Properties

Label 975.2.w.i.199.4
Level $975$
Weight $2$
Character 975.199
Analytic conductor $7.785$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(49,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.w (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.191102976.5
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 6x^{6} + 6x^{4} + 36x^{2} + 36 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.4
Root \(0.291439 + 1.08766i\) of defining polynomial
Character \(\chi\) \(=\) 975.199
Dual form 975.2.w.i.49.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.08766 - 1.88389i) q^{2} +(0.866025 + 0.500000i) q^{3} +(-1.36603 - 2.36603i) q^{4} +(1.88389 - 1.08766i) q^{6} +(0.221638 + 0.383889i) q^{7} -1.59245 q^{8} +(0.500000 + 0.866025i) q^{9} +(-1.37910 - 0.796225i) q^{11} -2.73205i q^{12} +(1.20856 - 3.39697i) q^{13} +0.964273 q^{14} +(1.00000 - 1.73205i) q^{16} +(3.26299 - 1.88389i) q^{17} +2.17533 q^{18} +(1.33987 - 0.773575i) q^{19} +0.443277i q^{21} +(-3.00000 + 1.73205i) q^{22} +(0.611324 + 0.352948i) q^{23} +(-1.37910 - 0.796225i) q^{24} +(-5.08500 - 5.97155i) q^{26} +1.00000i q^{27} +(0.605528 - 1.04880i) q^{28} +(1.24991 - 2.16492i) q^{29} -6.18490i q^{31} +(-3.76778 - 6.52598i) q^{32} +(-0.796225 - 1.37910i) q^{33} -8.19615i q^{34} +(1.36603 - 2.36603i) q^{36} +(-5.17533 + 8.96393i) q^{37} -3.36556i q^{38} +(2.74513 - 2.33758i) q^{39} +(5.21419 + 3.01041i) q^{41} +(0.835085 + 0.482136i) q^{42} +(-4.08979 + 2.36124i) q^{43} +4.35066i q^{44} +(1.32983 - 0.767778i) q^{46} +5.41712 q^{47} +(1.73205 - 1.00000i) q^{48} +(3.40175 - 5.89201i) q^{49} +3.76778 q^{51} +(-9.68823 + 1.78086i) q^{52} +5.51641i q^{53} +(1.88389 + 1.08766i) q^{54} +(-0.352948 - 0.611324i) q^{56} +1.54715 q^{57} +(-2.71897 - 4.70940i) q^{58} +(-7.55359 + 4.36107i) q^{59} +(4.86603 + 8.42820i) q^{61} +(-11.6517 - 6.72709i) q^{62} +(-0.221638 + 0.383889i) q^{63} -12.3923 q^{64} -3.46410 q^{66} +(-6.84799 + 11.8611i) q^{67} +(-8.91466 - 5.14688i) q^{68} +(0.352948 + 0.611324i) q^{69} +(13.1193 - 7.57442i) q^{71} +(-0.796225 - 1.37910i) q^{72} -10.7939 q^{73} +(11.2580 + 19.4995i) q^{74} +(-3.66060 - 2.11345i) q^{76} -0.705897i q^{77} +(-1.41796 - 7.71402i) q^{78} -10.7317 q^{79} +(-0.500000 + 0.866025i) q^{81} +(11.3426 - 6.54863i) q^{82} -9.12801 q^{83} +(1.04880 - 0.605528i) q^{84} +10.2729i q^{86} +(2.16492 - 1.24991i) q^{87} +(2.19615 + 1.26795i) q^{88} +(4.11927 + 2.37826i) q^{89} +(1.57192 - 0.288945i) q^{91} -1.92855i q^{92} +(3.09245 - 5.35628i) q^{93} +(5.89201 - 10.2053i) q^{94} -7.53556i q^{96} +(4.20856 + 7.28944i) q^{97} +(-7.39993 - 12.8170i) q^{98} -1.59245i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} + 4 q^{9} + 12 q^{13} + 24 q^{14} + 8 q^{16} + 12 q^{19} - 24 q^{22} + 24 q^{23} - 24 q^{26} - 12 q^{28} - 12 q^{29} + 4 q^{36} - 24 q^{37} + 4 q^{39} + 36 q^{41} + 12 q^{42} - 12 q^{43} + 48 q^{47}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.08766 1.88389i 0.769095 1.33211i −0.168960 0.985623i \(-0.554041\pi\)
0.938054 0.346488i \(-0.112626\pi\)
\(3\) 0.866025 + 0.500000i 0.500000 + 0.288675i
\(4\) −1.36603 2.36603i −0.683013 1.18301i
\(5\) 0 0
\(6\) 1.88389 1.08766i 0.769095 0.444037i
\(7\) 0.221638 + 0.383889i 0.0837715 + 0.145096i 0.904867 0.425694i \(-0.139970\pi\)
−0.821096 + 0.570791i \(0.806637\pi\)
\(8\) −1.59245 −0.563016
\(9\) 0.500000 + 0.866025i 0.166667 + 0.288675i
\(10\) 0 0
\(11\) −1.37910 0.796225i −0.415815 0.240071i 0.277470 0.960734i \(-0.410504\pi\)
−0.693285 + 0.720663i \(0.743837\pi\)
\(12\) 2.73205i 0.788675i
\(13\) 1.20856 3.39697i 0.335195 0.942149i
\(14\) 0.964273 0.257713
\(15\) 0 0
\(16\) 1.00000 1.73205i 0.250000 0.433013i
\(17\) 3.26299 1.88389i 0.791392 0.456910i −0.0490606 0.998796i \(-0.515623\pi\)
0.840452 + 0.541886i \(0.182289\pi\)
\(18\) 2.17533 0.512730
\(19\) 1.33987 0.773575i 0.307388 0.177470i −0.338369 0.941013i \(-0.609875\pi\)
0.645757 + 0.763543i \(0.276542\pi\)
\(20\) 0 0
\(21\) 0.443277i 0.0967310i
\(22\) −3.00000 + 1.73205i −0.639602 + 0.369274i
\(23\) 0.611324 + 0.352948i 0.127470 + 0.0735948i 0.562379 0.826880i \(-0.309886\pi\)
−0.434909 + 0.900474i \(0.643220\pi\)
\(24\) −1.37910 0.796225i −0.281508 0.162529i
\(25\) 0 0
\(26\) −5.08500 5.97155i −0.997250 1.17112i
\(27\) 1.00000i 0.192450i
\(28\) 0.605528 1.04880i 0.114434 0.198205i
\(29\) 1.24991 2.16492i 0.232103 0.402015i −0.726324 0.687353i \(-0.758773\pi\)
0.958427 + 0.285338i \(0.0921059\pi\)
\(30\) 0 0
\(31\) 6.18490i 1.11084i −0.831570 0.555420i \(-0.812557\pi\)
0.831570 0.555420i \(-0.187443\pi\)
\(32\) −3.76778 6.52598i −0.666055 1.15364i
\(33\) −0.796225 1.37910i −0.138605 0.240071i
\(34\) 8.19615i 1.40563i
\(35\) 0 0
\(36\) 1.36603 2.36603i 0.227671 0.394338i
\(37\) −5.17533 + 8.96393i −0.850819 + 1.47366i 0.0296519 + 0.999560i \(0.490560\pi\)
−0.880471 + 0.474101i \(0.842773\pi\)
\(38\) 3.36556i 0.545966i
\(39\) 2.74513 2.33758i 0.439572 0.374312i
\(40\) 0 0
\(41\) 5.21419 + 3.01041i 0.814319 + 0.470147i 0.848454 0.529270i \(-0.177534\pi\)
−0.0341343 + 0.999417i \(0.510867\pi\)
\(42\) 0.835085 + 0.482136i 0.128856 + 0.0743952i
\(43\) −4.08979 + 2.36124i −0.623686 + 0.360086i −0.778303 0.627889i \(-0.783919\pi\)
0.154616 + 0.987975i \(0.450586\pi\)
\(44\) 4.35066i 0.655886i
\(45\) 0 0
\(46\) 1.32983 0.767778i 0.196073 0.113203i
\(47\) 5.41712 0.790169 0.395084 0.918645i \(-0.370715\pi\)
0.395084 + 0.918645i \(0.370715\pi\)
\(48\) 1.73205 1.00000i 0.250000 0.144338i
\(49\) 3.40175 5.89201i 0.485965 0.841716i
\(50\) 0 0
\(51\) 3.76778 0.527594
\(52\) −9.68823 + 1.78086i −1.34352 + 0.246960i
\(53\) 5.51641i 0.757737i 0.925450 + 0.378869i \(0.123687\pi\)
−0.925450 + 0.378869i \(0.876313\pi\)
\(54\) 1.88389 + 1.08766i 0.256365 + 0.148012i
\(55\) 0 0
\(56\) −0.352948 0.611324i −0.0471647 0.0816917i
\(57\) 1.54715 0.204925
\(58\) −2.71897 4.70940i −0.357019 0.618375i
\(59\) −7.55359 + 4.36107i −0.983394 + 0.567763i −0.903293 0.429024i \(-0.858858\pi\)
−0.0801008 + 0.996787i \(0.525524\pi\)
\(60\) 0 0
\(61\) 4.86603 + 8.42820i 0.623031 + 1.07912i 0.988918 + 0.148462i \(0.0474322\pi\)
−0.365887 + 0.930659i \(0.619234\pi\)
\(62\) −11.6517 6.72709i −1.47976 0.854342i
\(63\) −0.221638 + 0.383889i −0.0279238 + 0.0483655i
\(64\) −12.3923 −1.54904
\(65\) 0 0
\(66\) −3.46410 −0.426401
\(67\) −6.84799 + 11.8611i −0.836615 + 1.44906i 0.0560933 + 0.998426i \(0.482136\pi\)
−0.892709 + 0.450635i \(0.851198\pi\)
\(68\) −8.91466 5.14688i −1.08106 0.624151i
\(69\) 0.352948 + 0.611324i 0.0424900 + 0.0735948i
\(70\) 0 0
\(71\) 13.1193 7.57442i 1.55697 0.898918i 0.559427 0.828880i \(-0.311021\pi\)
0.997544 0.0700381i \(-0.0223121\pi\)
\(72\) −0.796225 1.37910i −0.0938360 0.162529i
\(73\) −10.7939 −1.26333 −0.631667 0.775240i \(-0.717629\pi\)
−0.631667 + 0.775240i \(0.717629\pi\)
\(74\) 11.2580 + 19.4995i 1.30872 + 2.26677i
\(75\) 0 0
\(76\) −3.66060 2.11345i −0.419899 0.242429i
\(77\) 0.705897i 0.0804444i
\(78\) −1.41796 7.71402i −0.160553 0.873440i
\(79\) −10.7317 −1.20741 −0.603706 0.797207i \(-0.706310\pi\)
−0.603706 + 0.797207i \(0.706310\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 11.3426 6.54863i 1.25258 0.723176i
\(83\) −9.12801 −1.00193 −0.500964 0.865468i \(-0.667021\pi\)
−0.500964 + 0.865468i \(0.667021\pi\)
\(84\) 1.04880 0.605528i 0.114434 0.0660685i
\(85\) 0 0
\(86\) 10.2729i 1.10776i
\(87\) 2.16492 1.24991i 0.232103 0.134005i
\(88\) 2.19615 + 1.26795i 0.234111 + 0.135164i
\(89\) 4.11927 + 2.37826i 0.436642 + 0.252095i 0.702172 0.712007i \(-0.252214\pi\)
−0.265530 + 0.964103i \(0.585547\pi\)
\(90\) 0 0
\(91\) 1.57192 0.288945i 0.164782 0.0302897i
\(92\) 1.92855i 0.201065i
\(93\) 3.09245 5.35628i 0.320672 0.555420i
\(94\) 5.89201 10.2053i 0.607714 1.05259i
\(95\) 0 0
\(96\) 7.53556i 0.769095i
\(97\) 4.20856 + 7.28944i 0.427315 + 0.740131i 0.996633 0.0819861i \(-0.0261263\pi\)
−0.569319 + 0.822117i \(0.692793\pi\)
\(98\) −7.39993 12.8170i −0.747506 1.29472i
\(99\) 1.59245i 0.160047i
\(100\) 0 0
\(101\) −3.35295 + 5.80748i −0.333631 + 0.577866i −0.983221 0.182419i \(-0.941607\pi\)
0.649590 + 0.760285i \(0.274941\pi\)
\(102\) 4.09808 7.09808i 0.405770 0.702814i
\(103\) 1.74197i 0.171641i −0.996311 0.0858205i \(-0.972649\pi\)
0.996311 0.0858205i \(-0.0273512\pi\)
\(104\) −1.92457 + 5.40950i −0.188720 + 0.530445i
\(105\) 0 0
\(106\) 10.3923 + 6.00000i 1.00939 + 0.582772i
\(107\) 10.3218 + 5.95932i 0.997850 + 0.576109i 0.907611 0.419811i \(-0.137904\pi\)
0.0902383 + 0.995920i \(0.471237\pi\)
\(108\) 2.36603 1.36603i 0.227671 0.131446i
\(109\) 17.0407i 1.63220i 0.577908 + 0.816102i \(0.303869\pi\)
−0.577908 + 0.816102i \(0.696131\pi\)
\(110\) 0 0
\(111\) −8.96393 + 5.17533i −0.850819 + 0.491220i
\(112\) 0.886554 0.0837715
\(113\) −3.00000 + 1.73205i −0.282216 + 0.162938i −0.634426 0.772983i \(-0.718764\pi\)
0.352210 + 0.935921i \(0.385430\pi\)
\(114\) 1.68278 2.91466i 0.157607 0.272983i
\(115\) 0 0
\(116\) −6.82966 −0.634118
\(117\) 3.54614 0.651838i 0.327841 0.0602625i
\(118\) 18.9735i 1.74665i
\(119\) 1.44641 + 0.835085i 0.132592 + 0.0765521i
\(120\) 0 0
\(121\) −4.23205 7.33013i −0.384732 0.666375i
\(122\) 21.1704 1.91668
\(123\) 3.01041 + 5.21419i 0.271440 + 0.470147i
\(124\) −14.6336 + 8.44873i −1.31414 + 0.758719i
\(125\) 0 0
\(126\) 0.482136 + 0.835085i 0.0429521 + 0.0743952i
\(127\) −12.3418 7.12551i −1.09515 0.632287i −0.160210 0.987083i \(-0.551217\pi\)
−0.934944 + 0.354796i \(0.884550\pi\)
\(128\) −5.94311 + 10.2938i −0.525301 + 0.909849i
\(129\) −4.72248 −0.415791
\(130\) 0 0
\(131\) 10.0354 0.876796 0.438398 0.898781i \(-0.355546\pi\)
0.438398 + 0.898781i \(0.355546\pi\)
\(132\) −2.17533 + 3.76778i −0.189338 + 0.327943i
\(133\) 0.593934 + 0.342908i 0.0515006 + 0.0297339i
\(134\) 14.8966 + 25.8017i 1.28687 + 2.22893i
\(135\) 0 0
\(136\) −5.19615 + 3.00000i −0.445566 + 0.257248i
\(137\) 4.64209 + 8.04034i 0.396601 + 0.686933i 0.993304 0.115529i \(-0.0368564\pi\)
−0.596703 + 0.802462i \(0.703523\pi\)
\(138\) 1.53556 0.130715
\(139\) −3.25821 5.64338i −0.276357 0.478665i 0.694119 0.719860i \(-0.255794\pi\)
−0.970477 + 0.241195i \(0.922461\pi\)
\(140\) 0 0
\(141\) 4.69137 + 2.70856i 0.395084 + 0.228102i
\(142\) 32.9537i 2.76541i
\(143\) −4.37148 + 3.72248i −0.365562 + 0.311289i
\(144\) 2.00000 0.166667
\(145\) 0 0
\(146\) −11.7402 + 20.3346i −0.971623 + 1.68290i
\(147\) 5.89201 3.40175i 0.485965 0.280572i
\(148\) 28.2785 2.32448
\(149\) 0.0492717 0.0284470i 0.00403650 0.00233047i −0.497980 0.867188i \(-0.665925\pi\)
0.502017 + 0.864858i \(0.332592\pi\)
\(150\) 0 0
\(151\) 17.3004i 1.40789i −0.710255 0.703944i \(-0.751420\pi\)
0.710255 0.703944i \(-0.248580\pi\)
\(152\) −2.13368 + 1.23188i −0.173064 + 0.0999186i
\(153\) 3.26299 + 1.88389i 0.263797 + 0.152303i
\(154\) −1.32983 0.767778i −0.107161 0.0618693i
\(155\) 0 0
\(156\) −9.28068 3.30185i −0.743049 0.264360i
\(157\) 1.34898i 0.107660i 0.998550 + 0.0538300i \(0.0171429\pi\)
−0.998550 + 0.0538300i \(0.982857\pi\)
\(158\) −11.6725 + 20.2173i −0.928614 + 1.60841i
\(159\) −2.75821 + 4.77735i −0.218740 + 0.378869i
\(160\) 0 0
\(161\) 0.312908i 0.0246606i
\(162\) 1.08766 + 1.88389i 0.0854549 + 0.148012i
\(163\) 1.48959 + 2.58004i 0.116674 + 0.202084i 0.918447 0.395543i \(-0.129444\pi\)
−0.801774 + 0.597627i \(0.796110\pi\)
\(164\) 16.4492i 1.28447i
\(165\) 0 0
\(166\) −9.92820 + 17.1962i −0.770578 + 1.33468i
\(167\) −11.9070 + 20.6236i −0.921394 + 1.59590i −0.124134 + 0.992265i \(0.539615\pi\)
−0.797260 + 0.603636i \(0.793718\pi\)
\(168\) 0.705897i 0.0544611i
\(169\) −10.0788 8.21088i −0.775289 0.631606i
\(170\) 0 0
\(171\) 1.33987 + 0.773575i 0.102463 + 0.0591568i
\(172\) 11.1735 + 6.45102i 0.851972 + 0.491886i
\(173\) 21.3702 12.3381i 1.62474 0.938047i 0.639117 0.769109i \(-0.279300\pi\)
0.985627 0.168937i \(-0.0540336\pi\)
\(174\) 5.43795i 0.412250i
\(175\) 0 0
\(176\) −2.75821 + 1.59245i −0.207908 + 0.120035i
\(177\) −8.72214 −0.655596
\(178\) 8.96077 5.17350i 0.671638 0.387770i
\(179\) 1.44244 2.49838i 0.107813 0.186737i −0.807071 0.590454i \(-0.798949\pi\)
0.914884 + 0.403717i \(0.132282\pi\)
\(180\) 0 0
\(181\) −7.41086 −0.550845 −0.275422 0.961323i \(-0.588818\pi\)
−0.275422 + 0.961323i \(0.588818\pi\)
\(182\) 1.16538 3.27560i 0.0863839 0.242804i
\(183\) 9.73205i 0.719414i
\(184\) −0.973504 0.562053i −0.0717676 0.0414351i
\(185\) 0 0
\(186\) −6.72709 11.6517i −0.493254 0.854342i
\(187\) −6.00000 −0.438763
\(188\) −7.39993 12.8170i −0.539695 0.934779i
\(189\) −0.383889 + 0.221638i −0.0279238 + 0.0161218i
\(190\) 0 0
\(191\) 8.12885 + 14.0796i 0.588183 + 1.01876i 0.994470 + 0.105017i \(0.0334897\pi\)
−0.406288 + 0.913745i \(0.633177\pi\)
\(192\) −10.7321 6.19615i −0.774519 0.447169i
\(193\) 5.63876 9.76662i 0.405887 0.703017i −0.588537 0.808470i \(-0.700296\pi\)
0.994424 + 0.105453i \(0.0336293\pi\)
\(194\) 18.3100 1.31458
\(195\) 0 0
\(196\) −18.5875 −1.32768
\(197\) −12.3335 + 21.3622i −0.878723 + 1.52199i −0.0259791 + 0.999662i \(0.508270\pi\)
−0.852744 + 0.522330i \(0.825063\pi\)
\(198\) −3.00000 1.73205i −0.213201 0.123091i
\(199\) 11.0356 + 19.1141i 0.782290 + 1.35497i 0.930605 + 0.366026i \(0.119282\pi\)
−0.148315 + 0.988940i \(0.547385\pi\)
\(200\) 0 0
\(201\) −11.8611 + 6.84799i −0.836615 + 0.483020i
\(202\) 7.29376 + 12.6332i 0.513187 + 0.888866i
\(203\) 1.10812 0.0777745
\(204\) −5.14688 8.91466i −0.360354 0.624151i
\(205\) 0 0
\(206\) −3.28167 1.89467i −0.228645 0.132008i
\(207\) 0.705897i 0.0490632i
\(208\) −4.67516 5.49026i −0.324164 0.380681i
\(209\) −2.46376 −0.170422
\(210\) 0 0
\(211\) 10.7580 18.6335i 0.740614 1.28278i −0.211603 0.977356i \(-0.567868\pi\)
0.952216 0.305425i \(-0.0987984\pi\)
\(212\) 13.0520 7.53556i 0.896413 0.517544i
\(213\) 15.1488 1.03798
\(214\) 22.4534 12.9635i 1.53488 0.886164i
\(215\) 0 0
\(216\) 1.59245i 0.108353i
\(217\) 2.37432 1.37081i 0.161179 0.0930568i
\(218\) 32.1028 + 18.5346i 2.17428 + 1.25532i
\(219\) −9.34782 5.39697i −0.631667 0.364693i
\(220\) 0 0
\(221\) −2.45598 13.3611i −0.165207 0.898763i
\(222\) 22.5161i 1.51118i
\(223\) −10.6183 + 18.3914i −0.711051 + 1.23158i 0.253411 + 0.967359i \(0.418447\pi\)
−0.964463 + 0.264219i \(0.914886\pi\)
\(224\) 1.67017 2.89282i 0.111593 0.193285i
\(225\) 0 0
\(226\) 7.53556i 0.501258i
\(227\) −5.22497 9.04992i −0.346794 0.600664i 0.638884 0.769303i \(-0.279396\pi\)
−0.985678 + 0.168639i \(0.946063\pi\)
\(228\) −2.11345 3.66060i −0.139966 0.242429i
\(229\) 21.4135i 1.41505i −0.706690 0.707523i \(-0.749813\pi\)
0.706690 0.707523i \(-0.250187\pi\)
\(230\) 0 0
\(231\) 0.352948 0.611324i 0.0232223 0.0402222i
\(232\) −1.99043 + 3.44752i −0.130678 + 0.226341i
\(233\) 3.24179i 0.212377i −0.994346 0.106189i \(-0.966135\pi\)
0.994346 0.106189i \(-0.0338647\pi\)
\(234\) 2.62902 7.38951i 0.171864 0.483068i
\(235\) 0 0
\(236\) 20.6368 + 11.9147i 1.34334 + 0.775578i
\(237\) −9.29393 5.36585i −0.603706 0.348550i
\(238\) 3.14641 1.81658i 0.203952 0.117752i
\(239\) 18.3129i 1.18456i −0.805731 0.592282i \(-0.798227\pi\)
0.805731 0.592282i \(-0.201773\pi\)
\(240\) 0 0
\(241\) −5.74816 + 3.31870i −0.370272 + 0.213777i −0.673577 0.739117i \(-0.735243\pi\)
0.303305 + 0.952893i \(0.401910\pi\)
\(242\) −18.4122 −1.18358
\(243\) −0.866025 + 0.500000i −0.0555556 + 0.0320750i
\(244\) 13.2942 23.0263i 0.851076 1.47411i
\(245\) 0 0
\(246\) 13.0973 0.835051
\(247\) −1.00849 5.48641i −0.0641688 0.349092i
\(248\) 9.84915i 0.625422i
\(249\) −7.90509 4.56400i −0.500964 0.289232i
\(250\) 0 0
\(251\) −9.94081 17.2180i −0.627459 1.08679i −0.988060 0.154070i \(-0.950762\pi\)
0.360601 0.932720i \(-0.382571\pi\)
\(252\) 1.21106 0.0762893
\(253\) −0.562053 0.973504i −0.0353359 0.0612037i
\(254\) −26.8474 + 15.5003i −1.68455 + 0.972577i
\(255\) 0 0
\(256\) 0.535898 + 0.928203i 0.0334936 + 0.0580127i
\(257\) −0.874316 0.504787i −0.0545383 0.0314877i 0.472483 0.881340i \(-0.343358\pi\)
−0.527021 + 0.849852i \(0.676691\pi\)
\(258\) −5.13647 + 8.89662i −0.319783 + 0.553880i
\(259\) −4.58821 −0.285097
\(260\) 0 0
\(261\) 2.49983 0.154736
\(262\) 10.9151 18.9056i 0.674339 1.16799i
\(263\) 18.6818 + 10.7859i 1.15197 + 0.665089i 0.949366 0.314172i \(-0.101727\pi\)
0.202602 + 0.979261i \(0.435060\pi\)
\(264\) 1.26795 + 2.19615i 0.0780369 + 0.135164i
\(265\) 0 0
\(266\) 1.29200 0.745937i 0.0792177 0.0457363i
\(267\) 2.37826 + 4.11927i 0.145547 + 0.252095i
\(268\) 37.4181 2.28568
\(269\) −2.32534 4.02761i −0.141779 0.245568i 0.786388 0.617733i \(-0.211949\pi\)
−0.928166 + 0.372165i \(0.878615\pi\)
\(270\) 0 0
\(271\) 4.60718 + 2.65996i 0.279866 + 0.161581i 0.633363 0.773855i \(-0.281674\pi\)
−0.353497 + 0.935436i \(0.615007\pi\)
\(272\) 7.53556i 0.456910i
\(273\) 1.50580 + 0.535727i 0.0911350 + 0.0324237i
\(274\) 20.1962 1.22009
\(275\) 0 0
\(276\) 0.964273 1.67017i 0.0580424 0.100532i
\(277\) 8.10555 4.67974i 0.487015 0.281178i −0.236320 0.971675i \(-0.575941\pi\)
0.723335 + 0.690497i \(0.242608\pi\)
\(278\) −14.1753 −0.850180
\(279\) 5.35628 3.09245i 0.320672 0.185140i
\(280\) 0 0
\(281\) 13.1449i 0.784161i 0.919931 + 0.392080i \(0.128244\pi\)
−0.919931 + 0.392080i \(0.871756\pi\)
\(282\) 10.2053 5.89201i 0.607714 0.350864i
\(283\) −3.15551 1.82184i −0.187576 0.108297i 0.403271 0.915080i \(-0.367873\pi\)
−0.590847 + 0.806783i \(0.701206\pi\)
\(284\) −35.8425 20.6937i −2.12686 1.22794i
\(285\) 0 0
\(286\) 2.25803 + 12.2842i 0.133520 + 0.726379i
\(287\) 2.66889i 0.157540i
\(288\) 3.76778 6.52598i 0.222018 0.384547i
\(289\) −1.40192 + 2.42820i −0.0824661 + 0.142835i
\(290\) 0 0
\(291\) 8.41712i 0.493420i
\(292\) 14.7448 + 25.5387i 0.862873 + 1.49454i
\(293\) 9.81742 + 17.0043i 0.573540 + 0.993400i 0.996199 + 0.0871113i \(0.0277636\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(294\) 14.7999i 0.863145i
\(295\) 0 0
\(296\) 8.24145 14.2746i 0.479025 0.829695i
\(297\) 0.796225 1.37910i 0.0462017 0.0800236i
\(298\) 0.123763i 0.00716941i
\(299\) 1.93778 1.65009i 0.112064 0.0954271i
\(300\) 0 0
\(301\) −1.81291 1.04668i −0.104494 0.0603298i
\(302\) −32.5921 18.8170i −1.87546 1.08280i
\(303\) −5.80748 + 3.35295i −0.333631 + 0.192622i
\(304\) 3.09430i 0.177470i
\(305\) 0 0
\(306\) 7.09808 4.09808i 0.405770 0.234271i
\(307\) 4.74863 0.271019 0.135509 0.990776i \(-0.456733\pi\)
0.135509 + 0.990776i \(0.456733\pi\)
\(308\) −1.67017 + 0.964273i −0.0951667 + 0.0549445i
\(309\) 0.870983 1.50859i 0.0495485 0.0858205i
\(310\) 0 0
\(311\) −5.45512 −0.309332 −0.154666 0.987967i \(-0.549430\pi\)
−0.154666 + 0.987967i \(0.549430\pi\)
\(312\) −4.37148 + 3.72248i −0.247486 + 0.210744i
\(313\) 7.23855i 0.409147i −0.978851 0.204573i \(-0.934419\pi\)
0.978851 0.204573i \(-0.0655807\pi\)
\(314\) 2.54132 + 1.46723i 0.143415 + 0.0828008i
\(315\) 0 0
\(316\) 14.6598 + 25.3915i 0.824677 + 1.42838i
\(317\) 21.0142 1.18028 0.590138 0.807302i \(-0.299073\pi\)
0.590138 + 0.807302i \(0.299073\pi\)
\(318\) 6.00000 + 10.3923i 0.336463 + 0.582772i
\(319\) −3.44752 + 1.99043i −0.193024 + 0.111443i
\(320\) 0 0
\(321\) 5.95932 + 10.3218i 0.332617 + 0.576109i
\(322\) 0.589483 + 0.340338i 0.0328506 + 0.0189663i
\(323\) 2.91466 5.04834i 0.162176 0.280897i
\(324\) 2.73205 0.151781
\(325\) 0 0
\(326\) 6.48068 0.358932
\(327\) −8.52036 + 14.7577i −0.471177 + 0.816102i
\(328\) −8.30333 4.79393i −0.458475 0.264701i
\(329\) 1.20064 + 2.07957i 0.0661936 + 0.114651i
\(330\) 0 0
\(331\) −13.4352 + 7.75682i −0.738466 + 0.426354i −0.821511 0.570192i \(-0.806869\pi\)
0.0830453 + 0.996546i \(0.473535\pi\)
\(332\) 12.4691 + 21.5971i 0.684330 + 1.18529i
\(333\) −10.3507 −0.567212
\(334\) 25.9017 + 44.8631i 1.41728 + 2.45480i
\(335\) 0 0
\(336\) 0.767778 + 0.443277i 0.0418857 + 0.0241827i
\(337\) 32.8124i 1.78741i −0.448660 0.893703i \(-0.648099\pi\)
0.448660 0.893703i \(-0.351901\pi\)
\(338\) −26.4307 + 10.0566i −1.43764 + 0.547006i
\(339\) −3.46410 −0.188144
\(340\) 0 0
\(341\) −4.92457 + 8.52961i −0.266681 + 0.461904i
\(342\) 2.91466 1.68278i 0.157607 0.0909943i
\(343\) 6.11878 0.330383
\(344\) 6.51278 3.76016i 0.351146 0.202734i
\(345\) 0 0
\(346\) 53.6787i 2.88579i
\(347\) 16.8558 9.73171i 0.904868 0.522426i 0.0260913 0.999660i \(-0.491694\pi\)
0.878776 + 0.477234i \(0.158361\pi\)
\(348\) −5.91466 3.41483i −0.317059 0.183054i
\(349\) 8.41876 + 4.86057i 0.450646 + 0.260180i 0.708103 0.706109i \(-0.249551\pi\)
−0.257457 + 0.966290i \(0.582885\pi\)
\(350\) 0 0
\(351\) 3.39697 + 1.20856i 0.181317 + 0.0645082i
\(352\) 12.0000i 0.639602i
\(353\) −11.5088 + 19.9338i −0.612551 + 1.06097i 0.378258 + 0.925700i \(0.376523\pi\)
−0.990809 + 0.135269i \(0.956810\pi\)
\(354\) −9.48675 + 16.4315i −0.504215 + 0.873326i
\(355\) 0 0
\(356\) 12.9951i 0.688737i
\(357\) 0.835085 + 1.44641i 0.0441974 + 0.0765521i
\(358\) −3.13777 5.43479i −0.165837 0.287237i
\(359\) 10.4131i 0.549584i −0.961504 0.274792i \(-0.911391\pi\)
0.961504 0.274792i \(-0.0886090\pi\)
\(360\) 0 0
\(361\) −8.30316 + 14.3815i −0.437009 + 0.756921i
\(362\) −8.06052 + 13.9612i −0.423652 + 0.733786i
\(363\) 8.46410i 0.444250i
\(364\) −2.83094 3.32450i −0.148381 0.174251i
\(365\) 0 0
\(366\) 18.3341 + 10.5852i 0.958339 + 0.553297i
\(367\) −3.14500 1.81577i −0.164168 0.0947823i 0.415665 0.909518i \(-0.363549\pi\)
−0.579833 + 0.814735i \(0.696882\pi\)
\(368\) 1.22265 0.705897i 0.0637350 0.0367974i
\(369\) 6.02082i 0.313432i
\(370\) 0 0
\(371\) −2.11769 + 1.22265i −0.109945 + 0.0634768i
\(372\) −16.8975 −0.876093
\(373\) 17.1810 9.91945i 0.889598 0.513609i 0.0157867 0.999875i \(-0.494975\pi\)
0.873811 + 0.486266i \(0.161641\pi\)
\(374\) −6.52598 + 11.3033i −0.337451 + 0.584482i
\(375\) 0 0
\(376\) −8.62650 −0.444878
\(377\) −5.84355 6.86235i −0.300958 0.353429i
\(378\) 0.964273i 0.0495968i
\(379\) 5.91833 + 3.41695i 0.304004 + 0.175517i 0.644240 0.764823i \(-0.277174\pi\)
−0.340236 + 0.940340i \(0.610507\pi\)
\(380\) 0 0
\(381\) −7.12551 12.3418i −0.365051 0.632287i
\(382\) 35.3658 1.80947
\(383\) −19.4419 33.6744i −0.993437 1.72068i −0.595774 0.803152i \(-0.703155\pi\)
−0.397663 0.917531i \(-0.630179\pi\)
\(384\) −10.2938 + 5.94311i −0.525301 + 0.303283i
\(385\) 0 0
\(386\) −12.2662 21.2456i −0.624331 1.08137i
\(387\) −4.08979 2.36124i −0.207895 0.120029i
\(388\) 11.4980 19.9151i 0.583723 1.01104i
\(389\) 8.84881 0.448652 0.224326 0.974514i \(-0.427982\pi\)
0.224326 + 0.974514i \(0.427982\pi\)
\(390\) 0 0
\(391\) 2.65966 0.134505
\(392\) −5.41712 + 9.38273i −0.273606 + 0.473900i
\(393\) 8.69090 + 5.01769i 0.438398 + 0.253109i
\(394\) 26.8293 + 46.4697i 1.35164 + 2.34111i
\(395\) 0 0
\(396\) −3.76778 + 2.17533i −0.189338 + 0.109314i
\(397\) 8.51890 + 14.7552i 0.427552 + 0.740541i 0.996655 0.0817250i \(-0.0260429\pi\)
−0.569103 + 0.822266i \(0.692710\pi\)
\(398\) 48.0119 2.40662
\(399\) 0.342908 + 0.593934i 0.0171669 + 0.0297339i
\(400\) 0 0
\(401\) −6.66060 3.84550i −0.332614 0.192035i 0.324387 0.945924i \(-0.394842\pi\)
−0.657001 + 0.753890i \(0.728175\pi\)
\(402\) 29.7932i 1.48595i
\(403\) −21.0099 7.47483i −1.04658 0.372348i
\(404\) 18.3209 0.911496
\(405\) 0 0
\(406\) 1.20526 2.08757i 0.0598160 0.103604i
\(407\) 14.2746 8.24145i 0.707566 0.408514i
\(408\) −6.00000 −0.297044
\(409\) −7.86637 + 4.54165i −0.388967 + 0.224570i −0.681712 0.731620i \(-0.738764\pi\)
0.292746 + 0.956190i \(0.405431\pi\)
\(410\) 0 0
\(411\) 9.28419i 0.457955i
\(412\) −4.12154 + 2.37957i −0.203053 + 0.117233i
\(413\) −3.34833 1.93316i −0.164761 0.0951246i
\(414\) 1.32983 + 0.767778i 0.0653576 + 0.0377342i
\(415\) 0 0
\(416\) −26.7221 + 4.91196i −1.31016 + 0.240829i
\(417\) 6.51641i 0.319110i
\(418\) −2.67974 + 4.64145i −0.131070 + 0.227021i
\(419\) −6.49534 + 11.2503i −0.317318 + 0.549611i −0.979928 0.199354i \(-0.936116\pi\)
0.662609 + 0.748965i \(0.269449\pi\)
\(420\) 0 0
\(421\) 19.8859i 0.969178i 0.874742 + 0.484589i \(0.161031\pi\)
−0.874742 + 0.484589i \(0.838969\pi\)
\(422\) −23.4022 40.5339i −1.13920 1.97316i
\(423\) 2.70856 + 4.69137i 0.131695 + 0.228102i
\(424\) 8.78461i 0.426618i
\(425\) 0 0
\(426\) 16.4768 28.5387i 0.798305 1.38271i
\(427\) −2.15700 + 3.73603i −0.104384 + 0.180799i
\(428\) 32.5623i 1.57396i
\(429\) −5.64705 + 1.03802i −0.272642 + 0.0501161i
\(430\) 0 0
\(431\) −33.8858 19.5640i −1.63222 0.942365i −0.983405 0.181422i \(-0.941930\pi\)
−0.648818 0.760943i \(-0.724737\pi\)
\(432\) 1.73205 + 1.00000i 0.0833333 + 0.0481125i
\(433\) −33.0301 + 19.0700i −1.58733 + 0.916444i −0.593581 + 0.804774i \(0.702287\pi\)
−0.993745 + 0.111670i \(0.964380\pi\)
\(434\) 5.96393i 0.286278i
\(435\) 0 0
\(436\) 40.3188 23.2780i 1.93092 1.11482i
\(437\) 1.09213 0.0522436
\(438\) −20.3346 + 11.7402i −0.971623 + 0.560967i
\(439\) −3.37543 + 5.84641i −0.161100 + 0.279034i −0.935264 0.353952i \(-0.884838\pi\)
0.774163 + 0.632986i \(0.218171\pi\)
\(440\) 0 0
\(441\) 6.80351 0.323976
\(442\) −27.8421 9.90555i −1.32431 0.471159i
\(443\) 12.2647i 0.582713i −0.956614 0.291357i \(-0.905893\pi\)
0.956614 0.291357i \(-0.0941067\pi\)
\(444\) 24.4899 + 14.1393i 1.16224 + 0.671020i
\(445\) 0 0
\(446\) 23.0982 + 40.0073i 1.09373 + 1.89440i
\(447\) 0.0568941 0.00269100
\(448\) −2.74661 4.75727i −0.129765 0.224760i
\(449\) −20.2673 + 11.7013i −0.956471 + 0.552219i −0.895085 0.445895i \(-0.852885\pi\)
−0.0613861 + 0.998114i \(0.519552\pi\)
\(450\) 0 0
\(451\) −4.79393 8.30333i −0.225737 0.390989i
\(452\) 8.19615 + 4.73205i 0.385515 + 0.222577i
\(453\) 8.65021 14.9826i 0.406422 0.703944i
\(454\) −22.7321 −1.06687
\(455\) 0 0
\(456\) −2.46376 −0.115376
\(457\) 14.7815 25.6023i 0.691451 1.19763i −0.279912 0.960026i \(-0.590305\pi\)
0.971363 0.237602i \(-0.0763613\pi\)
\(458\) −40.3407 23.2907i −1.88500 1.08830i
\(459\) 1.88389 + 3.26299i 0.0879324 + 0.152303i
\(460\) 0 0
\(461\) −8.29218 + 4.78749i −0.386205 + 0.222976i −0.680515 0.732735i \(-0.738244\pi\)
0.294309 + 0.955710i \(0.404910\pi\)
\(462\) −0.767778 1.32983i −0.0357203 0.0618693i
\(463\) −20.0241 −0.930600 −0.465300 0.885153i \(-0.654054\pi\)
−0.465300 + 0.885153i \(0.654054\pi\)
\(464\) −2.49983 4.32983i −0.116052 0.201007i
\(465\) 0 0
\(466\) −6.10718 3.52598i −0.282910 0.163338i
\(467\) 15.7942i 0.730868i 0.930837 + 0.365434i \(0.119079\pi\)
−0.930837 + 0.365434i \(0.880921\pi\)
\(468\) −6.38638 7.49983i −0.295211 0.346680i
\(469\) −6.07111 −0.280338
\(470\) 0 0
\(471\) −0.674489 + 1.16825i −0.0310788 + 0.0538300i
\(472\) 12.0287 6.94478i 0.553667 0.319660i
\(473\) 7.52031 0.345784
\(474\) −20.2173 + 11.6725i −0.928614 + 0.536135i
\(475\) 0 0
\(476\) 4.56299i 0.209144i
\(477\) −4.77735 + 2.75821i −0.218740 + 0.126290i
\(478\) −34.4995 19.9183i −1.57797 0.911041i
\(479\) −23.1649 13.3743i −1.05843 0.611086i −0.133434 0.991058i \(-0.542600\pi\)
−0.924998 + 0.379972i \(0.875934\pi\)
\(480\) 0 0
\(481\) 24.1955 + 28.4139i 1.10322 + 1.29556i
\(482\) 14.4385i 0.657657i
\(483\) −0.156454 + 0.270986i −0.00711890 + 0.0123303i
\(484\) −11.5622 + 20.0263i −0.525554 + 0.910285i
\(485\) 0 0
\(486\) 2.17533i 0.0986749i
\(487\) −14.1619 24.5291i −0.641737 1.11152i −0.985045 0.172299i \(-0.944881\pi\)
0.343307 0.939223i \(-0.388453\pi\)
\(488\) −7.74890 13.4215i −0.350776 0.607563i
\(489\) 2.97918i 0.134723i
\(490\) 0 0
\(491\) 4.75009 8.22739i 0.214368 0.371297i −0.738709 0.674025i \(-0.764564\pi\)
0.953077 + 0.302728i \(0.0978974\pi\)
\(492\) 8.22460 14.2454i 0.370794 0.642233i
\(493\) 9.41880i 0.424201i
\(494\) −11.4327 4.06748i −0.514381 0.183005i
\(495\) 0 0
\(496\) −10.7126 6.18490i −0.481008 0.277710i
\(497\) 5.81547 + 3.35756i 0.260860 + 0.150607i
\(498\) −17.1962 + 9.92820i −0.770578 + 0.444893i
\(499\) 23.1767i 1.03753i 0.854917 + 0.518765i \(0.173608\pi\)
−0.854917 + 0.518765i \(0.826392\pi\)
\(500\) 0 0
\(501\) −20.6236 + 11.9070i −0.921394 + 0.531967i
\(502\) −43.2491 −1.93030
\(503\) −34.9470 + 20.1767i −1.55821 + 0.899633i −0.560782 + 0.827964i \(0.689499\pi\)
−0.997428 + 0.0716692i \(0.977167\pi\)
\(504\) 0.352948 0.611324i 0.0157216 0.0272306i
\(505\) 0 0
\(506\) −2.44530 −0.108707
\(507\) −4.62302 12.1502i −0.205315 0.539610i
\(508\) 38.9345i 1.72744i
\(509\) 8.91466 + 5.14688i 0.395135 + 0.228131i 0.684383 0.729123i \(-0.260072\pi\)
−0.289248 + 0.957254i \(0.593405\pi\)
\(510\) 0 0
\(511\) −2.39235 4.14367i −0.105831 0.183305i
\(512\) −21.4409 −0.947564
\(513\) 0.773575 + 1.33987i 0.0341542 + 0.0591568i
\(514\) −1.90192 + 1.09808i −0.0838903 + 0.0484341i
\(515\) 0 0
\(516\) 6.45102 + 11.1735i 0.283991 + 0.491886i
\(517\) −7.47077 4.31325i −0.328564 0.189697i
\(518\) −4.99043 + 8.64367i −0.219267 + 0.379781i
\(519\) 24.6762 1.08316
\(520\) 0 0
\(521\) 43.7218 1.91549 0.957743 0.287624i \(-0.0928655\pi\)
0.957743 + 0.287624i \(0.0928655\pi\)
\(522\) 2.71897 4.70940i 0.119006 0.206125i
\(523\) −6.23154 3.59778i −0.272486 0.157320i 0.357531 0.933901i \(-0.383619\pi\)
−0.630017 + 0.776581i \(0.716952\pi\)
\(524\) −13.7086 23.7440i −0.598863 1.03726i
\(525\) 0 0
\(526\) 40.6390 23.4630i 1.77195 1.02303i
\(527\) −11.6517 20.1813i −0.507555 0.879110i
\(528\) −3.18490 −0.138605
\(529\) −11.2509 19.4871i −0.489168 0.847263i
\(530\) 0 0
\(531\) −7.55359 4.36107i −0.327798 0.189254i
\(532\) 1.87368i 0.0812345i
\(533\) 16.5279 14.0741i 0.715904 0.609619i
\(534\) 10.3470 0.447759
\(535\) 0 0
\(536\) 10.9051 18.8882i 0.471028 0.815844i
\(537\) 2.49838 1.44244i 0.107813 0.0622458i
\(538\) −10.1168 −0.436164
\(539\) −9.38273 + 5.41712i −0.404143 + 0.233332i
\(540\) 0 0
\(541\) 24.7159i 1.06262i −0.847177 0.531310i \(-0.821700\pi\)
0.847177 0.531310i \(-0.178300\pi\)
\(542\) 10.0221 5.78628i 0.430487 0.248542i
\(543\) −6.41799 3.70543i −0.275422 0.159015i
\(544\) −24.5885 14.1962i −1.05422 0.608655i
\(545\) 0 0
\(546\) 2.64705 2.25406i 0.113283 0.0964650i
\(547\) 6.97187i 0.298096i 0.988830 + 0.149048i \(0.0476209\pi\)
−0.988830 + 0.149048i \(0.952379\pi\)
\(548\) 12.6824 21.9666i 0.541767 0.938368i
\(549\) −4.86603 + 8.42820i −0.207677 + 0.359707i
\(550\) 0 0
\(551\) 3.86761i 0.164766i
\(552\) −0.562053 0.973504i −0.0239225 0.0414351i
\(553\) −2.37856 4.11979i −0.101147 0.175191i
\(554\) 20.3599i 0.865011i
\(555\) 0 0
\(556\) −8.90158 + 15.4180i −0.377511 + 0.653869i
\(557\) −0.837875 + 1.45124i −0.0355019 + 0.0614911i −0.883230 0.468939i \(-0.844636\pi\)
0.847729 + 0.530430i \(0.177970\pi\)
\(558\) 13.4542i 0.569561i
\(559\) 3.07829 + 16.7466i 0.130198 + 0.708304i
\(560\) 0 0
\(561\) −5.19615 3.00000i −0.219382 0.126660i
\(562\) 24.7636 + 14.2973i 1.04459 + 0.603094i
\(563\) −1.77735 + 1.02615i −0.0749064 + 0.0432472i −0.536985 0.843592i \(-0.680437\pi\)
0.462079 + 0.886839i \(0.347104\pi\)
\(564\) 14.7999i 0.623186i
\(565\) 0 0
\(566\) −6.86428 + 3.96309i −0.288527 + 0.166581i
\(567\) −0.443277 −0.0186159
\(568\) −20.8918 + 12.0619i −0.876600 + 0.506105i
\(569\) 20.6095 35.6968i 0.863996 1.49649i −0.00404386 0.999992i \(-0.501287\pi\)
0.868040 0.496494i \(-0.165379\pi\)
\(570\) 0 0
\(571\) −30.7115 −1.28524 −0.642619 0.766186i \(-0.722152\pi\)
−0.642619 + 0.766186i \(0.722152\pi\)
\(572\) 14.7790 + 5.25803i 0.617942 + 0.219849i
\(573\) 16.2577i 0.679175i
\(574\) 5.02790 + 2.90286i 0.209860 + 0.121163i
\(575\) 0 0
\(576\) −6.19615 10.7321i −0.258173 0.447169i
\(577\) −44.8752 −1.86818 −0.934090 0.357038i \(-0.883787\pi\)
−0.934090 + 0.357038i \(0.883787\pi\)
\(578\) 3.04964 + 5.28214i 0.126848 + 0.219708i
\(579\) 9.76662 5.63876i 0.405887 0.234339i
\(580\) 0 0
\(581\) −2.02312 3.50414i −0.0839331 0.145376i
\(582\) 15.8569 + 9.15500i 0.657291 + 0.379487i
\(583\) 4.39230 7.60770i 0.181911 0.315079i
\(584\) 17.1888 0.711278
\(585\) 0 0
\(586\) 42.7122 1.76443
\(587\) −11.9359 + 20.6735i −0.492645 + 0.853287i −0.999964 0.00847155i \(-0.997303\pi\)
0.507319 + 0.861759i \(0.330637\pi\)
\(588\) −16.0973 9.29376i −0.663840 0.383268i
\(589\) −4.78448 8.28697i −0.197141 0.341459i
\(590\) 0 0
\(591\) −21.3622 + 12.3335i −0.878723 + 0.507331i
\(592\) 10.3507 + 17.9279i 0.425409 + 0.736831i
\(593\) 26.8263 1.10162 0.550811 0.834630i \(-0.314318\pi\)
0.550811 + 0.834630i \(0.314318\pi\)
\(594\) −1.73205 3.00000i −0.0710669 0.123091i
\(595\) 0 0
\(596\) −0.134613 0.0777187i −0.00551396 0.00318348i
\(597\) 22.0711i 0.903311i
\(598\) −1.00093 5.44530i −0.0409313 0.222675i
\(599\) 26.4919 1.08243 0.541215 0.840885i \(-0.317965\pi\)
0.541215 + 0.840885i \(0.317965\pi\)
\(600\) 0 0
\(601\) −11.6145 + 20.1169i −0.473765 + 0.820585i −0.999549 0.0300334i \(-0.990439\pi\)
0.525784 + 0.850618i \(0.323772\pi\)
\(602\) −3.94367 + 2.27688i −0.160732 + 0.0927986i
\(603\) −13.6960 −0.557743
\(604\) −40.9333 + 23.6328i −1.66555 + 0.961606i
\(605\) 0 0
\(606\) 14.5875i 0.592578i
\(607\) −9.16359 + 5.29060i −0.371939 + 0.214739i −0.674305 0.738453i \(-0.735557\pi\)
0.302366 + 0.953192i \(0.402223\pi\)
\(608\) −10.0967 5.82932i −0.409474 0.236410i
\(609\) 0.959657 + 0.554058i 0.0388873 + 0.0224516i
\(610\) 0 0
\(611\) 6.54693 18.4018i 0.264860 0.744456i
\(612\) 10.2938i 0.416101i
\(613\) −3.15868 + 5.47099i −0.127578 + 0.220971i −0.922738 0.385429i \(-0.874054\pi\)
0.795160 + 0.606400i \(0.207387\pi\)
\(614\) 5.16492 8.94590i 0.208439 0.361027i
\(615\) 0 0
\(616\) 1.12411i 0.0452915i
\(617\) −16.3639 28.3430i −0.658784 1.14105i −0.980931 0.194358i \(-0.937738\pi\)
0.322147 0.946690i \(-0.395596\pi\)
\(618\) −1.89467 3.28167i −0.0762149 0.132008i
\(619\) 21.0143i 0.844635i −0.906448 0.422317i \(-0.861217\pi\)
0.906448 0.422317i \(-0.138783\pi\)
\(620\) 0 0
\(621\) −0.352948 + 0.611324i −0.0141633 + 0.0245316i
\(622\) −5.93334 + 10.2768i −0.237905 + 0.412064i
\(623\) 2.10846i 0.0844736i
\(624\) −1.30368 7.09228i −0.0521888 0.283918i
\(625\) 0 0
\(626\) −13.6366 7.87310i −0.545029 0.314673i
\(627\) −2.13368 1.23188i −0.0852109 0.0491965i
\(628\) 3.19171 1.84274i 0.127363 0.0735332i
\(629\) 38.9990i 1.55499i
\(630\) 0 0
\(631\) 13.4803 7.78285i 0.536642 0.309830i −0.207075 0.978325i \(-0.566394\pi\)
0.743717 + 0.668495i \(0.233061\pi\)
\(632\) 17.0897 0.679792
\(633\) 18.6335 10.7580i 0.740614 0.427593i
\(634\) 22.8564 39.5885i 0.907744 1.57226i
\(635\) 0 0
\(636\) 15.0711 0.597608
\(637\) −15.9037 18.6765i −0.630129 0.739990i
\(638\) 8.65966i 0.342839i
\(639\) 13.1193 + 7.57442i 0.518990 + 0.299639i
\(640\) 0 0
\(641\) 6.89551 + 11.9434i 0.272356 + 0.471735i 0.969465 0.245231i \(-0.0788637\pi\)
−0.697108 + 0.716966i \(0.745530\pi\)
\(642\) 25.9269 1.02325
\(643\) 13.8349 + 23.9628i 0.545596 + 0.945000i 0.998569 + 0.0534755i \(0.0170299\pi\)
−0.452973 + 0.891524i \(0.649637\pi\)
\(644\) 0.740347 0.427440i 0.0291738 0.0168435i
\(645\) 0 0
\(646\) −6.34034 10.9818i −0.249457 0.432073i
\(647\) 31.0291 + 17.9147i 1.21988 + 0.704298i 0.964892 0.262646i \(-0.0845953\pi\)
0.254988 + 0.966944i \(0.417929\pi\)
\(648\) 0.796225 1.37910i 0.0312787 0.0541763i
\(649\) 13.8896 0.545213
\(650\) 0 0
\(651\) 2.74162 0.107453
\(652\) 4.06963 7.04880i 0.159379 0.276052i
\(653\) 39.1708 + 22.6153i 1.53287 + 0.885003i 0.999228 + 0.0392935i \(0.0125107\pi\)
0.533643 + 0.845710i \(0.320823\pi\)
\(654\) 18.5346 + 32.1028i 0.724759 + 1.25532i
\(655\) 0 0
\(656\) 10.4284 6.02082i 0.407160 0.235074i
\(657\) −5.39697 9.34782i −0.210556 0.364693i
\(658\) 5.22358 0.203636
\(659\) −1.18658 2.05522i −0.0462226 0.0800598i 0.841988 0.539496i \(-0.181385\pi\)
−0.888211 + 0.459436i \(0.848052\pi\)
\(660\) 0 0
\(661\) 11.4110 + 6.58816i 0.443838 + 0.256250i 0.705224 0.708984i \(-0.250846\pi\)
−0.261386 + 0.965234i \(0.584180\pi\)
\(662\) 33.7473i 1.31162i
\(663\) 4.55359 12.7990i 0.176847 0.497073i
\(664\) 14.5359 0.564102
\(665\) 0 0
\(666\) −11.2580 + 19.4995i −0.436240 + 0.755590i
\(667\) 1.52821 0.882310i 0.0591724 0.0341632i
\(668\) 65.0613 2.51730
\(669\) −18.3914 + 10.6183i −0.711051 + 0.410526i
\(670\) 0 0
\(671\) 15.4978i 0.598286i
\(672\) 2.89282 1.67017i 0.111593 0.0644282i
\(673\) 11.0738 + 6.39346i 0.426864 + 0.246450i 0.698010 0.716088i \(-0.254069\pi\)
−0.271146 + 0.962538i \(0.587403\pi\)
\(674\) −61.8149 35.6889i −2.38102 1.37468i
\(675\) 0 0
\(676\) −5.65932 + 35.0629i −0.217666 + 1.34857i
\(677\) 16.0794i 0.617981i −0.951065 0.308991i \(-0.900009\pi\)
0.951065 0.308991i \(-0.0999912\pi\)
\(678\) −3.76778 + 6.52598i −0.144701 + 0.250629i
\(679\) −1.86556 + 3.23124i −0.0715936 + 0.124004i
\(680\) 0 0
\(681\) 10.4499i 0.400443i
\(682\) 10.7126 + 18.5547i 0.410205 + 0.710496i
\(683\) −3.15581 5.46602i −0.120754 0.209152i 0.799311 0.600917i \(-0.205198\pi\)
−0.920065 + 0.391765i \(0.871864\pi\)
\(684\) 4.22689i 0.161619i
\(685\) 0 0
\(686\) 6.65517 11.5271i 0.254096 0.440107i
\(687\) 10.7068 18.5447i 0.408489 0.707523i
\(688\) 9.44496i 0.360086i
\(689\) 18.7391 + 6.66692i 0.713901 + 0.253989i
\(690\) 0 0
\(691\) −31.7955 18.3572i −1.20956 0.698339i −0.246896 0.969042i \(-0.579410\pi\)
−0.962663 + 0.270703i \(0.912744\pi\)
\(692\) −58.3844 33.7082i −2.21944 1.28140i
\(693\) 0.611324 0.352948i 0.0232223 0.0134074i
\(694\) 42.3393i 1.60718i
\(695\) 0 0
\(696\) −3.44752 + 1.99043i −0.130678 + 0.0754469i
\(697\) 22.6851 0.859261
\(698\) 18.3136 10.5733i 0.693178 0.400207i
\(699\) 1.62090 2.80748i 0.0613080 0.106189i
\(700\) 0 0
\(701\) 52.0509 1.96594 0.982968 0.183774i \(-0.0588316\pi\)
0.982968 + 0.183774i \(0.0588316\pi\)
\(702\) 5.97155 5.08500i 0.225382 0.191921i
\(703\) 16.0140i 0.603980i
\(704\) 17.0903 + 9.86707i 0.644113 + 0.371879i
\(705\) 0 0
\(706\) 25.0354 + 43.3626i 0.942219 + 1.63197i
\(707\) −2.97257 −0.111795
\(708\) 11.9147 + 20.6368i 0.447780 + 0.775578i
\(709\) −0.810685 + 0.468049i −0.0304459 + 0.0175779i −0.515146 0.857103i \(-0.672262\pi\)
0.484700 + 0.874681i \(0.338929\pi\)
\(710\) 0 0
\(711\) −5.36585 9.29393i −0.201235 0.348550i
\(712\) −6.55974 3.78727i −0.245837 0.141934i
\(713\) 2.18295 3.78098i 0.0817521 0.141599i
\(714\) 3.63317 0.135968
\(715\) 0 0
\(716\) −7.88163 −0.294550
\(717\) 9.15645 15.8594i 0.341954 0.592282i
\(718\) −19.6172 11.3260i −0.732107 0.422682i
\(719\) −0.498717 0.863804i −0.0185990 0.0322145i 0.856576 0.516021i \(-0.172587\pi\)
−0.875175 + 0.483806i \(0.839254\pi\)
\(720\) 0 0
\(721\) 0.668722 0.386087i 0.0249045 0.0143786i
\(722\) 18.0621 + 31.2845i 0.672202 + 1.16429i
\(723\) −6.63741 −0.246848
\(724\) 10.1234 + 17.5343i 0.376234 + 0.651656i
\(725\) 0 0
\(726\) −15.9454 9.20610i −0.591790 0.341670i
\(727\) 15.4879i 0.574416i 0.957868 + 0.287208i \(0.0927271\pi\)
−0.957868 + 0.287208i \(0.907273\pi\)
\(728\) −2.50321 + 0.460130i −0.0927751 + 0.0170536i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −8.89662 + 15.4094i −0.329054 + 0.569937i
\(732\) 23.0263 13.2942i 0.851076 0.491369i
\(733\) −3.34533 −0.123562 −0.0617812 0.998090i \(-0.519678\pi\)
−0.0617812 + 0.998090i \(0.519678\pi\)
\(734\) −6.84141 + 3.94989i −0.252521 + 0.145793i
\(735\) 0 0
\(736\) 5.31932i 0.196073i
\(737\) 18.8882 10.9051i 0.695754 0.401694i
\(738\) 11.3426 + 6.54863i 0.417526 + 0.241059i
\(739\) 11.3394 + 6.54681i 0.417127 + 0.240828i 0.693847 0.720122i \(-0.255914\pi\)
−0.276721 + 0.960950i \(0.589248\pi\)
\(740\) 0 0
\(741\) 1.86983 5.25562i 0.0686898 0.193070i
\(742\) 5.31932i 0.195279i
\(743\) −2.53686 + 4.39398i −0.0930685 + 0.161199i −0.908801 0.417230i \(-0.863001\pi\)
0.815732 + 0.578430i \(0.196334\pi\)
\(744\) −4.92457 + 8.52961i −0.180544 + 0.312711i
\(745\) 0 0
\(746\) 43.1561i 1.58006i
\(747\) −4.56400 7.90509i −0.166988 0.289232i
\(748\) 8.19615 + 14.1962i 0.299681 + 0.519063i
\(749\) 5.28325i 0.193046i
\(750\) 0 0
\(751\) 9.51688 16.4837i 0.347276 0.601499i −0.638489 0.769631i \(-0.720440\pi\)
0.985765 + 0.168132i \(0.0537734\pi\)
\(752\) 5.41712 9.38273i 0.197542 0.342153i
\(753\) 19.8816i 0.724527i
\(754\) −19.2837 + 3.54466i −0.702272 + 0.129089i
\(755\) 0 0
\(756\) 1.04880 + 0.605528i 0.0381447 + 0.0220228i
\(757\) 38.8056 + 22.4044i 1.41042 + 0.814303i 0.995427 0.0955235i \(-0.0304525\pi\)
0.414988 + 0.909827i \(0.363786\pi\)
\(758\) 12.8743 7.43299i 0.467616 0.269978i
\(759\) 1.12411i 0.0408024i
\(760\) 0 0
\(761\) 32.8763 18.9811i 1.19176 0.688065i 0.233058 0.972463i \(-0.425127\pi\)
0.958706 + 0.284398i \(0.0917936\pi\)
\(762\) −31.0007 −1.12304
\(763\) −6.54174 + 3.77688i −0.236827 + 0.136732i
\(764\) 22.2084 38.4661i 0.803472 1.39166i
\(765\) 0 0
\(766\) −84.5852 −3.05619
\(767\) 5.68542 + 30.9299i 0.205289 + 1.11681i
\(768\) 1.07180i 0.0386751i
\(769\) −21.5337 12.4325i −0.776525 0.448327i 0.0586721 0.998277i \(-0.481313\pi\)
−0.835197 + 0.549950i \(0.814647\pi\)
\(770\) 0 0
\(771\) −0.504787 0.874316i −0.0181794 0.0314877i
\(772\) −30.8108 −1.10890
\(773\) −14.6513 25.3768i −0.526970 0.912740i −0.999506 0.0314280i \(-0.989995\pi\)
0.472536 0.881312i \(-0.343339\pi\)
\(774\) −8.89662 + 5.13647i −0.319783 + 0.184627i
\(775\) 0 0
\(776\) −6.70193 11.6081i −0.240585 0.416706i
\(777\) −3.97350 2.29410i −0.142549 0.0823005i
\(778\) 9.62453 16.6702i 0.345056 0.597655i
\(779\) 9.31512 0.333749
\(780\) 0 0
\(781\) −24.1238 −0.863216
\(782\) 2.89282 5.01051i 0.103447 0.179175i
\(783\) 2.16492 + 1.24991i 0.0773678 + 0.0446683i
\(784\) −6.80351 11.7840i −0.242982 0.420858i
\(785\) 0 0
\(786\) 18.9056 10.9151i 0.674339 0.389330i
\(787\) −5.33508 9.24064i −0.190175 0.329393i 0.755133 0.655572i \(-0.227572\pi\)
−0.945308 + 0.326179i \(0.894239\pi\)
\(788\) 67.3913 2.40071
\(789\) 10.7859 + 18.6818i 0.383990 + 0.665089i
\(790\) 0 0
\(791\) −1.32983 0.767778i −0.0472833 0.0272990i
\(792\) 2.53590i 0.0901092i
\(793\) 34.5112 6.34372i 1.22553 0.225272i
\(794\) 37.0628 1.31531
\(795\) 0 0
\(796\) 30.1497 52.2208i 1.06863 1.85092i
\(797\) 16.3506 9.44000i 0.579166 0.334382i −0.181636 0.983366i \(-0.558139\pi\)
0.760802 + 0.648984i \(0.224806\pi\)
\(798\) 1.49187 0.0528118
\(799\) 17.6760 10.2053i 0.625333 0.361036i
\(800\) 0 0
\(801\) 4.75653i 0.168064i
\(802\) −14.4890 + 8.36522i −0.511624 + 0.295386i
\(803\) 14.8859 + 8.59440i 0.525313 + 0.303290i
\(804\) 32.4050 + 18.7091i 1.14284 + 0.659818i
\(805\) 0 0
\(806\) −36.9335 + 31.4502i −1.30093 + 1.10779i
\(807\) 4.65068i 0.163712i
\(808\) 5.33940 9.24812i 0.187840 0.325348i
\(809\) 21.8102 37.7763i 0.766805 1.32814i −0.172482 0.985013i \(-0.555179\pi\)
0.939287 0.343132i \(-0.111488\pi\)
\(810\) 0 0
\(811\) 3.31656i 0.116460i −0.998303 0.0582301i \(-0.981454\pi\)
0.998303 0.0582301i \(-0.0185457\pi\)
\(812\) −1.51372 2.62183i −0.0531210 0.0920083i
\(813\) 2.65996 + 4.60718i 0.0932888 + 0.161581i
\(814\) 35.8557i 1.25674i
\(815\) 0 0
\(816\) 3.76778 6.52598i 0.131899 0.228455i
\(817\) −3.65319 + 6.32751i −0.127809 + 0.221372i
\(818\) 19.7592i 0.690863i
\(819\) 1.03619 + 1.21685i 0.0362076 + 0.0425202i
\(820\) 0 0
\(821\) 6.24179 + 3.60370i 0.217840 + 0.125770i 0.604950 0.796264i \(-0.293193\pi\)
−0.387110 + 0.922034i \(0.626527\pi\)
\(822\) 17.4904 + 10.0981i 0.610047 + 0.352211i
\(823\) −8.48957 + 4.90146i −0.295928 + 0.170854i −0.640612 0.767865i \(-0.721319\pi\)
0.344684 + 0.938719i \(0.387986\pi\)
\(824\) 2.77399i 0.0966367i
\(825\) 0 0
\(826\) −7.28372 + 4.20526i −0.253433 + 0.146320i
\(827\) −3.92322 −0.136424 −0.0682118 0.997671i \(-0.521729\pi\)
−0.0682118 + 0.997671i \(0.521729\pi\)
\(828\) 1.67017 0.964273i 0.0580424 0.0335108i
\(829\) −5.21210 + 9.02761i −0.181024 + 0.313542i −0.942229 0.334968i \(-0.891274\pi\)
0.761206 + 0.648510i \(0.224608\pi\)
\(830\) 0 0
\(831\) 9.35948 0.324677
\(832\) −14.9769 + 42.0962i −0.519229 + 1.45942i
\(833\) 25.6341i 0.888169i
\(834\) −12.2762 7.08766i −0.425090 0.245426i
\(835\) 0 0
\(836\) 3.36556 + 5.82932i 0.116400 + 0.201611i
\(837\) 6.18490 0.213781
\(838\) 14.1295 + 24.4730i 0.488095 + 0.845406i
\(839\) 8.87859 5.12606i 0.306523 0.176971i −0.338847 0.940842i \(-0.610037\pi\)
0.645369 + 0.763871i \(0.276703\pi\)
\(840\) 0 0
\(841\) 11.3754 + 19.7028i 0.392256 + 0.679408i
\(842\) 37.4628 + 21.6291i 1.29105 + 0.745389i
\(843\) −6.57246 + 11.3838i −0.226368 + 0.392080i
\(844\) −58.7830 −2.02339
\(845\) 0 0
\(846\) 11.7840 0.405143
\(847\) 1.87597 3.24928i 0.0644591 0.111646i
\(848\) 9.55470 + 5.51641i 0.328110 + 0.189434i
\(849\) −1.82184 3.15551i −0.0625253 0.108297i
\(850\) 0 0
\(851\) −6.32761 + 3.65325i −0.216908 + 0.125232i
\(852\) −20.6937 35.8425i −0.708954 1.22794i
\(853\) 26.3671 0.902792 0.451396 0.892324i \(-0.350926\pi\)
0.451396 + 0.892324i \(0.350926\pi\)
\(854\) 4.69218 + 8.12709i 0.160563 + 0.278103i
\(855\) 0 0
\(856\) −16.4370 9.48991i −0.561806 0.324359i
\(857\) 1.04855i 0.0358178i 0.999840 + 0.0179089i \(0.00570088\pi\)
−0.999840 + 0.0179089i \(0.994299\pi\)
\(858\) −4.18658 + 11.7674i −0.142927 + 0.401734i
\(859\) 19.6076 0.669003 0.334501 0.942395i \(-0.391432\pi\)
0.334501 + 0.942395i \(0.391432\pi\)
\(860\) 0 0
\(861\) −1.33445 + 2.31133i −0.0454778 + 0.0787699i
\(862\) −73.7128 + 42.5581i −2.51067 + 1.44954i
\(863\) −25.6925 −0.874582 −0.437291 0.899320i \(-0.644062\pi\)
−0.437291 + 0.899320i \(0.644062\pi\)
\(864\) 6.52598 3.76778i 0.222018 0.128182i
\(865\) 0 0
\(866\) 82.9668i 2.81933i
\(867\) −2.42820 + 1.40192i −0.0824661 + 0.0476118i
\(868\) −6.48675 3.74513i −0.220175 0.127118i
\(869\) 14.8001 + 8.54486i 0.502060 + 0.289864i
\(870\) 0 0
\(871\) 32.0154 + 37.5972i 1.08480 + 1.27393i
\(872\) 27.1365i 0.918958i
\(873\) −4.20856 + 7.28944i −0.142438 + 0.246710i
\(874\) 1.18787 2.05745i 0.0401802 0.0695942i
\(875\) 0 0
\(876\) 29.4896i 0.996360i
\(877\) 18.2071 + 31.5356i 0.614809 + 1.06488i 0.990418 + 0.138102i \(0.0441002\pi\)
−0.375609 + 0.926778i \(0.622567\pi\)
\(878\) 7.34266 + 12.7179i 0.247803 + 0.429207i
\(879\) 19.6348i 0.662267i
\(880\) 0 0
\(881\) 8.01915 13.8896i 0.270172 0.467951i −0.698734 0.715382i \(-0.746253\pi\)
0.968906 + 0.247430i \(0.0795861\pi\)
\(882\) 7.39993 12.8170i 0.249169 0.431573i
\(883\) 27.4548i 0.923927i −0.886899 0.461963i \(-0.847145\pi\)
0.886899 0.461963i \(-0.152855\pi\)
\(884\) −28.2577 + 24.0625i −0.950409 + 0.809309i
\(885\) 0 0
\(886\) −23.1053 13.3399i −0.776239 0.448162i
\(887\) −27.6818 15.9821i −0.929464 0.536626i −0.0428217 0.999083i \(-0.513635\pi\)
−0.886642 + 0.462457i \(0.846968\pi\)
\(888\) 14.2746 8.24145i 0.479025 0.276565i
\(889\) 6.31715i 0.211870i
\(890\) 0 0
\(891\) 1.37910 0.796225i 0.0462017 0.0266745i
\(892\) 58.0193 1.94263
\(893\) 7.25825 4.19055i 0.242888 0.140231i
\(894\) 0.0618816 0.107182i 0.00206963 0.00358471i
\(895\) 0 0
\(896\) −5.26888 −0.176021
\(897\) 2.50321 0.460130i 0.0835797 0.0153633i
\(898\) 50.9084i 1.69883i
\(899\) −13.3898 7.73060i −0.446574 0.257830i
\(900\) 0 0
\(901\) 10.3923 + 18.0000i 0.346218 + 0.599667i
\(902\) −20.8567 −0.694454
\(903\) −1.04668 1.81291i −0.0348314 0.0603298i
\(904\) 4.77735 2.75821i 0.158892 0.0917365i
\(905\) 0 0
\(906\) −18.8170 32.5921i −0.625155 1.08280i
\(907\) −27.4354 15.8398i −0.910977 0.525953i −0.0302317 0.999543i \(-0.509625\pi\)
−0.880745 + 0.473590i \(0.842958\pi\)
\(908\) −14.2749 + 24.7248i −0.473729 + 0.820522i
\(909\) −6.70590 −0.222421
\(910\) 0 0
\(911\) −25.9227 −0.858858 −0.429429 0.903101i \(-0.641285\pi\)
−0.429429 + 0.903101i \(0.641285\pi\)
\(912\) 1.54715 2.67974i 0.0512313 0.0887351i
\(913\) 12.5885 + 7.26795i 0.416617 + 0.240534i
\(914\) −32.1547 55.6935i −1.06358 1.84218i
\(915\) 0 0
\(916\) −50.6650 + 29.2514i −1.67402 + 0.966494i
\(917\) 2.22423 + 3.85247i 0.0734505 + 0.127220i
\(918\) 8.19615 0.270513
\(919\) −6.00970 10.4091i −0.198242 0.343365i 0.749717 0.661759i \(-0.230190\pi\)
−0.947958 + 0.318394i \(0.896856\pi\)
\(920\) 0 0
\(921\) 4.11244 + 2.37432i 0.135509 + 0.0782364i
\(922\) 20.8287i 0.685958i
\(923\) −9.87459 53.7199i −0.325026 1.76821i
\(924\) −1.92855 −0.0634445
\(925\) 0 0
\(926\) −21.7795 + 37.7232i −0.715720 + 1.23966i
\(927\) 1.50859 0.870983i 0.0495485 0.0286068i
\(928\) −18.8376 −0.618375
\(929\) 18.4962 10.6788i 0.606842 0.350360i −0.164887 0.986313i \(-0.552726\pi\)
0.771728 + 0.635952i \(0.219392\pi\)
\(930\) 0 0
\(931\) 10.5260i 0.344977i
\(932\) −7.67017 + 4.42837i −0.251245 + 0.145056i
\(933\) −4.72427 2.72756i −0.154666 0.0892963i
\(934\) 29.7545 + 17.1788i 0.973597 + 0.562106i
\(935\) 0 0
\(936\) −5.64705 + 1.03802i −0.184580 + 0.0339288i
\(937\) 15.8029i 0.516259i −0.966110 0.258129i \(-0.916894\pi\)
0.966110 0.258129i \(-0.0831061\pi\)
\(938\) −6.60333 + 11.4373i −0.215606 + 0.373441i
\(939\) 3.61927 6.26876i 0.118111 0.204573i
\(940\) 0 0
\(941\) 6.50590i 0.212086i −0.994362 0.106043i \(-0.966182\pi\)
0.994362 0.106043i \(-0.0338182\pi\)
\(942\) 1.46723 + 2.54132i 0.0478051 + 0.0828008i
\(943\) 2.12504 + 3.68068i 0.0692008 + 0.119859i
\(944\) 17.4443i 0.567763i
\(945\) 0 0
\(946\) 8.17957 14.1674i 0.265941 0.460623i
\(947\) 13.9418 24.1479i 0.453048 0.784701i −0.545526 0.838094i \(-0.683670\pi\)
0.998574 + 0.0533924i \(0.0170034\pi\)
\(948\) 29.3196i 0.952255i
\(949\) −13.0451 + 36.6666i −0.423463 + 1.19025i
\(950\) 0 0
\(951\) 18.1988 + 10.5071i 0.590138 + 0.340716i
\(952\) −2.30333 1.32983i −0.0746515 0.0431001i
\(953\) −44.9347 + 25.9430i −1.45558 + 0.840377i −0.998789 0.0491986i \(-0.984333\pi\)
−0.456787 + 0.889576i \(0.651000\pi\)
\(954\) 12.0000i 0.388514i
\(955\) 0 0
\(956\) −43.3288 + 25.0159i −1.40135 + 0.809072i
\(957\) −3.98085 −0.128683
\(958\) −50.3913 + 29.0934i −1.62807 + 0.939966i
\(959\) −2.05773 + 3.56410i −0.0664477 + 0.115091i
\(960\) 0 0
\(961\) −7.25300 −0.233968
\(962\) 79.8451 14.6768i 2.57431 0.473200i
\(963\) 11.9186i 0.384072i
\(964\) 15.7043 + 9.06687i 0.505801 + 0.292024i
\(965\) 0 0
\(966\) 0.340338 + 0.589483i 0.0109502 + 0.0189663i
\(967\) −21.4251 −0.688986 −0.344493 0.938789i \(-0.611949\pi\)
−0.344493 + 0.938789i \(0.611949\pi\)
\(968\) 6.73933 + 11.6729i 0.216610 + 0.375180i
\(969\) 5.04834 2.91466i 0.162176 0.0936323i
\(970\) 0 0
\(971\) 3.33637 + 5.77876i 0.107069 + 0.185449i 0.914582 0.404401i \(-0.132520\pi\)
−0.807513 + 0.589850i \(0.799187\pi\)
\(972\) 2.36603 + 1.36603i 0.0758903 + 0.0438153i
\(973\) 1.44429 2.50158i 0.0463017 0.0801969i
\(974\) −61.6136 −1.97423
\(975\) 0 0
\(976\) 19.4641 0.623031
\(977\) 4.91271 8.50906i 0.157171 0.272229i −0.776676 0.629900i \(-0.783096\pi\)
0.933848 + 0.357671i \(0.116429\pi\)
\(978\) 5.61244 + 3.24034i 0.179466 + 0.103615i
\(979\) −3.78727 6.55974i −0.121042 0.209650i
\(980\) 0 0
\(981\) −14.7577 + 8.52036i −0.471177 + 0.272034i
\(982\) −10.3330 17.8973i −0.329739 0.571125i
\(983\) −8.83034 −0.281644 −0.140822 0.990035i \(-0.544975\pi\)
−0.140822 + 0.990035i \(0.544975\pi\)
\(984\) −4.79393 8.30333i −0.152825 0.264701i
\(985\) 0 0
\(986\) −17.7440 10.2445i −0.565083 0.326251i
\(987\) 2.40129i 0.0764338i
\(988\) −11.6034 + 9.88069i −0.369152 + 0.314347i
\(989\) −3.33358 −0.106002
\(990\) 0 0
\(991\) −6.16662 + 10.6809i −0.195889 + 0.339290i −0.947192 0.320668i \(-0.896093\pi\)
0.751302 + 0.659958i \(0.229426\pi\)
\(992\) −40.3626 + 23.3033i −1.28151 + 0.739882i
\(993\) −15.5136 −0.492311
\(994\) 12.6506 7.30380i 0.401251 0.231663i
\(995\) 0 0
\(996\) 24.9382i 0.790196i
\(997\) 11.3019 6.52517i 0.357935 0.206654i −0.310239 0.950658i \(-0.600409\pi\)
0.668175 + 0.744004i \(0.267076\pi\)
\(998\) 43.6623 + 25.2084i 1.38210 + 0.797959i
\(999\) −8.96393 5.17533i −0.283606 0.163740i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.w.i.199.4 8
5.2 odd 4 195.2.bb.b.121.4 8
5.3 odd 4 975.2.bc.j.901.1 8
5.4 even 2 975.2.w.h.199.1 8
13.10 even 6 975.2.w.h.49.1 8
15.2 even 4 585.2.bu.d.316.1 8
65.7 even 12 2535.2.a.bj.1.4 4
65.23 odd 12 975.2.bc.j.751.1 8
65.32 even 12 2535.2.a.bk.1.1 4
65.49 even 6 inner 975.2.w.i.49.4 8
65.62 odd 12 195.2.bb.b.166.4 yes 8
195.32 odd 12 7605.2.a.ch.1.4 4
195.62 even 12 585.2.bu.d.361.1 8
195.137 odd 12 7605.2.a.ci.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.bb.b.121.4 8 5.2 odd 4
195.2.bb.b.166.4 yes 8 65.62 odd 12
585.2.bu.d.316.1 8 15.2 even 4
585.2.bu.d.361.1 8 195.62 even 12
975.2.w.h.49.1 8 13.10 even 6
975.2.w.h.199.1 8 5.4 even 2
975.2.w.i.49.4 8 65.49 even 6 inner
975.2.w.i.199.4 8 1.1 even 1 trivial
975.2.bc.j.751.1 8 65.23 odd 12
975.2.bc.j.901.1 8 5.3 odd 4
2535.2.a.bj.1.4 4 65.7 even 12
2535.2.a.bk.1.1 4 65.32 even 12
7605.2.a.ch.1.4 4 195.32 odd 12
7605.2.a.ci.1.1 4 195.137 odd 12