Properties

Label 2548.2.bq.c.1941.5
Level $2548$
Weight $2$
Character 2548.1941
Analytic conductor $20.346$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(361,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bq (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1941.5
Root \(0.268953i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1941
Dual form 2548.2.bq.c.361.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.268953 q^{3} +(-1.17420 - 0.677925i) q^{5} -2.92766 q^{9} -2.80318i q^{11} +(-0.303042 + 3.59279i) q^{13} +(-0.315805 - 0.182330i) q^{15} +(2.90934 - 5.03912i) q^{17} -3.18458i q^{19} +(3.77674 + 6.54150i) q^{23} +(-1.58083 - 2.73809i) q^{25} -1.59426 q^{27} +(-3.60830 + 6.24977i) q^{29} +(-6.96637 + 4.02203i) q^{31} -0.753925i q^{33} +(6.02532 - 3.47872i) q^{37} +(-0.0815041 + 0.966292i) q^{39} +(-4.38164 - 2.52974i) q^{41} +(3.13427 + 5.42872i) q^{43} +(3.43767 + 1.98474i) q^{45} +(2.28903 + 1.32157i) q^{47} +(0.782475 - 1.35529i) q^{51} +(5.54434 + 9.60308i) q^{53} +(-1.90035 + 3.29150i) q^{55} -0.856503i q^{57} +(-5.45213 - 3.14779i) q^{59} -12.8081 q^{61} +(2.79148 - 4.01322i) q^{65} -4.96294i q^{67} +(1.01576 + 1.75936i) q^{69} +(-14.2993 + 8.25572i) q^{71} +(-13.3672 + 7.71755i) q^{73} +(-0.425170 - 0.736416i) q^{75} +(-7.38303 + 12.7878i) q^{79} +8.35421 q^{81} +9.79310i q^{83} +(-6.83230 + 3.94463i) q^{85} +(-0.970464 + 1.68089i) q^{87} +(-7.24707 + 4.18410i) q^{89} +(-1.87363 + 1.08174i) q^{93} +(-2.15891 + 3.73934i) q^{95} +(10.5685 - 6.10170i) q^{97} +8.20678i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 28 q^{9} - 10 q^{13} + 6 q^{15} - 2 q^{17} + 22 q^{25} + 12 q^{27} - 22 q^{29} + 30 q^{31} - 12 q^{37} - 6 q^{39} - 36 q^{41} + 6 q^{43} - 30 q^{45} - 18 q^{47} + 2 q^{51} - 4 q^{53} - 2 q^{55} - 18 q^{59}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.268953 0.155280 0.0776400 0.996981i \(-0.475262\pi\)
0.0776400 + 0.996981i \(0.475262\pi\)
\(4\) 0 0
\(5\) −1.17420 0.677925i −0.525119 0.303177i 0.213908 0.976854i \(-0.431381\pi\)
−0.739026 + 0.673676i \(0.764714\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −2.92766 −0.975888
\(10\) 0 0
\(11\) 2.80318i 0.845192i −0.906318 0.422596i \(-0.861119\pi\)
0.906318 0.422596i \(-0.138881\pi\)
\(12\) 0 0
\(13\) −0.303042 + 3.59279i −0.0840488 + 0.996462i
\(14\) 0 0
\(15\) −0.315805 0.182330i −0.0815405 0.0470774i
\(16\) 0 0
\(17\) 2.90934 5.03912i 0.705618 1.22217i −0.260850 0.965379i \(-0.584003\pi\)
0.966468 0.256787i \(-0.0826640\pi\)
\(18\) 0 0
\(19\) 3.18458i 0.730594i −0.930891 0.365297i \(-0.880968\pi\)
0.930891 0.365297i \(-0.119032\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.77674 + 6.54150i 0.787504 + 1.36400i 0.927492 + 0.373843i \(0.121960\pi\)
−0.139988 + 0.990153i \(0.544706\pi\)
\(24\) 0 0
\(25\) −1.58083 2.73809i −0.316167 0.547617i
\(26\) 0 0
\(27\) −1.59426 −0.306816
\(28\) 0 0
\(29\) −3.60830 + 6.24977i −0.670045 + 1.16055i 0.307845 + 0.951436i \(0.400392\pi\)
−0.977891 + 0.209116i \(0.932941\pi\)
\(30\) 0 0
\(31\) −6.96637 + 4.02203i −1.25120 + 0.722379i −0.971347 0.237665i \(-0.923618\pi\)
−0.279849 + 0.960044i \(0.590285\pi\)
\(32\) 0 0
\(33\) 0.753925i 0.131241i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 6.02532 3.47872i 0.990557 0.571898i 0.0851160 0.996371i \(-0.472874\pi\)
0.905441 + 0.424473i \(0.139541\pi\)
\(38\) 0 0
\(39\) −0.0815041 + 0.966292i −0.0130511 + 0.154731i
\(40\) 0 0
\(41\) −4.38164 2.52974i −0.684298 0.395079i 0.117175 0.993111i \(-0.462616\pi\)
−0.801472 + 0.598032i \(0.795950\pi\)
\(42\) 0 0
\(43\) 3.13427 + 5.42872i 0.477972 + 0.827872i 0.999681 0.0252518i \(-0.00803875\pi\)
−0.521709 + 0.853123i \(0.674705\pi\)
\(44\) 0 0
\(45\) 3.43767 + 1.98474i 0.512457 + 0.295867i
\(46\) 0 0
\(47\) 2.28903 + 1.32157i 0.333890 + 0.192771i 0.657567 0.753396i \(-0.271586\pi\)
−0.323677 + 0.946168i \(0.604919\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.782475 1.35529i 0.109568 0.189778i
\(52\) 0 0
\(53\) 5.54434 + 9.60308i 0.761574 + 1.31908i 0.942039 + 0.335503i \(0.108906\pi\)
−0.180466 + 0.983581i \(0.557760\pi\)
\(54\) 0 0
\(55\) −1.90035 + 3.29150i −0.256243 + 0.443826i
\(56\) 0 0
\(57\) 0.856503i 0.113447i
\(58\) 0 0
\(59\) −5.45213 3.14779i −0.709807 0.409807i 0.101183 0.994868i \(-0.467737\pi\)
−0.810989 + 0.585061i \(0.801071\pi\)
\(60\) 0 0
\(61\) −12.8081 −1.63991 −0.819953 0.572431i \(-0.806001\pi\)
−0.819953 + 0.572431i \(0.806001\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.79148 4.01322i 0.346240 0.497779i
\(66\) 0 0
\(67\) 4.96294i 0.606319i −0.952940 0.303160i \(-0.901958\pi\)
0.952940 0.303160i \(-0.0980416\pi\)
\(68\) 0 0
\(69\) 1.01576 + 1.75936i 0.122284 + 0.211801i
\(70\) 0 0
\(71\) −14.2993 + 8.25572i −1.69702 + 0.979773i −0.748453 + 0.663188i \(0.769203\pi\)
−0.948564 + 0.316586i \(0.897464\pi\)
\(72\) 0 0
\(73\) −13.3672 + 7.71755i −1.56451 + 0.903271i −0.567720 + 0.823222i \(0.692174\pi\)
−0.996791 + 0.0800494i \(0.974492\pi\)
\(74\) 0 0
\(75\) −0.425170 0.736416i −0.0490944 0.0850340i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.38303 + 12.7878i −0.830656 + 1.43874i 0.0668627 + 0.997762i \(0.478701\pi\)
−0.897519 + 0.440976i \(0.854632\pi\)
\(80\) 0 0
\(81\) 8.35421 0.928246
\(82\) 0 0
\(83\) 9.79310i 1.07493i 0.843285 + 0.537466i \(0.180618\pi\)
−0.843285 + 0.537466i \(0.819382\pi\)
\(84\) 0 0
\(85\) −6.83230 + 3.94463i −0.741067 + 0.427855i
\(86\) 0 0
\(87\) −0.970464 + 1.68089i −0.104045 + 0.180211i
\(88\) 0 0
\(89\) −7.24707 + 4.18410i −0.768188 + 0.443513i −0.832228 0.554434i \(-0.812935\pi\)
0.0640399 + 0.997947i \(0.479602\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.87363 + 1.08174i −0.194286 + 0.112171i
\(94\) 0 0
\(95\) −2.15891 + 3.73934i −0.221499 + 0.383648i
\(96\) 0 0
\(97\) 10.5685 6.10170i 1.07306 0.619534i 0.144047 0.989571i \(-0.453988\pi\)
0.929017 + 0.370037i \(0.120655\pi\)
\(98\) 0 0
\(99\) 8.20678i 0.824813i
\(100\) 0 0
\(101\) −2.42285 −0.241083 −0.120541 0.992708i \(-0.538463\pi\)
−0.120541 + 0.992708i \(0.538463\pi\)
\(102\) 0 0
\(103\) 7.24547 12.5495i 0.713917 1.23654i −0.249458 0.968386i \(-0.580253\pi\)
0.963376 0.268155i \(-0.0864141\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.24370 5.61826i −0.313581 0.543138i 0.665554 0.746350i \(-0.268195\pi\)
−0.979135 + 0.203212i \(0.934862\pi\)
\(108\) 0 0
\(109\) −2.54304 + 1.46822i −0.243579 + 0.140630i −0.616820 0.787104i \(-0.711580\pi\)
0.373242 + 0.927734i \(0.378246\pi\)
\(110\) 0 0
\(111\) 1.62053 0.935612i 0.153814 0.0888044i
\(112\) 0 0
\(113\) 1.66909 + 2.89095i 0.157015 + 0.271957i 0.933791 0.357819i \(-0.116480\pi\)
−0.776776 + 0.629777i \(0.783146\pi\)
\(114\) 0 0
\(115\) 10.2414i 0.955013i
\(116\) 0 0
\(117\) 0.887206 10.5185i 0.0820222 0.972435i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.14216 0.285651
\(122\) 0 0
\(123\) −1.17846 0.680382i −0.106258 0.0613480i
\(124\) 0 0
\(125\) 11.0660i 0.989773i
\(126\) 0 0
\(127\) −6.27512 + 10.8688i −0.556827 + 0.964452i 0.440932 + 0.897540i \(0.354648\pi\)
−0.997759 + 0.0669115i \(0.978685\pi\)
\(128\) 0 0
\(129\) 0.842971 + 1.46007i 0.0742195 + 0.128552i
\(130\) 0 0
\(131\) 0.630004 1.09120i 0.0550437 0.0953385i −0.837191 0.546911i \(-0.815804\pi\)
0.892234 + 0.451573i \(0.149137\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.87199 + 1.08079i 0.161115 + 0.0930197i
\(136\) 0 0
\(137\) 7.20794 + 4.16151i 0.615816 + 0.355542i 0.775238 0.631669i \(-0.217630\pi\)
−0.159422 + 0.987211i \(0.550963\pi\)
\(138\) 0 0
\(139\) −2.89438 5.01322i −0.245498 0.425216i 0.716773 0.697306i \(-0.245618\pi\)
−0.962272 + 0.272091i \(0.912285\pi\)
\(140\) 0 0
\(141\) 0.615642 + 0.355441i 0.0518464 + 0.0299335i
\(142\) 0 0
\(143\) 10.0713 + 0.849483i 0.842201 + 0.0710374i
\(144\) 0 0
\(145\) 8.47375 4.89232i 0.703707 0.406285i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.2039i 1.16362i 0.813323 + 0.581812i \(0.197656\pi\)
−0.813323 + 0.581812i \(0.802344\pi\)
\(150\) 0 0
\(151\) 9.65700 5.57547i 0.785875 0.453725i −0.0526332 0.998614i \(-0.516761\pi\)
0.838508 + 0.544889i \(0.183428\pi\)
\(152\) 0 0
\(153\) −8.51757 + 14.7529i −0.688605 + 1.19270i
\(154\) 0 0
\(155\) 10.9066 0.876036
\(156\) 0 0
\(157\) 2.02375 + 3.50523i 0.161513 + 0.279748i 0.935411 0.353561i \(-0.115029\pi\)
−0.773899 + 0.633309i \(0.781696\pi\)
\(158\) 0 0
\(159\) 1.49117 + 2.58278i 0.118257 + 0.204827i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 5.27322i 0.413031i −0.978443 0.206515i \(-0.933788\pi\)
0.978443 0.206515i \(-0.0662124\pi\)
\(164\) 0 0
\(165\) −0.511105 + 0.885259i −0.0397894 + 0.0689173i
\(166\) 0 0
\(167\) 4.63307 + 2.67491i 0.358518 + 0.206990i 0.668430 0.743775i \(-0.266966\pi\)
−0.309912 + 0.950765i \(0.600300\pi\)
\(168\) 0 0
\(169\) −12.8163 2.17754i −0.985872 0.167503i
\(170\) 0 0
\(171\) 9.32339i 0.712978i
\(172\) 0 0
\(173\) −9.74309 −0.740754 −0.370377 0.928882i \(-0.620771\pi\)
−0.370377 + 0.928882i \(0.620771\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.46637 0.846607i −0.110219 0.0636349i
\(178\) 0 0
\(179\) −11.4053 −0.852469 −0.426234 0.904613i \(-0.640160\pi\)
−0.426234 + 0.904613i \(0.640160\pi\)
\(180\) 0 0
\(181\) −25.4727 −1.89337 −0.946685 0.322160i \(-0.895591\pi\)
−0.946685 + 0.322160i \(0.895591\pi\)
\(182\) 0 0
\(183\) −3.44477 −0.254645
\(184\) 0 0
\(185\) −9.43325 −0.693546
\(186\) 0 0
\(187\) −14.1256 8.15541i −1.03297 0.596383i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 16.3781 1.18508 0.592539 0.805542i \(-0.298126\pi\)
0.592539 + 0.805542i \(0.298126\pi\)
\(192\) 0 0
\(193\) 9.56245i 0.688320i −0.938911 0.344160i \(-0.888164\pi\)
0.938911 0.344160i \(-0.111836\pi\)
\(194\) 0 0
\(195\) 0.750776 1.07937i 0.0537642 0.0772951i
\(196\) 0 0
\(197\) 2.60716 + 1.50525i 0.185753 + 0.107244i 0.589993 0.807409i \(-0.299131\pi\)
−0.404240 + 0.914653i \(0.632464\pi\)
\(198\) 0 0
\(199\) 2.30985 4.00077i 0.163741 0.283607i −0.772467 0.635055i \(-0.780977\pi\)
0.936207 + 0.351448i \(0.114311\pi\)
\(200\) 0 0
\(201\) 1.33480i 0.0941493i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.42995 + 5.94085i 0.239558 + 0.414927i
\(206\) 0 0
\(207\) −11.0570 19.1513i −0.768516 1.33111i
\(208\) 0 0
\(209\) −8.92697 −0.617492
\(210\) 0 0
\(211\) −1.16932 + 2.02533i −0.0804995 + 0.139429i −0.903465 0.428663i \(-0.858985\pi\)
0.822965 + 0.568092i \(0.192318\pi\)
\(212\) 0 0
\(213\) −3.84584 + 2.22040i −0.263513 + 0.152139i
\(214\) 0 0
\(215\) 8.49921i 0.579641i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −3.59515 + 2.07566i −0.242937 + 0.140260i
\(220\) 0 0
\(221\) 17.2229 + 11.9797i 1.15854 + 0.805843i
\(222\) 0 0
\(223\) 4.21429 + 2.43312i 0.282210 + 0.162934i 0.634423 0.772986i \(-0.281238\pi\)
−0.352214 + 0.935920i \(0.614571\pi\)
\(224\) 0 0
\(225\) 4.62815 + 8.01620i 0.308544 + 0.534413i
\(226\) 0 0
\(227\) −24.3177 14.0398i −1.61402 0.931855i −0.988426 0.151706i \(-0.951523\pi\)
−0.625594 0.780149i \(-0.715143\pi\)
\(228\) 0 0
\(229\) −0.155261 0.0896399i −0.0102599 0.00592357i 0.494861 0.868972i \(-0.335219\pi\)
−0.505121 + 0.863048i \(0.668552\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.56918 + 13.1102i −0.495873 + 0.858878i −0.999989 0.00475858i \(-0.998485\pi\)
0.504115 + 0.863636i \(0.331819\pi\)
\(234\) 0 0
\(235\) −1.79186 3.10358i −0.116888 0.202456i
\(236\) 0 0
\(237\) −1.98569 + 3.43931i −0.128984 + 0.223407i
\(238\) 0 0
\(239\) 12.8703i 0.832512i −0.909247 0.416256i \(-0.863342\pi\)
0.909247 0.416256i \(-0.136658\pi\)
\(240\) 0 0
\(241\) 8.51452 + 4.91586i 0.548469 + 0.316659i 0.748504 0.663130i \(-0.230772\pi\)
−0.200035 + 0.979789i \(0.564106\pi\)
\(242\) 0 0
\(243\) 7.02968 0.450954
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 11.4416 + 0.965064i 0.728008 + 0.0614055i
\(248\) 0 0
\(249\) 2.63388i 0.166916i
\(250\) 0 0
\(251\) 8.66099 + 15.0013i 0.546677 + 0.946872i 0.998499 + 0.0547641i \(0.0174407\pi\)
−0.451823 + 0.892108i \(0.649226\pi\)
\(252\) 0 0
\(253\) 18.3370 10.5869i 1.15284 0.665592i
\(254\) 0 0
\(255\) −1.83757 + 1.06092i −0.115073 + 0.0664374i
\(256\) 0 0
\(257\) 5.35302 + 9.27170i 0.333912 + 0.578353i 0.983275 0.182126i \(-0.0582978\pi\)
−0.649363 + 0.760478i \(0.724964\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 10.5639 18.2972i 0.653889 1.13257i
\(262\) 0 0
\(263\) −14.0697 −0.867574 −0.433787 0.901015i \(-0.642823\pi\)
−0.433787 + 0.901015i \(0.642823\pi\)
\(264\) 0 0
\(265\) 15.0346i 0.923567i
\(266\) 0 0
\(267\) −1.94912 + 1.12533i −0.119284 + 0.0688688i
\(268\) 0 0
\(269\) −0.272011 + 0.471138i −0.0165848 + 0.0287258i −0.874199 0.485568i \(-0.838613\pi\)
0.857614 + 0.514294i \(0.171946\pi\)
\(270\) 0 0
\(271\) −0.641910 + 0.370607i −0.0389933 + 0.0225128i −0.519370 0.854550i \(-0.673833\pi\)
0.480377 + 0.877062i \(0.340500\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.67536 + 4.43137i −0.462842 + 0.267222i
\(276\) 0 0
\(277\) −7.06675 + 12.2400i −0.424600 + 0.735429i −0.996383 0.0849763i \(-0.972919\pi\)
0.571783 + 0.820405i \(0.306252\pi\)
\(278\) 0 0
\(279\) 20.3952 11.7752i 1.22103 0.704961i
\(280\) 0 0
\(281\) 25.8051i 1.53940i 0.638404 + 0.769702i \(0.279595\pi\)
−0.638404 + 0.769702i \(0.720405\pi\)
\(282\) 0 0
\(283\) 27.2817 1.62173 0.810865 0.585233i \(-0.198997\pi\)
0.810865 + 0.585233i \(0.198997\pi\)
\(284\) 0 0
\(285\) −0.580645 + 1.00571i −0.0343944 + 0.0595729i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.42851 14.5986i −0.495795 0.858742i
\(290\) 0 0
\(291\) 2.84242 1.64107i 0.166625 0.0962013i
\(292\) 0 0
\(293\) 1.50010 0.866083i 0.0876367 0.0505971i −0.455541 0.890215i \(-0.650554\pi\)
0.543178 + 0.839618i \(0.317221\pi\)
\(294\) 0 0
\(295\) 4.26793 + 7.39227i 0.248489 + 0.430395i
\(296\) 0 0
\(297\) 4.46901i 0.259318i
\(298\) 0 0
\(299\) −24.6468 + 11.5867i −1.42536 + 0.670075i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −0.651633 −0.0374354
\(304\) 0 0
\(305\) 15.0393 + 8.68292i 0.861145 + 0.497182i
\(306\) 0 0
\(307\) 21.4365i 1.22345i −0.791072 0.611723i \(-0.790477\pi\)
0.791072 0.611723i \(-0.209523\pi\)
\(308\) 0 0
\(309\) 1.94869 3.37523i 0.110857 0.192010i
\(310\) 0 0
\(311\) −13.6362 23.6186i −0.773237 1.33929i −0.935780 0.352584i \(-0.885303\pi\)
0.162543 0.986701i \(-0.448030\pi\)
\(312\) 0 0
\(313\) 3.64110 6.30658i 0.205807 0.356469i −0.744582 0.667531i \(-0.767351\pi\)
0.950390 + 0.311062i \(0.100685\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.20695 + 1.27418i 0.123954 + 0.0715651i 0.560695 0.828022i \(-0.310534\pi\)
−0.436741 + 0.899587i \(0.643867\pi\)
\(318\) 0 0
\(319\) 17.5192 + 10.1147i 0.980890 + 0.566317i
\(320\) 0 0
\(321\) −0.872404 1.51105i −0.0486928 0.0843384i
\(322\) 0 0
\(323\) −16.0475 9.26503i −0.892907 0.515520i
\(324\) 0 0
\(325\) 10.3164 4.84986i 0.572253 0.269022i
\(326\) 0 0
\(327\) −0.683957 + 0.394883i −0.0378229 + 0.0218371i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.195664i 0.0107547i 0.999986 + 0.00537733i \(0.00171167\pi\)
−0.999986 + 0.00537733i \(0.998288\pi\)
\(332\) 0 0
\(333\) −17.6401 + 10.1845i −0.966672 + 0.558109i
\(334\) 0 0
\(335\) −3.36450 + 5.82749i −0.183822 + 0.318390i
\(336\) 0 0
\(337\) 2.00900 0.109437 0.0547185 0.998502i \(-0.482574\pi\)
0.0547185 + 0.998502i \(0.482574\pi\)
\(338\) 0 0
\(339\) 0.448906 + 0.777529i 0.0243813 + 0.0422296i
\(340\) 0 0
\(341\) 11.2745 + 19.5280i 0.610549 + 1.05750i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.75445i 0.148295i
\(346\) 0 0
\(347\) −2.27450 + 3.93956i −0.122102 + 0.211486i −0.920596 0.390516i \(-0.872297\pi\)
0.798495 + 0.602002i \(0.205630\pi\)
\(348\) 0 0
\(349\) −4.65700 2.68872i −0.249284 0.143924i 0.370153 0.928971i \(-0.379305\pi\)
−0.619436 + 0.785047i \(0.712639\pi\)
\(350\) 0 0
\(351\) 0.483129 5.72786i 0.0257875 0.305730i
\(352\) 0 0
\(353\) 8.20095i 0.436492i 0.975894 + 0.218246i \(0.0700336\pi\)
−0.975894 + 0.218246i \(0.929966\pi\)
\(354\) 0 0
\(355\) 22.3870 1.18818
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −27.5105 15.8832i −1.45195 0.838284i −0.453359 0.891328i \(-0.649774\pi\)
−0.998592 + 0.0530438i \(0.983108\pi\)
\(360\) 0 0
\(361\) 8.85843 0.466233
\(362\) 0 0
\(363\) 0.845093 0.0443559
\(364\) 0 0
\(365\) 20.9277 1.09541
\(366\) 0 0
\(367\) −17.3374 −0.905005 −0.452502 0.891763i \(-0.649469\pi\)
−0.452502 + 0.891763i \(0.649469\pi\)
\(368\) 0 0
\(369\) 12.8280 + 7.40624i 0.667798 + 0.385553i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 16.0963 0.833434 0.416717 0.909036i \(-0.363181\pi\)
0.416717 + 0.909036i \(0.363181\pi\)
\(374\) 0 0
\(375\) 2.97623i 0.153692i
\(376\) 0 0
\(377\) −21.3607 14.8578i −1.10013 0.765218i
\(378\) 0 0
\(379\) −15.2907 8.82811i −0.785432 0.453470i 0.0529197 0.998599i \(-0.483147\pi\)
−0.838352 + 0.545129i \(0.816481\pi\)
\(380\) 0 0
\(381\) −1.68771 + 2.92320i −0.0864641 + 0.149760i
\(382\) 0 0
\(383\) 8.22450i 0.420252i −0.977674 0.210126i \(-0.932613\pi\)
0.977674 0.210126i \(-0.0673874\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.17609 15.8935i −0.466447 0.807910i
\(388\) 0 0
\(389\) −7.58442 13.1366i −0.384545 0.666052i 0.607161 0.794579i \(-0.292308\pi\)
−0.991706 + 0.128527i \(0.958975\pi\)
\(390\) 0 0
\(391\) 43.9512 2.22271
\(392\) 0 0
\(393\) 0.169441 0.293481i 0.00854719 0.0148042i
\(394\) 0 0
\(395\) 17.3383 10.0103i 0.872386 0.503672i
\(396\) 0 0
\(397\) 28.3063i 1.42065i 0.703874 + 0.710325i \(0.251452\pi\)
−0.703874 + 0.710325i \(0.748548\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.8257 + 8.55962i −0.740360 + 0.427447i −0.822200 0.569198i \(-0.807254\pi\)
0.0818403 + 0.996645i \(0.473920\pi\)
\(402\) 0 0
\(403\) −12.3392 26.2476i −0.614661 1.30748i
\(404\) 0 0
\(405\) −9.80952 5.66353i −0.487439 0.281423i
\(406\) 0 0
\(407\) −9.75149 16.8901i −0.483364 0.837210i
\(408\) 0 0
\(409\) 9.82072 + 5.66999i 0.485603 + 0.280363i 0.722749 0.691111i \(-0.242878\pi\)
−0.237145 + 0.971474i \(0.576212\pi\)
\(410\) 0 0
\(411\) 1.93860 + 1.11925i 0.0956240 + 0.0552085i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 6.63899 11.4991i 0.325895 0.564467i
\(416\) 0 0
\(417\) −0.778453 1.34832i −0.0381210 0.0660275i
\(418\) 0 0
\(419\) 0.0694276 0.120252i 0.00339176 0.00587470i −0.864325 0.502934i \(-0.832254\pi\)
0.867716 + 0.497060i \(0.165587\pi\)
\(420\) 0 0
\(421\) 24.3258i 1.18557i −0.805362 0.592783i \(-0.798029\pi\)
0.805362 0.592783i \(-0.201971\pi\)
\(422\) 0 0
\(423\) −6.70152 3.86912i −0.325839 0.188123i
\(424\) 0 0
\(425\) −18.3967 −0.892373
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.70870 + 0.228471i 0.130777 + 0.0110307i
\(430\) 0 0
\(431\) 28.7924i 1.38688i −0.720514 0.693440i \(-0.756094\pi\)
0.720514 0.693440i \(-0.243906\pi\)
\(432\) 0 0
\(433\) 12.6367 + 21.8873i 0.607279 + 1.05184i 0.991687 + 0.128675i \(0.0410723\pi\)
−0.384408 + 0.923163i \(0.625594\pi\)
\(434\) 0 0
\(435\) 2.27904 1.31580i 0.109272 0.0630880i
\(436\) 0 0
\(437\) 20.8319 12.0273i 0.996527 0.575345i
\(438\) 0 0
\(439\) −3.01512 5.22234i −0.143904 0.249248i 0.785060 0.619420i \(-0.212632\pi\)
−0.928963 + 0.370172i \(0.879299\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −11.7494 + 20.3505i −0.558230 + 0.966883i 0.439414 + 0.898285i \(0.355186\pi\)
−0.997644 + 0.0685983i \(0.978147\pi\)
\(444\) 0 0
\(445\) 11.3460 0.537853
\(446\) 0 0
\(447\) 3.82017i 0.180688i
\(448\) 0 0
\(449\) 20.2543 11.6938i 0.955859 0.551865i 0.0609627 0.998140i \(-0.480583\pi\)
0.894896 + 0.446275i \(0.147250\pi\)
\(450\) 0 0
\(451\) −7.09133 + 12.2826i −0.333918 + 0.578363i
\(452\) 0 0
\(453\) 2.59728 1.49954i 0.122031 0.0704545i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.6616 13.0837i 1.06007 0.612030i 0.134616 0.990898i \(-0.457020\pi\)
0.925451 + 0.378868i \(0.123687\pi\)
\(458\) 0 0
\(459\) −4.63825 + 8.03369i −0.216495 + 0.374980i
\(460\) 0 0
\(461\) 21.8524 12.6165i 1.01777 0.587609i 0.104312 0.994545i \(-0.466736\pi\)
0.913457 + 0.406936i \(0.133403\pi\)
\(462\) 0 0
\(463\) 18.1600i 0.843968i −0.906603 0.421984i \(-0.861334\pi\)
0.906603 0.421984i \(-0.138666\pi\)
\(464\) 0 0
\(465\) 2.93335 0.136031
\(466\) 0 0
\(467\) −6.31641 + 10.9403i −0.292289 + 0.506259i −0.974351 0.225036i \(-0.927750\pi\)
0.682062 + 0.731294i \(0.261083\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0.544293 + 0.942743i 0.0250797 + 0.0434393i
\(472\) 0 0
\(473\) 15.2177 8.78594i 0.699710 0.403978i
\(474\) 0 0
\(475\) −8.71966 + 5.03430i −0.400086 + 0.230990i
\(476\) 0 0
\(477\) −16.2320 28.1146i −0.743211 1.28728i
\(478\) 0 0
\(479\) 12.3074i 0.562338i 0.959658 + 0.281169i \(0.0907221\pi\)
−0.959658 + 0.281169i \(0.909278\pi\)
\(480\) 0 0
\(481\) 10.6724 + 22.7019i 0.486619 + 1.03512i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.5460 −0.751315
\(486\) 0 0
\(487\) −13.5393 7.81693i −0.613525 0.354219i 0.160819 0.986984i \(-0.448587\pi\)
−0.774344 + 0.632765i \(0.781920\pi\)
\(488\) 0 0
\(489\) 1.41825i 0.0641355i
\(490\) 0 0
\(491\) 5.10543 8.84286i 0.230405 0.399073i −0.727523 0.686084i \(-0.759328\pi\)
0.957927 + 0.287011i \(0.0926617\pi\)
\(492\) 0 0
\(493\) 20.9956 + 36.3654i 0.945593 + 1.63781i
\(494\) 0 0
\(495\) 5.56358 9.63641i 0.250065 0.433124i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.589766 + 0.340502i 0.0264016 + 0.0152430i 0.513143 0.858303i \(-0.328481\pi\)
−0.486741 + 0.873546i \(0.661814\pi\)
\(500\) 0 0
\(501\) 1.24608 + 0.719424i 0.0556707 + 0.0321415i
\(502\) 0 0
\(503\) −17.6701 30.6056i −0.787873 1.36464i −0.927268 0.374399i \(-0.877849\pi\)
0.139395 0.990237i \(-0.455484\pi\)
\(504\) 0 0
\(505\) 2.84492 + 1.64251i 0.126597 + 0.0730909i
\(506\) 0 0
\(507\) −3.44699 0.585655i −0.153086 0.0260099i
\(508\) 0 0
\(509\) 14.5717 8.41300i 0.645881 0.372900i −0.140995 0.990010i \(-0.545030\pi\)
0.786876 + 0.617111i \(0.211697\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 5.07706i 0.224158i
\(514\) 0 0
\(515\) −17.0153 + 9.82377i −0.749783 + 0.432887i
\(516\) 0 0
\(517\) 3.70461 6.41658i 0.162929 0.282201i
\(518\) 0 0
\(519\) −2.62043 −0.115024
\(520\) 0 0
\(521\) 2.38310 + 4.12764i 0.104405 + 0.180835i 0.913495 0.406850i \(-0.133373\pi\)
−0.809090 + 0.587685i \(0.800039\pi\)
\(522\) 0 0
\(523\) −0.319080 0.552662i −0.0139524 0.0241662i 0.858965 0.512034i \(-0.171108\pi\)
−0.872917 + 0.487868i \(0.837775\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 46.8058i 2.03889i
\(528\) 0 0
\(529\) −17.0275 + 29.4924i −0.740325 + 1.28228i
\(530\) 0 0
\(531\) 15.9620 + 9.21567i 0.692692 + 0.399926i
\(532\) 0 0
\(533\) 10.4167 14.9757i 0.451196 0.648670i
\(534\) 0 0
\(535\) 8.79595i 0.380282i
\(536\) 0 0
\(537\) −3.06748 −0.132371
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −19.2301 11.1025i −0.826767 0.477334i 0.0259776 0.999663i \(-0.491730\pi\)
−0.852744 + 0.522328i \(0.825063\pi\)
\(542\) 0 0
\(543\) −6.85096 −0.294003
\(544\) 0 0
\(545\) 3.98138 0.170544
\(546\) 0 0
\(547\) 16.2608 0.695263 0.347631 0.937631i \(-0.386986\pi\)
0.347631 + 0.937631i \(0.386986\pi\)
\(548\) 0 0
\(549\) 37.4977 1.60036
\(550\) 0 0
\(551\) 19.9029 + 11.4909i 0.847892 + 0.489531i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.53710 −0.107694
\(556\) 0 0
\(557\) 21.4676i 0.909612i 0.890591 + 0.454806i \(0.150291\pi\)
−0.890591 + 0.454806i \(0.849709\pi\)
\(558\) 0 0
\(559\) −20.4541 + 9.61566i −0.865115 + 0.406699i
\(560\) 0 0
\(561\) −3.79912 2.19342i −0.160399 0.0926064i
\(562\) 0 0
\(563\) 5.59103 9.68395i 0.235634 0.408130i −0.723823 0.689986i \(-0.757617\pi\)
0.959457 + 0.281856i \(0.0909500\pi\)
\(564\) 0 0
\(565\) 4.52607i 0.190413i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.58165 11.3998i −0.275917 0.477903i 0.694449 0.719542i \(-0.255648\pi\)
−0.970366 + 0.241639i \(0.922315\pi\)
\(570\) 0 0
\(571\) 8.70996 + 15.0861i 0.364501 + 0.631334i 0.988696 0.149935i \(-0.0479064\pi\)
−0.624195 + 0.781268i \(0.714573\pi\)
\(572\) 0 0
\(573\) 4.40494 0.184019
\(574\) 0 0
\(575\) 11.9408 20.6821i 0.497965 0.862501i
\(576\) 0 0
\(577\) 7.33543 4.23511i 0.305378 0.176310i −0.339478 0.940614i \(-0.610251\pi\)
0.644856 + 0.764304i \(0.276917\pi\)
\(578\) 0 0
\(579\) 2.57185i 0.106882i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 26.9192 15.5418i 1.11488 0.643676i
\(584\) 0 0
\(585\) −8.17251 + 11.7494i −0.337892 + 0.485776i
\(586\) 0 0
\(587\) −18.2459 10.5342i −0.753087 0.434795i 0.0737213 0.997279i \(-0.476512\pi\)
−0.826808 + 0.562484i \(0.809846\pi\)
\(588\) 0 0
\(589\) 12.8085 + 22.1850i 0.527765 + 0.914116i
\(590\) 0 0
\(591\) 0.701205 + 0.404841i 0.0288437 + 0.0166529i
\(592\) 0 0
\(593\) 11.4975 + 6.63806i 0.472144 + 0.272593i 0.717137 0.696932i \(-0.245452\pi\)
−0.244993 + 0.969525i \(0.578786\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.621240 1.07602i 0.0254257 0.0440385i
\(598\) 0 0
\(599\) −2.69542 4.66860i −0.110132 0.190754i 0.805691 0.592335i \(-0.201794\pi\)
−0.915823 + 0.401582i \(0.868461\pi\)
\(600\) 0 0
\(601\) −12.2204 + 21.1663i −0.498480 + 0.863392i −0.999998 0.00175467i \(-0.999441\pi\)
0.501519 + 0.865147i \(0.332775\pi\)
\(602\) 0 0
\(603\) 14.5298i 0.591700i
\(604\) 0 0
\(605\) −3.68953 2.13015i −0.150001 0.0866029i
\(606\) 0 0
\(607\) 25.8582 1.04955 0.524776 0.851240i \(-0.324149\pi\)
0.524776 + 0.851240i \(0.324149\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.44181 + 7.82352i −0.220152 + 0.316506i
\(612\) 0 0
\(613\) 14.1688i 0.572273i −0.958189 0.286136i \(-0.907629\pi\)
0.958189 0.286136i \(-0.0923711\pi\)
\(614\) 0 0
\(615\) 0.922496 + 1.59781i 0.0371986 + 0.0644299i
\(616\) 0 0
\(617\) 39.8763 23.0226i 1.60536 0.926855i 0.614970 0.788550i \(-0.289168\pi\)
0.990390 0.138305i \(-0.0441654\pi\)
\(618\) 0 0
\(619\) 10.4169 6.01422i 0.418692 0.241732i −0.275825 0.961208i \(-0.588951\pi\)
0.694518 + 0.719476i \(0.255618\pi\)
\(620\) 0 0
\(621\) −6.02111 10.4289i −0.241619 0.418496i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.402250 + 0.696717i −0.0160900 + 0.0278687i
\(626\) 0 0
\(627\) −2.40094 −0.0958841
\(628\) 0 0
\(629\) 40.4831i 1.61417i
\(630\) 0 0
\(631\) 21.0476 12.1518i 0.837890 0.483756i −0.0186564 0.999826i \(-0.505939\pi\)
0.856546 + 0.516070i \(0.172606\pi\)
\(632\) 0 0
\(633\) −0.314493 + 0.544718i −0.0125000 + 0.0216506i
\(634\) 0 0
\(635\) 14.7365 8.50812i 0.584800 0.337634i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 41.8636 24.1700i 1.65610 0.956149i
\(640\) 0 0
\(641\) −8.88276 + 15.3854i −0.350848 + 0.607687i −0.986398 0.164373i \(-0.947440\pi\)
0.635550 + 0.772060i \(0.280773\pi\)
\(642\) 0 0
\(643\) 37.3742 21.5780i 1.47389 0.850953i 0.474326 0.880349i \(-0.342692\pi\)
0.999568 + 0.0293964i \(0.00935852\pi\)
\(644\) 0 0
\(645\) 2.28589i 0.0900067i
\(646\) 0 0
\(647\) −10.7995 −0.424571 −0.212286 0.977208i \(-0.568091\pi\)
−0.212286 + 0.977208i \(0.568091\pi\)
\(648\) 0 0
\(649\) −8.82383 + 15.2833i −0.346366 + 0.599923i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.53280 + 2.65489i 0.0599831 + 0.103894i 0.894458 0.447153i \(-0.147562\pi\)
−0.834475 + 0.551047i \(0.814229\pi\)
\(654\) 0 0
\(655\) −1.47950 + 0.854191i −0.0578089 + 0.0333760i
\(656\) 0 0
\(657\) 39.1346 22.5944i 1.52679 0.881491i
\(658\) 0 0
\(659\) 1.82436 + 3.15988i 0.0710670 + 0.123092i 0.899369 0.437190i \(-0.144026\pi\)
−0.828302 + 0.560282i \(0.810693\pi\)
\(660\) 0 0
\(661\) 27.2252i 1.05894i −0.848329 0.529469i \(-0.822391\pi\)
0.848329 0.529469i \(-0.177609\pi\)
\(662\) 0 0
\(663\) 4.63214 + 3.22198i 0.179898 + 0.125131i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −54.5105 −2.11065
\(668\) 0 0
\(669\) 1.13345 + 0.654396i 0.0438216 + 0.0253004i
\(670\) 0 0
\(671\) 35.9034i 1.38604i
\(672\) 0 0
\(673\) 14.1485 24.5059i 0.545384 0.944633i −0.453199 0.891410i \(-0.649717\pi\)
0.998583 0.0532233i \(-0.0169495\pi\)
\(674\) 0 0
\(675\) 2.52027 + 4.36523i 0.0970051 + 0.168018i
\(676\) 0 0
\(677\) −14.4181 + 24.9728i −0.554131 + 0.959783i 0.443840 + 0.896106i \(0.353616\pi\)
−0.997971 + 0.0636769i \(0.979717\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −6.54031 3.77605i −0.250625 0.144698i
\(682\) 0 0
\(683\) −35.4243 20.4522i −1.35547 0.782583i −0.366464 0.930432i \(-0.619432\pi\)
−0.989010 + 0.147849i \(0.952765\pi\)
\(684\) 0 0
\(685\) −5.64238 9.77290i −0.215584 0.373403i
\(686\) 0 0
\(687\) −0.0417579 0.0241089i −0.00159316 0.000919813i
\(688\) 0 0
\(689\) −36.1820 + 17.0095i −1.37843 + 0.648011i
\(690\) 0 0
\(691\) −36.5934 + 21.1272i −1.39208 + 0.803717i −0.993545 0.113436i \(-0.963814\pi\)
−0.398534 + 0.917154i \(0.630481\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.84870i 0.297718i
\(696\) 0 0
\(697\) −25.4954 + 14.7198i −0.965706 + 0.557551i
\(698\) 0 0
\(699\) −2.03575 + 3.52603i −0.0769992 + 0.133367i
\(700\) 0 0
\(701\) −30.3734 −1.14719 −0.573594 0.819140i \(-0.694451\pi\)
−0.573594 + 0.819140i \(0.694451\pi\)
\(702\) 0 0
\(703\) −11.0783 19.1881i −0.417825 0.723694i
\(704\) 0 0
\(705\) −0.481925 0.834718i −0.0181503 0.0314373i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.4297i 0.879920i −0.898017 0.439960i \(-0.854993\pi\)
0.898017 0.439960i \(-0.145007\pi\)
\(710\) 0 0
\(711\) 21.6150 37.4383i 0.810627 1.40405i
\(712\) 0 0
\(713\) −52.6203 30.3803i −1.97064 1.13775i
\(714\) 0 0
\(715\) −11.2498 7.82503i −0.420719 0.292639i
\(716\) 0 0
\(717\) 3.46151i 0.129273i
\(718\) 0 0
\(719\) −7.02982 −0.262168 −0.131084 0.991371i \(-0.541846\pi\)
−0.131084 + 0.991371i \(0.541846\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.29001 + 1.32214i 0.0851662 + 0.0491708i
\(724\) 0 0
\(725\) 22.8165 0.847385
\(726\) 0 0
\(727\) 20.6810 0.767015 0.383507 0.923538i \(-0.374716\pi\)
0.383507 + 0.923538i \(0.374716\pi\)
\(728\) 0 0
\(729\) −23.1720 −0.858222
\(730\) 0 0
\(731\) 36.4746 1.34906
\(732\) 0 0
\(733\) −33.7780 19.5018i −1.24762 0.720314i −0.276986 0.960874i \(-0.589336\pi\)
−0.970634 + 0.240560i \(0.922669\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13.9120 −0.512456
\(738\) 0 0
\(739\) 28.7416i 1.05728i −0.848847 0.528639i \(-0.822703\pi\)
0.848847 0.528639i \(-0.177297\pi\)
\(740\) 0 0
\(741\) 3.07724 + 0.259557i 0.113045 + 0.00953505i
\(742\) 0 0
\(743\) −5.48059 3.16422i −0.201063 0.116084i 0.396088 0.918213i \(-0.370367\pi\)
−0.597151 + 0.802129i \(0.703701\pi\)
\(744\) 0 0
\(745\) 9.62915 16.6782i 0.352785 0.611041i
\(746\) 0 0
\(747\) 28.6709i 1.04901i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −15.7203 27.2283i −0.573641 0.993575i −0.996188 0.0872339i \(-0.972197\pi\)
0.422547 0.906341i \(-0.361136\pi\)
\(752\) 0 0
\(753\) 2.32940 + 4.03464i 0.0848880 + 0.147030i
\(754\) 0 0
\(755\) −15.1190 −0.550237
\(756\) 0 0
\(757\) −12.7212 + 22.0337i −0.462358 + 0.800828i −0.999078 0.0429328i \(-0.986330\pi\)
0.536720 + 0.843760i \(0.319663\pi\)
\(758\) 0 0
\(759\) 4.93180 2.84737i 0.179013 0.103353i
\(760\) 0 0
\(761\) 20.6105i 0.747130i 0.927604 + 0.373565i \(0.121865\pi\)
−0.927604 + 0.373565i \(0.878135\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 20.0027 11.5485i 0.723198 0.417539i
\(766\) 0 0
\(767\) 12.9616 18.6345i 0.468016 0.672851i
\(768\) 0 0
\(769\) −7.95173 4.59093i −0.286747 0.165553i 0.349727 0.936852i \(-0.386274\pi\)
−0.636474 + 0.771298i \(0.719608\pi\)
\(770\) 0 0
\(771\) 1.43971 + 2.49365i 0.0518499 + 0.0898066i
\(772\) 0 0
\(773\) −7.35736 4.24777i −0.264626 0.152782i 0.361817 0.932249i \(-0.382157\pi\)
−0.626443 + 0.779467i \(0.715490\pi\)
\(774\) 0 0
\(775\) 22.0254 + 12.7163i 0.791174 + 0.456785i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.05618 + 13.9537i −0.288642 + 0.499943i
\(780\) 0 0
\(781\) 23.1423 + 40.0836i 0.828096 + 1.43430i
\(782\) 0 0
\(783\) 5.75259 9.96377i 0.205581 0.356076i
\(784\) 0 0
\(785\) 5.48780i 0.195868i
\(786\) 0 0
\(787\) 1.70464 + 0.984173i 0.0607638 + 0.0350820i 0.530074 0.847951i \(-0.322164\pi\)
−0.469310 + 0.883033i \(0.655497\pi\)
\(788\) 0 0
\(789\) −3.78408 −0.134717
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 3.88139 46.0168i 0.137832 1.63410i
\(794\) 0 0
\(795\) 4.04360i 0.143412i
\(796\) 0 0
\(797\) 19.2449 + 33.3332i 0.681690 + 1.18072i 0.974465 + 0.224540i \(0.0720879\pi\)
−0.292775 + 0.956181i \(0.594579\pi\)
\(798\) 0 0
\(799\) 13.3191 7.68981i 0.471197 0.272046i
\(800\) 0 0
\(801\) 21.2170 12.2496i 0.749665 0.432820i
\(802\) 0 0
\(803\) 21.6337 + 37.4707i 0.763437 + 1.32231i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −0.0731583 + 0.126714i −0.00257529 + 0.00446054i
\(808\) 0 0
\(809\) 1.79976 0.0632760 0.0316380 0.999499i \(-0.489928\pi\)
0.0316380 + 0.999499i \(0.489928\pi\)
\(810\) 0 0
\(811\) 49.9235i 1.75305i −0.481357 0.876525i \(-0.659856\pi\)
0.481357 0.876525i \(-0.340144\pi\)
\(812\) 0 0
\(813\) −0.172644 + 0.0996759i −0.00605488 + 0.00349579i
\(814\) 0 0
\(815\) −3.57485 + 6.19183i −0.125222 + 0.216890i
\(816\) 0 0
\(817\) 17.2882 9.98135i 0.604838 0.349203i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.65310 + 2.10912i −0.127494 + 0.0736087i −0.562391 0.826872i \(-0.690118\pi\)
0.434897 + 0.900480i \(0.356785\pi\)
\(822\) 0 0
\(823\) 7.24912 12.5558i 0.252688 0.437669i −0.711577 0.702608i \(-0.752019\pi\)
0.964265 + 0.264939i \(0.0853519\pi\)
\(824\) 0 0
\(825\) −2.06431 + 1.19183i −0.0718701 + 0.0414942i
\(826\) 0 0
\(827\) 26.2618i 0.913213i 0.889669 + 0.456607i \(0.150935\pi\)
−0.889669 + 0.456607i \(0.849065\pi\)
\(828\) 0 0
\(829\) −55.1580 −1.91572 −0.957858 0.287242i \(-0.907262\pi\)
−0.957858 + 0.287242i \(0.907262\pi\)
\(830\) 0 0
\(831\) −1.90062 + 3.29198i −0.0659319 + 0.114197i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −3.62677 6.28175i −0.125510 0.217389i
\(836\) 0 0
\(837\) 11.1062 6.41218i 0.383887 0.221637i
\(838\) 0 0
\(839\) 6.07974 3.51014i 0.209896 0.121184i −0.391367 0.920235i \(-0.627998\pi\)
0.601263 + 0.799051i \(0.294664\pi\)
\(840\) 0 0
\(841\) −11.5397 19.9874i −0.397922 0.689221i
\(842\) 0 0
\(843\) 6.94036i 0.239039i
\(844\) 0 0
\(845\) 13.5727 + 11.2454i 0.466916 + 0.386853i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 7.33750 0.251822
\(850\) 0 0
\(851\) 45.5121 + 26.2764i 1.56013 + 0.900744i
\(852\) 0 0
\(853\) 57.6508i 1.97393i 0.160945 + 0.986963i \(0.448546\pi\)
−0.160945 + 0.986963i \(0.551454\pi\)
\(854\) 0 0
\(855\) 6.32056 10.9475i 0.216159 0.374398i
\(856\) 0 0
\(857\) −1.25327 2.17073i −0.0428109 0.0741506i 0.843826 0.536617i \(-0.180298\pi\)
−0.886637 + 0.462466i \(0.846965\pi\)
\(858\) 0 0
\(859\) 8.56526 14.8355i 0.292243 0.506180i −0.682097 0.731262i \(-0.738932\pi\)
0.974340 + 0.225082i \(0.0722650\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 48.1881 + 27.8214i 1.64034 + 0.947053i 0.980711 + 0.195464i \(0.0626213\pi\)
0.659632 + 0.751589i \(0.270712\pi\)
\(864\) 0 0
\(865\) 11.4403 + 6.60509i 0.388984 + 0.224580i
\(866\) 0 0
\(867\) −2.26687 3.92634i −0.0769870 0.133345i
\(868\) 0 0
\(869\) 35.8465 + 20.6960i 1.21601 + 0.702064i
\(870\) 0 0
\(871\) 17.8308 + 1.50398i 0.604174 + 0.0509604i
\(872\) 0 0
\(873\) −30.9409 + 17.8637i −1.04719 + 0.604596i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 40.1549i 1.35593i 0.735093 + 0.677967i \(0.237139\pi\)
−0.735093 + 0.677967i \(0.762861\pi\)
\(878\) 0 0
\(879\) 0.403456 0.232936i 0.0136082 0.00785672i
\(880\) 0 0
\(881\) −25.3837 + 43.9658i −0.855197 + 1.48124i 0.0212650 + 0.999774i \(0.493231\pi\)
−0.876462 + 0.481471i \(0.840103\pi\)
\(882\) 0 0
\(883\) −46.3312 −1.55917 −0.779585 0.626297i \(-0.784570\pi\)
−0.779585 + 0.626297i \(0.784570\pi\)
\(884\) 0 0
\(885\) 1.14787 + 1.98817i 0.0385853 + 0.0668317i
\(886\) 0 0
\(887\) −5.12752 8.88113i −0.172165 0.298199i 0.767011 0.641634i \(-0.221743\pi\)
−0.939177 + 0.343435i \(0.888410\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 23.4184i 0.784546i
\(892\) 0 0
\(893\) 4.20866 7.28961i 0.140837 0.243938i
\(894\) 0 0
\(895\) 13.3921 + 7.73191i 0.447647 + 0.258449i
\(896\) 0 0
\(897\) −6.62882 + 3.11627i −0.221330 + 0.104049i
\(898\) 0 0
\(899\) 58.0509i 1.93611i
\(900\) 0 0
\(901\) 64.5214 2.14952
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 29.9101 + 17.2686i 0.994244 + 0.574027i
\(906\) 0 0
\(907\) −52.2945 −1.73641 −0.868205 0.496206i \(-0.834726\pi\)
−0.868205 + 0.496206i \(0.834726\pi\)
\(908\) 0 0
\(909\) 7.09330 0.235270
\(910\) 0 0
\(911\) 50.9172 1.68696 0.843481 0.537159i \(-0.180502\pi\)
0.843481 + 0.537159i \(0.180502\pi\)
\(912\) 0 0
\(913\) 27.4519 0.908524
\(914\) 0 0
\(915\) 4.04485 + 2.33530i 0.133719 + 0.0772025i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 22.8646 0.754234 0.377117 0.926166i \(-0.376915\pi\)
0.377117 + 0.926166i \(0.376915\pi\)
\(920\) 0 0
\(921\) 5.76541i 0.189977i
\(922\) 0 0
\(923\) −25.3278 53.8763i −0.833674 1.77336i
\(924\) 0 0
\(925\) −19.0501 10.9986i −0.626363 0.361631i
\(926\) 0 0
\(927\) −21.2123 + 36.7408i −0.696703 + 1.20673i
\(928\) 0 0
\(929\) 33.2658i 1.09142i −0.837976 0.545708i \(-0.816261\pi\)
0.837976 0.545708i \(-0.183739\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −3.66749 6.35228i −0.120068 0.207964i
\(934\) 0 0
\(935\) 11.0575 + 19.1522i 0.361620 + 0.626344i
\(936\) 0 0
\(937\) 51.2179 1.67322 0.836608 0.547802i \(-0.184535\pi\)
0.836608 + 0.547802i \(0.184535\pi\)
\(938\) 0 0
\(939\) 0.979286 1.69617i 0.0319578 0.0553525i
\(940\) 0 0
\(941\) −8.91293 + 5.14588i −0.290553 + 0.167751i −0.638191 0.769878i \(-0.720317\pi\)
0.347638 + 0.937629i \(0.386984\pi\)
\(942\) 0 0
\(943\) 38.2167i 1.24451i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.7341 + 17.7444i −0.998725 + 0.576614i −0.907871 0.419250i \(-0.862293\pi\)
−0.0908539 + 0.995864i \(0.528960\pi\)
\(948\) 0 0
\(949\) −23.6767 50.3643i −0.768580 1.63489i
\(950\) 0 0
\(951\) 0.593565 + 0.342695i 0.0192477 + 0.0111126i
\(952\) 0 0
\(953\) 16.6676 + 28.8691i 0.539916 + 0.935163i 0.998908 + 0.0467220i \(0.0148775\pi\)
−0.458992 + 0.888441i \(0.651789\pi\)
\(954\) 0 0
\(955\) −19.2312 11.1031i −0.622306 0.359289i
\(956\) 0 0
\(957\) 4.71185 + 2.72039i 0.152313 + 0.0879377i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 16.8535 29.1912i 0.543662 0.941650i
\(962\) 0 0
\(963\) 9.49647 + 16.4484i 0.306020 + 0.530041i
\(964\) 0 0
\(965\) −6.48263 + 11.2282i −0.208683 + 0.361450i
\(966\) 0 0
\(967\) 29.7131i 0.955509i 0.878494 + 0.477754i \(0.158549\pi\)
−0.878494 + 0.477754i \(0.841451\pi\)
\(968\) 0 0
\(969\) −4.31602 2.49186i −0.138651 0.0800500i
\(970\) 0 0
\(971\) 8.83702 0.283593 0.141797 0.989896i \(-0.454712\pi\)
0.141797 + 0.989896i \(0.454712\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.77464 1.30438i 0.0888595 0.0417737i
\(976\) 0 0
\(977\) 14.8307i 0.474475i 0.971452 + 0.237237i \(0.0762419\pi\)
−0.971452 + 0.237237i \(0.923758\pi\)
\(978\) 0 0
\(979\) 11.7288 + 20.3149i 0.374854 + 0.649266i
\(980\) 0 0
\(981\) 7.44516 4.29846i 0.237706 0.137239i
\(982\) 0 0
\(983\) −17.6141 + 10.1695i −0.561803 + 0.324357i −0.753869 0.657025i \(-0.771815\pi\)
0.192066 + 0.981382i \(0.438481\pi\)
\(984\) 0 0
\(985\) −2.04089 3.53493i −0.0650282 0.112632i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −23.6746 + 41.0057i −0.752809 + 1.30390i
\(990\) 0 0
\(991\) −50.8906 −1.61659 −0.808297 0.588775i \(-0.799611\pi\)
−0.808297 + 0.588775i \(0.799611\pi\)
\(992\) 0 0
\(993\) 0.0526244i 0.00166999i
\(994\) 0 0
\(995\) −5.42445 + 3.13181i −0.171967 + 0.0992849i
\(996\) 0 0
\(997\) −3.69697 + 6.40334i −0.117084 + 0.202796i −0.918611 0.395163i \(-0.870688\pi\)
0.801527 + 0.597959i \(0.204021\pi\)
\(998\) 0 0
\(999\) −9.60595 + 5.54600i −0.303919 + 0.175468i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.bq.c.1941.5 16
7.2 even 3 2548.2.u.c.589.4 16
7.3 odd 6 2548.2.bb.d.1733.5 16
7.4 even 3 2548.2.bb.c.1733.4 16
7.5 odd 6 364.2.u.a.225.5 16
7.6 odd 2 2548.2.bq.e.1941.4 16
13.10 even 6 2548.2.bb.c.569.4 16
21.5 even 6 3276.2.cf.c.2773.5 16
28.19 even 6 1456.2.cc.f.225.4 16
91.10 odd 6 2548.2.bq.e.361.4 16
91.19 even 12 4732.2.a.s.1.4 8
91.23 even 6 2548.2.u.c.1765.4 16
91.33 even 12 4732.2.a.t.1.4 8
91.61 odd 6 4732.2.g.k.337.7 16
91.62 odd 6 2548.2.bb.d.569.5 16
91.75 odd 6 364.2.u.a.309.5 yes 16
91.82 odd 6 4732.2.g.k.337.8 16
91.88 even 6 inner 2548.2.bq.c.361.5 16
273.257 even 6 3276.2.cf.c.1765.4 16
364.75 even 6 1456.2.cc.f.673.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.5 16 7.5 odd 6
364.2.u.a.309.5 yes 16 91.75 odd 6
1456.2.cc.f.225.4 16 28.19 even 6
1456.2.cc.f.673.4 16 364.75 even 6
2548.2.u.c.589.4 16 7.2 even 3
2548.2.u.c.1765.4 16 91.23 even 6
2548.2.bb.c.569.4 16 13.10 even 6
2548.2.bb.c.1733.4 16 7.4 even 3
2548.2.bb.d.569.5 16 91.62 odd 6
2548.2.bb.d.1733.5 16 7.3 odd 6
2548.2.bq.c.361.5 16 91.88 even 6 inner
2548.2.bq.c.1941.5 16 1.1 even 1 trivial
2548.2.bq.e.361.4 16 91.10 odd 6
2548.2.bq.e.1941.4 16 7.6 odd 2
3276.2.cf.c.1765.4 16 273.257 even 6
3276.2.cf.c.2773.5 16 21.5 even 6
4732.2.a.s.1.4 8 91.19 even 12
4732.2.a.t.1.4 8 91.33 even 12
4732.2.g.k.337.7 16 91.61 odd 6
4732.2.g.k.337.8 16 91.82 odd 6