Properties

Label 2548.2.bb.c.1733.4
Level $2548$
Weight $2$
Character 2548.1733
Analytic conductor $20.346$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(569,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.569");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1733.4
Root \(-0.268953i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1733
Dual form 2548.2.bb.c.569.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.134476 - 0.232920i) q^{3} +(1.17420 - 0.677925i) q^{5} +(1.46383 - 2.53543i) q^{9} +(-2.42763 + 1.40159i) q^{11} +(-0.303042 + 3.59279i) q^{13} +(-0.315805 - 0.182330i) q^{15} -5.81868 q^{17} +(2.75793 + 1.59229i) q^{19} -7.55347 q^{23} +(-1.58083 + 2.73809i) q^{25} -1.59426 q^{27} +(-3.60830 + 6.24977i) q^{29} +(6.96637 + 4.02203i) q^{31} +(0.652918 + 0.376962i) q^{33} +6.95744i q^{37} +(0.877586 - 0.412562i) q^{39} +(-4.38164 - 2.52974i) q^{41} +(3.13427 + 5.42872i) q^{43} -3.96948i q^{45} +(-2.28903 + 1.32157i) q^{47} +(0.782475 + 1.35529i) q^{51} +(5.54434 - 9.60308i) q^{53} +(-1.90035 + 3.29150i) q^{55} -0.856503i q^{57} +6.29558i q^{59} +(6.40404 - 11.0921i) q^{61} +(2.07981 + 4.42410i) q^{65} +(-4.29803 + 2.48147i) q^{67} +(1.01576 + 1.75936i) q^{69} +(-14.2993 + 8.25572i) q^{71} +(13.3672 + 7.71755i) q^{73} +0.850340 q^{75} +(-7.38303 - 12.7878i) q^{79} +(-4.17711 - 7.23496i) q^{81} +9.79310i q^{83} +(-6.83230 + 3.94463i) q^{85} +1.94093 q^{87} -8.36820i q^{89} -2.16348i q^{93} +4.31782 q^{95} +(10.5685 - 6.10170i) q^{97} +8.20678i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 14 q^{9} - 6 q^{11} - 10 q^{13} + 6 q^{15} + 4 q^{17} + 22 q^{25} + 12 q^{27} - 22 q^{29} - 30 q^{31} + 42 q^{33} - 18 q^{39} - 36 q^{41} + 6 q^{43} + 18 q^{47} + 2 q^{51} - 4 q^{53} - 2 q^{55} - 4 q^{61}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.134476 0.232920i −0.0776400 0.134476i 0.824591 0.565729i \(-0.191405\pi\)
−0.902231 + 0.431252i \(0.858072\pi\)
\(4\) 0 0
\(5\) 1.17420 0.677925i 0.525119 0.303177i −0.213908 0.976854i \(-0.568619\pi\)
0.739026 + 0.673676i \(0.235286\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.46383 2.53543i 0.487944 0.845144i
\(10\) 0 0
\(11\) −2.42763 + 1.40159i −0.731958 + 0.422596i −0.819138 0.573597i \(-0.805548\pi\)
0.0871803 + 0.996193i \(0.472214\pi\)
\(12\) 0 0
\(13\) −0.303042 + 3.59279i −0.0840488 + 0.996462i
\(14\) 0 0
\(15\) −0.315805 0.182330i −0.0815405 0.0470774i
\(16\) 0 0
\(17\) −5.81868 −1.41124 −0.705618 0.708592i \(-0.749331\pi\)
−0.705618 + 0.708592i \(0.749331\pi\)
\(18\) 0 0
\(19\) 2.75793 + 1.59229i 0.632713 + 0.365297i 0.781802 0.623527i \(-0.214301\pi\)
−0.149089 + 0.988824i \(0.547634\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.55347 −1.57501 −0.787504 0.616310i \(-0.788627\pi\)
−0.787504 + 0.616310i \(0.788627\pi\)
\(24\) 0 0
\(25\) −1.58083 + 2.73809i −0.316167 + 0.547617i
\(26\) 0 0
\(27\) −1.59426 −0.306816
\(28\) 0 0
\(29\) −3.60830 + 6.24977i −0.670045 + 1.16055i 0.307845 + 0.951436i \(0.400392\pi\)
−0.977891 + 0.209116i \(0.932941\pi\)
\(30\) 0 0
\(31\) 6.96637 + 4.02203i 1.25120 + 0.722379i 0.971347 0.237665i \(-0.0763821\pi\)
0.279849 + 0.960044i \(0.409715\pi\)
\(32\) 0 0
\(33\) 0.652918 + 0.376962i 0.113658 + 0.0656207i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.95744i 1.14380i 0.820325 + 0.571898i \(0.193793\pi\)
−0.820325 + 0.571898i \(0.806207\pi\)
\(38\) 0 0
\(39\) 0.877586 0.412562i 0.140526 0.0660627i
\(40\) 0 0
\(41\) −4.38164 2.52974i −0.684298 0.395079i 0.117175 0.993111i \(-0.462616\pi\)
−0.801472 + 0.598032i \(0.795950\pi\)
\(42\) 0 0
\(43\) 3.13427 + 5.42872i 0.477972 + 0.827872i 0.999681 0.0252518i \(-0.00803875\pi\)
−0.521709 + 0.853123i \(0.674705\pi\)
\(44\) 0 0
\(45\) 3.96948i 0.591734i
\(46\) 0 0
\(47\) −2.28903 + 1.32157i −0.333890 + 0.192771i −0.657567 0.753396i \(-0.728414\pi\)
0.323677 + 0.946168i \(0.395081\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.782475 + 1.35529i 0.109568 + 0.189778i
\(52\) 0 0
\(53\) 5.54434 9.60308i 0.761574 1.31908i −0.180466 0.983581i \(-0.557760\pi\)
0.942039 0.335503i \(-0.108906\pi\)
\(54\) 0 0
\(55\) −1.90035 + 3.29150i −0.256243 + 0.443826i
\(56\) 0 0
\(57\) 0.856503i 0.113447i
\(58\) 0 0
\(59\) 6.29558i 0.819614i 0.912172 + 0.409807i \(0.134404\pi\)
−0.912172 + 0.409807i \(0.865596\pi\)
\(60\) 0 0
\(61\) 6.40404 11.0921i 0.819953 1.42020i −0.0857630 0.996316i \(-0.527333\pi\)
0.905716 0.423885i \(-0.139334\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.07981 + 4.42410i 0.257969 + 0.548742i
\(66\) 0 0
\(67\) −4.29803 + 2.48147i −0.525088 + 0.303160i −0.739014 0.673690i \(-0.764708\pi\)
0.213926 + 0.976850i \(0.431375\pi\)
\(68\) 0 0
\(69\) 1.01576 + 1.75936i 0.122284 + 0.211801i
\(70\) 0 0
\(71\) −14.2993 + 8.25572i −1.69702 + 0.979773i −0.748453 + 0.663188i \(0.769203\pi\)
−0.948564 + 0.316586i \(0.897464\pi\)
\(72\) 0 0
\(73\) 13.3672 + 7.71755i 1.56451 + 0.903271i 0.996791 + 0.0800494i \(0.0255078\pi\)
0.567720 + 0.823222i \(0.307826\pi\)
\(74\) 0 0
\(75\) 0.850340 0.0981888
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.38303 12.7878i −0.830656 1.43874i −0.897519 0.440976i \(-0.854632\pi\)
0.0668627 0.997762i \(-0.478701\pi\)
\(80\) 0 0
\(81\) −4.17711 7.23496i −0.464123 0.803884i
\(82\) 0 0
\(83\) 9.79310i 1.07493i 0.843285 + 0.537466i \(0.180618\pi\)
−0.843285 + 0.537466i \(0.819382\pi\)
\(84\) 0 0
\(85\) −6.83230 + 3.94463i −0.741067 + 0.427855i
\(86\) 0 0
\(87\) 1.94093 0.208089
\(88\) 0 0
\(89\) 8.36820i 0.887027i −0.896268 0.443513i \(-0.853732\pi\)
0.896268 0.443513i \(-0.146268\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 2.16348i 0.224342i
\(94\) 0 0
\(95\) 4.31782 0.442999
\(96\) 0 0
\(97\) 10.5685 6.10170i 1.07306 0.619534i 0.144047 0.989571i \(-0.453988\pi\)
0.929017 + 0.370037i \(0.120655\pi\)
\(98\) 0 0
\(99\) 8.20678i 0.824813i
\(100\) 0 0
\(101\) 1.21143 + 2.09825i 0.120541 + 0.208784i 0.919981 0.391962i \(-0.128204\pi\)
−0.799440 + 0.600746i \(0.794870\pi\)
\(102\) 0 0
\(103\) 7.24547 + 12.5495i 0.713917 + 1.23654i 0.963376 + 0.268155i \(0.0864141\pi\)
−0.249458 + 0.968386i \(0.580253\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.48741 0.627161 0.313581 0.949562i \(-0.398471\pi\)
0.313581 + 0.949562i \(0.398471\pi\)
\(108\) 0 0
\(109\) 2.54304 + 1.46822i 0.243579 + 0.140630i 0.616820 0.787104i \(-0.288420\pi\)
−0.373242 + 0.927734i \(0.621754\pi\)
\(110\) 0 0
\(111\) 1.62053 0.935612i 0.153814 0.0888044i
\(112\) 0 0
\(113\) 1.66909 + 2.89095i 0.157015 + 0.271957i 0.933791 0.357819i \(-0.116480\pi\)
−0.776776 + 0.629777i \(0.783146\pi\)
\(114\) 0 0
\(115\) −8.86929 + 5.12069i −0.827066 + 0.477507i
\(116\) 0 0
\(117\) 8.66568 + 6.02759i 0.801142 + 0.557251i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.57108 + 2.72119i −0.142825 + 0.247381i
\(122\) 0 0
\(123\) 1.36076i 0.122696i
\(124\) 0 0
\(125\) 11.0660i 0.989773i
\(126\) 0 0
\(127\) −6.27512 + 10.8688i −0.556827 + 0.964452i 0.440932 + 0.897540i \(0.354648\pi\)
−0.997759 + 0.0669115i \(0.978685\pi\)
\(128\) 0 0
\(129\) 0.842971 1.46007i 0.0742195 0.128552i
\(130\) 0 0
\(131\) 0.630004 + 1.09120i 0.0550437 + 0.0953385i 0.892234 0.451573i \(-0.149137\pi\)
−0.837191 + 0.546911i \(0.815804\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −1.87199 + 1.08079i −0.161115 + 0.0930197i
\(136\) 0 0
\(137\) 8.32302i 0.711083i −0.934660 0.355542i \(-0.884296\pi\)
0.934660 0.355542i \(-0.115704\pi\)
\(138\) 0 0
\(139\) −2.89438 5.01322i −0.245498 0.425216i 0.716773 0.697306i \(-0.245618\pi\)
−0.962272 + 0.272091i \(0.912285\pi\)
\(140\) 0 0
\(141\) 0.615642 + 0.355441i 0.0518464 + 0.0299335i
\(142\) 0 0
\(143\) −4.29996 9.14671i −0.359580 0.764886i
\(144\) 0 0
\(145\) 9.78464i 0.812570i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.3009 7.10193i −1.00773 0.581812i −0.0972028 0.995265i \(-0.530990\pi\)
−0.910526 + 0.413452i \(0.864323\pi\)
\(150\) 0 0
\(151\) −9.65700 5.57547i −0.785875 0.453725i 0.0526332 0.998614i \(-0.483239\pi\)
−0.838508 + 0.544889i \(0.816572\pi\)
\(152\) 0 0
\(153\) −8.51757 + 14.7529i −0.688605 + 1.19270i
\(154\) 0 0
\(155\) 10.9066 0.876036
\(156\) 0 0
\(157\) 2.02375 3.50523i 0.161513 0.279748i −0.773899 0.633309i \(-0.781696\pi\)
0.935411 + 0.353561i \(0.115029\pi\)
\(158\) 0 0
\(159\) −2.98233 −0.236514
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.56675 + 2.63661i 0.357695 + 0.206515i 0.668069 0.744099i \(-0.267121\pi\)
−0.310374 + 0.950615i \(0.600454\pi\)
\(164\) 0 0
\(165\) 1.02221 0.0795789
\(166\) 0 0
\(167\) 4.63307 + 2.67491i 0.358518 + 0.206990i 0.668430 0.743775i \(-0.266966\pi\)
−0.309912 + 0.950765i \(0.600300\pi\)
\(168\) 0 0
\(169\) −12.8163 2.17754i −0.985872 0.167503i
\(170\) 0 0
\(171\) 8.07429 4.66170i 0.617457 0.356489i
\(172\) 0 0
\(173\) 4.87155 8.43777i 0.370377 0.641511i −0.619247 0.785197i \(-0.712562\pi\)
0.989623 + 0.143685i \(0.0458952\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1.46637 0.846607i 0.110219 0.0636349i
\(178\) 0 0
\(179\) 5.70263 + 9.87724i 0.426234 + 0.738259i 0.996535 0.0831767i \(-0.0265066\pi\)
−0.570301 + 0.821436i \(0.693173\pi\)
\(180\) 0 0
\(181\) −25.4727 −1.89337 −0.946685 0.322160i \(-0.895591\pi\)
−0.946685 + 0.322160i \(0.895591\pi\)
\(182\) 0 0
\(183\) −3.44477 −0.254645
\(184\) 0 0
\(185\) 4.71663 + 8.16943i 0.346773 + 0.600629i
\(186\) 0 0
\(187\) 14.1256 8.15541i 1.03297 0.596383i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.18905 + 14.1838i −0.592539 + 1.02631i 0.401351 + 0.915924i \(0.368541\pi\)
−0.993889 + 0.110382i \(0.964792\pi\)
\(192\) 0 0
\(193\) −8.28132 + 4.78122i −0.596103 + 0.344160i −0.767507 0.641041i \(-0.778503\pi\)
0.171404 + 0.985201i \(0.445170\pi\)
\(194\) 0 0
\(195\) 0.750776 1.07937i 0.0537642 0.0772951i
\(196\) 0 0
\(197\) 2.60716 + 1.50525i 0.185753 + 0.107244i 0.589993 0.807409i \(-0.299131\pi\)
−0.404240 + 0.914653i \(0.632464\pi\)
\(198\) 0 0
\(199\) −4.61969 −0.327481 −0.163741 0.986503i \(-0.552356\pi\)
−0.163741 + 0.986503i \(0.552356\pi\)
\(200\) 0 0
\(201\) 1.15597 + 0.667399i 0.0815357 + 0.0470747i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.85991 −0.479117
\(206\) 0 0
\(207\) −11.0570 + 19.1513i −0.768516 + 1.33111i
\(208\) 0 0
\(209\) −8.92697 −0.617492
\(210\) 0 0
\(211\) −1.16932 + 2.02533i −0.0804995 + 0.139429i −0.903465 0.428663i \(-0.858985\pi\)
0.822965 + 0.568092i \(0.192318\pi\)
\(212\) 0 0
\(213\) 3.84584 + 2.22040i 0.263513 + 0.152139i
\(214\) 0 0
\(215\) 7.36053 + 4.24960i 0.501984 + 0.289821i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 4.15132i 0.280520i
\(220\) 0 0
\(221\) 1.76331 20.9053i 0.118613 1.40624i
\(222\) 0 0
\(223\) 4.21429 + 2.43312i 0.282210 + 0.162934i 0.634423 0.772986i \(-0.281238\pi\)
−0.352214 + 0.935920i \(0.614571\pi\)
\(224\) 0 0
\(225\) 4.62815 + 8.01620i 0.308544 + 0.534413i
\(226\) 0 0
\(227\) 28.0796i 1.86371i 0.362832 + 0.931855i \(0.381810\pi\)
−0.362832 + 0.931855i \(0.618190\pi\)
\(228\) 0 0
\(229\) 0.155261 0.0896399i 0.0102599 0.00592357i −0.494861 0.868972i \(-0.664781\pi\)
0.505121 + 0.863048i \(0.331448\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.56918 13.1102i −0.495873 0.858878i 0.504115 0.863636i \(-0.331819\pi\)
−0.999989 + 0.00475858i \(0.998485\pi\)
\(234\) 0 0
\(235\) −1.79186 + 3.10358i −0.116888 + 0.202456i
\(236\) 0 0
\(237\) −1.98569 + 3.43931i −0.128984 + 0.223407i
\(238\) 0 0
\(239\) 12.8703i 0.832512i −0.909247 0.416256i \(-0.863342\pi\)
0.909247 0.416256i \(-0.136658\pi\)
\(240\) 0 0
\(241\) 9.83172i 0.633317i −0.948540 0.316659i \(-0.897439\pi\)
0.948540 0.316659i \(-0.102561\pi\)
\(242\) 0 0
\(243\) −3.51484 + 6.08788i −0.225477 + 0.390538i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −6.55654 + 9.42614i −0.417183 + 0.599771i
\(248\) 0 0
\(249\) 2.28101 1.31694i 0.144553 0.0834578i
\(250\) 0 0
\(251\) 8.66099 + 15.0013i 0.546677 + 0.946872i 0.998499 + 0.0547641i \(0.0174407\pi\)
−0.451823 + 0.892108i \(0.649226\pi\)
\(252\) 0 0
\(253\) 18.3370 10.5869i 1.15284 0.665592i
\(254\) 0 0
\(255\) 1.83757 + 1.06092i 0.115073 + 0.0664374i
\(256\) 0 0
\(257\) −10.7060 −0.667824 −0.333912 0.942604i \(-0.608369\pi\)
−0.333912 + 0.942604i \(0.608369\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 10.5639 + 18.2972i 0.653889 + 1.13257i
\(262\) 0 0
\(263\) 7.03484 + 12.1847i 0.433787 + 0.751341i 0.997196 0.0748372i \(-0.0238437\pi\)
−0.563409 + 0.826178i \(0.690510\pi\)
\(264\) 0 0
\(265\) 15.0346i 0.923567i
\(266\) 0 0
\(267\) −1.94912 + 1.12533i −0.119284 + 0.0688688i
\(268\) 0 0
\(269\) 0.544023 0.0331697 0.0165848 0.999862i \(-0.494721\pi\)
0.0165848 + 0.999862i \(0.494721\pi\)
\(270\) 0 0
\(271\) 0.741214i 0.0450256i −0.999747 0.0225128i \(-0.992833\pi\)
0.999747 0.0225128i \(-0.00716665\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 8.86274i 0.534443i
\(276\) 0 0
\(277\) 14.1335 0.849200 0.424600 0.905381i \(-0.360415\pi\)
0.424600 + 0.905381i \(0.360415\pi\)
\(278\) 0 0
\(279\) 20.3952 11.7752i 1.22103 0.704961i
\(280\) 0 0
\(281\) 25.8051i 1.53940i 0.638404 + 0.769702i \(0.279595\pi\)
−0.638404 + 0.769702i \(0.720405\pi\)
\(282\) 0 0
\(283\) −13.6409 23.6267i −0.810865 1.40446i −0.912259 0.409613i \(-0.865664\pi\)
0.101394 0.994846i \(-0.467670\pi\)
\(284\) 0 0
\(285\) −0.580645 1.00571i −0.0343944 0.0595729i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 16.8570 0.991589
\(290\) 0 0
\(291\) −2.84242 1.64107i −0.166625 0.0962013i
\(292\) 0 0
\(293\) 1.50010 0.866083i 0.0876367 0.0505971i −0.455541 0.890215i \(-0.650554\pi\)
0.543178 + 0.839618i \(0.317221\pi\)
\(294\) 0 0
\(295\) 4.26793 + 7.39227i 0.248489 + 0.430395i
\(296\) 0 0
\(297\) 3.87028 2.23451i 0.224576 0.129659i
\(298\) 0 0
\(299\) 2.28902 27.1381i 0.132378 1.56943i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0.325817 0.564331i 0.0187177 0.0324200i
\(304\) 0 0
\(305\) 17.3658i 0.994365i
\(306\) 0 0
\(307\) 21.4365i 1.22345i −0.791072 0.611723i \(-0.790477\pi\)
0.791072 0.611723i \(-0.209523\pi\)
\(308\) 0 0
\(309\) 1.94869 3.37523i 0.110857 0.192010i
\(310\) 0 0
\(311\) −13.6362 + 23.6186i −0.773237 + 1.33929i 0.162543 + 0.986701i \(0.448030\pi\)
−0.935780 + 0.352584i \(0.885303\pi\)
\(312\) 0 0
\(313\) 3.64110 + 6.30658i 0.205807 + 0.356469i 0.950390 0.311062i \(-0.100685\pi\)
−0.744582 + 0.667531i \(0.767351\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.20695 + 1.27418i −0.123954 + 0.0715651i −0.560695 0.828022i \(-0.689466\pi\)
0.436741 + 0.899587i \(0.356133\pi\)
\(318\) 0 0
\(319\) 20.2295i 1.13263i
\(320\) 0 0
\(321\) −0.872404 1.51105i −0.0486928 0.0843384i
\(322\) 0 0
\(323\) −16.0475 9.26503i −0.892907 0.515520i
\(324\) 0 0
\(325\) −9.35832 6.50937i −0.519106 0.361075i
\(326\) 0 0
\(327\) 0.789766i 0.0436741i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.169450 0.0978320i −0.00931381 0.00537733i 0.495336 0.868702i \(-0.335045\pi\)
−0.504650 + 0.863324i \(0.668378\pi\)
\(332\) 0 0
\(333\) 17.6401 + 10.1845i 0.966672 + 0.558109i
\(334\) 0 0
\(335\) −3.36450 + 5.82749i −0.183822 + 0.318390i
\(336\) 0 0
\(337\) 2.00900 0.109437 0.0547185 0.998502i \(-0.482574\pi\)
0.0547185 + 0.998502i \(0.482574\pi\)
\(338\) 0 0
\(339\) 0.448906 0.777529i 0.0243813 0.0422296i
\(340\) 0 0
\(341\) −22.5490 −1.22110
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.38542 + 1.37722i 0.128427 + 0.0741473i
\(346\) 0 0
\(347\) 4.54901 0.244204 0.122102 0.992518i \(-0.461037\pi\)
0.122102 + 0.992518i \(0.461037\pi\)
\(348\) 0 0
\(349\) −4.65700 2.68872i −0.249284 0.143924i 0.370153 0.928971i \(-0.379305\pi\)
−0.619436 + 0.785047i \(0.712639\pi\)
\(350\) 0 0
\(351\) 0.483129 5.72786i 0.0257875 0.305730i
\(352\) 0 0
\(353\) 7.10223 4.10047i 0.378013 0.218246i −0.298940 0.954272i \(-0.596633\pi\)
0.676954 + 0.736026i \(0.263300\pi\)
\(354\) 0 0
\(355\) −11.1935 + 19.3877i −0.594090 + 1.02899i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.5105 15.8832i 1.45195 0.838284i 0.453359 0.891328i \(-0.350226\pi\)
0.998592 + 0.0530438i \(0.0168923\pi\)
\(360\) 0 0
\(361\) −4.42921 7.67162i −0.233117 0.403770i
\(362\) 0 0
\(363\) 0.845093 0.0443559
\(364\) 0 0
\(365\) 20.9277 1.09541
\(366\) 0 0
\(367\) 8.66870 + 15.0146i 0.452502 + 0.783757i 0.998541 0.0540031i \(-0.0171981\pi\)
−0.546038 + 0.837760i \(0.683865\pi\)
\(368\) 0 0
\(369\) −12.8280 + 7.40624i −0.667798 + 0.385553i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.04814 + 13.9398i −0.416717 + 0.721775i −0.995607 0.0936306i \(-0.970153\pi\)
0.578890 + 0.815406i \(0.303486\pi\)
\(374\) 0 0
\(375\) 2.57749 1.48812i 0.133101 0.0768460i
\(376\) 0 0
\(377\) −21.3607 14.8578i −1.10013 0.765218i
\(378\) 0 0
\(379\) −15.2907 8.82811i −0.785432 0.453470i 0.0529197 0.998599i \(-0.483147\pi\)
−0.838352 + 0.545129i \(0.816481\pi\)
\(380\) 0 0
\(381\) 3.37542 0.172928
\(382\) 0 0
\(383\) 7.12262 + 4.11225i 0.363949 + 0.210126i 0.670812 0.741628i \(-0.265946\pi\)
−0.306863 + 0.951754i \(0.599279\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 18.3522 0.932894
\(388\) 0 0
\(389\) −7.58442 + 13.1366i −0.384545 + 0.666052i −0.991706 0.128527i \(-0.958975\pi\)
0.607161 + 0.794579i \(0.292308\pi\)
\(390\) 0 0
\(391\) 43.9512 2.22271
\(392\) 0 0
\(393\) 0.169441 0.293481i 0.00854719 0.0148042i
\(394\) 0 0
\(395\) −17.3383 10.0103i −0.872386 0.503672i
\(396\) 0 0
\(397\) −24.5139 14.1531i −1.23032 0.710325i −0.263223 0.964735i \(-0.584785\pi\)
−0.967096 + 0.254410i \(0.918119\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 17.1192i 0.854894i −0.904040 0.427447i \(-0.859413\pi\)
0.904040 0.427447i \(-0.140587\pi\)
\(402\) 0 0
\(403\) −16.5614 + 23.8099i −0.824984 + 1.18605i
\(404\) 0 0
\(405\) −9.80952 5.66353i −0.487439 0.281423i
\(406\) 0 0
\(407\) −9.75149 16.8901i −0.483364 0.837210i
\(408\) 0 0
\(409\) 11.3400i 0.560726i −0.959894 0.280363i \(-0.909545\pi\)
0.959894 0.280363i \(-0.0904549\pi\)
\(410\) 0 0
\(411\) −1.93860 + 1.11925i −0.0956240 + 0.0552085i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.63899 + 11.4991i 0.325895 + 0.564467i
\(416\) 0 0
\(417\) −0.778453 + 1.34832i −0.0381210 + 0.0660275i
\(418\) 0 0
\(419\) 0.0694276 0.120252i 0.00339176 0.00587470i −0.864325 0.502934i \(-0.832254\pi\)
0.867716 + 0.497060i \(0.165587\pi\)
\(420\) 0 0
\(421\) 24.3258i 1.18557i −0.805362 0.592783i \(-0.798029\pi\)
0.805362 0.592783i \(-0.201971\pi\)
\(422\) 0 0
\(423\) 7.73824i 0.376246i
\(424\) 0 0
\(425\) 9.19837 15.9320i 0.446186 0.772818i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.55221 + 2.23156i −0.0749414 + 0.107741i
\(430\) 0 0
\(431\) −24.9349 + 14.3962i −1.20107 + 0.693440i −0.960794 0.277263i \(-0.910573\pi\)
−0.240280 + 0.970704i \(0.577239\pi\)
\(432\) 0 0
\(433\) 12.6367 + 21.8873i 0.607279 + 1.05184i 0.991687 + 0.128675i \(0.0410723\pi\)
−0.384408 + 0.923163i \(0.625594\pi\)
\(434\) 0 0
\(435\) 2.27904 1.31580i 0.109272 0.0630880i
\(436\) 0 0
\(437\) −20.8319 12.0273i −0.996527 0.575345i
\(438\) 0 0
\(439\) 6.03023 0.287807 0.143904 0.989592i \(-0.454034\pi\)
0.143904 + 0.989592i \(0.454034\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.7494 20.3505i −0.558230 0.966883i −0.997644 0.0685983i \(-0.978147\pi\)
0.439414 0.898285i \(-0.355186\pi\)
\(444\) 0 0
\(445\) −5.67301 9.82594i −0.268927 0.465794i
\(446\) 0 0
\(447\) 3.82017i 0.180688i
\(448\) 0 0
\(449\) 20.2543 11.6938i 0.955859 0.551865i 0.0609627 0.998140i \(-0.480583\pi\)
0.894896 + 0.446275i \(0.147250\pi\)
\(450\) 0 0
\(451\) 14.1827 0.667836
\(452\) 0 0
\(453\) 2.99908i 0.140909i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 26.1674i 1.22406i 0.790835 + 0.612030i \(0.209647\pi\)
−0.790835 + 0.612030i \(0.790353\pi\)
\(458\) 0 0
\(459\) 9.27650 0.432990
\(460\) 0 0
\(461\) 21.8524 12.6165i 1.01777 0.587609i 0.104312 0.994545i \(-0.466736\pi\)
0.913457 + 0.406936i \(0.133403\pi\)
\(462\) 0 0
\(463\) 18.1600i 0.843968i −0.906603 0.421984i \(-0.861334\pi\)
0.906603 0.421984i \(-0.138666\pi\)
\(464\) 0 0
\(465\) −1.46668 2.54036i −0.0680154 0.117806i
\(466\) 0 0
\(467\) −6.31641 10.9403i −0.292289 0.506259i 0.682062 0.731294i \(-0.261083\pi\)
−0.974351 + 0.225036i \(0.927750\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.08859 −0.0501594
\(472\) 0 0
\(473\) −15.2177 8.78594i −0.699710 0.403978i
\(474\) 0 0
\(475\) −8.71966 + 5.03430i −0.400086 + 0.230990i
\(476\) 0 0
\(477\) −16.2320 28.1146i −0.743211 1.28728i
\(478\) 0 0
\(479\) 10.6585 6.15368i 0.486999 0.281169i −0.236330 0.971673i \(-0.575945\pi\)
0.723329 + 0.690504i \(0.242611\pi\)
\(480\) 0 0
\(481\) −24.9966 2.10840i −1.13975 0.0961347i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.27299 14.3292i 0.375657 0.650658i
\(486\) 0 0
\(487\) 15.6339i 0.708438i 0.935163 + 0.354219i \(0.115253\pi\)
−0.935163 + 0.354219i \(0.884747\pi\)
\(488\) 0 0
\(489\) 1.41825i 0.0641355i
\(490\) 0 0
\(491\) 5.10543 8.84286i 0.230405 0.399073i −0.727523 0.686084i \(-0.759328\pi\)
0.957927 + 0.287011i \(0.0926617\pi\)
\(492\) 0 0
\(493\) 20.9956 36.3654i 0.945593 1.63781i
\(494\) 0 0
\(495\) 5.56358 + 9.63641i 0.250065 + 0.433124i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.589766 + 0.340502i −0.0264016 + 0.0152430i −0.513143 0.858303i \(-0.671519\pi\)
0.486741 + 0.873546i \(0.338186\pi\)
\(500\) 0 0
\(501\) 1.43885i 0.0642830i
\(502\) 0 0
\(503\) −17.6701 30.6056i −0.787873 1.36464i −0.927268 0.374399i \(-0.877849\pi\)
0.139395 0.990237i \(-0.455484\pi\)
\(504\) 0 0
\(505\) 2.84492 + 1.64251i 0.126597 + 0.0730909i
\(506\) 0 0
\(507\) 1.21630 + 3.27801i 0.0540179 + 0.145581i
\(508\) 0 0
\(509\) 16.8260i 0.745800i 0.927872 + 0.372900i \(0.121636\pi\)
−0.927872 + 0.372900i \(0.878364\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −4.39687 2.53853i −0.194126 0.112079i
\(514\) 0 0
\(515\) 17.0153 + 9.82377i 0.749783 + 0.432887i
\(516\) 0 0
\(517\) 3.70461 6.41658i 0.162929 0.282201i
\(518\) 0 0
\(519\) −2.62043 −0.115024
\(520\) 0 0
\(521\) 2.38310 4.12764i 0.104405 0.180835i −0.809090 0.587685i \(-0.800039\pi\)
0.913495 + 0.406850i \(0.133373\pi\)
\(522\) 0 0
\(523\) 0.638159 0.0279048 0.0139524 0.999903i \(-0.495559\pi\)
0.0139524 + 0.999903i \(0.495559\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −40.5351 23.4029i −1.76573 1.01945i
\(528\) 0 0
\(529\) 34.0549 1.48065
\(530\) 0 0
\(531\) 15.9620 + 9.21567i 0.692692 + 0.399926i
\(532\) 0 0
\(533\) 10.4167 14.9757i 0.451196 0.648670i
\(534\) 0 0
\(535\) 7.61752 4.39798i 0.329334 0.190141i
\(536\) 0 0
\(537\) 1.53374 2.65651i 0.0661857 0.114637i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 19.2301 11.1025i 0.826767 0.477334i −0.0259776 0.999663i \(-0.508270\pi\)
0.852744 + 0.522328i \(0.174937\pi\)
\(542\) 0 0
\(543\) 3.42548 + 5.93310i 0.147001 + 0.254614i
\(544\) 0 0
\(545\) 3.98138 0.170544
\(546\) 0 0
\(547\) 16.2608 0.695263 0.347631 0.937631i \(-0.386986\pi\)
0.347631 + 0.937631i \(0.386986\pi\)
\(548\) 0 0
\(549\) −18.7489 32.4740i −0.800182 1.38596i
\(550\) 0 0
\(551\) −19.9029 + 11.4909i −0.847892 + 0.489531i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.26855 2.19719i 0.0538470 0.0932657i
\(556\) 0 0
\(557\) 18.5915 10.7338i 0.787747 0.454806i −0.0514219 0.998677i \(-0.516375\pi\)
0.839169 + 0.543871i \(0.183042\pi\)
\(558\) 0 0
\(559\) −20.4541 + 9.61566i −0.865115 + 0.406699i
\(560\) 0 0
\(561\) −3.79912 2.19342i −0.160399 0.0926064i
\(562\) 0 0
\(563\) −11.1821 −0.471268 −0.235634 0.971842i \(-0.575717\pi\)
−0.235634 + 0.971842i \(0.575717\pi\)
\(564\) 0 0
\(565\) 3.91969 + 2.26304i 0.164903 + 0.0952066i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 13.1633 0.551835 0.275917 0.961181i \(-0.411018\pi\)
0.275917 + 0.961181i \(0.411018\pi\)
\(570\) 0 0
\(571\) 8.70996 15.0861i 0.364501 0.631334i −0.624195 0.781268i \(-0.714573\pi\)
0.988696 + 0.149935i \(0.0479064\pi\)
\(572\) 0 0
\(573\) 4.40494 0.184019
\(574\) 0 0
\(575\) 11.9408 20.6821i 0.497965 0.862501i
\(576\) 0 0
\(577\) −7.33543 4.23511i −0.305378 0.176310i 0.339478 0.940614i \(-0.389749\pi\)
−0.644856 + 0.764304i \(0.723083\pi\)
\(578\) 0 0
\(579\) 2.22729 + 1.28592i 0.0925629 + 0.0534412i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 31.0836i 1.28735i
\(584\) 0 0
\(585\) 14.2615 + 1.20292i 0.589641 + 0.0497346i
\(586\) 0 0
\(587\) −18.2459 10.5342i −0.753087 0.434795i 0.0737213 0.997279i \(-0.476512\pi\)
−0.826808 + 0.562484i \(0.809846\pi\)
\(588\) 0 0
\(589\) 12.8085 + 22.1850i 0.527765 + 0.914116i
\(590\) 0 0
\(591\) 0.809681i 0.0333058i
\(592\) 0 0
\(593\) −11.4975 + 6.63806i −0.472144 + 0.272593i −0.717137 0.696932i \(-0.754548\pi\)
0.244993 + 0.969525i \(0.421214\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.621240 + 1.07602i 0.0254257 + 0.0440385i
\(598\) 0 0
\(599\) −2.69542 + 4.66860i −0.110132 + 0.190754i −0.915823 0.401582i \(-0.868461\pi\)
0.805691 + 0.592335i \(0.201794\pi\)
\(600\) 0 0
\(601\) −12.2204 + 21.1663i −0.498480 + 0.863392i −0.999998 0.00175467i \(-0.999441\pi\)
0.501519 + 0.865147i \(0.332775\pi\)
\(602\) 0 0
\(603\) 14.5298i 0.591700i
\(604\) 0 0
\(605\) 4.26030i 0.173206i
\(606\) 0 0
\(607\) −12.9291 + 22.3939i −0.524776 + 0.908939i 0.474808 + 0.880090i \(0.342518\pi\)
−0.999584 + 0.0288492i \(0.990816\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.05446 8.62451i −0.164026 0.348910i
\(612\) 0 0
\(613\) −12.2706 + 7.08441i −0.495603 + 0.286136i −0.726896 0.686748i \(-0.759038\pi\)
0.231293 + 0.972884i \(0.425704\pi\)
\(614\) 0 0
\(615\) 0.922496 + 1.59781i 0.0371986 + 0.0644299i
\(616\) 0 0
\(617\) 39.8763 23.0226i 1.60536 0.926855i 0.614970 0.788550i \(-0.289168\pi\)
0.990390 0.138305i \(-0.0441654\pi\)
\(618\) 0 0
\(619\) −10.4169 6.01422i −0.418692 0.241732i 0.275825 0.961208i \(-0.411049\pi\)
−0.694518 + 0.719476i \(0.744382\pi\)
\(620\) 0 0
\(621\) 12.0422 0.483238
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.402250 0.696717i −0.0160900 0.0278687i
\(626\) 0 0
\(627\) 1.20047 + 2.07927i 0.0479421 + 0.0830381i
\(628\) 0 0
\(629\) 40.4831i 1.61417i
\(630\) 0 0
\(631\) 21.0476 12.1518i 0.837890 0.483756i −0.0186564 0.999826i \(-0.505939\pi\)
0.856546 + 0.516070i \(0.172606\pi\)
\(632\) 0 0
\(633\) 0.628986 0.0249999
\(634\) 0 0
\(635\) 17.0162i 0.675269i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 48.3399i 1.91230i
\(640\) 0 0
\(641\) 17.7655 0.701696 0.350848 0.936432i \(-0.385893\pi\)
0.350848 + 0.936432i \(0.385893\pi\)
\(642\) 0 0
\(643\) 37.3742 21.5780i 1.47389 0.850953i 0.474326 0.880349i \(-0.342692\pi\)
0.999568 + 0.0293964i \(0.00935852\pi\)
\(644\) 0 0
\(645\) 2.28589i 0.0900067i
\(646\) 0 0
\(647\) 5.39974 + 9.35262i 0.212286 + 0.367689i 0.952429 0.304759i \(-0.0985760\pi\)
−0.740144 + 0.672449i \(0.765243\pi\)
\(648\) 0 0
\(649\) −8.82383 15.2833i −0.346366 0.599923i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.06560 −0.119966 −0.0599831 0.998199i \(-0.519105\pi\)
−0.0599831 + 0.998199i \(0.519105\pi\)
\(654\) 0 0
\(655\) 1.47950 + 0.854191i 0.0578089 + 0.0333760i
\(656\) 0 0
\(657\) 39.1346 22.5944i 1.52679 0.881491i
\(658\) 0 0
\(659\) 1.82436 + 3.15988i 0.0710670 + 0.123092i 0.899369 0.437190i \(-0.144026\pi\)
−0.828302 + 0.560282i \(0.810693\pi\)
\(660\) 0 0
\(661\) −23.5777 + 13.6126i −0.917068 + 0.529469i −0.882698 0.469940i \(-0.844276\pi\)
−0.0343693 + 0.999409i \(0.510942\pi\)
\(662\) 0 0
\(663\) −5.10639 + 2.40056i −0.198316 + 0.0932301i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 27.2552 47.2074i 1.05533 1.82788i
\(668\) 0 0
\(669\) 1.30879i 0.0506008i
\(670\) 0 0
\(671\) 35.9034i 1.38604i
\(672\) 0 0
\(673\) 14.1485 24.5059i 0.545384 0.944633i −0.453199 0.891410i \(-0.649717\pi\)
0.998583 0.0532233i \(-0.0169495\pi\)
\(674\) 0 0
\(675\) 2.52027 4.36523i 0.0970051 0.168018i
\(676\) 0 0
\(677\) −14.4181 24.9728i −0.554131 0.959783i −0.997971 0.0636769i \(-0.979717\pi\)
0.443840 0.896106i \(-0.353616\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.54031 3.77605i 0.250625 0.144698i
\(682\) 0 0
\(683\) 40.9045i 1.56517i 0.622546 + 0.782583i \(0.286098\pi\)
−0.622546 + 0.782583i \(0.713902\pi\)
\(684\) 0 0
\(685\) −5.64238 9.77290i −0.215584 0.373403i
\(686\) 0 0
\(687\) −0.0417579 0.0241089i −0.00159316 0.000919813i
\(688\) 0 0
\(689\) 32.8217 + 22.8298i 1.25041 + 0.869746i
\(690\) 0 0
\(691\) 42.2544i 1.60743i −0.595011 0.803717i \(-0.702852\pi\)
0.595011 0.803717i \(-0.297148\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.79717 3.92435i −0.257831 0.148859i
\(696\) 0 0
\(697\) 25.4954 + 14.7198i 0.965706 + 0.557551i
\(698\) 0 0
\(699\) −2.03575 + 3.52603i −0.0769992 + 0.133367i
\(700\) 0 0
\(701\) −30.3734 −1.14719 −0.573594 0.819140i \(-0.694451\pi\)
−0.573594 + 0.819140i \(0.694451\pi\)
\(702\) 0 0
\(703\) −11.0783 + 19.1881i −0.417825 + 0.723694i
\(704\) 0 0
\(705\) 0.963850 0.0363007
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 20.2907 + 11.7148i 0.762033 + 0.439960i 0.830025 0.557726i \(-0.188326\pi\)
−0.0679919 + 0.997686i \(0.521659\pi\)
\(710\) 0 0
\(711\) −43.2301 −1.62125
\(712\) 0 0
\(713\) −52.6203 30.3803i −1.97064 1.13775i
\(714\) 0 0
\(715\) −11.2498 7.82503i −0.420719 0.292639i
\(716\) 0 0
\(717\) −2.99776 + 1.73076i −0.111953 + 0.0646363i
\(718\) 0 0
\(719\) 3.51491 6.08800i 0.131084 0.227044i −0.793011 0.609208i \(-0.791488\pi\)
0.924095 + 0.382164i \(0.124821\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −2.29001 + 1.32214i −0.0851662 + 0.0491708i
\(724\) 0 0
\(725\) −11.4083 19.7597i −0.423692 0.733857i
\(726\) 0 0
\(727\) 20.6810 0.767015 0.383507 0.923538i \(-0.374716\pi\)
0.383507 + 0.923538i \(0.374716\pi\)
\(728\) 0 0
\(729\) −23.1720 −0.858222
\(730\) 0 0
\(731\) −18.2373 31.5880i −0.674531 1.16832i
\(732\) 0 0
\(733\) 33.7780 19.5018i 1.24762 0.720314i 0.276986 0.960874i \(-0.410664\pi\)
0.970634 + 0.240560i \(0.0773311\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.95602 12.0482i 0.256228 0.443800i
\(738\) 0 0
\(739\) −24.8910 + 14.3708i −0.915629 + 0.528639i −0.882238 0.470803i \(-0.843964\pi\)
−0.0333913 + 0.999442i \(0.510631\pi\)
\(740\) 0 0
\(741\) 3.07724 + 0.259557i 0.113045 + 0.00953505i
\(742\) 0 0
\(743\) −5.48059 3.16422i −0.201063 0.116084i 0.396088 0.918213i \(-0.370367\pi\)
−0.597151 + 0.802129i \(0.703701\pi\)
\(744\) 0 0
\(745\) −19.2583 −0.705569
\(746\) 0 0
\(747\) 24.8297 + 14.3355i 0.908473 + 0.524507i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 31.4405 1.14728 0.573641 0.819107i \(-0.305531\pi\)
0.573641 + 0.819107i \(0.305531\pi\)
\(752\) 0 0
\(753\) 2.32940 4.03464i 0.0848880 0.147030i
\(754\) 0 0
\(755\) −15.1190 −0.550237
\(756\) 0 0
\(757\) −12.7212 + 22.0337i −0.462358 + 0.800828i −0.999078 0.0429328i \(-0.986330\pi\)
0.536720 + 0.843760i \(0.319663\pi\)
\(758\) 0 0
\(759\) −4.93180 2.84737i −0.179013 0.103353i
\(760\) 0 0
\(761\) −17.8492 10.3053i −0.647034 0.373565i 0.140285 0.990111i \(-0.455198\pi\)
−0.787319 + 0.616546i \(0.788531\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 23.0971i 0.835077i
\(766\) 0 0
\(767\) −22.6187 1.90783i −0.816714 0.0688876i
\(768\) 0 0
\(769\) −7.95173 4.59093i −0.286747 0.165553i 0.349727 0.936852i \(-0.386274\pi\)
−0.636474 + 0.771298i \(0.719608\pi\)
\(770\) 0 0
\(771\) 1.43971 + 2.49365i 0.0518499 + 0.0898066i
\(772\) 0 0
\(773\) 8.49555i 0.305564i 0.988260 + 0.152782i \(0.0488232\pi\)
−0.988260 + 0.152782i \(0.951177\pi\)
\(774\) 0 0
\(775\) −22.0254 + 12.7163i −0.791174 + 0.456785i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.05618 13.9537i −0.288642 0.499943i
\(780\) 0 0
\(781\) 23.1423 40.0836i 0.828096 1.43430i
\(782\) 0 0
\(783\) 5.75259 9.96377i 0.205581 0.356076i
\(784\) 0 0
\(785\) 5.48780i 0.195868i
\(786\) 0 0
\(787\) 1.96835i 0.0701640i −0.999384 0.0350820i \(-0.988831\pi\)
0.999384 0.0350820i \(-0.0111692\pi\)
\(788\) 0 0
\(789\) 1.89204 3.27711i 0.0673585 0.116668i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 37.9110 + 26.3698i 1.34626 + 0.936418i
\(794\) 0 0
\(795\) −3.50186 + 2.02180i −0.124198 + 0.0717058i
\(796\) 0 0
\(797\) 19.2449 + 33.3332i 0.681690 + 1.18072i 0.974465 + 0.224540i \(0.0720879\pi\)
−0.292775 + 0.956181i \(0.594579\pi\)
\(798\) 0 0
\(799\) 13.3191 7.68981i 0.471197 0.272046i
\(800\) 0 0
\(801\) −21.2170 12.2496i −0.749665 0.432820i
\(802\) 0 0
\(803\) −43.2674 −1.52687
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.0731583 0.126714i −0.00257529 0.00446054i
\(808\) 0 0
\(809\) −0.899878 1.55863i −0.0316380 0.0547987i 0.849773 0.527149i \(-0.176739\pi\)
−0.881411 + 0.472350i \(0.843406\pi\)
\(810\) 0 0
\(811\) 49.9235i 1.75305i −0.481357 0.876525i \(-0.659856\pi\)
0.481357 0.876525i \(-0.340144\pi\)
\(812\) 0 0
\(813\) −0.172644 + 0.0996759i −0.00605488 + 0.00349579i
\(814\) 0 0
\(815\) 7.14970 0.250443
\(816\) 0 0
\(817\) 19.9627i 0.698406i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 4.21824i 0.147217i −0.997287 0.0736087i \(-0.976548\pi\)
0.997287 0.0736087i \(-0.0234516\pi\)
\(822\) 0 0
\(823\) −14.4982 −0.505377 −0.252688 0.967548i \(-0.581315\pi\)
−0.252688 + 0.967548i \(0.581315\pi\)
\(824\) 0 0
\(825\) −2.06431 + 1.19183i −0.0718701 + 0.0414942i
\(826\) 0 0
\(827\) 26.2618i 0.913213i 0.889669 + 0.456607i \(0.150935\pi\)
−0.889669 + 0.456607i \(0.849065\pi\)
\(828\) 0 0
\(829\) 27.5790 + 47.7682i 0.957858 + 1.65906i 0.727688 + 0.685909i \(0.240595\pi\)
0.230170 + 0.973150i \(0.426072\pi\)
\(830\) 0 0
\(831\) −1.90062 3.29198i −0.0659319 0.114197i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 7.25355 0.251019
\(836\) 0 0
\(837\) −11.1062 6.41218i −0.383887 0.221637i
\(838\) 0 0
\(839\) 6.07974 3.51014i 0.209896 0.121184i −0.391367 0.920235i \(-0.627998\pi\)
0.601263 + 0.799051i \(0.294664\pi\)
\(840\) 0 0
\(841\) −11.5397 19.9874i −0.397922 0.689221i
\(842\) 0 0
\(843\) 6.01053 3.47018i 0.207014 0.119519i
\(844\) 0 0
\(845\) −16.5252 + 6.13165i −0.568483 + 0.210935i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.66875 + 6.35446i −0.125911 + 0.218085i
\(850\) 0 0
\(851\) 52.5528i 1.80149i
\(852\) 0 0
\(853\) 57.6508i 1.97393i 0.160945 + 0.986963i \(0.448546\pi\)
−0.160945 + 0.986963i \(0.551454\pi\)
\(854\) 0 0
\(855\) 6.32056 10.9475i 0.216159 0.374398i
\(856\) 0 0
\(857\) −1.25327 + 2.17073i −0.0428109 + 0.0741506i −0.886637 0.462466i \(-0.846965\pi\)
0.843826 + 0.536617i \(0.180298\pi\)
\(858\) 0 0
\(859\) 8.56526 + 14.8355i 0.292243 + 0.506180i 0.974340 0.225082i \(-0.0722650\pi\)
−0.682097 + 0.731262i \(0.738932\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −48.1881 + 27.8214i −1.64034 + 0.947053i −0.659632 + 0.751589i \(0.729288\pi\)
−0.980711 + 0.195464i \(0.937379\pi\)
\(864\) 0 0
\(865\) 13.2102i 0.449159i
\(866\) 0 0
\(867\) −2.26687 3.92634i −0.0769870 0.133345i
\(868\) 0 0
\(869\) 35.8465 + 20.6960i 1.21601 + 0.702064i
\(870\) 0 0
\(871\) −7.61292 16.1939i −0.257954 0.548710i
\(872\) 0 0
\(873\) 35.7275i 1.20919i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −34.7751 20.0774i −1.17427 0.677967i −0.219590 0.975592i \(-0.570472\pi\)
−0.954683 + 0.297626i \(0.903805\pi\)
\(878\) 0 0
\(879\) −0.403456 0.232936i −0.0136082 0.00785672i
\(880\) 0 0
\(881\) −25.3837 + 43.9658i −0.855197 + 1.48124i 0.0212650 + 0.999774i \(0.493231\pi\)
−0.876462 + 0.481471i \(0.840103\pi\)
\(882\) 0 0
\(883\) −46.3312 −1.55917 −0.779585 0.626297i \(-0.784570\pi\)
−0.779585 + 0.626297i \(0.784570\pi\)
\(884\) 0 0
\(885\) 1.14787 1.98817i 0.0385853 0.0668317i
\(886\) 0 0
\(887\) 10.2550 0.344331 0.172165 0.985068i \(-0.444924\pi\)
0.172165 + 0.985068i \(0.444924\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 20.2809 + 11.7092i 0.679436 + 0.392273i
\(892\) 0 0
\(893\) −8.41732 −0.281675
\(894\) 0 0
\(895\) 13.3921 + 7.73191i 0.447647 + 0.258449i
\(896\) 0 0
\(897\) −6.62882 + 3.11627i −0.221330 + 0.104049i
\(898\) 0 0
\(899\) −50.2736 + 29.0255i −1.67672 + 0.968053i
\(900\) 0 0
\(901\) −32.2607 + 55.8772i −1.07476 + 1.86154i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −29.9101 + 17.2686i −0.994244 + 0.574027i
\(906\) 0 0
\(907\) 26.1472 + 45.2883i 0.868205 + 1.50377i 0.863830 + 0.503784i \(0.168059\pi\)
0.00437495 + 0.999990i \(0.498607\pi\)
\(908\) 0 0
\(909\) 7.09330 0.235270
\(910\) 0 0
\(911\) 50.9172 1.68696 0.843481 0.537159i \(-0.180502\pi\)
0.843481 + 0.537159i \(0.180502\pi\)
\(912\) 0 0
\(913\) −13.7259 23.7740i −0.454262 0.786805i
\(914\) 0 0
\(915\) −4.04485 + 2.33530i −0.133719 + 0.0772025i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −11.4323 + 19.8013i −0.377117 + 0.653186i −0.990641 0.136490i \(-0.956418\pi\)
0.613524 + 0.789676i \(0.289751\pi\)
\(920\) 0 0
\(921\) −4.99299 + 2.88270i −0.164525 + 0.0949884i
\(922\) 0 0
\(923\) −25.3278 53.8763i −0.833674 1.77336i
\(924\) 0 0
\(925\) −19.0501 10.9986i −0.626363 0.361631i
\(926\) 0 0
\(927\) 42.4246 1.39341
\(928\) 0 0
\(929\) 28.8090 + 16.6329i 0.945193 + 0.545708i 0.891584 0.452854i \(-0.149594\pi\)
0.0536089 + 0.998562i \(0.482928\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 7.33498 0.240137
\(934\) 0 0
\(935\) 11.0575 19.1522i 0.361620 0.626344i
\(936\) 0 0
\(937\) 51.2179 1.67322 0.836608 0.547802i \(-0.184535\pi\)
0.836608 + 0.547802i \(0.184535\pi\)
\(938\) 0 0
\(939\) 0.979286 1.69617i 0.0319578 0.0553525i
\(940\) 0 0
\(941\) 8.91293 + 5.14588i 0.290553 + 0.167751i 0.638191 0.769878i \(-0.279683\pi\)
−0.347638 + 0.937629i \(0.613016\pi\)
\(942\) 0 0
\(943\) 33.0966 + 19.1083i 1.07777 + 0.622253i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.4887i 1.15323i −0.817017 0.576614i \(-0.804374\pi\)
0.817017 0.576614i \(-0.195626\pi\)
\(948\) 0 0
\(949\) −31.7784 + 45.6868i −1.03157 + 1.48306i
\(950\) 0 0
\(951\) 0.593565 + 0.342695i 0.0192477 + 0.0111126i
\(952\) 0 0
\(953\) 16.6676 + 28.8691i 0.539916 + 0.935163i 0.998908 + 0.0467220i \(0.0148775\pi\)
−0.458992 + 0.888441i \(0.651789\pi\)
\(954\) 0 0
\(955\) 22.2062i 0.718577i
\(956\) 0 0
\(957\) −4.71185 + 2.72039i −0.152313 + 0.0879377i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 16.8535 + 29.1912i 0.543662 + 0.941650i
\(962\) 0 0
\(963\) 9.49647 16.4484i 0.306020 0.530041i
\(964\) 0 0
\(965\) −6.48263 + 11.2282i −0.208683 + 0.361450i
\(966\) 0 0
\(967\) 29.7131i 0.955509i 0.878494 + 0.477754i \(0.158549\pi\)
−0.878494 + 0.477754i \(0.841451\pi\)
\(968\) 0 0
\(969\) 4.98372i 0.160100i
\(970\) 0 0
\(971\) −4.41851 + 7.65308i −0.141797 + 0.245599i −0.928173 0.372148i \(-0.878621\pi\)
0.786377 + 0.617747i \(0.211955\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −0.257689 + 3.05510i −0.00825266 + 0.0978414i
\(976\) 0 0
\(977\) 12.8437 7.41533i 0.410907 0.237237i −0.280272 0.959921i \(-0.590425\pi\)
0.691180 + 0.722683i \(0.257091\pi\)
\(978\) 0 0
\(979\) 11.7288 + 20.3149i 0.374854 + 0.649266i
\(980\) 0 0
\(981\) 7.44516 4.29846i 0.237706 0.137239i
\(982\) 0 0
\(983\) 17.6141 + 10.1695i 0.561803 + 0.324357i 0.753869 0.657025i \(-0.228185\pi\)
−0.192066 + 0.981382i \(0.561519\pi\)
\(984\) 0 0
\(985\) 4.08178 0.130056
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −23.6746 41.0057i −0.752809 1.30390i
\(990\) 0 0
\(991\) 25.4453 + 44.0726i 0.808297 + 1.40001i 0.914042 + 0.405619i \(0.132944\pi\)
−0.105745 + 0.994393i \(0.533723\pi\)
\(992\) 0 0
\(993\) 0.0526244i 0.00166999i
\(994\) 0 0
\(995\) −5.42445 + 3.13181i −0.171967 + 0.0992849i
\(996\) 0 0
\(997\) 7.39394 0.234168 0.117084 0.993122i \(-0.462645\pi\)
0.117084 + 0.993122i \(0.462645\pi\)
\(998\) 0 0
\(999\) 11.0920i 0.350935i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.bb.c.1733.4 16
7.2 even 3 2548.2.bq.c.1941.5 16
7.3 odd 6 364.2.u.a.225.5 16
7.4 even 3 2548.2.u.c.589.4 16
7.5 odd 6 2548.2.bq.e.1941.4 16
7.6 odd 2 2548.2.bb.d.1733.5 16
13.10 even 6 2548.2.bq.c.361.5 16
21.17 even 6 3276.2.cf.c.2773.5 16
28.3 even 6 1456.2.cc.f.225.4 16
91.10 odd 6 364.2.u.a.309.5 yes 16
91.17 odd 6 4732.2.g.k.337.8 16
91.23 even 6 inner 2548.2.bb.c.569.4 16
91.45 even 12 4732.2.a.s.1.4 8
91.59 even 12 4732.2.a.t.1.4 8
91.62 odd 6 2548.2.bq.e.361.4 16
91.75 odd 6 2548.2.bb.d.569.5 16
91.87 odd 6 4732.2.g.k.337.7 16
91.88 even 6 2548.2.u.c.1765.4 16
273.101 even 6 3276.2.cf.c.1765.4 16
364.283 even 6 1456.2.cc.f.673.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.5 16 7.3 odd 6
364.2.u.a.309.5 yes 16 91.10 odd 6
1456.2.cc.f.225.4 16 28.3 even 6
1456.2.cc.f.673.4 16 364.283 even 6
2548.2.u.c.589.4 16 7.4 even 3
2548.2.u.c.1765.4 16 91.88 even 6
2548.2.bb.c.569.4 16 91.23 even 6 inner
2548.2.bb.c.1733.4 16 1.1 even 1 trivial
2548.2.bb.d.569.5 16 91.75 odd 6
2548.2.bb.d.1733.5 16 7.6 odd 2
2548.2.bq.c.361.5 16 13.10 even 6
2548.2.bq.c.1941.5 16 7.2 even 3
2548.2.bq.e.361.4 16 91.62 odd 6
2548.2.bq.e.1941.4 16 7.5 odd 6
3276.2.cf.c.1765.4 16 273.101 even 6
3276.2.cf.c.2773.5 16 21.17 even 6
4732.2.a.s.1.4 8 91.45 even 12
4732.2.a.t.1.4 8 91.59 even 12
4732.2.g.k.337.7 16 91.87 odd 6
4732.2.g.k.337.8 16 91.17 odd 6