Properties

Label 2646.2.e.k.1549.2
Level $2646$
Weight $2$
Character 2646.1549
Analytic conductor $21.128$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(1549,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1549.2
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2646.1549
Dual form 2646.2.e.k.2125.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +(0.724745 + 1.25529i) q^{5} -1.00000 q^{8} +(-0.724745 - 1.25529i) q^{10} +(1.00000 - 1.73205i) q^{11} +(2.44949 - 4.24264i) q^{13} +1.00000 q^{16} +(-1.00000 - 1.73205i) q^{17} +(1.27526 - 2.20881i) q^{19} +(0.724745 + 1.25529i) q^{20} +(-1.00000 + 1.73205i) q^{22} +(-0.500000 - 0.866025i) q^{23} +(1.44949 - 2.51059i) q^{25} +(-2.44949 + 4.24264i) q^{26} +(-3.44949 - 5.97469i) q^{29} -6.00000 q^{31} -1.00000 q^{32} +(1.00000 + 1.73205i) q^{34} +(-5.89898 + 10.2173i) q^{37} +(-1.27526 + 2.20881i) q^{38} +(-0.724745 - 1.25529i) q^{40} +(-4.89898 + 8.48528i) q^{41} +(-3.44949 - 5.97469i) q^{43} +(1.00000 - 1.73205i) q^{44} +(0.500000 + 0.866025i) q^{46} +9.79796 q^{47} +(-1.44949 + 2.51059i) q^{50} +(2.44949 - 4.24264i) q^{52} +(-5.44949 - 9.43879i) q^{53} +2.89898 q^{55} +(3.44949 + 5.97469i) q^{58} -2.00000 q^{59} -6.55051 q^{61} +6.00000 q^{62} +1.00000 q^{64} +7.10102 q^{65} -12.8990 q^{67} +(-1.00000 - 1.73205i) q^{68} -0.101021 q^{71} +(-3.44949 - 5.97469i) q^{73} +(5.89898 - 10.2173i) q^{74} +(1.27526 - 2.20881i) q^{76} -1.89898 q^{79} +(0.724745 + 1.25529i) q^{80} +(4.89898 - 8.48528i) q^{82} +(-1.00000 - 1.73205i) q^{83} +(1.44949 - 2.51059i) q^{85} +(3.44949 + 5.97469i) q^{86} +(-1.00000 + 1.73205i) q^{88} +(8.44949 - 14.6349i) q^{89} +(-0.500000 - 0.866025i) q^{92} -9.79796 q^{94} +3.69694 q^{95} +(1.44949 + 2.51059i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} - 2 q^{5} - 4 q^{8} + 2 q^{10} + 4 q^{11} + 4 q^{16} - 4 q^{17} + 10 q^{19} - 2 q^{20} - 4 q^{22} - 2 q^{23} - 4 q^{25} - 4 q^{29} - 24 q^{31} - 4 q^{32} + 4 q^{34} - 4 q^{37} - 10 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0.724745 + 1.25529i 0.324116 + 0.561385i 0.981333 0.192316i \(-0.0615999\pi\)
−0.657217 + 0.753701i \(0.728267\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.724745 1.25529i −0.229184 0.396959i
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) 2.44949 4.24264i 0.679366 1.17670i −0.295806 0.955248i \(-0.595588\pi\)
0.975172 0.221449i \(-0.0710785\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 0 0
\(19\) 1.27526 2.20881i 0.292564 0.506735i −0.681852 0.731491i \(-0.738825\pi\)
0.974415 + 0.224756i \(0.0721584\pi\)
\(20\) 0.724745 + 1.25529i 0.162058 + 0.280692i
\(21\) 0 0
\(22\) −1.00000 + 1.73205i −0.213201 + 0.369274i
\(23\) −0.500000 0.866025i −0.104257 0.180579i 0.809177 0.587565i \(-0.199913\pi\)
−0.913434 + 0.406986i \(0.866580\pi\)
\(24\) 0 0
\(25\) 1.44949 2.51059i 0.289898 0.502118i
\(26\) −2.44949 + 4.24264i −0.480384 + 0.832050i
\(27\) 0 0
\(28\) 0 0
\(29\) −3.44949 5.97469i −0.640554 1.10947i −0.985309 0.170780i \(-0.945371\pi\)
0.344755 0.938693i \(-0.387962\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.00000 + 1.73205i 0.171499 + 0.297044i
\(35\) 0 0
\(36\) 0 0
\(37\) −5.89898 + 10.2173i −0.969786 + 1.67972i −0.273621 + 0.961838i \(0.588221\pi\)
−0.696165 + 0.717881i \(0.745112\pi\)
\(38\) −1.27526 + 2.20881i −0.206874 + 0.358316i
\(39\) 0 0
\(40\) −0.724745 1.25529i −0.114592 0.198480i
\(41\) −4.89898 + 8.48528i −0.765092 + 1.32518i 0.175106 + 0.984550i \(0.443973\pi\)
−0.940198 + 0.340629i \(0.889360\pi\)
\(42\) 0 0
\(43\) −3.44949 5.97469i −0.526042 0.911132i −0.999540 0.0303367i \(-0.990342\pi\)
0.473497 0.880795i \(-0.342991\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) 0 0
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) 9.79796 1.42918 0.714590 0.699544i \(-0.246613\pi\)
0.714590 + 0.699544i \(0.246613\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.44949 + 2.51059i −0.204989 + 0.355051i
\(51\) 0 0
\(52\) 2.44949 4.24264i 0.339683 0.588348i
\(53\) −5.44949 9.43879i −0.748545 1.29652i −0.948520 0.316717i \(-0.897419\pi\)
0.199975 0.979801i \(-0.435914\pi\)
\(54\) 0 0
\(55\) 2.89898 0.390898
\(56\) 0 0
\(57\) 0 0
\(58\) 3.44949 + 5.97469i 0.452940 + 0.784515i
\(59\) −2.00000 −0.260378 −0.130189 0.991489i \(-0.541558\pi\)
−0.130189 + 0.991489i \(0.541558\pi\)
\(60\) 0 0
\(61\) −6.55051 −0.838707 −0.419353 0.907823i \(-0.637743\pi\)
−0.419353 + 0.907823i \(0.637743\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 7.10102 0.880773
\(66\) 0 0
\(67\) −12.8990 −1.57586 −0.787931 0.615764i \(-0.788847\pi\)
−0.787931 + 0.615764i \(0.788847\pi\)
\(68\) −1.00000 1.73205i −0.121268 0.210042i
\(69\) 0 0
\(70\) 0 0
\(71\) −0.101021 −0.0119889 −0.00599446 0.999982i \(-0.501908\pi\)
−0.00599446 + 0.999982i \(0.501908\pi\)
\(72\) 0 0
\(73\) −3.44949 5.97469i −0.403732 0.699285i 0.590441 0.807081i \(-0.298954\pi\)
−0.994173 + 0.107796i \(0.965621\pi\)
\(74\) 5.89898 10.2173i 0.685742 1.18774i
\(75\) 0 0
\(76\) 1.27526 2.20881i 0.146282 0.253368i
\(77\) 0 0
\(78\) 0 0
\(79\) −1.89898 −0.213652 −0.106826 0.994278i \(-0.534069\pi\)
−0.106826 + 0.994278i \(0.534069\pi\)
\(80\) 0.724745 + 1.25529i 0.0810289 + 0.140346i
\(81\) 0 0
\(82\) 4.89898 8.48528i 0.541002 0.937043i
\(83\) −1.00000 1.73205i −0.109764 0.190117i 0.805910 0.592037i \(-0.201676\pi\)
−0.915675 + 0.401920i \(0.868343\pi\)
\(84\) 0 0
\(85\) 1.44949 2.51059i 0.157219 0.272312i
\(86\) 3.44949 + 5.97469i 0.371968 + 0.644268i
\(87\) 0 0
\(88\) −1.00000 + 1.73205i −0.106600 + 0.184637i
\(89\) 8.44949 14.6349i 0.895644 1.55130i 0.0626387 0.998036i \(-0.480048\pi\)
0.833005 0.553265i \(-0.186618\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.500000 0.866025i −0.0521286 0.0902894i
\(93\) 0 0
\(94\) −9.79796 −1.01058
\(95\) 3.69694 0.379298
\(96\) 0 0
\(97\) 1.44949 + 2.51059i 0.147173 + 0.254912i 0.930182 0.367099i \(-0.119649\pi\)
−0.783008 + 0.622011i \(0.786316\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.44949 2.51059i 0.144949 0.251059i
\(101\) 8.62372 14.9367i 0.858093 1.48626i −0.0156533 0.999877i \(-0.504983\pi\)
0.873746 0.486383i \(-0.161684\pi\)
\(102\) 0 0
\(103\) 7.00000 + 12.1244i 0.689730 + 1.19465i 0.971925 + 0.235291i \(0.0756043\pi\)
−0.282194 + 0.959357i \(0.591062\pi\)
\(104\) −2.44949 + 4.24264i −0.240192 + 0.416025i
\(105\) 0 0
\(106\) 5.44949 + 9.43879i 0.529301 + 0.916777i
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 0 0
\(109\) −6.34847 10.9959i −0.608073 1.05321i −0.991558 0.129666i \(-0.958609\pi\)
0.383485 0.923547i \(-0.374724\pi\)
\(110\) −2.89898 −0.276407
\(111\) 0 0
\(112\) 0 0
\(113\) −3.05051 + 5.28364i −0.286968 + 0.497043i −0.973084 0.230449i \(-0.925981\pi\)
0.686117 + 0.727492i \(0.259314\pi\)
\(114\) 0 0
\(115\) 0.724745 1.25529i 0.0675828 0.117057i
\(116\) −3.44949 5.97469i −0.320277 0.554736i
\(117\) 0 0
\(118\) 2.00000 0.184115
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 6.55051 0.593055
\(123\) 0 0
\(124\) −6.00000 −0.538816
\(125\) 11.4495 1.02407
\(126\) 0 0
\(127\) −3.00000 −0.266207 −0.133103 0.991102i \(-0.542494\pi\)
−0.133103 + 0.991102i \(0.542494\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −7.10102 −0.622801
\(131\) 4.27526 + 7.40496i 0.373531 + 0.646974i 0.990106 0.140322i \(-0.0448137\pi\)
−0.616575 + 0.787296i \(0.711480\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.8990 1.11430
\(135\) 0 0
\(136\) 1.00000 + 1.73205i 0.0857493 + 0.148522i
\(137\) 3.89898 6.75323i 0.333112 0.576967i −0.650008 0.759927i \(-0.725235\pi\)
0.983120 + 0.182960i \(0.0585678\pi\)
\(138\) 0 0
\(139\) 2.27526 3.94086i 0.192985 0.334259i −0.753253 0.657730i \(-0.771517\pi\)
0.946238 + 0.323471i \(0.104850\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.101021 0.00847745
\(143\) −4.89898 8.48528i −0.409673 0.709575i
\(144\) 0 0
\(145\) 5.00000 8.66025i 0.415227 0.719195i
\(146\) 3.44949 + 5.97469i 0.285482 + 0.494469i
\(147\) 0 0
\(148\) −5.89898 + 10.2173i −0.484893 + 0.839860i
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 2.50000 4.33013i 0.203447 0.352381i −0.746190 0.665733i \(-0.768119\pi\)
0.949637 + 0.313353i \(0.101452\pi\)
\(152\) −1.27526 + 2.20881i −0.103437 + 0.179158i
\(153\) 0 0
\(154\) 0 0
\(155\) −4.34847 7.53177i −0.349277 0.604966i
\(156\) 0 0
\(157\) 8.34847 0.666280 0.333140 0.942877i \(-0.391892\pi\)
0.333140 + 0.942877i \(0.391892\pi\)
\(158\) 1.89898 0.151075
\(159\) 0 0
\(160\) −0.724745 1.25529i −0.0572961 0.0992398i
\(161\) 0 0
\(162\) 0 0
\(163\) 9.89898 17.1455i 0.775348 1.34294i −0.159251 0.987238i \(-0.550908\pi\)
0.934599 0.355704i \(-0.115759\pi\)
\(164\) −4.89898 + 8.48528i −0.382546 + 0.662589i
\(165\) 0 0
\(166\) 1.00000 + 1.73205i 0.0776151 + 0.134433i
\(167\) 5.34847 9.26382i 0.413877 0.716856i −0.581433 0.813594i \(-0.697508\pi\)
0.995310 + 0.0967384i \(0.0308410\pi\)
\(168\) 0 0
\(169\) −5.50000 9.52628i −0.423077 0.732791i
\(170\) −1.44949 + 2.51059i −0.111171 + 0.192553i
\(171\) 0 0
\(172\) −3.44949 5.97469i −0.263021 0.455566i
\(173\) −3.10102 −0.235766 −0.117883 0.993027i \(-0.537611\pi\)
−0.117883 + 0.993027i \(0.537611\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 1.73205i 0.0753778 0.130558i
\(177\) 0 0
\(178\) −8.44949 + 14.6349i −0.633316 + 1.09694i
\(179\) 10.3485 + 17.9241i 0.773481 + 1.33971i 0.935644 + 0.352944i \(0.114819\pi\)
−0.162163 + 0.986764i \(0.551847\pi\)
\(180\) 0 0
\(181\) 10.3485 0.769196 0.384598 0.923084i \(-0.374340\pi\)
0.384598 + 0.923084i \(0.374340\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.500000 + 0.866025i 0.0368605 + 0.0638442i
\(185\) −17.1010 −1.25729
\(186\) 0 0
\(187\) −4.00000 −0.292509
\(188\) 9.79796 0.714590
\(189\) 0 0
\(190\) −3.69694 −0.268204
\(191\) −4.10102 −0.296739 −0.148370 0.988932i \(-0.547403\pi\)
−0.148370 + 0.988932i \(0.547403\pi\)
\(192\) 0 0
\(193\) −17.8990 −1.28840 −0.644198 0.764858i \(-0.722809\pi\)
−0.644198 + 0.764858i \(0.722809\pi\)
\(194\) −1.44949 2.51059i −0.104067 0.180250i
\(195\) 0 0
\(196\) 0 0
\(197\) −16.6969 −1.18961 −0.594804 0.803871i \(-0.702770\pi\)
−0.594804 + 0.803871i \(0.702770\pi\)
\(198\) 0 0
\(199\) −1.44949 2.51059i −0.102752 0.177971i 0.810066 0.586339i \(-0.199431\pi\)
−0.912817 + 0.408368i \(0.866098\pi\)
\(200\) −1.44949 + 2.51059i −0.102494 + 0.177526i
\(201\) 0 0
\(202\) −8.62372 + 14.9367i −0.606763 + 1.05094i
\(203\) 0 0
\(204\) 0 0
\(205\) −14.2020 −0.991914
\(206\) −7.00000 12.1244i −0.487713 0.844744i
\(207\) 0 0
\(208\) 2.44949 4.24264i 0.169842 0.294174i
\(209\) −2.55051 4.41761i −0.176422 0.305573i
\(210\) 0 0
\(211\) −6.44949 + 11.1708i −0.444001 + 0.769033i −0.997982 0.0634968i \(-0.979775\pi\)
0.553981 + 0.832529i \(0.313108\pi\)
\(212\) −5.44949 9.43879i −0.374272 0.648259i
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) 5.00000 8.66025i 0.340997 0.590624i
\(216\) 0 0
\(217\) 0 0
\(218\) 6.34847 + 10.9959i 0.429973 + 0.744734i
\(219\) 0 0
\(220\) 2.89898 0.195449
\(221\) −9.79796 −0.659082
\(222\) 0 0
\(223\) −5.55051 9.61377i −0.371690 0.643785i 0.618136 0.786071i \(-0.287888\pi\)
−0.989826 + 0.142286i \(0.954555\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.05051 5.28364i 0.202917 0.351462i
\(227\) 2.72474 4.71940i 0.180848 0.313237i −0.761322 0.648374i \(-0.775449\pi\)
0.942169 + 0.335137i \(0.108783\pi\)
\(228\) 0 0
\(229\) 0.623724 + 1.08032i 0.0412169 + 0.0713897i 0.885898 0.463880i \(-0.153543\pi\)
−0.844681 + 0.535270i \(0.820210\pi\)
\(230\) −0.724745 + 1.25529i −0.0477883 + 0.0827717i
\(231\) 0 0
\(232\) 3.44949 + 5.97469i 0.226470 + 0.392258i
\(233\) −3.50000 + 6.06218i −0.229293 + 0.397146i −0.957599 0.288106i \(-0.906975\pi\)
0.728306 + 0.685252i \(0.240308\pi\)
\(234\) 0 0
\(235\) 7.10102 + 12.2993i 0.463220 + 0.802320i
\(236\) −2.00000 −0.130189
\(237\) 0 0
\(238\) 0 0
\(239\) 3.39898 5.88721i 0.219862 0.380812i −0.734904 0.678171i \(-0.762773\pi\)
0.954766 + 0.297360i \(0.0961061\pi\)
\(240\) 0 0
\(241\) 0.449490 0.778539i 0.0289542 0.0501501i −0.851185 0.524865i \(-0.824116\pi\)
0.880139 + 0.474715i \(0.157449\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) 0 0
\(244\) −6.55051 −0.419353
\(245\) 0 0
\(246\) 0 0
\(247\) −6.24745 10.8209i −0.397516 0.688517i
\(248\) 6.00000 0.381000
\(249\) 0 0
\(250\) −11.4495 −0.724129
\(251\) 17.4495 1.10140 0.550701 0.834703i \(-0.314360\pi\)
0.550701 + 0.834703i \(0.314360\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) 3.00000 0.188237
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −4.10102 7.10318i −0.255815 0.443084i 0.709302 0.704905i \(-0.249010\pi\)
−0.965116 + 0.261821i \(0.915677\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 7.10102 0.440387
\(261\) 0 0
\(262\) −4.27526 7.40496i −0.264126 0.457480i
\(263\) 12.9495 22.4292i 0.798500 1.38304i −0.122093 0.992519i \(-0.538961\pi\)
0.920593 0.390523i \(-0.127706\pi\)
\(264\) 0 0
\(265\) 7.89898 13.6814i 0.485230 0.840444i
\(266\) 0 0
\(267\) 0 0
\(268\) −12.8990 −0.787931
\(269\) 9.17423 + 15.8902i 0.559363 + 0.968845i 0.997550 + 0.0699611i \(0.0222875\pi\)
−0.438187 + 0.898884i \(0.644379\pi\)
\(270\) 0 0
\(271\) 3.55051 6.14966i 0.215678 0.373565i −0.737804 0.675015i \(-0.764137\pi\)
0.953482 + 0.301450i \(0.0974705\pi\)
\(272\) −1.00000 1.73205i −0.0606339 0.105021i
\(273\) 0 0
\(274\) −3.89898 + 6.75323i −0.235546 + 0.407978i
\(275\) −2.89898 5.02118i −0.174815 0.302789i
\(276\) 0 0
\(277\) 9.34847 16.1920i 0.561695 0.972884i −0.435654 0.900114i \(-0.643483\pi\)
0.997349 0.0727700i \(-0.0231839\pi\)
\(278\) −2.27526 + 3.94086i −0.136461 + 0.236357i
\(279\) 0 0
\(280\) 0 0
\(281\) −9.50000 16.4545i −0.566722 0.981592i −0.996887 0.0788417i \(-0.974878\pi\)
0.430165 0.902750i \(-0.358455\pi\)
\(282\) 0 0
\(283\) 25.4495 1.51282 0.756408 0.654101i \(-0.226953\pi\)
0.756408 + 0.654101i \(0.226953\pi\)
\(284\) −0.101021 −0.00599446
\(285\) 0 0
\(286\) 4.89898 + 8.48528i 0.289683 + 0.501745i
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) −5.00000 + 8.66025i −0.293610 + 0.508548i
\(291\) 0 0
\(292\) −3.44949 5.97469i −0.201866 0.349642i
\(293\) −1.37628 + 2.38378i −0.0804029 + 0.139262i −0.903423 0.428750i \(-0.858954\pi\)
0.823020 + 0.568012i \(0.192287\pi\)
\(294\) 0 0
\(295\) −1.44949 2.51059i −0.0843926 0.146172i
\(296\) 5.89898 10.2173i 0.342871 0.593870i
\(297\) 0 0
\(298\) 3.00000 + 5.19615i 0.173785 + 0.301005i
\(299\) −4.89898 −0.283315
\(300\) 0 0
\(301\) 0 0
\(302\) −2.50000 + 4.33013i −0.143859 + 0.249171i
\(303\) 0 0
\(304\) 1.27526 2.20881i 0.0731409 0.126684i
\(305\) −4.74745 8.22282i −0.271838 0.470837i
\(306\) 0 0
\(307\) −25.2474 −1.44095 −0.720474 0.693482i \(-0.756076\pi\)
−0.720474 + 0.693482i \(0.756076\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.34847 + 7.53177i 0.246976 + 0.427776i
\(311\) 30.6969 1.74066 0.870332 0.492466i \(-0.163904\pi\)
0.870332 + 0.492466i \(0.163904\pi\)
\(312\) 0 0
\(313\) 4.69694 0.265487 0.132743 0.991150i \(-0.457621\pi\)
0.132743 + 0.991150i \(0.457621\pi\)
\(314\) −8.34847 −0.471131
\(315\) 0 0
\(316\) −1.89898 −0.106826
\(317\) −20.6969 −1.16246 −0.581228 0.813741i \(-0.697428\pi\)
−0.581228 + 0.813741i \(0.697428\pi\)
\(318\) 0 0
\(319\) −13.7980 −0.772537
\(320\) 0.724745 + 1.25529i 0.0405145 + 0.0701731i
\(321\) 0 0
\(322\) 0 0
\(323\) −5.10102 −0.283828
\(324\) 0 0
\(325\) −7.10102 12.2993i −0.393894 0.682244i
\(326\) −9.89898 + 17.1455i −0.548254 + 0.949603i
\(327\) 0 0
\(328\) 4.89898 8.48528i 0.270501 0.468521i
\(329\) 0 0
\(330\) 0 0
\(331\) 4.69694 0.258167 0.129084 0.991634i \(-0.458796\pi\)
0.129084 + 0.991634i \(0.458796\pi\)
\(332\) −1.00000 1.73205i −0.0548821 0.0950586i
\(333\) 0 0
\(334\) −5.34847 + 9.26382i −0.292655 + 0.506894i
\(335\) −9.34847 16.1920i −0.510761 0.884665i
\(336\) 0 0
\(337\) 11.6969 20.2597i 0.637173 1.10362i −0.348877 0.937168i \(-0.613437\pi\)
0.986050 0.166447i \(-0.0532296\pi\)
\(338\) 5.50000 + 9.52628i 0.299161 + 0.518161i
\(339\) 0 0
\(340\) 1.44949 2.51059i 0.0786096 0.136156i
\(341\) −6.00000 + 10.3923i −0.324918 + 0.562775i
\(342\) 0 0
\(343\) 0 0
\(344\) 3.44949 + 5.97469i 0.185984 + 0.322134i
\(345\) 0 0
\(346\) 3.10102 0.166712
\(347\) −19.5959 −1.05196 −0.525982 0.850496i \(-0.676302\pi\)
−0.525982 + 0.850496i \(0.676302\pi\)
\(348\) 0 0
\(349\) 5.55051 + 9.61377i 0.297112 + 0.514613i 0.975474 0.220115i \(-0.0706432\pi\)
−0.678362 + 0.734728i \(0.737310\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 + 1.73205i −0.0533002 + 0.0923186i
\(353\) 3.00000 5.19615i 0.159674 0.276563i −0.775077 0.631867i \(-0.782289\pi\)
0.934751 + 0.355303i \(0.115622\pi\)
\(354\) 0 0
\(355\) −0.0732141 0.126811i −0.00388580 0.00673040i
\(356\) 8.44949 14.6349i 0.447822 0.775651i
\(357\) 0 0
\(358\) −10.3485 17.9241i −0.546934 0.947317i
\(359\) −4.39898 + 7.61926i −0.232169 + 0.402129i −0.958446 0.285273i \(-0.907916\pi\)
0.726277 + 0.687402i \(0.241249\pi\)
\(360\) 0 0
\(361\) 6.24745 + 10.8209i 0.328813 + 0.569521i
\(362\) −10.3485 −0.543903
\(363\) 0 0
\(364\) 0 0
\(365\) 5.00000 8.66025i 0.261712 0.453298i
\(366\) 0 0
\(367\) −6.89898 + 11.9494i −0.360124 + 0.623753i −0.987981 0.154576i \(-0.950599\pi\)
0.627857 + 0.778329i \(0.283932\pi\)
\(368\) −0.500000 0.866025i −0.0260643 0.0451447i
\(369\) 0 0
\(370\) 17.1010 0.889040
\(371\) 0 0
\(372\) 0 0
\(373\) 3.44949 + 5.97469i 0.178608 + 0.309358i 0.941404 0.337281i \(-0.109507\pi\)
−0.762796 + 0.646639i \(0.776174\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) −9.79796 −0.505291
\(377\) −33.7980 −1.74068
\(378\) 0 0
\(379\) 22.4949 1.15549 0.577743 0.816219i \(-0.303934\pi\)
0.577743 + 0.816219i \(0.303934\pi\)
\(380\) 3.69694 0.189649
\(381\) 0 0
\(382\) 4.10102 0.209826
\(383\) 1.44949 + 2.51059i 0.0740655 + 0.128285i 0.900679 0.434484i \(-0.143069\pi\)
−0.826614 + 0.562769i \(0.809736\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.8990 0.911034
\(387\) 0 0
\(388\) 1.44949 + 2.51059i 0.0735867 + 0.127456i
\(389\) −12.4495 + 21.5631i −0.631214 + 1.09330i 0.356090 + 0.934452i \(0.384110\pi\)
−0.987304 + 0.158843i \(0.949224\pi\)
\(390\) 0 0
\(391\) −1.00000 + 1.73205i −0.0505722 + 0.0875936i
\(392\) 0 0
\(393\) 0 0
\(394\) 16.6969 0.841180
\(395\) −1.37628 2.38378i −0.0692479 0.119941i
\(396\) 0 0
\(397\) 19.3485 33.5125i 0.971072 1.68195i 0.278740 0.960367i \(-0.410083\pi\)
0.692332 0.721579i \(-0.256583\pi\)
\(398\) 1.44949 + 2.51059i 0.0726564 + 0.125844i
\(399\) 0 0
\(400\) 1.44949 2.51059i 0.0724745 0.125529i
\(401\) −9.94949 17.2330i −0.496854 0.860576i 0.503140 0.864205i \(-0.332178\pi\)
−0.999993 + 0.00362911i \(0.998845\pi\)
\(402\) 0 0
\(403\) −14.6969 + 25.4558i −0.732107 + 1.26805i
\(404\) 8.62372 14.9367i 0.429046 0.743130i
\(405\) 0 0
\(406\) 0 0
\(407\) 11.7980 + 20.4347i 0.584803 + 1.01291i
\(408\) 0 0
\(409\) 13.7980 0.682265 0.341133 0.940015i \(-0.389189\pi\)
0.341133 + 0.940015i \(0.389189\pi\)
\(410\) 14.2020 0.701389
\(411\) 0 0
\(412\) 7.00000 + 12.1244i 0.344865 + 0.597324i
\(413\) 0 0
\(414\) 0 0
\(415\) 1.44949 2.51059i 0.0711527 0.123240i
\(416\) −2.44949 + 4.24264i −0.120096 + 0.208013i
\(417\) 0 0
\(418\) 2.55051 + 4.41761i 0.124750 + 0.216073i
\(419\) −14.7247 + 25.5040i −0.719351 + 1.24595i 0.241906 + 0.970300i \(0.422227\pi\)
−0.961257 + 0.275653i \(0.911106\pi\)
\(420\) 0 0
\(421\) −11.4495 19.8311i −0.558014 0.966509i −0.997662 0.0683385i \(-0.978230\pi\)
0.439648 0.898170i \(-0.355103\pi\)
\(422\) 6.44949 11.1708i 0.313956 0.543788i
\(423\) 0 0
\(424\) 5.44949 + 9.43879i 0.264651 + 0.458388i
\(425\) −5.79796 −0.281242
\(426\) 0 0
\(427\) 0 0
\(428\) −6.00000 + 10.3923i −0.290021 + 0.502331i
\(429\) 0 0
\(430\) −5.00000 + 8.66025i −0.241121 + 0.417635i
\(431\) 15.7980 + 27.3629i 0.760961 + 1.31802i 0.942356 + 0.334613i \(0.108605\pi\)
−0.181395 + 0.983410i \(0.558061\pi\)
\(432\) 0 0
\(433\) 7.79796 0.374746 0.187373 0.982289i \(-0.440003\pi\)
0.187373 + 0.982289i \(0.440003\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.34847 10.9959i −0.304037 0.526607i
\(437\) −2.55051 −0.122007
\(438\) 0 0
\(439\) −2.20204 −0.105098 −0.0525488 0.998618i \(-0.516735\pi\)
−0.0525488 + 0.998618i \(0.516735\pi\)
\(440\) −2.89898 −0.138203
\(441\) 0 0
\(442\) 9.79796 0.466041
\(443\) 14.8990 0.707872 0.353936 0.935270i \(-0.384843\pi\)
0.353936 + 0.935270i \(0.384843\pi\)
\(444\) 0 0
\(445\) 24.4949 1.16117
\(446\) 5.55051 + 9.61377i 0.262824 + 0.455225i
\(447\) 0 0
\(448\) 0 0
\(449\) −20.5959 −0.971981 −0.485991 0.873964i \(-0.661541\pi\)
−0.485991 + 0.873964i \(0.661541\pi\)
\(450\) 0 0
\(451\) 9.79796 + 16.9706i 0.461368 + 0.799113i
\(452\) −3.05051 + 5.28364i −0.143484 + 0.248521i
\(453\) 0 0
\(454\) −2.72474 + 4.71940i −0.127879 + 0.221492i
\(455\) 0 0
\(456\) 0 0
\(457\) −17.4949 −0.818377 −0.409188 0.912450i \(-0.634188\pi\)
−0.409188 + 0.912450i \(0.634188\pi\)
\(458\) −0.623724 1.08032i −0.0291447 0.0504801i
\(459\) 0 0
\(460\) 0.724745 1.25529i 0.0337914 0.0585284i
\(461\) −2.82577 4.89437i −0.131609 0.227954i 0.792688 0.609628i \(-0.208681\pi\)
−0.924297 + 0.381674i \(0.875348\pi\)
\(462\) 0 0
\(463\) −1.84847 + 3.20164i −0.0859057 + 0.148793i −0.905777 0.423755i \(-0.860712\pi\)
0.819871 + 0.572548i \(0.194045\pi\)
\(464\) −3.44949 5.97469i −0.160139 0.277368i
\(465\) 0 0
\(466\) 3.50000 6.06218i 0.162134 0.280825i
\(467\) −5.00000 + 8.66025i −0.231372 + 0.400749i −0.958212 0.286058i \(-0.907655\pi\)
0.726840 + 0.686807i \(0.240988\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −7.10102 12.2993i −0.327546 0.567326i
\(471\) 0 0
\(472\) 2.00000 0.0920575
\(473\) −13.7980 −0.634431
\(474\) 0 0
\(475\) −3.69694 6.40329i −0.169627 0.293803i
\(476\) 0 0
\(477\) 0 0
\(478\) −3.39898 + 5.88721i −0.155466 + 0.269274i
\(479\) −4.79796 + 8.31031i −0.219224 + 0.379708i −0.954571 0.297983i \(-0.903686\pi\)
0.735347 + 0.677691i \(0.237019\pi\)
\(480\) 0 0
\(481\) 28.8990 + 50.0545i 1.31768 + 2.28229i
\(482\) −0.449490 + 0.778539i −0.0204737 + 0.0354615i
\(483\) 0 0
\(484\) 3.50000 + 6.06218i 0.159091 + 0.275554i
\(485\) −2.10102 + 3.63907i −0.0954024 + 0.165242i
\(486\) 0 0
\(487\) 18.1969 + 31.5180i 0.824582 + 1.42822i 0.902238 + 0.431238i \(0.141923\pi\)
−0.0776564 + 0.996980i \(0.524744\pi\)
\(488\) 6.55051 0.296528
\(489\) 0 0
\(490\) 0 0
\(491\) 7.89898 13.6814i 0.356476 0.617434i −0.630893 0.775869i \(-0.717312\pi\)
0.987369 + 0.158435i \(0.0506448\pi\)
\(492\) 0 0
\(493\) −6.89898 + 11.9494i −0.310714 + 0.538173i
\(494\) 6.24745 + 10.8209i 0.281086 + 0.486855i
\(495\) 0 0
\(496\) −6.00000 −0.269408
\(497\) 0 0
\(498\) 0 0
\(499\) 12.6969 + 21.9917i 0.568393 + 0.984486i 0.996725 + 0.0808642i \(0.0257680\pi\)
−0.428332 + 0.903621i \(0.640899\pi\)
\(500\) 11.4495 0.512037
\(501\) 0 0
\(502\) −17.4495 −0.778809
\(503\) −24.4949 −1.09217 −0.546087 0.837729i \(-0.683883\pi\)
−0.546087 + 0.837729i \(0.683883\pi\)
\(504\) 0 0
\(505\) 25.0000 1.11249
\(506\) 2.00000 0.0889108
\(507\) 0 0
\(508\) −3.00000 −0.133103
\(509\) 3.55051 + 6.14966i 0.157374 + 0.272579i 0.933921 0.357480i \(-0.116364\pi\)
−0.776547 + 0.630059i \(0.783031\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.10102 + 7.10318i 0.180888 + 0.313308i
\(515\) −10.1464 + 17.5741i −0.447105 + 0.774409i
\(516\) 0 0
\(517\) 9.79796 16.9706i 0.430914 0.746364i
\(518\) 0 0
\(519\) 0 0
\(520\) −7.10102 −0.311400
\(521\) 4.65153 + 8.05669i 0.203787 + 0.352970i 0.949746 0.313023i \(-0.101342\pi\)
−0.745958 + 0.665993i \(0.768008\pi\)
\(522\) 0 0
\(523\) −7.17423 + 12.4261i −0.313707 + 0.543357i −0.979162 0.203081i \(-0.934904\pi\)
0.665455 + 0.746438i \(0.268238\pi\)
\(524\) 4.27526 + 7.40496i 0.186765 + 0.323487i
\(525\) 0 0
\(526\) −12.9495 + 22.4292i −0.564625 + 0.977958i
\(527\) 6.00000 + 10.3923i 0.261364 + 0.452696i
\(528\) 0 0
\(529\) 11.0000 19.0526i 0.478261 0.828372i
\(530\) −7.89898 + 13.6814i −0.343110 + 0.594284i
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 + 41.5692i 1.03956 + 1.80056i
\(534\) 0 0
\(535\) −17.3939 −0.752003
\(536\) 12.8990 0.557151
\(537\) 0 0
\(538\) −9.17423 15.8902i −0.395529 0.685077i
\(539\) 0 0
\(540\) 0 0
\(541\) 9.24745 16.0171i 0.397579 0.688627i −0.595848 0.803097i \(-0.703184\pi\)
0.993427 + 0.114471i \(0.0365172\pi\)
\(542\) −3.55051 + 6.14966i −0.152507 + 0.264151i
\(543\) 0 0
\(544\) 1.00000 + 1.73205i 0.0428746 + 0.0742611i
\(545\) 9.20204 15.9384i 0.394172 0.682726i
\(546\) 0 0
\(547\) 3.79796 + 6.57826i 0.162389 + 0.281266i 0.935725 0.352730i \(-0.114747\pi\)
−0.773336 + 0.633996i \(0.781413\pi\)
\(548\) 3.89898 6.75323i 0.166556 0.288484i
\(549\) 0 0
\(550\) 2.89898 + 5.02118i 0.123613 + 0.214104i
\(551\) −17.5959 −0.749611
\(552\) 0 0
\(553\) 0 0
\(554\) −9.34847 + 16.1920i −0.397178 + 0.687933i
\(555\) 0 0
\(556\) 2.27526 3.94086i 0.0964923 0.167130i
\(557\) −6.44949 11.1708i −0.273274 0.473324i 0.696424 0.717630i \(-0.254773\pi\)
−0.969698 + 0.244306i \(0.921440\pi\)
\(558\) 0 0
\(559\) −33.7980 −1.42950
\(560\) 0 0
\(561\) 0 0
\(562\) 9.50000 + 16.4545i 0.400733 + 0.694090i
\(563\) −39.9444 −1.68346 −0.841728 0.539902i \(-0.818461\pi\)
−0.841728 + 0.539902i \(0.818461\pi\)
\(564\) 0 0
\(565\) −8.84337 −0.372043
\(566\) −25.4495 −1.06972
\(567\) 0 0
\(568\) 0.101021 0.00423873
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 33.7980 1.41440 0.707200 0.707013i \(-0.249958\pi\)
0.707200 + 0.707013i \(0.249958\pi\)
\(572\) −4.89898 8.48528i −0.204837 0.354787i
\(573\) 0 0
\(574\) 0 0
\(575\) −2.89898 −0.120896
\(576\) 0 0
\(577\) −7.79796 13.5065i −0.324633 0.562281i 0.656805 0.754061i \(-0.271908\pi\)
−0.981438 + 0.191779i \(0.938574\pi\)
\(578\) −6.50000 + 11.2583i −0.270364 + 0.468285i
\(579\) 0 0
\(580\) 5.00000 8.66025i 0.207614 0.359597i
\(581\) 0 0
\(582\) 0 0
\(583\) −21.7980 −0.902779
\(584\) 3.44949 + 5.97469i 0.142741 + 0.247234i
\(585\) 0 0
\(586\) 1.37628 2.38378i 0.0568534 0.0984730i
\(587\) −8.07321 13.9832i −0.333217 0.577149i 0.649924 0.760000i \(-0.274801\pi\)
−0.983141 + 0.182850i \(0.941468\pi\)
\(588\) 0 0
\(589\) −7.65153 + 13.2528i −0.315276 + 0.546074i
\(590\) 1.44949 + 2.51059i 0.0596745 + 0.103359i
\(591\) 0 0
\(592\) −5.89898 + 10.2173i −0.242447 + 0.419930i
\(593\) −7.34847 + 12.7279i −0.301765 + 0.522673i −0.976536 0.215355i \(-0.930909\pi\)
0.674770 + 0.738028i \(0.264243\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 5.19615i −0.122885 0.212843i
\(597\) 0 0
\(598\) 4.89898 0.200334
\(599\) 33.7980 1.38095 0.690474 0.723358i \(-0.257402\pi\)
0.690474 + 0.723358i \(0.257402\pi\)
\(600\) 0 0
\(601\) 8.34847 + 14.4600i 0.340541 + 0.589835i 0.984533 0.175198i \(-0.0560564\pi\)
−0.643992 + 0.765032i \(0.722723\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 2.50000 4.33013i 0.101724 0.176190i
\(605\) −5.07321 + 8.78706i −0.206255 + 0.357245i
\(606\) 0 0
\(607\) 10.3485 + 17.9241i 0.420031 + 0.727516i 0.995942 0.0899969i \(-0.0286857\pi\)
−0.575911 + 0.817513i \(0.695352\pi\)
\(608\) −1.27526 + 2.20881i −0.0517184 + 0.0895789i
\(609\) 0 0
\(610\) 4.74745 + 8.22282i 0.192219 + 0.332932i
\(611\) 24.0000 41.5692i 0.970936 1.68171i
\(612\) 0 0
\(613\) 7.34847 + 12.7279i 0.296802 + 0.514076i 0.975402 0.220432i \(-0.0707466\pi\)
−0.678601 + 0.734508i \(0.737413\pi\)
\(614\) 25.2474 1.01890
\(615\) 0 0
\(616\) 0 0
\(617\) −7.69694 + 13.3315i −0.309867 + 0.536706i −0.978333 0.207037i \(-0.933618\pi\)
0.668466 + 0.743743i \(0.266951\pi\)
\(618\) 0 0
\(619\) 15.0732 26.1076i 0.605844 1.04935i −0.386074 0.922468i \(-0.626169\pi\)
0.991918 0.126884i \(-0.0404976\pi\)
\(620\) −4.34847 7.53177i −0.174639 0.302483i
\(621\) 0 0
\(622\) −30.6969 −1.23084
\(623\) 0 0
\(624\) 0 0
\(625\) 1.05051 + 1.81954i 0.0420204 + 0.0727815i
\(626\) −4.69694 −0.187727
\(627\) 0 0
\(628\) 8.34847 0.333140
\(629\) 23.5959 0.940831
\(630\) 0 0
\(631\) 27.8990 1.11064 0.555320 0.831636i \(-0.312596\pi\)
0.555320 + 0.831636i \(0.312596\pi\)
\(632\) 1.89898 0.0755373
\(633\) 0 0
\(634\) 20.6969 0.821980
\(635\) −2.17423 3.76588i −0.0862819 0.149445i
\(636\) 0 0
\(637\) 0 0
\(638\) 13.7980 0.546266
\(639\) 0 0
\(640\) −0.724745 1.25529i −0.0286481 0.0496199i
\(641\) −3.74745 + 6.49077i −0.148015 + 0.256370i −0.930494 0.366308i \(-0.880622\pi\)
0.782479 + 0.622678i \(0.213955\pi\)
\(642\) 0 0
\(643\) −19.6969 + 34.1161i −0.776771 + 1.34541i 0.157022 + 0.987595i \(0.449811\pi\)
−0.933793 + 0.357812i \(0.883523\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 5.10102 0.200697
\(647\) 25.3485 + 43.9048i 0.996551 + 1.72608i 0.570139 + 0.821548i \(0.306889\pi\)
0.426412 + 0.904529i \(0.359777\pi\)
\(648\) 0 0
\(649\) −2.00000 + 3.46410i −0.0785069 + 0.135978i
\(650\) 7.10102 + 12.2993i 0.278525 + 0.482419i
\(651\) 0 0
\(652\) 9.89898 17.1455i 0.387674 0.671471i
\(653\) 4.89898 + 8.48528i 0.191712 + 0.332055i 0.945818 0.324698i \(-0.105263\pi\)
−0.754106 + 0.656753i \(0.771929\pi\)
\(654\) 0 0
\(655\) −6.19694 + 10.7334i −0.242134 + 0.419389i
\(656\) −4.89898 + 8.48528i −0.191273 + 0.331295i
\(657\) 0 0
\(658\) 0 0
\(659\) −12.3485 21.3882i −0.481028 0.833165i 0.518735 0.854935i \(-0.326403\pi\)
−0.999763 + 0.0217701i \(0.993070\pi\)
\(660\) 0 0
\(661\) −4.55051 −0.176994 −0.0884972 0.996076i \(-0.528206\pi\)
−0.0884972 + 0.996076i \(0.528206\pi\)
\(662\) −4.69694 −0.182552
\(663\) 0 0
\(664\) 1.00000 + 1.73205i 0.0388075 + 0.0672166i
\(665\) 0 0
\(666\) 0 0
\(667\) −3.44949 + 5.97469i −0.133565 + 0.231341i
\(668\) 5.34847 9.26382i 0.206938 0.358428i
\(669\) 0 0
\(670\) 9.34847 + 16.1920i 0.361163 + 0.625552i
\(671\) −6.55051 + 11.3458i −0.252880 + 0.438000i
\(672\) 0 0
\(673\) 4.29796 + 7.44428i 0.165674 + 0.286956i 0.936894 0.349612i \(-0.113687\pi\)
−0.771220 + 0.636568i \(0.780353\pi\)
\(674\) −11.6969 + 20.2597i −0.450549 + 0.780374i
\(675\) 0 0
\(676\) −5.50000 9.52628i −0.211538 0.366395i
\(677\) 14.6969 0.564849 0.282425 0.959289i \(-0.408861\pi\)
0.282425 + 0.959289i \(0.408861\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.44949 + 2.51059i −0.0555854 + 0.0962767i
\(681\) 0 0
\(682\) 6.00000 10.3923i 0.229752 0.397942i
\(683\) 25.8990 + 44.8583i 0.990997 + 1.71646i 0.611446 + 0.791286i \(0.290588\pi\)
0.379551 + 0.925171i \(0.376079\pi\)
\(684\) 0 0
\(685\) 11.3031 0.431868
\(686\) 0 0
\(687\) 0 0
\(688\) −3.44949 5.97469i −0.131511 0.227783i
\(689\) −53.3939 −2.03414
\(690\) 0 0
\(691\) −51.0454 −1.94186 −0.970929 0.239366i \(-0.923060\pi\)
−0.970929 + 0.239366i \(0.923060\pi\)
\(692\) −3.10102 −0.117883
\(693\) 0 0
\(694\) 19.5959 0.743851
\(695\) 6.59592 0.250197
\(696\) 0 0
\(697\) 19.5959 0.742248
\(698\) −5.55051 9.61377i −0.210090 0.363886i
\(699\) 0 0
\(700\) 0 0
\(701\) 7.39388 0.279263 0.139631 0.990204i \(-0.455408\pi\)
0.139631 + 0.990204i \(0.455408\pi\)
\(702\) 0 0
\(703\) 15.0454 + 26.0594i 0.567448 + 0.982849i
\(704\) 1.00000 1.73205i 0.0376889 0.0652791i
\(705\) 0 0
\(706\) −3.00000 + 5.19615i −0.112906 + 0.195560i
\(707\) 0 0
\(708\) 0 0
\(709\) 27.5959 1.03639 0.518193 0.855264i \(-0.326605\pi\)
0.518193 + 0.855264i \(0.326605\pi\)
\(710\) 0.0732141 + 0.126811i 0.00274768 + 0.00475911i
\(711\) 0 0
\(712\) −8.44949 + 14.6349i −0.316658 + 0.548468i
\(713\) 3.00000 + 5.19615i 0.112351 + 0.194597i
\(714\) 0 0
\(715\) 7.10102 12.2993i 0.265563 0.459969i
\(716\) 10.3485 + 17.9241i 0.386740 + 0.669854i
\(717\) 0 0
\(718\) 4.39898 7.61926i 0.164168 0.284348i
\(719\) −4.89898 + 8.48528i −0.182701 + 0.316448i −0.942799 0.333360i \(-0.891817\pi\)
0.760098 + 0.649808i \(0.225151\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.24745 10.8209i −0.232506 0.402712i
\(723\) 0 0
\(724\) 10.3485 0.384598
\(725\) −20.0000 −0.742781
\(726\) 0 0
\(727\) −4.24745 7.35680i −0.157529 0.272848i 0.776448 0.630181i \(-0.217019\pi\)
−0.933977 + 0.357333i \(0.883686\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −5.00000 + 8.66025i −0.185058 + 0.320530i
\(731\) −6.89898 + 11.9494i −0.255168 + 0.441964i
\(732\) 0 0
\(733\) −8.72474 15.1117i −0.322256 0.558163i 0.658697 0.752408i \(-0.271108\pi\)
−0.980953 + 0.194245i \(0.937774\pi\)
\(734\) 6.89898 11.9494i 0.254646 0.441060i
\(735\) 0 0
\(736\) 0.500000 + 0.866025i 0.0184302 + 0.0319221i
\(737\) −12.8990 + 22.3417i −0.475140 + 0.822967i
\(738\) 0 0
\(739\) −6.79796 11.7744i −0.250067 0.433129i 0.713477 0.700679i \(-0.247119\pi\)
−0.963544 + 0.267550i \(0.913786\pi\)
\(740\) −17.1010 −0.628646
\(741\) 0 0
\(742\) 0 0
\(743\) 18.0000 31.1769i 0.660356 1.14377i −0.320166 0.947361i \(-0.603739\pi\)
0.980522 0.196409i \(-0.0629279\pi\)
\(744\) 0 0
\(745\) 4.34847 7.53177i 0.159316 0.275943i
\(746\) −3.44949 5.97469i −0.126295 0.218749i
\(747\) 0 0
\(748\) −4.00000 −0.146254
\(749\) 0 0
\(750\) 0 0
\(751\) −0.702041 1.21597i −0.0256178 0.0443714i 0.852932 0.522022i \(-0.174822\pi\)
−0.878550 + 0.477650i \(0.841489\pi\)
\(752\) 9.79796 0.357295
\(753\) 0 0
\(754\) 33.7980 1.23085
\(755\) 7.24745 0.263762
\(756\) 0 0
\(757\) −35.3939 −1.28641 −0.643206 0.765693i \(-0.722396\pi\)
−0.643206 + 0.765693i \(0.722396\pi\)
\(758\) −22.4949 −0.817051
\(759\) 0 0
\(760\) −3.69694 −0.134102
\(761\) −1.00000 1.73205i −0.0362500 0.0627868i 0.847331 0.531065i \(-0.178208\pi\)
−0.883581 + 0.468278i \(0.844875\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4.10102 −0.148370
\(765\) 0 0
\(766\) −1.44949 2.51059i −0.0523722 0.0907113i
\(767\) −4.89898 + 8.48528i −0.176892 + 0.306386i
\(768\) 0 0
\(769\) −17.0454 + 29.5235i −0.614673 + 1.06465i 0.375769 + 0.926714i \(0.377379\pi\)
−0.990442 + 0.137932i \(0.955955\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −17.8990 −0.644198
\(773\) −16.9722 29.3967i −0.610447 1.05733i −0.991165 0.132635i \(-0.957656\pi\)
0.380718 0.924691i \(-0.375677\pi\)
\(774\) 0 0
\(775\) −8.69694 + 15.0635i −0.312403 + 0.541098i
\(776\) −1.44949 2.51059i −0.0520336 0.0901249i
\(777\) 0 0
\(778\) 12.4495 21.5631i 0.446336 0.773076i
\(779\) 12.4949 + 21.6418i 0.447676 + 0.775398i
\(780\) 0 0
\(781\) −0.101021 + 0.174973i −0.00361480 + 0.00626101i
\(782\) 1.00000 1.73205i 0.0357599 0.0619380i
\(783\) 0 0
\(784\) 0 0
\(785\) 6.05051 + 10.4798i 0.215952 + 0.374040i
\(786\) 0 0
\(787\) 11.3939 0.406148 0.203074 0.979163i \(-0.434907\pi\)
0.203074 + 0.979163i \(0.434907\pi\)
\(788\) −16.6969 −0.594804
\(789\) 0 0
\(790\) 1.37628 + 2.38378i 0.0489657 + 0.0848111i
\(791\) 0 0
\(792\) 0 0
\(793\) −16.0454 + 27.7915i −0.569789 + 0.986904i
\(794\) −19.3485 + 33.5125i −0.686651 + 1.18932i
\(795\) 0 0
\(796\) −1.44949 2.51059i −0.0513758 0.0889855i
\(797\) 8.97219 15.5403i 0.317811 0.550465i −0.662220 0.749310i \(-0.730385\pi\)
0.980031 + 0.198844i \(0.0637188\pi\)
\(798\) 0 0
\(799\) −9.79796 16.9706i −0.346627 0.600375i
\(800\) −1.44949 + 2.51059i −0.0512472 + 0.0887628i
\(801\) 0 0
\(802\) 9.94949 + 17.2330i 0.351329 + 0.608519i
\(803\) −13.7980 −0.486919
\(804\) 0 0
\(805\) 0 0
\(806\) 14.6969 25.4558i 0.517678 0.896644i
\(807\) 0 0
\(808\) −8.62372 + 14.9367i −0.303382 + 0.525472i
\(809\) −8.10102 14.0314i −0.284817 0.493317i 0.687748 0.725950i \(-0.258599\pi\)
−0.972565 + 0.232632i \(0.925266\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −11.7980 20.4347i −0.413518 0.716235i
\(815\) 28.6969 1.00521
\(816\) 0 0
\(817\) −17.5959 −0.615603
\(818\) −13.7980 −0.482434
\(819\) 0 0
\(820\) −14.2020 −0.495957
\(821\) −0.404082 −0.0141026 −0.00705128 0.999975i \(-0.502245\pi\)
−0.00705128 + 0.999975i \(0.502245\pi\)
\(822\) 0 0
\(823\) −13.3939 −0.466881 −0.233441 0.972371i \(-0.574998\pi\)
−0.233441 + 0.972371i \(0.574998\pi\)
\(824\) −7.00000 12.1244i −0.243857 0.422372i
\(825\) 0 0
\(826\) 0 0
\(827\) 36.4949 1.26905 0.634526 0.772902i \(-0.281195\pi\)
0.634526 + 0.772902i \(0.281195\pi\)
\(828\) 0 0
\(829\) 0.651531 + 1.12848i 0.0226286 + 0.0391939i 0.877118 0.480275i \(-0.159463\pi\)
−0.854489 + 0.519469i \(0.826130\pi\)
\(830\) −1.44949 + 2.51059i −0.0503125 + 0.0871438i
\(831\) 0 0
\(832\) 2.44949 4.24264i 0.0849208 0.147087i
\(833\) 0 0
\(834\) 0 0
\(835\) 15.5051 0.536576
\(836\) −2.55051 4.41761i −0.0882112 0.152786i
\(837\) 0 0
\(838\) 14.7247 25.5040i 0.508658 0.881021i
\(839\) 17.5505 + 30.3984i 0.605911 + 1.04947i 0.991907 + 0.126968i \(0.0405245\pi\)
−0.385996 + 0.922500i \(0.626142\pi\)
\(840\) 0 0
\(841\) −9.29796 + 16.1045i −0.320619 + 0.555329i
\(842\) 11.4495 + 19.8311i 0.394575 + 0.683425i
\(843\) 0 0
\(844\) −6.44949 + 11.1708i −0.222001 + 0.384516i
\(845\) 7.97219 13.8082i 0.274252 0.475018i
\(846\) 0 0
\(847\) 0 0
\(848\) −5.44949 9.43879i −0.187136 0.324129i
\(849\) 0 0
\(850\) 5.79796 0.198868
\(851\) 11.7980 0.404429
\(852\) 0 0
\(853\) 12.4217 + 21.5150i 0.425310 + 0.736659i 0.996449 0.0841942i \(-0.0268316\pi\)
−0.571139 + 0.820853i \(0.693498\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 6.00000 10.3923i 0.205076 0.355202i
\(857\) 17.4495 30.2234i 0.596063 1.03241i −0.397333 0.917675i \(-0.630064\pi\)
0.993396 0.114737i \(-0.0366026\pi\)
\(858\) 0 0
\(859\) −5.00000 8.66025i −0.170598 0.295484i 0.768031 0.640412i \(-0.221237\pi\)
−0.938629 + 0.344928i \(0.887903\pi\)
\(860\) 5.00000 8.66025i 0.170499 0.295312i
\(861\) 0 0
\(862\) −15.7980 27.3629i −0.538081 0.931983i
\(863\) 5.94949 10.3048i 0.202523 0.350780i −0.746818 0.665029i \(-0.768419\pi\)
0.949341 + 0.314249i \(0.101753\pi\)
\(864\) 0 0
\(865\) −2.24745 3.89270i −0.0764155 0.132356i
\(866\) −7.79796 −0.264985
\(867\) 0 0
\(868\) 0 0
\(869\) −1.89898 + 3.28913i −0.0644185 + 0.111576i
\(870\) 0 0
\(871\) −31.5959 + 54.7257i −1.07059 + 1.85431i
\(872\) 6.34847 + 10.9959i 0.214986 + 0.372367i
\(873\) 0 0
\(874\) 2.55051 0.0862723
\(875\) 0 0
\(876\) 0 0
\(877\) −11.2474 19.4812i −0.379799 0.657832i 0.611233 0.791450i \(-0.290674\pi\)
−0.991033 + 0.133619i \(0.957340\pi\)
\(878\) 2.20204 0.0743153
\(879\) 0 0
\(880\) 2.89898 0.0977246
\(881\) 19.5959 0.660203 0.330102 0.943945i \(-0.392917\pi\)
0.330102 + 0.943945i \(0.392917\pi\)
\(882\) 0 0
\(883\) −19.7980 −0.666254 −0.333127 0.942882i \(-0.608104\pi\)
−0.333127 + 0.942882i \(0.608104\pi\)
\(884\) −9.79796 −0.329541
\(885\) 0 0
\(886\) −14.8990 −0.500541
\(887\) 7.10102 + 12.2993i 0.238429 + 0.412971i 0.960264 0.279094i \(-0.0900343\pi\)
−0.721835 + 0.692065i \(0.756701\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −24.4949 −0.821071
\(891\) 0 0
\(892\) −5.55051 9.61377i −0.185845 0.321893i
\(893\) 12.4949 21.6418i 0.418126 0.724215i
\(894\) 0 0
\(895\) −15.0000 + 25.9808i −0.501395 + 0.868441i
\(896\) 0 0
\(897\) 0 0
\(898\) 20.5959 0.687295
\(899\) 20.6969 + 35.8481i 0.690282 + 1.19560i
\(900\) 0 0
\(901\) −10.8990 + 18.8776i −0.363098 + 0.628904i
\(902\) −9.79796 16.9706i −0.326236 0.565058i
\(903\) 0 0
\(904\) 3.05051 5.28364i 0.101458 0.175731i
\(905\) 7.50000 + 12.9904i 0.249308 + 0.431815i
\(906\) 0 0
\(907\) −1.34847 + 2.33562i −0.0447752 + 0.0775529i −0.887544 0.460722i \(-0.847590\pi\)
0.842769 + 0.538275i \(0.180924\pi\)
\(908\) 2.72474 4.71940i 0.0904238 0.156619i
\(909\) 0 0
\(910\) 0 0
\(911\) 25.9949 + 45.0245i 0.861249 + 1.49173i 0.870724 + 0.491773i \(0.163651\pi\)
−0.00947432 + 0.999955i \(0.503016\pi\)
\(912\) 0 0
\(913\) −4.00000 −0.132381
\(914\) 17.4949 0.578680
\(915\) 0 0
\(916\) 0.623724 + 1.08032i 0.0206084 + 0.0356949i
\(917\) 0 0
\(918\) 0 0
\(919\) 12.8485 22.2542i 0.423832 0.734098i −0.572479 0.819920i \(-0.694018\pi\)
0.996311 + 0.0858213i \(0.0273514\pi\)
\(920\) −0.724745 + 1.25529i −0.0238941 + 0.0413858i
\(921\) 0 0
\(922\) 2.82577 + 4.89437i 0.0930616 + 0.161187i
\(923\) −0.247449 + 0.428594i −0.00814487 + 0.0141073i
\(924\) 0 0
\(925\) 17.1010 + 29.6198i 0.562278 + 0.973894i
\(926\) 1.84847 3.20164i 0.0607445 0.105213i
\(927\) 0 0
\(928\) 3.44949 + 5.97469i 0.113235 + 0.196129i
\(929\) 34.2929 1.12511 0.562556 0.826759i \(-0.309818\pi\)
0.562556 + 0.826759i \(0.309818\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.50000 + 6.06218i −0.114646 + 0.198573i
\(933\) 0 0
\(934\) 5.00000 8.66025i 0.163605 0.283372i
\(935\) −2.89898 5.02118i −0.0948068 0.164210i
\(936\) 0 0
\(937\) −45.5959 −1.48955 −0.744777 0.667314i \(-0.767444\pi\)
−0.744777 + 0.667314i \(0.767444\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 7.10102 + 12.2993i 0.231610 + 0.401160i
\(941\) −1.44949 −0.0472520 −0.0236260 0.999721i \(-0.507521\pi\)
−0.0236260 + 0.999721i \(0.507521\pi\)
\(942\) 0 0
\(943\) 9.79796 0.319065
\(944\) −2.00000 −0.0650945
\(945\) 0 0
\(946\) 13.7980 0.448610
\(947\) −52.4949 −1.70585 −0.852927 0.522029i \(-0.825175\pi\)
−0.852927 + 0.522029i \(0.825175\pi\)
\(948\) 0 0
\(949\) −33.7980 −1.09713
\(950\) 3.69694 + 6.40329i 0.119945 + 0.207750i
\(951\) 0 0
\(952\) 0 0
\(953\) 3.39388 0.109938 0.0549692 0.998488i \(-0.482494\pi\)
0.0549692 + 0.998488i \(0.482494\pi\)
\(954\) 0 0
\(955\) −2.97219 5.14799i −0.0961779 0.166585i
\(956\) 3.39898 5.88721i 0.109931 0.190406i
\(957\) 0 0
\(958\) 4.79796 8.31031i 0.155015 0.268494i
\(959\) 0 0
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) −28.8990 50.0545i −0.931740 1.61382i
\(963\) 0 0
\(964\) 0.449490 0.778539i 0.0144771 0.0250751i
\(965\) −12.9722 22.4685i −0.417590 0.723287i
\(966\) 0 0
\(967\) −12.2980 + 21.3007i −0.395476 + 0.684984i −0.993162 0.116746i \(-0.962754\pi\)
0.597686 + 0.801730i \(0.296087\pi\)
\(968\) −3.50000 6.06218i −0.112494 0.194846i
\(969\) 0 0
\(970\) 2.10102 3.63907i 0.0674597 0.116844i
\(971\) 0.0278064 0.0481621i 0.000892350 0.00154560i −0.865579 0.500773i \(-0.833049\pi\)
0.866471 + 0.499227i \(0.166383\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −18.1969 31.5180i −0.583068 1.00990i
\(975\) 0 0
\(976\) −6.55051 −0.209677
\(977\) 37.5959 1.20280 0.601400 0.798948i \(-0.294610\pi\)
0.601400 + 0.798948i \(0.294610\pi\)
\(978\) 0 0
\(979\) −16.8990 29.2699i −0.540094 0.935470i
\(980\) 0 0
\(981\) 0 0
\(982\) −7.89898 + 13.6814i −0.252067 + 0.436592i
\(983\) 16.5959 28.7450i 0.529328 0.916822i −0.470087 0.882620i \(-0.655778\pi\)
0.999415 0.0342024i \(-0.0108891\pi\)
\(984\) 0 0
\(985\) −12.1010 20.9596i −0.385571 0.667828i
\(986\) 6.89898 11.9494i 0.219708 0.380546i
\(987\) 0 0
\(988\) −6.24745 10.8209i −0.198758 0.344259i
\(989\) −3.44949 + 5.97469i −0.109687 + 0.189984i
\(990\) 0 0
\(991\) 0.898979 + 1.55708i 0.0285570 + 0.0494622i 0.879951 0.475065i \(-0.157575\pi\)
−0.851394 + 0.524527i \(0.824242\pi\)
\(992\) 6.00000 0.190500
\(993\) 0 0
\(994\) 0 0
\(995\) 2.10102 3.63907i 0.0666068 0.115366i
\(996\) 0 0
\(997\) 26.0732 45.1601i 0.825747 1.43024i −0.0756001 0.997138i \(-0.524087\pi\)
0.901347 0.433097i \(-0.142579\pi\)
\(998\) −12.6969 21.9917i −0.401915 0.696136i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.e.k.1549.2 4
3.2 odd 2 882.2.e.n.373.2 4
7.2 even 3 2646.2.f.k.1765.2 4
7.3 odd 6 2646.2.h.m.361.2 4
7.4 even 3 2646.2.h.n.361.1 4
7.5 odd 6 378.2.f.d.253.1 4
7.6 odd 2 2646.2.e.l.1549.1 4
9.2 odd 6 882.2.h.l.79.1 4
9.7 even 3 2646.2.h.n.667.1 4
21.2 odd 6 882.2.f.j.589.2 4
21.5 even 6 126.2.f.c.85.1 yes 4
21.11 odd 6 882.2.h.l.67.1 4
21.17 even 6 882.2.h.k.67.2 4
21.20 even 2 882.2.e.m.373.1 4
28.19 even 6 3024.2.r.e.1009.1 4
63.2 odd 6 882.2.f.j.295.1 4
63.5 even 6 1134.2.a.p.1.1 2
63.11 odd 6 882.2.e.n.655.2 4
63.16 even 3 2646.2.f.k.883.2 4
63.20 even 6 882.2.h.k.79.2 4
63.23 odd 6 7938.2.a.bn.1.2 2
63.25 even 3 inner 2646.2.e.k.2125.2 4
63.34 odd 6 2646.2.h.m.667.2 4
63.38 even 6 882.2.e.m.655.1 4
63.40 odd 6 1134.2.a.i.1.2 2
63.47 even 6 126.2.f.c.43.2 4
63.52 odd 6 2646.2.e.l.2125.1 4
63.58 even 3 7938.2.a.bm.1.1 2
63.61 odd 6 378.2.f.d.127.1 4
84.47 odd 6 1008.2.r.e.337.2 4
252.47 odd 6 1008.2.r.e.673.1 4
252.103 even 6 9072.2.a.bd.1.2 2
252.131 odd 6 9072.2.a.bk.1.1 2
252.187 even 6 3024.2.r.e.2017.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.c.43.2 4 63.47 even 6
126.2.f.c.85.1 yes 4 21.5 even 6
378.2.f.d.127.1 4 63.61 odd 6
378.2.f.d.253.1 4 7.5 odd 6
882.2.e.m.373.1 4 21.20 even 2
882.2.e.m.655.1 4 63.38 even 6
882.2.e.n.373.2 4 3.2 odd 2
882.2.e.n.655.2 4 63.11 odd 6
882.2.f.j.295.1 4 63.2 odd 6
882.2.f.j.589.2 4 21.2 odd 6
882.2.h.k.67.2 4 21.17 even 6
882.2.h.k.79.2 4 63.20 even 6
882.2.h.l.67.1 4 21.11 odd 6
882.2.h.l.79.1 4 9.2 odd 6
1008.2.r.e.337.2 4 84.47 odd 6
1008.2.r.e.673.1 4 252.47 odd 6
1134.2.a.i.1.2 2 63.40 odd 6
1134.2.a.p.1.1 2 63.5 even 6
2646.2.e.k.1549.2 4 1.1 even 1 trivial
2646.2.e.k.2125.2 4 63.25 even 3 inner
2646.2.e.l.1549.1 4 7.6 odd 2
2646.2.e.l.2125.1 4 63.52 odd 6
2646.2.f.k.883.2 4 63.16 even 3
2646.2.f.k.1765.2 4 7.2 even 3
2646.2.h.m.361.2 4 7.3 odd 6
2646.2.h.m.667.2 4 63.34 odd 6
2646.2.h.n.361.1 4 7.4 even 3
2646.2.h.n.667.1 4 9.7 even 3
3024.2.r.e.1009.1 4 28.19 even 6
3024.2.r.e.2017.1 4 252.187 even 6
7938.2.a.bm.1.1 2 63.58 even 3
7938.2.a.bn.1.2 2 63.23 odd 6
9072.2.a.bd.1.2 2 252.103 even 6
9072.2.a.bk.1.1 2 252.131 odd 6