Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2548,2,Mod(361,2548)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 4, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2548.361");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2548.bq (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(20.3458824350\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
361.1 | 0 | −2.98281 | 0 | −0.626773 | + | 0.361868i | 0 | 0 | 0 | 5.89714 | 0 | ||||||||||||||||
361.2 | 0 | −2.62366 | 0 | 2.89137 | − | 1.66933i | 0 | 0 | 0 | 3.88357 | 0 | ||||||||||||||||
361.3 | 0 | −1.87531 | 0 | 0.192850 | − | 0.111342i | 0 | 0 | 0 | 0.516775 | 0 | ||||||||||||||||
361.4 | 0 | −1.22978 | 0 | −2.34090 | + | 1.35152i | 0 | 0 | 0 | −1.48765 | 0 | ||||||||||||||||
361.5 | 0 | −0.901200 | 0 | 1.46259 | − | 0.844424i | 0 | 0 | 0 | −2.18784 | 0 | ||||||||||||||||
361.6 | 0 | −0.614820 | 0 | −2.46799 | + | 1.42489i | 0 | 0 | 0 | −2.62200 | 0 | ||||||||||||||||
361.7 | 0 | 0.614820 | 0 | 2.46799 | − | 1.42489i | 0 | 0 | 0 | −2.62200 | 0 | ||||||||||||||||
361.8 | 0 | 0.901200 | 0 | −1.46259 | + | 0.844424i | 0 | 0 | 0 | −2.18784 | 0 | ||||||||||||||||
361.9 | 0 | 1.22978 | 0 | 2.34090 | − | 1.35152i | 0 | 0 | 0 | −1.48765 | 0 | ||||||||||||||||
361.10 | 0 | 1.87531 | 0 | −0.192850 | + | 0.111342i | 0 | 0 | 0 | 0.516775 | 0 | ||||||||||||||||
361.11 | 0 | 2.62366 | 0 | −2.89137 | + | 1.66933i | 0 | 0 | 0 | 3.88357 | 0 | ||||||||||||||||
361.12 | 0 | 2.98281 | 0 | 0.626773 | − | 0.361868i | 0 | 0 | 0 | 5.89714 | 0 | ||||||||||||||||
1941.1 | 0 | −2.98281 | 0 | −0.626773 | − | 0.361868i | 0 | 0 | 0 | 5.89714 | 0 | ||||||||||||||||
1941.2 | 0 | −2.62366 | 0 | 2.89137 | + | 1.66933i | 0 | 0 | 0 | 3.88357 | 0 | ||||||||||||||||
1941.3 | 0 | −1.87531 | 0 | 0.192850 | + | 0.111342i | 0 | 0 | 0 | 0.516775 | 0 | ||||||||||||||||
1941.4 | 0 | −1.22978 | 0 | −2.34090 | − | 1.35152i | 0 | 0 | 0 | −1.48765 | 0 | ||||||||||||||||
1941.5 | 0 | −0.901200 | 0 | 1.46259 | + | 0.844424i | 0 | 0 | 0 | −2.18784 | 0 | ||||||||||||||||
1941.6 | 0 | −0.614820 | 0 | −2.46799 | − | 1.42489i | 0 | 0 | 0 | −2.62200 | 0 | ||||||||||||||||
1941.7 | 0 | 0.614820 | 0 | 2.46799 | + | 1.42489i | 0 | 0 | 0 | −2.62200 | 0 | ||||||||||||||||
1941.8 | 0 | 0.901200 | 0 | −1.46259 | − | 0.844424i | 0 | 0 | 0 | −2.18784 | 0 | ||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
91.p | odd | 6 | 1 | inner |
91.u | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 2548.2.bq.g | 24 | |
7.b | odd | 2 | 1 | inner | 2548.2.bq.g | 24 | |
7.c | even | 3 | 1 | 2548.2.u.f | ✓ | 24 | |
7.c | even | 3 | 1 | 2548.2.bb.g | 24 | ||
7.d | odd | 6 | 1 | 2548.2.u.f | ✓ | 24 | |
7.d | odd | 6 | 1 | 2548.2.bb.g | 24 | ||
13.e | even | 6 | 1 | 2548.2.bb.g | 24 | ||
91.k | even | 6 | 1 | 2548.2.u.f | ✓ | 24 | |
91.l | odd | 6 | 1 | 2548.2.u.f | ✓ | 24 | |
91.p | odd | 6 | 1 | inner | 2548.2.bq.g | 24 | |
91.t | odd | 6 | 1 | 2548.2.bb.g | 24 | ||
91.u | even | 6 | 1 | inner | 2548.2.bq.g | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
2548.2.u.f | ✓ | 24 | 7.c | even | 3 | 1 | |
2548.2.u.f | ✓ | 24 | 7.d | odd | 6 | 1 | |
2548.2.u.f | ✓ | 24 | 91.k | even | 6 | 1 | |
2548.2.u.f | ✓ | 24 | 91.l | odd | 6 | 1 | |
2548.2.bb.g | 24 | 7.c | even | 3 | 1 | ||
2548.2.bb.g | 24 | 7.d | odd | 6 | 1 | ||
2548.2.bb.g | 24 | 13.e | even | 6 | 1 | ||
2548.2.bb.g | 24 | 91.t | odd | 6 | 1 | ||
2548.2.bq.g | 24 | 1.a | even | 1 | 1 | trivial | |
2548.2.bq.g | 24 | 7.b | odd | 2 | 1 | inner | |
2548.2.bq.g | 24 | 91.p | odd | 6 | 1 | inner | |
2548.2.bq.g | 24 | 91.u | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 22T_{3}^{10} + 171T_{3}^{8} - 572T_{3}^{6} + 837T_{3}^{4} - 508T_{3}^{2} + 100 \) acting on \(S_{2}^{\mathrm{new}}(2548, [\chi])\).