Properties

Label 2646.2.h.n.667.1
Level $2646$
Weight $2$
Character 2646.667
Analytic conductor $21.128$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(361,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 667.1
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2646.667
Dual form 2646.2.h.n.361.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} -1.44949 q^{5} -1.00000 q^{8} +(-0.724745 - 1.25529i) q^{10} -2.00000 q^{11} +(2.44949 + 4.24264i) q^{13} +(-0.500000 - 0.866025i) q^{16} +(-1.00000 - 1.73205i) q^{17} +(1.27526 - 2.20881i) q^{19} +(0.724745 - 1.25529i) q^{20} +(-1.00000 - 1.73205i) q^{22} +1.00000 q^{23} -2.89898 q^{25} +(-2.44949 + 4.24264i) q^{26} +(-3.44949 + 5.97469i) q^{29} +(3.00000 - 5.19615i) q^{31} +(0.500000 - 0.866025i) q^{32} +(1.00000 - 1.73205i) q^{34} +(-5.89898 + 10.2173i) q^{37} +2.55051 q^{38} +1.44949 q^{40} +(-4.89898 - 8.48528i) q^{41} +(-3.44949 + 5.97469i) q^{43} +(1.00000 - 1.73205i) q^{44} +(0.500000 + 0.866025i) q^{46} +(-4.89898 - 8.48528i) q^{47} +(-1.44949 - 2.51059i) q^{50} -4.89898 q^{52} +(-5.44949 - 9.43879i) q^{53} +2.89898 q^{55} -6.89898 q^{58} +(1.00000 - 1.73205i) q^{59} +(3.27526 + 5.67291i) q^{61} +6.00000 q^{62} +1.00000 q^{64} +(-3.55051 - 6.14966i) q^{65} +(6.44949 - 11.1708i) q^{67} +2.00000 q^{68} -0.101021 q^{71} +(-3.44949 - 5.97469i) q^{73} -11.7980 q^{74} +(1.27526 + 2.20881i) q^{76} +(0.949490 + 1.64456i) q^{79} +(0.724745 + 1.25529i) q^{80} +(4.89898 - 8.48528i) q^{82} +(-1.00000 + 1.73205i) q^{83} +(1.44949 + 2.51059i) q^{85} -6.89898 q^{86} +2.00000 q^{88} +(8.44949 - 14.6349i) q^{89} +(-0.500000 + 0.866025i) q^{92} +(4.89898 - 8.48528i) q^{94} +(-1.84847 + 3.20164i) q^{95} +(1.44949 - 2.51059i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} + 4 q^{5} - 4 q^{8} + 2 q^{10} - 8 q^{11} - 2 q^{16} - 4 q^{17} + 10 q^{19} - 2 q^{20} - 4 q^{22} + 4 q^{23} + 8 q^{25} - 4 q^{29} + 12 q^{31} + 2 q^{32} + 4 q^{34} - 4 q^{37} + 20 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.44949 −0.648232 −0.324116 0.946017i \(-0.605067\pi\)
−0.324116 + 0.946017i \(0.605067\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −0.724745 1.25529i −0.229184 0.396959i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 2.44949 + 4.24264i 0.679366 + 1.17670i 0.975172 + 0.221449i \(0.0710785\pi\)
−0.295806 + 0.955248i \(0.595588\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 0 0
\(19\) 1.27526 2.20881i 0.292564 0.506735i −0.681852 0.731491i \(-0.738825\pi\)
0.974415 + 0.224756i \(0.0721584\pi\)
\(20\) 0.724745 1.25529i 0.162058 0.280692i
\(21\) 0 0
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) 1.00000 0.208514 0.104257 0.994550i \(-0.466753\pi\)
0.104257 + 0.994550i \(0.466753\pi\)
\(24\) 0 0
\(25\) −2.89898 −0.579796
\(26\) −2.44949 + 4.24264i −0.480384 + 0.832050i
\(27\) 0 0
\(28\) 0 0
\(29\) −3.44949 + 5.97469i −0.640554 + 1.10947i 0.344755 + 0.938693i \(0.387962\pi\)
−0.985309 + 0.170780i \(0.945371\pi\)
\(30\) 0 0
\(31\) 3.00000 5.19615i 0.538816 0.933257i −0.460152 0.887840i \(-0.652205\pi\)
0.998968 0.0454165i \(-0.0144615\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 1.00000 1.73205i 0.171499 0.297044i
\(35\) 0 0
\(36\) 0 0
\(37\) −5.89898 + 10.2173i −0.969786 + 1.67972i −0.273621 + 0.961838i \(0.588221\pi\)
−0.696165 + 0.717881i \(0.745112\pi\)
\(38\) 2.55051 0.413747
\(39\) 0 0
\(40\) 1.44949 0.229184
\(41\) −4.89898 8.48528i −0.765092 1.32518i −0.940198 0.340629i \(-0.889360\pi\)
0.175106 0.984550i \(-0.443973\pi\)
\(42\) 0 0
\(43\) −3.44949 + 5.97469i −0.526042 + 0.911132i 0.473497 + 0.880795i \(0.342991\pi\)
−0.999540 + 0.0303367i \(0.990342\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) 0 0
\(46\) 0.500000 + 0.866025i 0.0737210 + 0.127688i
\(47\) −4.89898 8.48528i −0.714590 1.23771i −0.963118 0.269081i \(-0.913280\pi\)
0.248528 0.968625i \(-0.420053\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.44949 2.51059i −0.204989 0.355051i
\(51\) 0 0
\(52\) −4.89898 −0.679366
\(53\) −5.44949 9.43879i −0.748545 1.29652i −0.948520 0.316717i \(-0.897419\pi\)
0.199975 0.979801i \(-0.435914\pi\)
\(54\) 0 0
\(55\) 2.89898 0.390898
\(56\) 0 0
\(57\) 0 0
\(58\) −6.89898 −0.905880
\(59\) 1.00000 1.73205i 0.130189 0.225494i −0.793560 0.608492i \(-0.791775\pi\)
0.923749 + 0.382998i \(0.125108\pi\)
\(60\) 0 0
\(61\) 3.27526 + 5.67291i 0.419353 + 0.726341i 0.995875 0.0907408i \(-0.0289235\pi\)
−0.576521 + 0.817082i \(0.695590\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.55051 6.14966i −0.440387 0.762772i
\(66\) 0 0
\(67\) 6.44949 11.1708i 0.787931 1.36474i −0.139302 0.990250i \(-0.544486\pi\)
0.927233 0.374486i \(-0.122181\pi\)
\(68\) 2.00000 0.242536
\(69\) 0 0
\(70\) 0 0
\(71\) −0.101021 −0.0119889 −0.00599446 0.999982i \(-0.501908\pi\)
−0.00599446 + 0.999982i \(0.501908\pi\)
\(72\) 0 0
\(73\) −3.44949 5.97469i −0.403732 0.699285i 0.590441 0.807081i \(-0.298954\pi\)
−0.994173 + 0.107796i \(0.965621\pi\)
\(74\) −11.7980 −1.37148
\(75\) 0 0
\(76\) 1.27526 + 2.20881i 0.146282 + 0.253368i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.949490 + 1.64456i 0.106826 + 0.185028i 0.914483 0.404625i \(-0.132598\pi\)
−0.807657 + 0.589653i \(0.799265\pi\)
\(80\) 0.724745 + 1.25529i 0.0810289 + 0.140346i
\(81\) 0 0
\(82\) 4.89898 8.48528i 0.541002 0.937043i
\(83\) −1.00000 + 1.73205i −0.109764 + 0.190117i −0.915675 0.401920i \(-0.868343\pi\)
0.805910 + 0.592037i \(0.201676\pi\)
\(84\) 0 0
\(85\) 1.44949 + 2.51059i 0.157219 + 0.272312i
\(86\) −6.89898 −0.743936
\(87\) 0 0
\(88\) 2.00000 0.213201
\(89\) 8.44949 14.6349i 0.895644 1.55130i 0.0626387 0.998036i \(-0.480048\pi\)
0.833005 0.553265i \(-0.186618\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.500000 + 0.866025i −0.0521286 + 0.0902894i
\(93\) 0 0
\(94\) 4.89898 8.48528i 0.505291 0.875190i
\(95\) −1.84847 + 3.20164i −0.189649 + 0.328482i
\(96\) 0 0
\(97\) 1.44949 2.51059i 0.147173 0.254912i −0.783008 0.622011i \(-0.786316\pi\)
0.930182 + 0.367099i \(0.119649\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 1.44949 2.51059i 0.144949 0.251059i
\(101\) −17.2474 −1.71619 −0.858093 0.513495i \(-0.828351\pi\)
−0.858093 + 0.513495i \(0.828351\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) −2.44949 4.24264i −0.240192 0.416025i
\(105\) 0 0
\(106\) 5.44949 9.43879i 0.529301 0.916777i
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 0 0
\(109\) −6.34847 10.9959i −0.608073 1.05321i −0.991558 0.129666i \(-0.958609\pi\)
0.383485 0.923547i \(-0.374724\pi\)
\(110\) 1.44949 + 2.51059i 0.138203 + 0.239375i
\(111\) 0 0
\(112\) 0 0
\(113\) −3.05051 5.28364i −0.286968 0.497043i 0.686117 0.727492i \(-0.259314\pi\)
−0.973084 + 0.230449i \(0.925981\pi\)
\(114\) 0 0
\(115\) −1.44949 −0.135166
\(116\) −3.44949 5.97469i −0.320277 0.554736i
\(117\) 0 0
\(118\) 2.00000 0.184115
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −3.27526 + 5.67291i −0.296528 + 0.513601i
\(123\) 0 0
\(124\) 3.00000 + 5.19615i 0.269408 + 0.466628i
\(125\) 11.4495 1.02407
\(126\) 0 0
\(127\) −3.00000 −0.266207 −0.133103 0.991102i \(-0.542494\pi\)
−0.133103 + 0.991102i \(0.542494\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 3.55051 6.14966i 0.311400 0.539361i
\(131\) −8.55051 −0.747062 −0.373531 0.927618i \(-0.621853\pi\)
−0.373531 + 0.927618i \(0.621853\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.8990 1.11430
\(135\) 0 0
\(136\) 1.00000 + 1.73205i 0.0857493 + 0.148522i
\(137\) −7.79796 −0.666225 −0.333112 0.942887i \(-0.608099\pi\)
−0.333112 + 0.942887i \(0.608099\pi\)
\(138\) 0 0
\(139\) 2.27526 + 3.94086i 0.192985 + 0.334259i 0.946238 0.323471i \(-0.104850\pi\)
−0.753253 + 0.657730i \(0.771517\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.0505103 0.0874863i −0.00423873 0.00734169i
\(143\) −4.89898 8.48528i −0.409673 0.709575i
\(144\) 0 0
\(145\) 5.00000 8.66025i 0.415227 0.719195i
\(146\) 3.44949 5.97469i 0.285482 0.494469i
\(147\) 0 0
\(148\) −5.89898 10.2173i −0.484893 0.839860i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) −1.27526 + 2.20881i −0.103437 + 0.179158i
\(153\) 0 0
\(154\) 0 0
\(155\) −4.34847 + 7.53177i −0.349277 + 0.604966i
\(156\) 0 0
\(157\) −4.17423 + 7.22999i −0.333140 + 0.577016i −0.983126 0.182931i \(-0.941442\pi\)
0.649986 + 0.759947i \(0.274775\pi\)
\(158\) −0.949490 + 1.64456i −0.0755373 + 0.130835i
\(159\) 0 0
\(160\) −0.724745 + 1.25529i −0.0572961 + 0.0992398i
\(161\) 0 0
\(162\) 0 0
\(163\) 9.89898 17.1455i 0.775348 1.34294i −0.159251 0.987238i \(-0.550908\pi\)
0.934599 0.355704i \(-0.115759\pi\)
\(164\) 9.79796 0.765092
\(165\) 0 0
\(166\) −2.00000 −0.155230
\(167\) 5.34847 + 9.26382i 0.413877 + 0.716856i 0.995310 0.0967384i \(-0.0308410\pi\)
−0.581433 + 0.813594i \(0.697508\pi\)
\(168\) 0 0
\(169\) −5.50000 + 9.52628i −0.423077 + 0.732791i
\(170\) −1.44949 + 2.51059i −0.111171 + 0.192553i
\(171\) 0 0
\(172\) −3.44949 5.97469i −0.263021 0.455566i
\(173\) 1.55051 + 2.68556i 0.117883 + 0.204180i 0.918929 0.394424i \(-0.129056\pi\)
−0.801045 + 0.598604i \(0.795723\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 + 1.73205i 0.0753778 + 0.130558i
\(177\) 0 0
\(178\) 16.8990 1.26663
\(179\) 10.3485 + 17.9241i 0.773481 + 1.33971i 0.935644 + 0.352944i \(0.114819\pi\)
−0.162163 + 0.986764i \(0.551847\pi\)
\(180\) 0 0
\(181\) 10.3485 0.769196 0.384598 0.923084i \(-0.374340\pi\)
0.384598 + 0.923084i \(0.374340\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −1.00000 −0.0737210
\(185\) 8.55051 14.8099i 0.628646 1.08885i
\(186\) 0 0
\(187\) 2.00000 + 3.46410i 0.146254 + 0.253320i
\(188\) 9.79796 0.714590
\(189\) 0 0
\(190\) −3.69694 −0.268204
\(191\) 2.05051 + 3.55159i 0.148370 + 0.256984i 0.930625 0.365974i \(-0.119264\pi\)
−0.782255 + 0.622958i \(0.785931\pi\)
\(192\) 0 0
\(193\) 8.94949 15.5010i 0.644198 1.11578i −0.340288 0.940321i \(-0.610524\pi\)
0.984486 0.175463i \(-0.0561422\pi\)
\(194\) 2.89898 0.208135
\(195\) 0 0
\(196\) 0 0
\(197\) −16.6969 −1.18961 −0.594804 0.803871i \(-0.702770\pi\)
−0.594804 + 0.803871i \(0.702770\pi\)
\(198\) 0 0
\(199\) −1.44949 2.51059i −0.102752 0.177971i 0.810066 0.586339i \(-0.199431\pi\)
−0.912817 + 0.408368i \(0.866098\pi\)
\(200\) 2.89898 0.204989
\(201\) 0 0
\(202\) −8.62372 14.9367i −0.606763 1.05094i
\(203\) 0 0
\(204\) 0 0
\(205\) 7.10102 + 12.2993i 0.495957 + 0.859022i
\(206\) −7.00000 12.1244i −0.487713 0.844744i
\(207\) 0 0
\(208\) 2.44949 4.24264i 0.169842 0.294174i
\(209\) −2.55051 + 4.41761i −0.176422 + 0.305573i
\(210\) 0 0
\(211\) −6.44949 11.1708i −0.444001 0.769033i 0.553981 0.832529i \(-0.313108\pi\)
−0.997982 + 0.0634968i \(0.979775\pi\)
\(212\) 10.8990 0.748545
\(213\) 0 0
\(214\) −12.0000 −0.820303
\(215\) 5.00000 8.66025i 0.340997 0.590624i
\(216\) 0 0
\(217\) 0 0
\(218\) 6.34847 10.9959i 0.429973 0.744734i
\(219\) 0 0
\(220\) −1.44949 + 2.51059i −0.0977246 + 0.169264i
\(221\) 4.89898 8.48528i 0.329541 0.570782i
\(222\) 0 0
\(223\) −5.55051 + 9.61377i −0.371690 + 0.643785i −0.989826 0.142286i \(-0.954555\pi\)
0.618136 + 0.786071i \(0.287888\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.05051 5.28364i 0.202917 0.351462i
\(227\) −5.44949 −0.361695 −0.180848 0.983511i \(-0.557884\pi\)
−0.180848 + 0.983511i \(0.557884\pi\)
\(228\) 0 0
\(229\) −1.24745 −0.0824337 −0.0412169 0.999150i \(-0.513123\pi\)
−0.0412169 + 0.999150i \(0.513123\pi\)
\(230\) −0.724745 1.25529i −0.0477883 0.0827717i
\(231\) 0 0
\(232\) 3.44949 5.97469i 0.226470 0.392258i
\(233\) −3.50000 + 6.06218i −0.229293 + 0.397146i −0.957599 0.288106i \(-0.906975\pi\)
0.728306 + 0.685252i \(0.240308\pi\)
\(234\) 0 0
\(235\) 7.10102 + 12.2993i 0.463220 + 0.802320i
\(236\) 1.00000 + 1.73205i 0.0650945 + 0.112747i
\(237\) 0 0
\(238\) 0 0
\(239\) 3.39898 + 5.88721i 0.219862 + 0.380812i 0.954766 0.297360i \(-0.0961061\pi\)
−0.734904 + 0.678171i \(0.762773\pi\)
\(240\) 0 0
\(241\) −0.898979 −0.0579084 −0.0289542 0.999581i \(-0.509218\pi\)
−0.0289542 + 0.999581i \(0.509218\pi\)
\(242\) −3.50000 6.06218i −0.224989 0.389692i
\(243\) 0 0
\(244\) −6.55051 −0.419353
\(245\) 0 0
\(246\) 0 0
\(247\) 12.4949 0.795031
\(248\) −3.00000 + 5.19615i −0.190500 + 0.329956i
\(249\) 0 0
\(250\) 5.72474 + 9.91555i 0.362065 + 0.627114i
\(251\) 17.4495 1.10140 0.550701 0.834703i \(-0.314360\pi\)
0.550701 + 0.834703i \(0.314360\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) −1.50000 2.59808i −0.0941184 0.163018i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 8.20204 0.511629 0.255815 0.966726i \(-0.417656\pi\)
0.255815 + 0.966726i \(0.417656\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 7.10102 0.440387
\(261\) 0 0
\(262\) −4.27526 7.40496i −0.264126 0.457480i
\(263\) −25.8990 −1.59700 −0.798500 0.601995i \(-0.794373\pi\)
−0.798500 + 0.601995i \(0.794373\pi\)
\(264\) 0 0
\(265\) 7.89898 + 13.6814i 0.485230 + 0.840444i
\(266\) 0 0
\(267\) 0 0
\(268\) 6.44949 + 11.1708i 0.393965 + 0.682368i
\(269\) 9.17423 + 15.8902i 0.559363 + 0.968845i 0.997550 + 0.0699611i \(0.0222875\pi\)
−0.438187 + 0.898884i \(0.644379\pi\)
\(270\) 0 0
\(271\) 3.55051 6.14966i 0.215678 0.373565i −0.737804 0.675015i \(-0.764137\pi\)
0.953482 + 0.301450i \(0.0974705\pi\)
\(272\) −1.00000 + 1.73205i −0.0606339 + 0.105021i
\(273\) 0 0
\(274\) −3.89898 6.75323i −0.235546 0.407978i
\(275\) 5.79796 0.349630
\(276\) 0 0
\(277\) −18.6969 −1.12339 −0.561695 0.827344i \(-0.689851\pi\)
−0.561695 + 0.827344i \(0.689851\pi\)
\(278\) −2.27526 + 3.94086i −0.136461 + 0.236357i
\(279\) 0 0
\(280\) 0 0
\(281\) −9.50000 + 16.4545i −0.566722 + 0.981592i 0.430165 + 0.902750i \(0.358455\pi\)
−0.996887 + 0.0788417i \(0.974878\pi\)
\(282\) 0 0
\(283\) −12.7247 + 22.0399i −0.756408 + 1.31014i 0.188264 + 0.982118i \(0.439714\pi\)
−0.944672 + 0.328018i \(0.893619\pi\)
\(284\) 0.0505103 0.0874863i 0.00299723 0.00519136i
\(285\) 0 0
\(286\) 4.89898 8.48528i 0.289683 0.501745i
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 10.0000 0.587220
\(291\) 0 0
\(292\) 6.89898 0.403732
\(293\) −1.37628 2.38378i −0.0804029 0.139262i 0.823020 0.568012i \(-0.192287\pi\)
−0.903423 + 0.428750i \(0.858954\pi\)
\(294\) 0 0
\(295\) −1.44949 + 2.51059i −0.0843926 + 0.146172i
\(296\) 5.89898 10.2173i 0.342871 0.593870i
\(297\) 0 0
\(298\) 3.00000 + 5.19615i 0.173785 + 0.301005i
\(299\) 2.44949 + 4.24264i 0.141658 + 0.245358i
\(300\) 0 0
\(301\) 0 0
\(302\) −2.50000 4.33013i −0.143859 0.249171i
\(303\) 0 0
\(304\) −2.55051 −0.146282
\(305\) −4.74745 8.22282i −0.271838 0.470837i
\(306\) 0 0
\(307\) −25.2474 −1.44095 −0.720474 0.693482i \(-0.756076\pi\)
−0.720474 + 0.693482i \(0.756076\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −8.69694 −0.493953
\(311\) −15.3485 + 26.5843i −0.870332 + 1.50746i −0.00867810 + 0.999962i \(0.502762\pi\)
−0.861654 + 0.507497i \(0.830571\pi\)
\(312\) 0 0
\(313\) −2.34847 4.06767i −0.132743 0.229918i 0.791990 0.610534i \(-0.209045\pi\)
−0.924733 + 0.380616i \(0.875712\pi\)
\(314\) −8.34847 −0.471131
\(315\) 0 0
\(316\) −1.89898 −0.106826
\(317\) 10.3485 + 17.9241i 0.581228 + 1.00672i 0.995334 + 0.0964878i \(0.0307609\pi\)
−0.414106 + 0.910229i \(0.635906\pi\)
\(318\) 0 0
\(319\) 6.89898 11.9494i 0.386269 0.669037i
\(320\) −1.44949 −0.0810289
\(321\) 0 0
\(322\) 0 0
\(323\) −5.10102 −0.283828
\(324\) 0 0
\(325\) −7.10102 12.2993i −0.393894 0.682244i
\(326\) 19.7980 1.09651
\(327\) 0 0
\(328\) 4.89898 + 8.48528i 0.270501 + 0.468521i
\(329\) 0 0
\(330\) 0 0
\(331\) −2.34847 4.06767i −0.129084 0.223579i 0.794238 0.607606i \(-0.207870\pi\)
−0.923322 + 0.384027i \(0.874537\pi\)
\(332\) −1.00000 1.73205i −0.0548821 0.0950586i
\(333\) 0 0
\(334\) −5.34847 + 9.26382i −0.292655 + 0.506894i
\(335\) −9.34847 + 16.1920i −0.510761 + 0.884665i
\(336\) 0 0
\(337\) 11.6969 + 20.2597i 0.637173 + 1.10362i 0.986050 + 0.166447i \(0.0532296\pi\)
−0.348877 + 0.937168i \(0.613437\pi\)
\(338\) −11.0000 −0.598321
\(339\) 0 0
\(340\) −2.89898 −0.157219
\(341\) −6.00000 + 10.3923i −0.324918 + 0.562775i
\(342\) 0 0
\(343\) 0 0
\(344\) 3.44949 5.97469i 0.185984 0.322134i
\(345\) 0 0
\(346\) −1.55051 + 2.68556i −0.0833559 + 0.144377i
\(347\) 9.79796 16.9706i 0.525982 0.911028i −0.473560 0.880762i \(-0.657031\pi\)
0.999542 0.0302659i \(-0.00963541\pi\)
\(348\) 0 0
\(349\) 5.55051 9.61377i 0.297112 0.514613i −0.678362 0.734728i \(-0.737310\pi\)
0.975474 + 0.220115i \(0.0706432\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −1.00000 + 1.73205i −0.0533002 + 0.0923186i
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) 0.146428 0.00777160
\(356\) 8.44949 + 14.6349i 0.447822 + 0.775651i
\(357\) 0 0
\(358\) −10.3485 + 17.9241i −0.546934 + 0.947317i
\(359\) −4.39898 + 7.61926i −0.232169 + 0.402129i −0.958446 0.285273i \(-0.907916\pi\)
0.726277 + 0.687402i \(0.241249\pi\)
\(360\) 0 0
\(361\) 6.24745 + 10.8209i 0.328813 + 0.569521i
\(362\) 5.17423 + 8.96204i 0.271952 + 0.471034i
\(363\) 0 0
\(364\) 0 0
\(365\) 5.00000 + 8.66025i 0.261712 + 0.453298i
\(366\) 0 0
\(367\) 13.7980 0.720248 0.360124 0.932905i \(-0.382734\pi\)
0.360124 + 0.932905i \(0.382734\pi\)
\(368\) −0.500000 0.866025i −0.0260643 0.0451447i
\(369\) 0 0
\(370\) 17.1010 0.889040
\(371\) 0 0
\(372\) 0 0
\(373\) −6.89898 −0.357216 −0.178608 0.983920i \(-0.557159\pi\)
−0.178608 + 0.983920i \(0.557159\pi\)
\(374\) −2.00000 + 3.46410i −0.103418 + 0.179124i
\(375\) 0 0
\(376\) 4.89898 + 8.48528i 0.252646 + 0.437595i
\(377\) −33.7980 −1.74068
\(378\) 0 0
\(379\) 22.4949 1.15549 0.577743 0.816219i \(-0.303934\pi\)
0.577743 + 0.816219i \(0.303934\pi\)
\(380\) −1.84847 3.20164i −0.0948245 0.164241i
\(381\) 0 0
\(382\) −2.05051 + 3.55159i −0.104913 + 0.181715i
\(383\) −2.89898 −0.148131 −0.0740655 0.997253i \(-0.523597\pi\)
−0.0740655 + 0.997253i \(0.523597\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.8990 0.911034
\(387\) 0 0
\(388\) 1.44949 + 2.51059i 0.0735867 + 0.127456i
\(389\) 24.8990 1.26243 0.631214 0.775609i \(-0.282557\pi\)
0.631214 + 0.775609i \(0.282557\pi\)
\(390\) 0 0
\(391\) −1.00000 1.73205i −0.0505722 0.0875936i
\(392\) 0 0
\(393\) 0 0
\(394\) −8.34847 14.4600i −0.420590 0.728483i
\(395\) −1.37628 2.38378i −0.0692479 0.119941i
\(396\) 0 0
\(397\) 19.3485 33.5125i 0.971072 1.68195i 0.278740 0.960367i \(-0.410083\pi\)
0.692332 0.721579i \(-0.256583\pi\)
\(398\) 1.44949 2.51059i 0.0726564 0.125844i
\(399\) 0 0
\(400\) 1.44949 + 2.51059i 0.0724745 + 0.125529i
\(401\) 19.8990 0.993708 0.496854 0.867834i \(-0.334489\pi\)
0.496854 + 0.867834i \(0.334489\pi\)
\(402\) 0 0
\(403\) 29.3939 1.46421
\(404\) 8.62372 14.9367i 0.429046 0.743130i
\(405\) 0 0
\(406\) 0 0
\(407\) 11.7980 20.4347i 0.584803 1.01291i
\(408\) 0 0
\(409\) −6.89898 + 11.9494i −0.341133 + 0.590859i −0.984643 0.174578i \(-0.944144\pi\)
0.643511 + 0.765437i \(0.277477\pi\)
\(410\) −7.10102 + 12.2993i −0.350694 + 0.607421i
\(411\) 0 0
\(412\) 7.00000 12.1244i 0.344865 0.597324i
\(413\) 0 0
\(414\) 0 0
\(415\) 1.44949 2.51059i 0.0711527 0.123240i
\(416\) 4.89898 0.240192
\(417\) 0 0
\(418\) −5.10102 −0.249499
\(419\) −14.7247 25.5040i −0.719351 1.24595i −0.961257 0.275653i \(-0.911106\pi\)
0.241906 0.970300i \(-0.422227\pi\)
\(420\) 0 0
\(421\) −11.4495 + 19.8311i −0.558014 + 0.966509i 0.439648 + 0.898170i \(0.355103\pi\)
−0.997662 + 0.0683385i \(0.978230\pi\)
\(422\) 6.44949 11.1708i 0.313956 0.543788i
\(423\) 0 0
\(424\) 5.44949 + 9.43879i 0.264651 + 0.458388i
\(425\) 2.89898 + 5.02118i 0.140621 + 0.243563i
\(426\) 0 0
\(427\) 0 0
\(428\) −6.00000 10.3923i −0.290021 0.502331i
\(429\) 0 0
\(430\) 10.0000 0.482243
\(431\) 15.7980 + 27.3629i 0.760961 + 1.31802i 0.942356 + 0.334613i \(0.108605\pi\)
−0.181395 + 0.983410i \(0.558061\pi\)
\(432\) 0 0
\(433\) 7.79796 0.374746 0.187373 0.982289i \(-0.440003\pi\)
0.187373 + 0.982289i \(0.440003\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 12.6969 0.608073
\(437\) 1.27526 2.20881i 0.0610037 0.105662i
\(438\) 0 0
\(439\) 1.10102 + 1.90702i 0.0525488 + 0.0910173i 0.891103 0.453801i \(-0.149932\pi\)
−0.838554 + 0.544818i \(0.816599\pi\)
\(440\) −2.89898 −0.138203
\(441\) 0 0
\(442\) 9.79796 0.466041
\(443\) −7.44949 12.9029i −0.353936 0.613035i 0.632999 0.774152i \(-0.281824\pi\)
−0.986935 + 0.161117i \(0.948490\pi\)
\(444\) 0 0
\(445\) −12.2474 + 21.2132i −0.580585 + 1.00560i
\(446\) −11.1010 −0.525649
\(447\) 0 0
\(448\) 0 0
\(449\) −20.5959 −0.971981 −0.485991 0.873964i \(-0.661541\pi\)
−0.485991 + 0.873964i \(0.661541\pi\)
\(450\) 0 0
\(451\) 9.79796 + 16.9706i 0.461368 + 0.799113i
\(452\) 6.10102 0.286968
\(453\) 0 0
\(454\) −2.72474 4.71940i −0.127879 0.221492i
\(455\) 0 0
\(456\) 0 0
\(457\) 8.74745 + 15.1510i 0.409188 + 0.708735i 0.994799 0.101857i \(-0.0324785\pi\)
−0.585611 + 0.810593i \(0.699145\pi\)
\(458\) −0.623724 1.08032i −0.0291447 0.0504801i
\(459\) 0 0
\(460\) 0.724745 1.25529i 0.0337914 0.0585284i
\(461\) −2.82577 + 4.89437i −0.131609 + 0.227954i −0.924297 0.381674i \(-0.875348\pi\)
0.792688 + 0.609628i \(0.208681\pi\)
\(462\) 0 0
\(463\) −1.84847 3.20164i −0.0859057 0.148793i 0.819871 0.572548i \(-0.194045\pi\)
−0.905777 + 0.423755i \(0.860712\pi\)
\(464\) 6.89898 0.320277
\(465\) 0 0
\(466\) −7.00000 −0.324269
\(467\) −5.00000 + 8.66025i −0.231372 + 0.400749i −0.958212 0.286058i \(-0.907655\pi\)
0.726840 + 0.686807i \(0.240988\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −7.10102 + 12.2993i −0.327546 + 0.567326i
\(471\) 0 0
\(472\) −1.00000 + 1.73205i −0.0460287 + 0.0797241i
\(473\) 6.89898 11.9494i 0.317215 0.549433i
\(474\) 0 0
\(475\) −3.69694 + 6.40329i −0.169627 + 0.293803i
\(476\) 0 0
\(477\) 0 0
\(478\) −3.39898 + 5.88721i −0.155466 + 0.269274i
\(479\) 9.59592 0.438449 0.219224 0.975674i \(-0.429647\pi\)
0.219224 + 0.975674i \(0.429647\pi\)
\(480\) 0 0
\(481\) −57.7980 −2.63536
\(482\) −0.449490 0.778539i −0.0204737 0.0354615i
\(483\) 0 0
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) −2.10102 + 3.63907i −0.0954024 + 0.165242i
\(486\) 0 0
\(487\) 18.1969 + 31.5180i 0.824582 + 1.42822i 0.902238 + 0.431238i \(0.141923\pi\)
−0.0776564 + 0.996980i \(0.524744\pi\)
\(488\) −3.27526 5.67291i −0.148264 0.256800i
\(489\) 0 0
\(490\) 0 0
\(491\) 7.89898 + 13.6814i 0.356476 + 0.617434i 0.987369 0.158435i \(-0.0506448\pi\)
−0.630893 + 0.775869i \(0.717312\pi\)
\(492\) 0 0
\(493\) 13.7980 0.621429
\(494\) 6.24745 + 10.8209i 0.281086 + 0.486855i
\(495\) 0 0
\(496\) −6.00000 −0.269408
\(497\) 0 0
\(498\) 0 0
\(499\) −25.3939 −1.13679 −0.568393 0.822757i \(-0.692435\pi\)
−0.568393 + 0.822757i \(0.692435\pi\)
\(500\) −5.72474 + 9.91555i −0.256018 + 0.443437i
\(501\) 0 0
\(502\) 8.72474 + 15.1117i 0.389404 + 0.674468i
\(503\) −24.4949 −1.09217 −0.546087 0.837729i \(-0.683883\pi\)
−0.546087 + 0.837729i \(0.683883\pi\)
\(504\) 0 0
\(505\) 25.0000 1.11249
\(506\) −1.00000 1.73205i −0.0444554 0.0769991i
\(507\) 0 0
\(508\) 1.50000 2.59808i 0.0665517 0.115271i
\(509\) −7.10102 −0.314747 −0.157374 0.987539i \(-0.550303\pi\)
−0.157374 + 0.987539i \(0.550303\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 4.10102 + 7.10318i 0.180888 + 0.313308i
\(515\) 20.2929 0.894210
\(516\) 0 0
\(517\) 9.79796 + 16.9706i 0.430914 + 0.746364i
\(518\) 0 0
\(519\) 0 0
\(520\) 3.55051 + 6.14966i 0.155700 + 0.269681i
\(521\) 4.65153 + 8.05669i 0.203787 + 0.352970i 0.949746 0.313023i \(-0.101342\pi\)
−0.745958 + 0.665993i \(0.768008\pi\)
\(522\) 0 0
\(523\) −7.17423 + 12.4261i −0.313707 + 0.543357i −0.979162 0.203081i \(-0.934904\pi\)
0.665455 + 0.746438i \(0.268238\pi\)
\(524\) 4.27526 7.40496i 0.186765 0.323487i
\(525\) 0 0
\(526\) −12.9495 22.4292i −0.564625 0.977958i
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) −7.89898 + 13.6814i −0.343110 + 0.594284i
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 41.5692i 1.03956 1.80056i
\(534\) 0 0
\(535\) 8.69694 15.0635i 0.376001 0.651254i
\(536\) −6.44949 + 11.1708i −0.278576 + 0.482507i
\(537\) 0 0
\(538\) −9.17423 + 15.8902i −0.395529 + 0.685077i
\(539\) 0 0
\(540\) 0 0
\(541\) 9.24745 16.0171i 0.397579 0.688627i −0.595848 0.803097i \(-0.703184\pi\)
0.993427 + 0.114471i \(0.0365172\pi\)
\(542\) 7.10102 0.305015
\(543\) 0 0
\(544\) −2.00000 −0.0857493
\(545\) 9.20204 + 15.9384i 0.394172 + 0.682726i
\(546\) 0 0
\(547\) 3.79796 6.57826i 0.162389 0.281266i −0.773336 0.633996i \(-0.781413\pi\)
0.935725 + 0.352730i \(0.114747\pi\)
\(548\) 3.89898 6.75323i 0.166556 0.288484i
\(549\) 0 0
\(550\) 2.89898 + 5.02118i 0.123613 + 0.214104i
\(551\) 8.79796 + 15.2385i 0.374806 + 0.649182i
\(552\) 0 0
\(553\) 0 0
\(554\) −9.34847 16.1920i −0.397178 0.687933i
\(555\) 0 0
\(556\) −4.55051 −0.192985
\(557\) −6.44949 11.1708i −0.273274 0.473324i 0.696424 0.717630i \(-0.254773\pi\)
−0.969698 + 0.244306i \(0.921440\pi\)
\(558\) 0 0
\(559\) −33.7980 −1.42950
\(560\) 0 0
\(561\) 0 0
\(562\) −19.0000 −0.801467
\(563\) 19.9722 34.5929i 0.841728 1.45791i −0.0467054 0.998909i \(-0.514872\pi\)
0.888433 0.459006i \(-0.151794\pi\)
\(564\) 0 0
\(565\) 4.42168 + 7.65858i 0.186022 + 0.322199i
\(566\) −25.4495 −1.06972
\(567\) 0 0
\(568\) 0.101021 0.00423873
\(569\) −15.0000 25.9808i −0.628833 1.08917i −0.987786 0.155815i \(-0.950200\pi\)
0.358954 0.933355i \(-0.383134\pi\)
\(570\) 0 0
\(571\) −16.8990 + 29.2699i −0.707200 + 1.22491i 0.258691 + 0.965960i \(0.416709\pi\)
−0.965892 + 0.258947i \(0.916625\pi\)
\(572\) 9.79796 0.409673
\(573\) 0 0
\(574\) 0 0
\(575\) −2.89898 −0.120896
\(576\) 0 0
\(577\) −7.79796 13.5065i −0.324633 0.562281i 0.656805 0.754061i \(-0.271908\pi\)
−0.981438 + 0.191779i \(0.938574\pi\)
\(578\) 13.0000 0.540729
\(579\) 0 0
\(580\) 5.00000 + 8.66025i 0.207614 + 0.359597i
\(581\) 0 0
\(582\) 0 0
\(583\) 10.8990 + 18.8776i 0.451390 + 0.781830i
\(584\) 3.44949 + 5.97469i 0.142741 + 0.247234i
\(585\) 0 0
\(586\) 1.37628 2.38378i 0.0568534 0.0984730i
\(587\) −8.07321 + 13.9832i −0.333217 + 0.577149i −0.983141 0.182850i \(-0.941468\pi\)
0.649924 + 0.760000i \(0.274801\pi\)
\(588\) 0 0
\(589\) −7.65153 13.2528i −0.315276 0.546074i
\(590\) −2.89898 −0.119349
\(591\) 0 0
\(592\) 11.7980 0.484893
\(593\) −7.34847 + 12.7279i −0.301765 + 0.522673i −0.976536 0.215355i \(-0.930909\pi\)
0.674770 + 0.738028i \(0.264243\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 + 5.19615i −0.122885 + 0.212843i
\(597\) 0 0
\(598\) −2.44949 + 4.24264i −0.100167 + 0.173494i
\(599\) −16.8990 + 29.2699i −0.690474 + 1.19594i 0.281209 + 0.959646i \(0.409264\pi\)
−0.971683 + 0.236289i \(0.924069\pi\)
\(600\) 0 0
\(601\) 8.34847 14.4600i 0.340541 0.589835i −0.643992 0.765032i \(-0.722723\pi\)
0.984533 + 0.175198i \(0.0560564\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 2.50000 4.33013i 0.101724 0.176190i
\(605\) 10.1464 0.412511
\(606\) 0 0
\(607\) −20.6969 −0.840063 −0.420031 0.907510i \(-0.637981\pi\)
−0.420031 + 0.907510i \(0.637981\pi\)
\(608\) −1.27526 2.20881i −0.0517184 0.0895789i
\(609\) 0 0
\(610\) 4.74745 8.22282i 0.192219 0.332932i
\(611\) 24.0000 41.5692i 0.970936 1.68171i
\(612\) 0 0
\(613\) 7.34847 + 12.7279i 0.296802 + 0.514076i 0.975402 0.220432i \(-0.0707466\pi\)
−0.678601 + 0.734508i \(0.737413\pi\)
\(614\) −12.6237 21.8649i −0.509452 0.882397i
\(615\) 0 0
\(616\) 0 0
\(617\) −7.69694 13.3315i −0.309867 0.536706i 0.668466 0.743743i \(-0.266951\pi\)
−0.978333 + 0.207037i \(0.933618\pi\)
\(618\) 0 0
\(619\) −30.1464 −1.21169 −0.605844 0.795584i \(-0.707164\pi\)
−0.605844 + 0.795584i \(0.707164\pi\)
\(620\) −4.34847 7.53177i −0.174639 0.302483i
\(621\) 0 0
\(622\) −30.6969 −1.23084
\(623\) 0 0
\(624\) 0 0
\(625\) −2.10102 −0.0840408
\(626\) 2.34847 4.06767i 0.0938637 0.162577i
\(627\) 0 0
\(628\) −4.17423 7.22999i −0.166570 0.288508i
\(629\) 23.5959 0.940831
\(630\) 0 0
\(631\) 27.8990 1.11064 0.555320 0.831636i \(-0.312596\pi\)
0.555320 + 0.831636i \(0.312596\pi\)
\(632\) −0.949490 1.64456i −0.0377687 0.0654173i
\(633\) 0 0
\(634\) −10.3485 + 17.9241i −0.410990 + 0.711856i
\(635\) 4.34847 0.172564
\(636\) 0 0
\(637\) 0 0
\(638\) 13.7980 0.546266
\(639\) 0 0
\(640\) −0.724745 1.25529i −0.0286481 0.0496199i
\(641\) 7.49490 0.296031 0.148015 0.988985i \(-0.452712\pi\)
0.148015 + 0.988985i \(0.452712\pi\)
\(642\) 0 0
\(643\) −19.6969 34.1161i −0.776771 1.34541i −0.933793 0.357812i \(-0.883523\pi\)
0.157022 0.987595i \(-0.449811\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.55051 4.41761i −0.100348 0.173809i
\(647\) 25.3485 + 43.9048i 0.996551 + 1.72608i 0.570139 + 0.821548i \(0.306889\pi\)
0.426412 + 0.904529i \(0.359777\pi\)
\(648\) 0 0
\(649\) −2.00000 + 3.46410i −0.0785069 + 0.135978i
\(650\) 7.10102 12.2993i 0.278525 0.482419i
\(651\) 0 0
\(652\) 9.89898 + 17.1455i 0.387674 + 0.671471i
\(653\) −9.79796 −0.383424 −0.191712 0.981451i \(-0.561404\pi\)
−0.191712 + 0.981451i \(0.561404\pi\)
\(654\) 0 0
\(655\) 12.3939 0.484269
\(656\) −4.89898 + 8.48528i −0.191273 + 0.331295i
\(657\) 0 0
\(658\) 0 0
\(659\) −12.3485 + 21.3882i −0.481028 + 0.833165i −0.999763 0.0217701i \(-0.993070\pi\)
0.518735 + 0.854935i \(0.326403\pi\)
\(660\) 0 0
\(661\) 2.27526 3.94086i 0.0884972 0.153282i −0.818379 0.574679i \(-0.805127\pi\)
0.906876 + 0.421397i \(0.138460\pi\)
\(662\) 2.34847 4.06767i 0.0912758 0.158094i
\(663\) 0 0
\(664\) 1.00000 1.73205i 0.0388075 0.0672166i
\(665\) 0 0
\(666\) 0 0
\(667\) −3.44949 + 5.97469i −0.133565 + 0.231341i
\(668\) −10.6969 −0.413877
\(669\) 0 0
\(670\) −18.6969 −0.722326
\(671\) −6.55051 11.3458i −0.252880 0.438000i
\(672\) 0 0
\(673\) 4.29796 7.44428i 0.165674 0.286956i −0.771220 0.636568i \(-0.780353\pi\)
0.936894 + 0.349612i \(0.113687\pi\)
\(674\) −11.6969 + 20.2597i −0.450549 + 0.780374i
\(675\) 0 0
\(676\) −5.50000 9.52628i −0.211538 0.366395i
\(677\) −7.34847 12.7279i −0.282425 0.489174i 0.689557 0.724232i \(-0.257805\pi\)
−0.971981 + 0.235058i \(0.924472\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.44949 2.51059i −0.0555854 0.0962767i
\(681\) 0 0
\(682\) −12.0000 −0.459504
\(683\) 25.8990 + 44.8583i 0.990997 + 1.71646i 0.611446 + 0.791286i \(0.290588\pi\)
0.379551 + 0.925171i \(0.376079\pi\)
\(684\) 0 0
\(685\) 11.3031 0.431868
\(686\) 0 0
\(687\) 0 0
\(688\) 6.89898 0.263021
\(689\) 26.6969 46.2405i 1.01707 1.76162i
\(690\) 0 0
\(691\) 25.5227 + 44.2066i 0.970929 + 1.68170i 0.692762 + 0.721167i \(0.256394\pi\)
0.278168 + 0.960533i \(0.410273\pi\)
\(692\) −3.10102 −0.117883
\(693\) 0 0
\(694\) 19.5959 0.743851
\(695\) −3.29796 5.71223i −0.125099 0.216677i
\(696\) 0 0
\(697\) −9.79796 + 16.9706i −0.371124 + 0.642806i
\(698\) 11.1010 0.420180
\(699\) 0 0
\(700\) 0 0
\(701\) 7.39388 0.279263 0.139631 0.990204i \(-0.455408\pi\)
0.139631 + 0.990204i \(0.455408\pi\)
\(702\) 0 0
\(703\) 15.0454 + 26.0594i 0.567448 + 0.982849i
\(704\) −2.00000 −0.0753778
\(705\) 0 0
\(706\) −3.00000 5.19615i −0.112906 0.195560i
\(707\) 0 0
\(708\) 0 0
\(709\) −13.7980 23.8988i −0.518193 0.897537i −0.999777 0.0211367i \(-0.993271\pi\)
0.481583 0.876400i \(-0.340062\pi\)
\(710\) 0.0732141 + 0.126811i 0.00274768 + 0.00475911i
\(711\) 0 0
\(712\) −8.44949 + 14.6349i −0.316658 + 0.548468i
\(713\) 3.00000 5.19615i 0.112351 0.194597i
\(714\) 0 0
\(715\) 7.10102 + 12.2993i 0.265563 + 0.459969i
\(716\) −20.6969 −0.773481
\(717\) 0 0
\(718\) −8.79796 −0.328337
\(719\) −4.89898 + 8.48528i −0.182701 + 0.316448i −0.942799 0.333360i \(-0.891817\pi\)
0.760098 + 0.649808i \(0.225151\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.24745 + 10.8209i −0.232506 + 0.402712i
\(723\) 0 0
\(724\) −5.17423 + 8.96204i −0.192299 + 0.333071i
\(725\) 10.0000 17.3205i 0.371391 0.643268i
\(726\) 0 0
\(727\) −4.24745 + 7.35680i −0.157529 + 0.272848i −0.933977 0.357333i \(-0.883686\pi\)
0.776448 + 0.630181i \(0.217019\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −5.00000 + 8.66025i −0.185058 + 0.320530i
\(731\) 13.7980 0.510336
\(732\) 0 0
\(733\) 17.4495 0.644512 0.322256 0.946653i \(-0.395559\pi\)
0.322256 + 0.946653i \(0.395559\pi\)
\(734\) 6.89898 + 11.9494i 0.254646 + 0.441060i
\(735\) 0 0
\(736\) 0.500000 0.866025i 0.0184302 0.0319221i
\(737\) −12.8990 + 22.3417i −0.475140 + 0.822967i
\(738\) 0 0
\(739\) −6.79796 11.7744i −0.250067 0.433129i 0.713477 0.700679i \(-0.247119\pi\)
−0.963544 + 0.267550i \(0.913786\pi\)
\(740\) 8.55051 + 14.8099i 0.314323 + 0.544423i
\(741\) 0 0
\(742\) 0 0
\(743\) 18.0000 + 31.1769i 0.660356 + 1.14377i 0.980522 + 0.196409i \(0.0629279\pi\)
−0.320166 + 0.947361i \(0.603739\pi\)
\(744\) 0 0
\(745\) −8.69694 −0.318631
\(746\) −3.44949 5.97469i −0.126295 0.218749i
\(747\) 0 0
\(748\) −4.00000 −0.146254
\(749\) 0 0
\(750\) 0 0
\(751\) 1.40408 0.0512357 0.0256178 0.999672i \(-0.491845\pi\)
0.0256178 + 0.999672i \(0.491845\pi\)
\(752\) −4.89898 + 8.48528i −0.178647 + 0.309426i
\(753\) 0 0
\(754\) −16.8990 29.2699i −0.615425 1.06595i
\(755\) 7.24745 0.263762
\(756\) 0 0
\(757\) −35.3939 −1.28641 −0.643206 0.765693i \(-0.722396\pi\)
−0.643206 + 0.765693i \(0.722396\pi\)
\(758\) 11.2474 + 19.4812i 0.408526 + 0.707587i
\(759\) 0 0
\(760\) 1.84847 3.20164i 0.0670510 0.116136i
\(761\) 2.00000 0.0724999 0.0362500 0.999343i \(-0.488459\pi\)
0.0362500 + 0.999343i \(0.488459\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4.10102 −0.148370
\(765\) 0 0
\(766\) −1.44949 2.51059i −0.0523722 0.0907113i
\(767\) 9.79796 0.353784
\(768\) 0 0
\(769\) −17.0454 29.5235i −0.614673 1.06465i −0.990442 0.137932i \(-0.955955\pi\)
0.375769 0.926714i \(-0.377379\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.94949 + 15.5010i 0.322099 + 0.557892i
\(773\) −16.9722 29.3967i −0.610447 1.05733i −0.991165 0.132635i \(-0.957656\pi\)
0.380718 0.924691i \(-0.375677\pi\)
\(774\) 0 0
\(775\) −8.69694 + 15.0635i −0.312403 + 0.541098i
\(776\) −1.44949 + 2.51059i −0.0520336 + 0.0901249i
\(777\) 0 0
\(778\) 12.4495 + 21.5631i 0.446336 + 0.773076i
\(779\) −24.9898 −0.895352
\(780\) 0 0
\(781\) 0.202041 0.00722960
\(782\) 1.00000 1.73205i 0.0357599 0.0619380i
\(783\) 0 0
\(784\) 0 0
\(785\) 6.05051 10.4798i 0.215952 0.374040i
\(786\) 0 0
\(787\) −5.69694 + 9.86739i −0.203074 + 0.351734i −0.949517 0.313715i \(-0.898427\pi\)
0.746443 + 0.665449i \(0.231760\pi\)
\(788\) 8.34847 14.4600i 0.297402 0.515115i
\(789\) 0 0
\(790\) 1.37628 2.38378i 0.0489657 0.0848111i
\(791\) 0 0
\(792\) 0 0
\(793\) −16.0454 + 27.7915i −0.569789 + 0.986904i
\(794\) 38.6969 1.37330
\(795\) 0 0
\(796\) 2.89898 0.102752
\(797\) 8.97219 + 15.5403i 0.317811 + 0.550465i 0.980031 0.198844i \(-0.0637188\pi\)
−0.662220 + 0.749310i \(0.730385\pi\)
\(798\) 0 0
\(799\) −9.79796 + 16.9706i −0.346627 + 0.600375i
\(800\) −1.44949 + 2.51059i −0.0512472 + 0.0887628i
\(801\) 0 0
\(802\) 9.94949 + 17.2330i 0.351329 + 0.608519i
\(803\) 6.89898 + 11.9494i 0.243460 + 0.421685i
\(804\) 0 0
\(805\) 0 0
\(806\) 14.6969 + 25.4558i 0.517678 + 0.896644i
\(807\) 0 0
\(808\) 17.2474 0.606763
\(809\) −8.10102 14.0314i −0.284817 0.493317i 0.687748 0.725950i \(-0.258599\pi\)
−0.972565 + 0.232632i \(0.925266\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 23.5959 0.827036
\(815\) −14.3485 + 24.8523i −0.502605 + 0.870537i
\(816\) 0 0
\(817\) 8.79796 + 15.2385i 0.307802 + 0.533128i
\(818\) −13.7980 −0.482434
\(819\) 0 0
\(820\) −14.2020 −0.495957
\(821\) 0.202041 + 0.349945i 0.00705128 + 0.0122132i 0.869530 0.493881i \(-0.164422\pi\)
−0.862478 + 0.506094i \(0.831089\pi\)
\(822\) 0 0
\(823\) 6.69694 11.5994i 0.233441 0.404331i −0.725378 0.688351i \(-0.758335\pi\)
0.958818 + 0.284020i \(0.0916682\pi\)
\(824\) 14.0000 0.487713
\(825\) 0 0
\(826\) 0 0
\(827\) 36.4949 1.26905 0.634526 0.772902i \(-0.281195\pi\)
0.634526 + 0.772902i \(0.281195\pi\)
\(828\) 0 0
\(829\) 0.651531 + 1.12848i 0.0226286 + 0.0391939i 0.877118 0.480275i \(-0.159463\pi\)
−0.854489 + 0.519469i \(0.826130\pi\)
\(830\) 2.89898 0.100625
\(831\) 0 0
\(832\) 2.44949 + 4.24264i 0.0849208 + 0.147087i
\(833\) 0 0
\(834\) 0 0
\(835\) −7.75255 13.4278i −0.268288 0.464689i
\(836\) −2.55051 4.41761i −0.0882112 0.152786i
\(837\) 0 0
\(838\) 14.7247 25.5040i 0.508658 0.881021i
\(839\) 17.5505 30.3984i 0.605911 1.04947i −0.385996 0.922500i \(-0.626142\pi\)
0.991907 0.126968i \(-0.0405245\pi\)
\(840\) 0 0
\(841\) −9.29796 16.1045i −0.320619 0.555329i
\(842\) −22.8990 −0.789151
\(843\) 0 0
\(844\) 12.8990 0.444001
\(845\) 7.97219 13.8082i 0.274252 0.475018i
\(846\) 0 0
\(847\) 0 0
\(848\) −5.44949 + 9.43879i −0.187136 + 0.324129i
\(849\) 0 0
\(850\) −2.89898 + 5.02118i −0.0994342 + 0.172225i
\(851\) −5.89898 + 10.2173i −0.202214 + 0.350246i
\(852\) 0 0
\(853\) 12.4217 21.5150i 0.425310 0.736659i −0.571139 0.820853i \(-0.693498\pi\)
0.996449 + 0.0841942i \(0.0268316\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 6.00000 10.3923i 0.205076 0.355202i
\(857\) −34.8990 −1.19213 −0.596063 0.802938i \(-0.703269\pi\)
−0.596063 + 0.802938i \(0.703269\pi\)
\(858\) 0 0
\(859\) 10.0000 0.341196 0.170598 0.985341i \(-0.445430\pi\)
0.170598 + 0.985341i \(0.445430\pi\)
\(860\) 5.00000 + 8.66025i 0.170499 + 0.295312i
\(861\) 0 0
\(862\) −15.7980 + 27.3629i −0.538081 + 0.931983i
\(863\) 5.94949 10.3048i 0.202523 0.350780i −0.746818 0.665029i \(-0.768419\pi\)
0.949341 + 0.314249i \(0.101753\pi\)
\(864\) 0 0
\(865\) −2.24745 3.89270i −0.0764155 0.132356i
\(866\) 3.89898 + 6.75323i 0.132493 + 0.229484i
\(867\) 0 0
\(868\) 0 0
\(869\) −1.89898 3.28913i −0.0644185 0.111576i
\(870\) 0 0
\(871\) 63.1918 2.14117
\(872\) 6.34847 + 10.9959i 0.214986 + 0.372367i
\(873\) 0 0
\(874\) 2.55051 0.0862723
\(875\) 0 0
\(876\) 0 0
\(877\) 22.4949 0.759599 0.379799 0.925069i \(-0.375993\pi\)
0.379799 + 0.925069i \(0.375993\pi\)
\(878\) −1.10102 + 1.90702i −0.0371576 + 0.0643589i
\(879\) 0 0
\(880\) −1.44949 2.51059i −0.0488623 0.0846320i
\(881\) 19.5959 0.660203 0.330102 0.943945i \(-0.392917\pi\)
0.330102 + 0.943945i \(0.392917\pi\)
\(882\) 0 0
\(883\) −19.7980 −0.666254 −0.333127 0.942882i \(-0.608104\pi\)
−0.333127 + 0.942882i \(0.608104\pi\)
\(884\) 4.89898 + 8.48528i 0.164771 + 0.285391i
\(885\) 0 0
\(886\) 7.44949 12.9029i 0.250271 0.433481i
\(887\) −14.2020 −0.476858 −0.238429 0.971160i \(-0.576632\pi\)
−0.238429 + 0.971160i \(0.576632\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −24.4949 −0.821071
\(891\) 0 0
\(892\) −5.55051 9.61377i −0.185845 0.321893i
\(893\) −24.9898 −0.836252
\(894\) 0 0
\(895\) −15.0000 25.9808i −0.501395 0.868441i
\(896\) 0 0
\(897\) 0 0
\(898\) −10.2980 17.8366i −0.343647 0.595215i
\(899\) 20.6969 + 35.8481i 0.690282 + 1.19560i
\(900\) 0 0
\(901\) −10.8990 + 18.8776i −0.363098 + 0.628904i
\(902\) −9.79796 + 16.9706i −0.326236 + 0.565058i
\(903\) 0 0
\(904\) 3.05051 + 5.28364i 0.101458 + 0.175731i
\(905\) −15.0000 −0.498617
\(906\) 0 0
\(907\) 2.69694 0.0895504 0.0447752 0.998997i \(-0.485743\pi\)
0.0447752 + 0.998997i \(0.485743\pi\)
\(908\) 2.72474 4.71940i 0.0904238 0.156619i
\(909\) 0 0
\(910\) 0 0
\(911\) 25.9949 45.0245i 0.861249 1.49173i −0.00947432 0.999955i \(-0.503016\pi\)
0.870724 0.491773i \(-0.163651\pi\)
\(912\) 0 0
\(913\) 2.00000 3.46410i 0.0661903 0.114645i
\(914\) −8.74745 + 15.1510i −0.289340 + 0.501151i
\(915\) 0 0
\(916\) 0.623724 1.08032i 0.0206084 0.0356949i
\(917\) 0 0
\(918\) 0 0
\(919\) 12.8485 22.2542i 0.423832 0.734098i −0.572479 0.819920i \(-0.694018\pi\)
0.996311 + 0.0858213i \(0.0273514\pi\)
\(920\) 1.44949 0.0477883
\(921\) 0 0
\(922\) −5.65153 −0.186123
\(923\) −0.247449 0.428594i −0.00814487 0.0141073i
\(924\) 0 0
\(925\) 17.1010 29.6198i 0.562278 0.973894i
\(926\) 1.84847 3.20164i 0.0607445 0.105213i
\(927\) 0 0
\(928\) 3.44949 + 5.97469i 0.113235 + 0.196129i
\(929\) −17.1464 29.6985i −0.562556 0.974376i −0.997272 0.0738083i \(-0.976485\pi\)
0.434716 0.900567i \(-0.356849\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.50000 6.06218i −0.114646 0.198573i
\(933\) 0 0
\(934\) −10.0000 −0.327210
\(935\) −2.89898 5.02118i −0.0948068 0.164210i
\(936\) 0 0
\(937\) −45.5959 −1.48955 −0.744777 0.667314i \(-0.767444\pi\)
−0.744777 + 0.667314i \(0.767444\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −14.2020 −0.463220
\(941\) 0.724745 1.25529i 0.0236260 0.0409214i −0.853971 0.520321i \(-0.825812\pi\)
0.877597 + 0.479400i \(0.159146\pi\)
\(942\) 0 0
\(943\) −4.89898 8.48528i −0.159533 0.276319i
\(944\) −2.00000 −0.0650945
\(945\) 0 0
\(946\) 13.7980 0.448610
\(947\) 26.2474 + 45.4619i 0.852927 + 1.47731i 0.878554 + 0.477642i \(0.158508\pi\)
−0.0256270 + 0.999672i \(0.508158\pi\)
\(948\) 0 0
\(949\) 16.8990 29.2699i 0.548564 0.950141i
\(950\) −7.39388 −0.239889
\(951\) 0 0
\(952\) 0 0
\(953\) 3.39388 0.109938 0.0549692 0.998488i \(-0.482494\pi\)
0.0549692 + 0.998488i \(0.482494\pi\)
\(954\) 0 0
\(955\) −2.97219 5.14799i −0.0961779 0.166585i
\(956\) −6.79796 −0.219862
\(957\) 0 0
\(958\) 4.79796 + 8.31031i 0.155015 + 0.268494i
\(959\) 0 0
\(960\) 0 0
\(961\) −2.50000 4.33013i −0.0806452 0.139682i
\(962\) −28.8990 50.0545i −0.931740 1.61382i
\(963\) 0 0
\(964\) 0.449490 0.778539i 0.0144771 0.0250751i
\(965\) −12.9722 + 22.4685i −0.417590 + 0.723287i
\(966\) 0 0
\(967\) −12.2980 21.3007i −0.395476 0.684984i 0.597686 0.801730i \(-0.296087\pi\)
−0.993162 + 0.116746i \(0.962754\pi\)
\(968\) 7.00000 0.224989
\(969\) 0 0
\(970\) −4.20204 −0.134919
\(971\) 0.0278064 0.0481621i 0.000892350 0.00154560i −0.865579 0.500773i \(-0.833049\pi\)
0.866471 + 0.499227i \(0.166383\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −18.1969 + 31.5180i −0.583068 + 1.00990i
\(975\) 0 0
\(976\) 3.27526 5.67291i 0.104838 0.181585i
\(977\) −18.7980 + 32.5590i −0.601400 + 1.04166i 0.391209 + 0.920302i \(0.372057\pi\)
−0.992609 + 0.121354i \(0.961276\pi\)
\(978\) 0 0
\(979\) −16.8990 + 29.2699i −0.540094 + 0.935470i
\(980\) 0 0
\(981\) 0 0
\(982\) −7.89898 + 13.6814i −0.252067 + 0.436592i
\(983\) −33.1918 −1.05866 −0.529328 0.848418i \(-0.677556\pi\)
−0.529328 + 0.848418i \(0.677556\pi\)
\(984\) 0 0
\(985\) 24.2020 0.771141
\(986\) 6.89898 + 11.9494i 0.219708 + 0.380546i
\(987\) 0 0
\(988\) −6.24745 + 10.8209i −0.198758 + 0.344259i
\(989\) −3.44949 + 5.97469i −0.109687 + 0.189984i
\(990\) 0 0
\(991\) 0.898979 + 1.55708i 0.0285570 + 0.0494622i 0.879951 0.475065i \(-0.157575\pi\)
−0.851394 + 0.524527i \(0.824242\pi\)
\(992\) −3.00000 5.19615i −0.0952501 0.164978i
\(993\) 0 0
\(994\) 0 0
\(995\) 2.10102 + 3.63907i 0.0666068 + 0.115366i
\(996\) 0 0
\(997\) −52.1464 −1.65149 −0.825747 0.564041i \(-0.809246\pi\)
−0.825747 + 0.564041i \(0.809246\pi\)
\(998\) −12.6969 21.9917i −0.401915 0.696136i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.h.n.667.1 4
3.2 odd 2 882.2.h.l.79.1 4
7.2 even 3 2646.2.f.k.883.2 4
7.3 odd 6 2646.2.e.l.2125.1 4
7.4 even 3 2646.2.e.k.2125.2 4
7.5 odd 6 378.2.f.d.127.1 4
7.6 odd 2 2646.2.h.m.667.2 4
9.4 even 3 2646.2.e.k.1549.2 4
9.5 odd 6 882.2.e.n.373.2 4
21.2 odd 6 882.2.f.j.295.1 4
21.5 even 6 126.2.f.c.43.2 4
21.11 odd 6 882.2.e.n.655.2 4
21.17 even 6 882.2.e.m.655.1 4
21.20 even 2 882.2.h.k.79.2 4
28.19 even 6 3024.2.r.e.2017.1 4
63.2 odd 6 7938.2.a.bn.1.2 2
63.4 even 3 inner 2646.2.h.n.361.1 4
63.5 even 6 126.2.f.c.85.1 yes 4
63.13 odd 6 2646.2.e.l.1549.1 4
63.16 even 3 7938.2.a.bm.1.1 2
63.23 odd 6 882.2.f.j.589.2 4
63.31 odd 6 2646.2.h.m.361.2 4
63.32 odd 6 882.2.h.l.67.1 4
63.40 odd 6 378.2.f.d.253.1 4
63.41 even 6 882.2.e.m.373.1 4
63.47 even 6 1134.2.a.p.1.1 2
63.58 even 3 2646.2.f.k.1765.2 4
63.59 even 6 882.2.h.k.67.2 4
63.61 odd 6 1134.2.a.i.1.2 2
84.47 odd 6 1008.2.r.e.673.1 4
252.47 odd 6 9072.2.a.bk.1.1 2
252.103 even 6 3024.2.r.e.1009.1 4
252.131 odd 6 1008.2.r.e.337.2 4
252.187 even 6 9072.2.a.bd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.c.43.2 4 21.5 even 6
126.2.f.c.85.1 yes 4 63.5 even 6
378.2.f.d.127.1 4 7.5 odd 6
378.2.f.d.253.1 4 63.40 odd 6
882.2.e.m.373.1 4 63.41 even 6
882.2.e.m.655.1 4 21.17 even 6
882.2.e.n.373.2 4 9.5 odd 6
882.2.e.n.655.2 4 21.11 odd 6
882.2.f.j.295.1 4 21.2 odd 6
882.2.f.j.589.2 4 63.23 odd 6
882.2.h.k.67.2 4 63.59 even 6
882.2.h.k.79.2 4 21.20 even 2
882.2.h.l.67.1 4 63.32 odd 6
882.2.h.l.79.1 4 3.2 odd 2
1008.2.r.e.337.2 4 252.131 odd 6
1008.2.r.e.673.1 4 84.47 odd 6
1134.2.a.i.1.2 2 63.61 odd 6
1134.2.a.p.1.1 2 63.47 even 6
2646.2.e.k.1549.2 4 9.4 even 3
2646.2.e.k.2125.2 4 7.4 even 3
2646.2.e.l.1549.1 4 63.13 odd 6
2646.2.e.l.2125.1 4 7.3 odd 6
2646.2.f.k.883.2 4 7.2 even 3
2646.2.f.k.1765.2 4 63.58 even 3
2646.2.h.m.361.2 4 63.31 odd 6
2646.2.h.m.667.2 4 7.6 odd 2
2646.2.h.n.361.1 4 63.4 even 3 inner
2646.2.h.n.667.1 4 1.1 even 1 trivial
3024.2.r.e.1009.1 4 252.103 even 6
3024.2.r.e.2017.1 4 28.19 even 6
7938.2.a.bm.1.1 2 63.16 even 3
7938.2.a.bn.1.2 2 63.2 odd 6
9072.2.a.bd.1.2 2 252.187 even 6
9072.2.a.bk.1.1 2 252.47 odd 6