.49 even 6 195.2.bb.b.166.4 yes 8
65.59 odd 12 2535.2.a.bj.1.4 4
65.62 odd 12 975.2.w.h.49.1 8
195.59 even 12 7605.2.a.ci.1.1 4
195.149 even 12 7605.2.a.ch.1.4 4
195.179 odd 6 585.2.bu.d.361.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bb.b.121.4 8 5.4 even 2
195.2.bb.b.166.4 yes 8 65.49 even 6
585.2.bu.d.316.1 8 15.14 odd 2
585.2.bu.d.361.1 8 195.179 odd 6
975.2.w.h.49.1 8 65.62 odd 12
975.2.w.h.199.1 8 5.3 odd 4
975.2.w.i.49.4 8 65.23 odd 12
975.2.w.i.199.4 8 5.2 odd 4
975.2.bc.j.751.1 8 13.10 even 6 inner
975.2.bc.j.901.1 8 1.1 even 1 trivial
2535.2.a.bj.1.4 4 65.59 odd 12
2535.2.a.bk.1.1 4 65.19 odd 12
7605.2.a.ch.1.4 4 195.149 even 12
7605.2.a.ci.1.1 4 195.59 even 12