Properties

Label 3276.2.cf.c.2773.5
Level $3276$
Weight $2$
Character 3276.2773
Analytic conductor $26.159$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(1765,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.1765");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.cf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 2773.5
Root \(-0.268953i\) of defining polynomial
Character \(\chi\) \(=\) 3276.2773
Dual form 3276.2.cf.c.1765.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.35585i q^{5} +(0.866025 - 0.500000i) q^{7} +(-2.42763 - 1.40159i) q^{11} +(0.303042 - 3.59279i) q^{13} +(2.90934 + 5.03912i) q^{17} +(2.75793 - 1.59229i) q^{19} +(-3.77674 + 6.54150i) q^{23} +3.16167 q^{25} +(3.60830 - 6.24977i) q^{29} +8.04407i q^{31} +(0.677925 + 1.17420i) q^{35} +(-6.02532 - 3.47872i) q^{37} +(-4.38164 - 2.52974i) q^{41} +(3.13427 + 5.42872i) q^{43} -2.64315i q^{47} +(0.500000 - 0.866025i) q^{49} +11.0887 q^{53} +(1.90035 - 3.29150i) q^{55} +(5.45213 - 3.14779i) q^{59} +(-6.40404 - 11.0921i) q^{61} +(4.87129 + 0.410880i) q^{65} +(4.29803 + 2.48147i) q^{67} +(14.2993 - 8.25572i) q^{71} +15.4351i q^{73} -2.80318 q^{77} +14.7661 q^{79} +9.79310i q^{83} +(-6.83230 + 3.94463i) q^{85} +(7.24707 + 4.18410i) q^{89} +(-1.53395 - 3.26297i) q^{91} +(2.15891 + 3.73934i) q^{95} +(-10.5685 + 6.10170i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 6 q^{11} + 10 q^{13} - 2 q^{17} - 44 q^{25} + 22 q^{29} + 6 q^{35} + 12 q^{37} - 36 q^{41} + 6 q^{43} + 8 q^{49} - 8 q^{53} + 2 q^{55} + 18 q^{59} + 4 q^{61} + 30 q^{65} + 24 q^{67} - 36 q^{71} + 24 q^{77}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.35585i 0.606355i 0.952934 + 0.303177i \(0.0980475\pi\)
−0.952934 + 0.303177i \(0.901953\pi\)
\(6\) 0 0
\(7\) 0.866025 0.500000i 0.327327 0.188982i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.42763 1.40159i −0.731958 0.422596i 0.0871803 0.996193i \(-0.472214\pi\)
−0.819138 + 0.573597i \(0.805548\pi\)
\(12\) 0 0
\(13\) 0.303042 3.59279i 0.0840488 0.996462i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.90934 + 5.03912i 0.705618 + 1.22217i 0.966468 + 0.256787i \(0.0826640\pi\)
−0.260850 + 0.965379i \(0.584003\pi\)
\(18\) 0 0
\(19\) 2.75793 1.59229i 0.632713 0.365297i −0.149089 0.988824i \(-0.547634\pi\)
0.781802 + 0.623527i \(0.214301\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.77674 + 6.54150i −0.787504 + 1.36400i 0.139988 + 0.990153i \(0.455294\pi\)
−0.927492 + 0.373843i \(0.878040\pi\)
\(24\) 0 0
\(25\) 3.16167 0.632334
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.60830 6.24977i 0.670045 1.16055i −0.307845 0.951436i \(-0.599608\pi\)
0.977891 0.209116i \(-0.0670587\pi\)
\(30\) 0 0
\(31\) 8.04407i 1.44476i 0.691498 + 0.722379i \(0.256951\pi\)
−0.691498 + 0.722379i \(0.743049\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0.677925 + 1.17420i 0.114590 + 0.198476i
\(36\) 0 0
\(37\) −6.02532 3.47872i −0.990557 0.571898i −0.0851160 0.996371i \(-0.527126\pi\)
−0.905441 + 0.424473i \(0.860459\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.38164 2.52974i −0.684298 0.395079i 0.117175 0.993111i \(-0.462616\pi\)
−0.801472 + 0.598032i \(0.795950\pi\)
\(42\) 0 0
\(43\) 3.13427 + 5.42872i 0.477972 + 0.827872i 0.999681 0.0252518i \(-0.00803875\pi\)
−0.521709 + 0.853123i \(0.674705\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.64315i 0.385542i −0.981244 0.192771i \(-0.938252\pi\)
0.981244 0.192771i \(-0.0617475\pi\)
\(48\) 0 0
\(49\) 0.500000 0.866025i 0.0714286 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.0887 1.52315 0.761574 0.648079i \(-0.224427\pi\)
0.761574 + 0.648079i \(0.224427\pi\)
\(54\) 0 0
\(55\) 1.90035 3.29150i 0.256243 0.443826i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.45213 3.14779i 0.709807 0.409807i −0.101183 0.994868i \(-0.532263\pi\)
0.810989 + 0.585061i \(0.198929\pi\)
\(60\) 0 0
\(61\) −6.40404 11.0921i −0.819953 1.42020i −0.905716 0.423885i \(-0.860666\pi\)
0.0857630 0.996316i \(-0.472667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4.87129 + 0.410880i 0.604209 + 0.0509634i
\(66\) 0 0
\(67\) 4.29803 + 2.48147i 0.525088 + 0.303160i 0.739014 0.673690i \(-0.235292\pi\)
−0.213926 + 0.976850i \(0.568625\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.2993 8.25572i 1.69702 0.979773i 0.748453 0.663188i \(-0.230797\pi\)
0.948564 0.316586i \(-0.102536\pi\)
\(72\) 0 0
\(73\) 15.4351i 1.80654i 0.429071 + 0.903271i \(0.358841\pi\)
−0.429071 + 0.903271i \(0.641159\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.80318 −0.319452
\(78\) 0 0
\(79\) 14.7661 1.66131 0.830656 0.556786i \(-0.187966\pi\)
0.830656 + 0.556786i \(0.187966\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 9.79310i 1.07493i 0.843285 + 0.537466i \(0.180618\pi\)
−0.843285 + 0.537466i \(0.819382\pi\)
\(84\) 0 0
\(85\) −6.83230 + 3.94463i −0.741067 + 0.427855i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.24707 + 4.18410i 0.768188 + 0.443513i 0.832228 0.554434i \(-0.187065\pi\)
−0.0640399 + 0.997947i \(0.520398\pi\)
\(90\) 0 0
\(91\) −1.53395 3.26297i −0.160802 0.342052i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.15891 + 3.73934i 0.221499 + 0.383648i
\(96\) 0 0
\(97\) −10.5685 + 6.10170i −1.07306 + 0.619534i −0.929017 0.370037i \(-0.879345\pi\)
−0.144047 + 0.989571i \(0.546012\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.21143 2.09825i 0.120541 0.208784i −0.799440 0.600746i \(-0.794870\pi\)
0.919981 + 0.391962i \(0.128204\pi\)
\(102\) 0 0
\(103\) 14.4909 1.42783 0.713917 0.700230i \(-0.246919\pi\)
0.713917 + 0.700230i \(0.246919\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.24370 5.61826i 0.313581 0.543138i −0.665554 0.746350i \(-0.731805\pi\)
0.979135 + 0.203212i \(0.0651381\pi\)
\(108\) 0 0
\(109\) 2.93644i 0.281260i −0.990062 0.140630i \(-0.955087\pi\)
0.990062 0.140630i \(-0.0449129\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.66909 2.89095i −0.157015 0.271957i 0.776776 0.629777i \(-0.216854\pi\)
−0.933791 + 0.357819i \(0.883520\pi\)
\(114\) 0 0
\(115\) −8.86929 5.12069i −0.827066 0.477507i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.03912 + 2.90934i 0.461936 + 0.266699i
\(120\) 0 0
\(121\) −1.57108 2.72119i −0.142825 0.247381i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.0660i 0.989773i
\(126\) 0 0
\(127\) −6.27512 + 10.8688i −0.556827 + 0.964452i 0.440932 + 0.897540i \(0.354648\pi\)
−0.997759 + 0.0669115i \(0.978685\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.26001 −0.110087 −0.0550437 0.998484i \(-0.517530\pi\)
−0.0550437 + 0.998484i \(0.517530\pi\)
\(132\) 0 0
\(133\) 1.59229 2.75793i 0.138069 0.239143i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7.20794 4.16151i 0.615816 0.355542i −0.159422 0.987211i \(-0.550963\pi\)
0.775238 + 0.631669i \(0.217630\pi\)
\(138\) 0 0
\(139\) 2.89438 + 5.01322i 0.245498 + 0.425216i 0.962272 0.272091i \(-0.0877151\pi\)
−0.716773 + 0.697306i \(0.754382\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.77131 + 8.29723i −0.482621 + 0.693849i
\(144\) 0 0
\(145\) 8.47375 + 4.89232i 0.703707 + 0.406285i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −12.3009 + 7.10193i −1.00773 + 0.581812i −0.910526 0.413452i \(-0.864323\pi\)
−0.0972028 + 0.995265i \(0.530990\pi\)
\(150\) 0 0
\(151\) 11.1509i 0.907451i 0.891142 + 0.453725i \(0.149905\pi\)
−0.891142 + 0.453725i \(0.850095\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10.9066 −0.876036
\(156\) 0 0
\(157\) 4.04749 0.323025 0.161513 0.986871i \(-0.448363\pi\)
0.161513 + 0.986871i \(0.448363\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 7.55347i 0.595297i
\(162\) 0 0
\(163\) −4.56675 + 2.63661i −0.357695 + 0.206515i −0.668069 0.744099i \(-0.732879\pi\)
0.310374 + 0.950615i \(0.399546\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.63307 + 2.67491i 0.358518 + 0.206990i 0.668430 0.743775i \(-0.266966\pi\)
−0.309912 + 0.950765i \(0.600300\pi\)
\(168\) 0 0
\(169\) −12.8163 2.17754i −0.985872 0.167503i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.87155 + 8.43777i 0.370377 + 0.641511i 0.989623 0.143685i \(-0.0458952\pi\)
−0.619247 + 0.785197i \(0.712562\pi\)
\(174\) 0 0
\(175\) 2.73809 1.58083i 0.206980 0.119500i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.70263 + 9.87724i −0.426234 + 0.738259i −0.996535 0.0831767i \(-0.973493\pi\)
0.570301 + 0.821436i \(0.306827\pi\)
\(180\) 0 0
\(181\) 25.4727 1.89337 0.946685 0.322160i \(-0.104409\pi\)
0.946685 + 0.322160i \(0.104409\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.71663 8.16943i 0.346773 0.600629i
\(186\) 0 0
\(187\) 16.3108i 1.19277i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.18905 + 14.1838i 0.592539 + 1.02631i 0.993889 + 0.110382i \(0.0352075\pi\)
−0.401351 + 0.915924i \(0.631459\pi\)
\(192\) 0 0
\(193\) 8.28132 + 4.78122i 0.596103 + 0.344160i 0.767507 0.641041i \(-0.221497\pi\)
−0.171404 + 0.985201i \(0.554830\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.60716 1.50525i −0.185753 0.107244i 0.404240 0.914653i \(-0.367536\pi\)
−0.589993 + 0.807409i \(0.700869\pi\)
\(198\) 0 0
\(199\) −2.30985 4.00077i −0.163741 0.283607i 0.772467 0.635055i \(-0.219023\pi\)
−0.936207 + 0.351448i \(0.885689\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 7.21661i 0.506507i
\(204\) 0 0
\(205\) 3.42995 5.94085i 0.239558 0.414927i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.92697 −0.617492
\(210\) 0 0
\(211\) −1.16932 + 2.02533i −0.0804995 + 0.139429i −0.903465 0.428663i \(-0.858985\pi\)
0.822965 + 0.568092i \(0.192318\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.36053 + 4.24960i −0.501984 + 0.289821i
\(216\) 0 0
\(217\) 4.02203 + 6.96637i 0.273033 + 0.472908i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.9862 8.92559i 1.27715 0.600400i
\(222\) 0 0
\(223\) −4.21429 2.43312i −0.282210 0.162934i 0.352214 0.935920i \(-0.385429\pi\)
−0.634423 + 0.772986i \(0.718762\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 24.3177 14.0398i 1.61402 0.931855i 0.625594 0.780149i \(-0.284857\pi\)
0.988426 0.151706i \(-0.0484766\pi\)
\(228\) 0 0
\(229\) 0.179280i 0.0118471i −0.999982 0.00592357i \(-0.998114\pi\)
0.999982 0.00592357i \(-0.00188554\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −15.1384 −0.991747 −0.495873 0.868395i \(-0.665152\pi\)
−0.495873 + 0.868395i \(0.665152\pi\)
\(234\) 0 0
\(235\) 3.58371 0.233775
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.8703i 0.832512i 0.909247 + 0.416256i \(0.136658\pi\)
−0.909247 + 0.416256i \(0.863342\pi\)
\(240\) 0 0
\(241\) 8.51452 4.91586i 0.548469 0.316659i −0.200035 0.979789i \(-0.564106\pi\)
0.748504 + 0.663130i \(0.230772\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 1.17420 + 0.677925i 0.0750170 + 0.0433111i
\(246\) 0 0
\(247\) −4.88501 10.3912i −0.310825 0.661177i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 8.66099 + 15.0013i 0.546677 + 0.946872i 0.998499 + 0.0547641i \(0.0174407\pi\)
−0.451823 + 0.892108i \(0.649226\pi\)
\(252\) 0 0
\(253\) 18.3370 10.5869i 1.15284 0.665592i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.35302 9.27170i 0.333912 0.578353i −0.649363 0.760478i \(-0.724964\pi\)
0.983275 + 0.182126i \(0.0582978\pi\)
\(258\) 0 0
\(259\) −6.95744 −0.432314
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.03484 + 12.1847i −0.433787 + 0.751341i −0.997196 0.0748372i \(-0.976156\pi\)
0.563409 + 0.826178i \(0.309490\pi\)
\(264\) 0 0
\(265\) 15.0346i 0.923567i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.272011 0.471138i −0.0165848 0.0287258i 0.857614 0.514294i \(-0.171946\pi\)
−0.874199 + 0.485568i \(0.838613\pi\)
\(270\) 0 0
\(271\) −0.641910 0.370607i −0.0389933 0.0225128i 0.480377 0.877062i \(-0.340500\pi\)
−0.519370 + 0.854550i \(0.673833\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.67536 4.43137i −0.462842 0.267222i
\(276\) 0 0
\(277\) −7.06675 12.2400i −0.424600 0.735429i 0.571783 0.820405i \(-0.306252\pi\)
−0.996383 + 0.0849763i \(0.972919\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 25.8051i 1.53940i −0.638404 0.769702i \(-0.720405\pi\)
0.638404 0.769702i \(-0.279595\pi\)
\(282\) 0 0
\(283\) 13.6409 23.6267i 0.810865 1.40446i −0.101394 0.994846i \(-0.532330\pi\)
0.912259 0.409613i \(-0.134336\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −5.05949 −0.298652
\(288\) 0 0
\(289\) −8.42851 + 14.5986i −0.495795 + 0.858742i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.50010 0.866083i 0.0876367 0.0505971i −0.455541 0.890215i \(-0.650554\pi\)
0.543178 + 0.839618i \(0.317221\pi\)
\(294\) 0 0
\(295\) 4.26793 + 7.39227i 0.248489 + 0.430395i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 22.3577 + 15.5514i 1.29298 + 0.899360i
\(300\) 0 0
\(301\) 5.42872 + 3.13427i 0.312906 + 0.180656i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.0393 8.68292i 0.861145 0.497182i
\(306\) 0 0
\(307\) 21.4365i 1.22345i 0.791072 + 0.611723i \(0.209523\pi\)
−0.791072 + 0.611723i \(0.790477\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 27.2724 1.54647 0.773237 0.634117i \(-0.218636\pi\)
0.773237 + 0.634117i \(0.218636\pi\)
\(312\) 0 0
\(313\) 7.28221 0.411615 0.205807 0.978593i \(-0.434018\pi\)
0.205807 + 0.978593i \(0.434018\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 2.54836i 0.143130i 0.997436 + 0.0715651i \(0.0227994\pi\)
−0.997436 + 0.0715651i \(0.977201\pi\)
\(318\) 0 0
\(319\) −17.5192 + 10.1147i −0.980890 + 0.566317i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 16.0475 + 9.26503i 0.892907 + 0.515520i
\(324\) 0 0
\(325\) 0.958120 11.3592i 0.0531469 0.630096i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −1.32157 2.28903i −0.0728607 0.126198i
\(330\) 0 0
\(331\) 0.169450 0.0978320i 0.00931381 0.00537733i −0.495336 0.868702i \(-0.664955\pi\)
0.504650 + 0.863324i \(0.331622\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.36450 + 5.82749i −0.183822 + 0.318390i
\(336\) 0 0
\(337\) 2.00900 0.109437 0.0547185 0.998502i \(-0.482574\pi\)
0.0547185 + 0.998502i \(0.482574\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.2745 19.5280i 0.610549 1.05750i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.27450 + 3.93956i 0.122102 + 0.211486i 0.920596 0.390516i \(-0.127703\pi\)
−0.798495 + 0.602002i \(0.794370\pi\)
\(348\) 0 0
\(349\) 4.65700 + 2.68872i 0.249284 + 0.143924i 0.619436 0.785047i \(-0.287361\pi\)
−0.370153 + 0.928971i \(0.620695\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −7.10223 4.10047i −0.378013 0.218246i 0.298940 0.954272i \(-0.403367\pi\)
−0.676954 + 0.736026i \(0.736700\pi\)
\(354\) 0 0
\(355\) 11.1935 + 19.3877i 0.594090 + 1.02899i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 31.7664i 1.67657i −0.545233 0.838284i \(-0.683559\pi\)
0.545233 0.838284i \(-0.316441\pi\)
\(360\) 0 0
\(361\) −4.42921 + 7.67162i −0.233117 + 0.403770i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −20.9277 −1.09541
\(366\) 0 0
\(367\) −8.66870 + 15.0146i −0.452502 + 0.783757i −0.998541 0.0540031i \(-0.982802\pi\)
0.546038 + 0.837760i \(0.316135\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 9.60308 5.54434i 0.498567 0.287848i
\(372\) 0 0
\(373\) −8.04814 13.9398i −0.416717 0.721775i 0.578890 0.815406i \(-0.303486\pi\)
−0.995607 + 0.0936306i \(0.970153\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −21.3607 14.8578i −1.10013 0.765218i
\(378\) 0 0
\(379\) −15.2907 8.82811i −0.785432 0.453470i 0.0529197 0.998599i \(-0.483147\pi\)
−0.838352 + 0.545129i \(0.816481\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7.12262 + 4.11225i −0.363949 + 0.210126i −0.670812 0.741628i \(-0.734054\pi\)
0.306863 + 0.951754i \(0.400721\pi\)
\(384\) 0 0
\(385\) 3.80070i 0.193702i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −15.1688 −0.769090 −0.384545 0.923106i \(-0.625642\pi\)
−0.384545 + 0.923106i \(0.625642\pi\)
\(390\) 0 0
\(391\) −43.9512 −2.22271
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 20.0206i 1.00734i
\(396\) 0 0
\(397\) −24.5139 + 14.1531i −1.23032 + 0.710325i −0.967096 0.254410i \(-0.918119\pi\)
−0.263223 + 0.964735i \(0.584785\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −14.8257 8.55962i −0.740360 0.427447i 0.0818403 0.996645i \(-0.473920\pi\)
−0.822200 + 0.569198i \(0.807254\pi\)
\(402\) 0 0
\(403\) 28.9007 + 2.43769i 1.43965 + 0.121430i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.75149 + 16.8901i 0.483364 + 0.837210i
\(408\) 0 0
\(409\) 9.82072 5.66999i 0.485603 0.280363i −0.237145 0.971474i \(-0.576212\pi\)
0.722749 + 0.691111i \(0.242878\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.14779 5.45213i 0.154893 0.268282i
\(414\) 0 0
\(415\) −13.2780 −0.651790
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0.0694276 0.120252i 0.00339176 0.00587470i −0.864325 0.502934i \(-0.832254\pi\)
0.867716 + 0.497060i \(0.165587\pi\)
\(420\) 0 0
\(421\) 24.3258i 1.18557i −0.805362 0.592783i \(-0.798029\pi\)
0.805362 0.592783i \(-0.201971\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 9.19837 + 15.9320i 0.446186 + 0.772818i
\(426\) 0 0
\(427\) −11.0921 6.40404i −0.536785 0.309913i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.9349 14.3962i −1.20107 0.693440i −0.240280 0.970704i \(-0.577239\pi\)
−0.960794 + 0.277263i \(0.910573\pi\)
\(432\) 0 0
\(433\) −12.6367 21.8873i −0.607279 1.05184i −0.991687 0.128675i \(-0.958928\pi\)
0.384408 0.923163i \(-0.374406\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0547i 1.15069i
\(438\) 0 0
\(439\) 3.01512 5.22234i 0.143904 0.249248i −0.785060 0.619420i \(-0.787368\pi\)
0.928963 + 0.370172i \(0.120701\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.4988 −1.11646 −0.558230 0.829686i \(-0.688519\pi\)
−0.558230 + 0.829686i \(0.688519\pi\)
\(444\) 0 0
\(445\) −5.67301 + 9.82594i −0.268927 + 0.465794i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −20.2543 + 11.6938i −0.955859 + 0.551865i −0.894896 0.446275i \(-0.852750\pi\)
−0.0609627 + 0.998140i \(0.519417\pi\)
\(450\) 0 0
\(451\) 7.09133 + 12.2826i 0.333918 + 0.578363i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.42410 2.07981i 0.207405 0.0975031i
\(456\) 0 0
\(457\) −22.6616 13.0837i −1.06007 0.612030i −0.134616 0.990898i \(-0.542980\pi\)
−0.925451 + 0.378868i \(0.876313\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.8524 12.6165i 1.01777 0.587609i 0.104312 0.994545i \(-0.466736\pi\)
0.913457 + 0.406936i \(0.133403\pi\)
\(462\) 0 0
\(463\) 18.1600i 0.843968i −0.906603 0.421984i \(-0.861334\pi\)
0.906603 0.421984i \(-0.138666\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.6328 0.584577 0.292289 0.956330i \(-0.405583\pi\)
0.292289 + 0.956330i \(0.405583\pi\)
\(468\) 0 0
\(469\) 4.96294 0.229167
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 17.5719i 0.807956i
\(474\) 0 0
\(475\) 8.71966 5.03430i 0.400086 0.230990i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −10.6585 6.15368i −0.486999 0.281169i 0.236330 0.971673i \(-0.424055\pi\)
−0.723329 + 0.690504i \(0.757389\pi\)
\(480\) 0 0
\(481\) −14.3243 + 20.5935i −0.653130 + 0.938984i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −8.27299 14.3292i −0.375657 0.650658i
\(486\) 0 0
\(487\) 13.5393 7.81693i 0.613525 0.354219i −0.160819 0.986984i \(-0.551413\pi\)
0.774344 + 0.632765i \(0.218080\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.10543 + 8.84286i −0.230405 + 0.399073i −0.957927 0.287011i \(-0.907338\pi\)
0.727523 + 0.686084i \(0.240672\pi\)
\(492\) 0 0
\(493\) 41.9911 1.89119
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 8.25572 14.2993i 0.370319 0.641412i
\(498\) 0 0
\(499\) 0.681003i 0.0304859i −0.999884 0.0152430i \(-0.995148\pi\)
0.999884 0.0152430i \(-0.00485217\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17.6701 30.6056i −0.787873 1.36464i −0.927268 0.374399i \(-0.877849\pi\)
0.139395 0.990237i \(-0.455484\pi\)
\(504\) 0 0
\(505\) 2.84492 + 1.64251i 0.126597 + 0.0730909i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −14.5717 8.41300i −0.645881 0.372900i 0.140995 0.990010i \(-0.454970\pi\)
−0.786876 + 0.617111i \(0.788303\pi\)
\(510\) 0 0
\(511\) 7.71755 + 13.3672i 0.341404 + 0.591330i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.6475i 0.865774i
\(516\) 0 0
\(517\) −3.70461 + 6.41658i −0.162929 + 0.282201i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −4.76619 −0.208811 −0.104405 0.994535i \(-0.533294\pi\)
−0.104405 + 0.994535i \(0.533294\pi\)
\(522\) 0 0
\(523\) 0.319080 0.552662i 0.0139524 0.0241662i −0.858965 0.512034i \(-0.828892\pi\)
0.872917 + 0.487868i \(0.162225\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −40.5351 + 23.4029i −1.76573 + 1.01945i
\(528\) 0 0
\(529\) −17.0275 29.4924i −0.740325 1.28228i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.4167 + 14.9757i −0.451196 + 0.648670i
\(534\) 0 0
\(535\) 7.61752 + 4.39798i 0.329334 + 0.190141i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −2.42763 + 1.40159i −0.104565 + 0.0603708i
\(540\) 0 0
\(541\) 22.2050i 0.954668i 0.878722 + 0.477334i \(0.158397\pi\)
−0.878722 + 0.477334i \(0.841603\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.98138 0.170544
\(546\) 0 0
\(547\) 16.2608 0.695263 0.347631 0.937631i \(-0.386986\pi\)
0.347631 + 0.937631i \(0.386986\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.9819i 0.979062i
\(552\) 0 0
\(553\) 12.7878 7.38303i 0.543792 0.313958i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.5915 + 10.7338i 0.787747 + 0.454806i 0.839169 0.543871i \(-0.183042\pi\)
−0.0514219 + 0.998677i \(0.516375\pi\)
\(558\) 0 0
\(559\) 20.4541 9.61566i 0.865115 0.406699i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 5.59103 + 9.68395i 0.235634 + 0.408130i 0.959457 0.281856i \(-0.0909500\pi\)
−0.723823 + 0.689986i \(0.757617\pi\)
\(564\) 0 0
\(565\) 3.91969 2.26304i 0.164903 0.0952066i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.58165 11.3998i 0.275917 0.477903i −0.694449 0.719542i \(-0.744352\pi\)
0.970366 + 0.241639i \(0.0776851\pi\)
\(570\) 0 0
\(571\) −17.4199 −0.729001 −0.364501 0.931203i \(-0.618760\pi\)
−0.364501 + 0.931203i \(0.618760\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −11.9408 + 20.6821i −0.497965 + 0.862501i
\(576\) 0 0
\(577\) 8.47023i 0.352620i −0.984335 0.176310i \(-0.943584\pi\)
0.984335 0.176310i \(-0.0564161\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4.89655 + 8.48107i 0.203143 + 0.351854i
\(582\) 0 0
\(583\) −26.9192 15.5418i −1.11488 0.643676i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.2459 10.5342i −0.753087 0.434795i 0.0737213 0.997279i \(-0.476512\pi\)
−0.826808 + 0.562484i \(0.809846\pi\)
\(588\) 0 0
\(589\) 12.8085 + 22.1850i 0.527765 + 0.914116i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 13.2761i 0.545185i −0.962130 0.272593i \(-0.912119\pi\)
0.962130 0.272593i \(-0.0878811\pi\)
\(594\) 0 0
\(595\) −3.94463 + 6.83230i −0.161714 + 0.280097i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −5.39084 −0.220264 −0.110132 0.993917i \(-0.535127\pi\)
−0.110132 + 0.993917i \(0.535127\pi\)
\(600\) 0 0
\(601\) 12.2204 21.1663i 0.498480 0.863392i −0.501519 0.865147i \(-0.667225\pi\)
0.999998 + 0.00175467i \(0.000558528\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.68953 2.13015i 0.150001 0.0866029i
\(606\) 0 0
\(607\) 12.9291 + 22.3939i 0.524776 + 0.908939i 0.999584 + 0.0288492i \(0.00918427\pi\)
−0.474808 + 0.880090i \(0.657482\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.49628 0.800985i −0.384178 0.0324044i
\(612\) 0 0
\(613\) 12.2706 + 7.08441i 0.495603 + 0.286136i 0.726896 0.686748i \(-0.240962\pi\)
−0.231293 + 0.972884i \(0.574296\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −39.8763 + 23.0226i −1.60536 + 0.926855i −0.614970 + 0.788550i \(0.710832\pi\)
−0.990390 + 0.138305i \(0.955835\pi\)
\(618\) 0 0
\(619\) 12.0284i 0.483464i −0.970343 0.241732i \(-0.922285\pi\)
0.970343 0.241732i \(-0.0777155\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 8.36820 0.335265
\(624\) 0 0
\(625\) 0.804500 0.0321800
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.4831i 1.61417i
\(630\) 0 0
\(631\) 21.0476 12.1518i 0.837890 0.483756i −0.0186564 0.999826i \(-0.505939\pi\)
0.856546 + 0.516070i \(0.172606\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −14.7365 8.50812i −0.584800 0.337634i
\(636\) 0 0
\(637\) −2.95993 2.05884i −0.117277 0.0815742i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 8.88276 + 15.3854i 0.350848 + 0.607687i 0.986398 0.164373i \(-0.0525600\pi\)
−0.635550 + 0.772060i \(0.719227\pi\)
\(642\) 0 0
\(643\) −37.3742 + 21.5780i −1.47389 + 0.850953i −0.999568 0.0293964i \(-0.990641\pi\)
−0.474326 + 0.880349i \(0.657308\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.39974 9.35262i 0.212286 0.367689i −0.740144 0.672449i \(-0.765243\pi\)
0.952429 + 0.304759i \(0.0985760\pi\)
\(648\) 0 0
\(649\) −17.6477 −0.692731
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.53280 + 2.65489i −0.0599831 + 0.103894i −0.894458 0.447153i \(-0.852438\pi\)
0.834475 + 0.551047i \(0.185771\pi\)
\(654\) 0 0
\(655\) 1.70838i 0.0667520i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.82436 3.15988i −0.0710670 0.123092i 0.828302 0.560282i \(-0.189307\pi\)
−0.899369 + 0.437190i \(0.855974\pi\)
\(660\) 0 0
\(661\) −23.5777 13.6126i −0.917068 0.529469i −0.0343693 0.999409i \(-0.510942\pi\)
−0.882698 + 0.469940i \(0.844276\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.73934 + 2.15891i 0.145005 + 0.0837189i
\(666\) 0 0
\(667\) 27.2552 + 47.2074i 1.05533 + 1.82788i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 35.9034i 1.38604i
\(672\) 0 0
\(673\) 14.1485 24.5059i 0.545384 0.944633i −0.453199 0.891410i \(-0.649717\pi\)
0.998583 0.0532233i \(-0.0169495\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 28.8361 1.10826 0.554131 0.832429i \(-0.313051\pi\)
0.554131 + 0.832429i \(0.313051\pi\)
\(678\) 0 0
\(679\) −6.10170 + 10.5685i −0.234162 + 0.405580i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −35.4243 + 20.4522i −1.35547 + 0.782583i −0.989010 0.147849i \(-0.952765\pi\)
−0.366464 + 0.930432i \(0.619432\pi\)
\(684\) 0 0
\(685\) 5.64238 + 9.77290i 0.215584 + 0.373403i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.36034 39.8393i 0.128019 1.51776i
\(690\) 0 0
\(691\) −36.5934 21.1272i −1.39208 0.803717i −0.398534 0.917154i \(-0.630481\pi\)
−0.993545 + 0.113436i \(0.963814\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.79717 + 3.92435i −0.257831 + 0.148859i
\(696\) 0 0
\(697\) 29.4395i 1.11510i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 30.3734 1.14719 0.573594 0.819140i \(-0.305549\pi\)
0.573594 + 0.819140i \(0.305549\pi\)
\(702\) 0 0
\(703\) −22.1566 −0.835650
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.42285i 0.0911208i
\(708\) 0 0
\(709\) −20.2907 + 11.7148i −0.762033 + 0.439960i −0.830025 0.557726i \(-0.811674\pi\)
0.0679919 + 0.997686i \(0.478341\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −52.6203 30.3803i −1.97064 1.13775i
\(714\) 0 0
\(715\) −11.2498 7.82503i −0.420719 0.292639i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 3.51491 + 6.08800i 0.131084 + 0.227044i 0.924095 0.382164i \(-0.124821\pi\)
−0.793011 + 0.609208i \(0.791488\pi\)
\(720\) 0 0
\(721\) 12.5495 7.24547i 0.467369 0.269835i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11.4083 19.7597i 0.423692 0.733857i
\(726\) 0 0
\(727\) −20.6810 −0.767015 −0.383507 0.923538i \(-0.625284\pi\)
−0.383507 + 0.923538i \(0.625284\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −18.2373 + 31.5880i −0.674531 + 1.16832i
\(732\) 0 0
\(733\) 39.0035i 1.44063i −0.693648 0.720314i \(-0.743998\pi\)
0.693648 0.720314i \(-0.256002\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.95602 12.0482i −0.256228 0.443800i
\(738\) 0 0
\(739\) 24.8910 + 14.3708i 0.915629 + 0.528639i 0.882238 0.470803i \(-0.156036\pi\)
0.0333913 + 0.999442i \(0.489369\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.48059 + 3.16422i 0.201063 + 0.116084i 0.597151 0.802129i \(-0.296299\pi\)
−0.396088 + 0.918213i \(0.629633\pi\)
\(744\) 0 0
\(745\) −9.62915 16.6782i −0.352785 0.611041i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 6.48741i 0.237045i
\(750\) 0 0
\(751\) −15.7203 + 27.2283i −0.573641 + 0.993575i 0.422547 + 0.906341i \(0.361136\pi\)
−0.996188 + 0.0872339i \(0.972197\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −15.1190 −0.550237
\(756\) 0 0
\(757\) −12.7212 + 22.0337i −0.462358 + 0.800828i −0.999078 0.0429328i \(-0.986330\pi\)
0.536720 + 0.843760i \(0.319663\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.8492 10.3053i 0.647034 0.373565i −0.140285 0.990111i \(-0.544802\pi\)
0.787319 + 0.616546i \(0.211469\pi\)
\(762\) 0 0
\(763\) −1.46822 2.54304i −0.0531532 0.0920641i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.65713 20.5423i −0.348699 0.741739i
\(768\) 0 0
\(769\) 7.95173 + 4.59093i 0.286747 + 0.165553i 0.636474 0.771298i \(-0.280392\pi\)
−0.349727 + 0.936852i \(0.613726\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 7.35736 4.24777i 0.264626 0.152782i −0.361817 0.932249i \(-0.617843\pi\)
0.626443 + 0.779467i \(0.284510\pi\)
\(774\) 0 0
\(775\) 25.4327i 0.913569i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −16.1124 −0.577285
\(780\) 0 0
\(781\) −46.2846 −1.65619
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.48780i 0.195868i
\(786\) 0 0
\(787\) 1.70464 0.984173i 0.0607638 0.0350820i −0.469310 0.883033i \(-0.655497\pi\)
0.530074 + 0.847951i \(0.322164\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.89095 1.66909i −0.102790 0.0593460i
\(792\) 0 0
\(793\) −41.7924 + 19.6470i −1.48409 + 0.697686i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.2449 + 33.3332i 0.681690 + 1.18072i 0.974465 + 0.224540i \(0.0720879\pi\)
−0.292775 + 0.956181i \(0.594579\pi\)
\(798\) 0 0
\(799\) 13.3191 7.68981i 0.471197 0.272046i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 21.6337 37.4707i 0.763437 1.32231i
\(804\) 0 0
\(805\) −10.2414 −0.360961
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0.899878 1.55863i 0.0316380 0.0547987i −0.849773 0.527149i \(-0.823261\pi\)
0.881411 + 0.472350i \(0.156594\pi\)
\(810\) 0 0
\(811\) 49.9235i 1.75305i 0.481357 + 0.876525i \(0.340144\pi\)
−0.481357 + 0.876525i \(0.659856\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −3.57485 6.19183i −0.125222 0.216890i
\(816\) 0 0
\(817\) 17.2882 + 9.98135i 0.604838 + 0.349203i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.65310 2.10912i −0.127494 0.0736087i 0.434897 0.900480i \(-0.356785\pi\)
−0.562391 + 0.826872i \(0.690118\pi\)
\(822\) 0 0
\(823\) 7.24912 + 12.5558i 0.252688 + 0.437669i 0.964265 0.264939i \(-0.0853519\pi\)
−0.711577 + 0.702608i \(0.752019\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.2618i 0.913213i −0.889669 0.456607i \(-0.849065\pi\)
0.889669 0.456607i \(-0.150935\pi\)
\(828\) 0 0
\(829\) −27.5790 + 47.7682i −0.957858 + 1.65906i −0.230170 + 0.973150i \(0.573928\pi\)
−0.727688 + 0.685909i \(0.759405\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.81868 0.201605
\(834\) 0 0
\(835\) −3.62677 + 6.28175i −0.125510 + 0.217389i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.07974 3.51014i 0.209896 0.121184i −0.391367 0.920235i \(-0.627998\pi\)
0.601263 + 0.799051i \(0.294664\pi\)
\(840\) 0 0
\(841\) −11.5397 19.9874i −0.397922 0.689221i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.95241 17.3770i 0.101566 0.597788i
\(846\) 0 0
\(847\) −2.72119 1.57108i −0.0935012 0.0539829i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 45.5121 26.2764i 1.56013 0.900744i
\(852\) 0 0
\(853\) 57.6508i 1.97393i −0.160945 0.986963i \(-0.551454\pi\)
0.160945 0.986963i \(-0.448546\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.50654 0.0856217 0.0428109 0.999083i \(-0.486369\pi\)
0.0428109 + 0.999083i \(0.486369\pi\)
\(858\) 0 0
\(859\) 17.1305 0.584486 0.292243 0.956344i \(-0.405598\pi\)
0.292243 + 0.956344i \(0.405598\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 55.6429i 1.89411i 0.321079 + 0.947053i \(0.395955\pi\)
−0.321079 + 0.947053i \(0.604045\pi\)
\(864\) 0 0
\(865\) −11.4403 + 6.60509i −0.388984 + 0.224580i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −35.8465 20.6960i −1.21601 0.702064i
\(870\) 0 0
\(871\) 10.2179 14.6899i 0.346220 0.497750i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.53300 + 9.58344i 0.187050 + 0.323979i
\(876\) 0 0
\(877\) 34.7751 20.0774i 1.17427 0.677967i 0.219590 0.975592i \(-0.429528\pi\)
0.954683 + 0.297626i \(0.0961947\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −25.3837 + 43.9658i −0.855197 + 1.48124i 0.0212650 + 0.999774i \(0.493231\pi\)
−0.876462 + 0.481471i \(0.840103\pi\)
\(882\) 0 0
\(883\) −46.3312 −1.55917 −0.779585 0.626297i \(-0.784570\pi\)
−0.779585 + 0.626297i \(0.784570\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −5.12752 + 8.88113i −0.172165 + 0.298199i −0.939177 0.343435i \(-0.888410\pi\)
0.767011 + 0.641634i \(0.221743\pi\)
\(888\) 0 0
\(889\) 12.5502i 0.420921i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −4.20866 7.28961i −0.140837 0.243938i
\(894\) 0 0
\(895\) −13.3921 7.73191i −0.447647 0.258449i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 50.2736 + 29.0255i 1.67672 + 0.968053i
\(900\) 0 0
\(901\) 32.2607 + 55.8772i 1.07476 + 1.86154i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 34.5372i 1.14805i
\(906\) 0 0
\(907\) 26.1472 45.2883i 0.868205 1.50377i 0.00437495 0.999990i \(-0.498607\pi\)
0.863830 0.503784i \(-0.168059\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −50.9172 −1.68696 −0.843481 0.537159i \(-0.819498\pi\)
−0.843481 + 0.537159i \(0.819498\pi\)
\(912\) 0 0
\(913\) 13.7259 23.7740i 0.454262 0.786805i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −1.09120 + 0.630004i −0.0360346 + 0.0208046i
\(918\) 0 0
\(919\) −11.4323 19.8013i −0.377117 0.653186i 0.613524 0.789676i \(-0.289751\pi\)
−0.990641 + 0.136490i \(0.956418\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −25.3278 53.8763i −0.833674 1.77336i
\(924\) 0 0
\(925\) −19.0501 10.9986i −0.626363 0.361631i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −28.8090 + 16.6329i −0.945193 + 0.545708i −0.891584 0.452854i \(-0.850406\pi\)
−0.0536089 + 0.998562i \(0.517072\pi\)
\(930\) 0 0
\(931\) 3.18458i 0.104371i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 22.1150 0.723239
\(936\) 0 0
\(937\) −51.2179 −1.67322 −0.836608 0.547802i \(-0.815465\pi\)
−0.836608 + 0.547802i \(0.815465\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 10.2918i 0.335502i −0.985829 0.167751i \(-0.946350\pi\)
0.985829 0.167751i \(-0.0536504\pi\)
\(942\) 0 0
\(943\) 33.0966 19.1083i 1.07777 0.622253i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −30.7341 17.7444i −0.998725 0.576614i −0.0908539 0.995864i \(-0.528960\pi\)
−0.907871 + 0.419250i \(0.862293\pi\)
\(948\) 0 0
\(949\) 55.4551 + 4.67749i 1.80015 + 0.151838i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −16.6676 28.8691i −0.539916 0.935163i −0.998908 0.0467220i \(-0.985123\pi\)
0.458992 0.888441i \(-0.348211\pi\)
\(954\) 0 0
\(955\) −19.2312 + 11.1031i −0.622306 + 0.359289i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 4.16151 7.20794i 0.134382 0.232757i
\(960\) 0 0
\(961\) −33.7070 −1.08732
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −6.48263 + 11.2282i −0.208683 + 0.361450i
\(966\) 0 0
\(967\) 29.7131i 0.955509i 0.878494 + 0.477754i \(0.158549\pi\)
−0.878494 + 0.477754i \(0.841451\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −4.41851 7.65308i −0.141797 0.245599i 0.786377 0.617747i \(-0.211955\pi\)
−0.928173 + 0.372148i \(0.878621\pi\)
\(972\) 0 0
\(973\) 5.01322 + 2.89438i 0.160716 + 0.0927896i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.8437 + 7.41533i 0.410907 + 0.237237i 0.691180 0.722683i \(-0.257091\pi\)
−0.280272 + 0.959921i \(0.590425\pi\)
\(978\) 0 0
\(979\) −11.7288 20.3149i −0.374854 0.649266i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 20.3390i 0.648714i −0.945935 0.324357i \(-0.894852\pi\)
0.945935 0.324357i \(-0.105148\pi\)
\(984\) 0 0
\(985\) 2.04089 3.53493i 0.0650282 0.112632i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −47.3493 −1.50562
\(990\) 0 0
\(991\) 25.4453 44.0726i 0.808297 1.40001i −0.105745 0.994393i \(-0.533723\pi\)
0.914042 0.405619i \(-0.132944\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 5.42445 3.13181i 0.171967 0.0992849i
\(996\) 0 0
\(997\) 3.69697 + 6.40334i 0.117084 + 0.202796i 0.918611 0.395163i \(-0.129312\pi\)
−0.801527 + 0.597959i \(0.795979\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.cf.c.2773.5 16
3.2 odd 2 364.2.u.a.225.5 16
12.11 even 2 1456.2.cc.f.225.4 16
13.10 even 6 inner 3276.2.cf.c.1765.4 16
21.2 odd 6 2548.2.bb.d.1733.5 16
21.5 even 6 2548.2.bb.c.1733.4 16
21.11 odd 6 2548.2.bq.e.1941.4 16
21.17 even 6 2548.2.bq.c.1941.5 16
21.20 even 2 2548.2.u.c.589.4 16
39.17 odd 6 4732.2.g.k.337.8 16
39.20 even 12 4732.2.a.t.1.4 8
39.23 odd 6 364.2.u.a.309.5 yes 16
39.32 even 12 4732.2.a.s.1.4 8
39.35 odd 6 4732.2.g.k.337.7 16
156.23 even 6 1456.2.cc.f.673.4 16
273.23 odd 6 2548.2.bq.e.361.4 16
273.62 even 6 2548.2.u.c.1765.4 16
273.101 even 6 2548.2.bb.c.569.4 16
273.179 odd 6 2548.2.bb.d.569.5 16
273.257 even 6 2548.2.bq.c.361.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.5 16 3.2 odd 2
364.2.u.a.309.5 yes 16 39.23 odd 6
1456.2.cc.f.225.4 16 12.11 even 2
1456.2.cc.f.673.4 16 156.23 even 6
2548.2.u.c.589.4 16 21.20 even 2
2548.2.u.c.1765.4 16 273.62 even 6
2548.2.bb.c.569.4 16 273.101 even 6
2548.2.bb.c.1733.4 16 21.5 even 6
2548.2.bb.d.569.5 16 273.179 odd 6
2548.2.bb.d.1733.5 16 21.2 odd 6
2548.2.bq.c.361.5 16 273.257 even 6
2548.2.bq.c.1941.5 16 21.17 even 6
2548.2.bq.e.361.4 16 273.23 odd 6
2548.2.bq.e.1941.4 16 21.11 odd 6
3276.2.cf.c.1765.4 16 13.10 even 6 inner
3276.2.cf.c.2773.5 16 1.1 even 1 trivial
4732.2.a.s.1.4 8 39.32 even 12
4732.2.a.t.1.4 8 39.20 even 12
4732.2.g.k.337.7 16 39.35 odd 6
4732.2.g.k.337.8 16 39.17 odd 6