Properties

Label 2548.2.bq.g
Level $2548$
Weight $2$
Character orbit 2548.bq
Analytic conductor $20.346$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(361,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bq (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 16 q^{9} - 12 q^{15} + 16 q^{23} + 24 q^{29} + 20 q^{39} + 4 q^{43} - 40 q^{51} + 24 q^{53} - 40 q^{65} - 24 q^{71} + 24 q^{79} - 8 q^{81} + 12 q^{85} - 48 q^{93} - 20 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1 0 −2.98281 0 −0.626773 + 0.361868i 0 0 0 5.89714 0
361.2 0 −2.62366 0 2.89137 1.66933i 0 0 0 3.88357 0
361.3 0 −1.87531 0 0.192850 0.111342i 0 0 0 0.516775 0
361.4 0 −1.22978 0 −2.34090 + 1.35152i 0 0 0 −1.48765 0
361.5 0 −0.901200 0 1.46259 0.844424i 0 0 0 −2.18784 0
361.6 0 −0.614820 0 −2.46799 + 1.42489i 0 0 0 −2.62200 0
361.7 0 0.614820 0 2.46799 1.42489i 0 0 0 −2.62200 0
361.8 0 0.901200 0 −1.46259 + 0.844424i 0 0 0 −2.18784 0
361.9 0 1.22978 0 2.34090 1.35152i 0 0 0 −1.48765 0
361.10 0 1.87531 0 −0.192850 + 0.111342i 0 0 0 0.516775 0
361.11 0 2.62366 0 −2.89137 + 1.66933i 0 0 0 3.88357 0
361.12 0 2.98281 0 0.626773 0.361868i 0 0 0 5.89714 0
1941.1 0 −2.98281 0 −0.626773 0.361868i 0 0 0 5.89714 0
1941.2 0 −2.62366 0 2.89137 + 1.66933i 0 0 0 3.88357 0
1941.3 0 −1.87531 0 0.192850 + 0.111342i 0 0 0 0.516775 0
1941.4 0 −1.22978 0 −2.34090 1.35152i 0 0 0 −1.48765 0
1941.5 0 −0.901200 0 1.46259 + 0.844424i 0 0 0 −2.18784 0
1941.6 0 −0.614820 0 −2.46799 1.42489i 0 0 0 −2.62200 0
1941.7 0 0.614820 0 2.46799 + 1.42489i 0 0 0 −2.62200 0
1941.8 0 0.901200 0 −1.46259 0.844424i 0 0 0 −2.18784 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 361.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
91.p odd 6 1 inner
91.u even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2548.2.bq.g 24
7.b odd 2 1 inner 2548.2.bq.g 24
7.c even 3 1 2548.2.u.f 24
7.c even 3 1 2548.2.bb.g 24
7.d odd 6 1 2548.2.u.f 24
7.d odd 6 1 2548.2.bb.g 24
13.e even 6 1 2548.2.bb.g 24
91.k even 6 1 2548.2.u.f 24
91.l odd 6 1 2548.2.u.f 24
91.p odd 6 1 inner 2548.2.bq.g 24
91.t odd 6 1 2548.2.bb.g 24
91.u even 6 1 inner 2548.2.bq.g 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2548.2.u.f 24 7.c even 3 1
2548.2.u.f 24 7.d odd 6 1
2548.2.u.f 24 91.k even 6 1
2548.2.u.f 24 91.l odd 6 1
2548.2.bb.g 24 7.c even 3 1
2548.2.bb.g 24 7.d odd 6 1
2548.2.bb.g 24 13.e even 6 1
2548.2.bb.g 24 91.t odd 6 1
2548.2.bq.g 24 1.a even 1 1 trivial
2548.2.bq.g 24 7.b odd 2 1 inner
2548.2.bq.g 24 91.p odd 6 1 inner
2548.2.bq.g 24 91.u even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 22T_{3}^{10} + 171T_{3}^{8} - 572T_{3}^{6} + 837T_{3}^{4} - 508T_{3}^{2} + 100 \) acting on \(S_{2}^{\mathrm{new}}(2548, [\chi])\). Copy content Toggle raw display