Properties

Label 2646.2.f.k.883.2
Level $2646$
Weight $2$
Character 2646.883
Analytic conductor $21.128$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(883,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.883");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 883.2
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 2646.883
Dual form 2646.2.f.k.1765.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(0.724745 + 1.25529i) q^{5} -1.00000 q^{8} +1.44949 q^{10} +(1.00000 - 1.73205i) q^{11} +(2.44949 + 4.24264i) q^{13} +(-0.500000 + 0.866025i) q^{16} +2.00000 q^{17} -2.55051 q^{19} +(0.724745 - 1.25529i) q^{20} +(-1.00000 - 1.73205i) q^{22} +(-0.500000 - 0.866025i) q^{23} +(1.44949 - 2.51059i) q^{25} +4.89898 q^{26} +(-3.44949 + 5.97469i) q^{29} +(3.00000 + 5.19615i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.00000 - 1.73205i) q^{34} +11.7980 q^{37} +(-1.27526 + 2.20881i) q^{38} +(-0.724745 - 1.25529i) q^{40} +(-4.89898 - 8.48528i) q^{41} +(-3.44949 + 5.97469i) q^{43} -2.00000 q^{44} -1.00000 q^{46} +(-4.89898 + 8.48528i) q^{47} +(-1.44949 - 2.51059i) q^{50} +(2.44949 - 4.24264i) q^{52} +10.8990 q^{53} +2.89898 q^{55} +(3.44949 + 5.97469i) q^{58} +(1.00000 + 1.73205i) q^{59} +(3.27526 - 5.67291i) q^{61} +6.00000 q^{62} +1.00000 q^{64} +(-3.55051 + 6.14966i) q^{65} +(6.44949 + 11.1708i) q^{67} +(-1.00000 - 1.73205i) q^{68} -0.101021 q^{71} +6.89898 q^{73} +(5.89898 - 10.2173i) q^{74} +(1.27526 + 2.20881i) q^{76} +(0.949490 - 1.64456i) q^{79} -1.44949 q^{80} -9.79796 q^{82} +(-1.00000 + 1.73205i) q^{83} +(1.44949 + 2.51059i) q^{85} +(3.44949 + 5.97469i) q^{86} +(-1.00000 + 1.73205i) q^{88} -16.8990 q^{89} +(-0.500000 + 0.866025i) q^{92} +(4.89898 + 8.48528i) q^{94} +(-1.84847 - 3.20164i) q^{95} +(1.44949 - 2.51059i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{4} - 2 q^{5} - 4 q^{8} - 4 q^{10} + 4 q^{11} - 2 q^{16} + 8 q^{17} - 20 q^{19} - 2 q^{20} - 4 q^{22} - 2 q^{23} - 4 q^{25} - 4 q^{29} + 12 q^{31} + 2 q^{32} + 4 q^{34} + 8 q^{37} - 10 q^{38}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.724745 + 1.25529i 0.324116 + 0.561385i 0.981333 0.192316i \(-0.0615999\pi\)
−0.657217 + 0.753701i \(0.728267\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.44949 0.458369
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 0 0
\(13\) 2.44949 + 4.24264i 0.679366 + 1.17670i 0.975172 + 0.221449i \(0.0710785\pi\)
−0.295806 + 0.955248i \(0.595588\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −2.55051 −0.585127 −0.292564 0.956246i \(-0.594508\pi\)
−0.292564 + 0.956246i \(0.594508\pi\)
\(20\) 0.724745 1.25529i 0.162058 0.280692i
\(21\) 0 0
\(22\) −1.00000 1.73205i −0.213201 0.369274i
\(23\) −0.500000 0.866025i −0.104257 0.180579i 0.809177 0.587565i \(-0.199913\pi\)
−0.913434 + 0.406986i \(0.866580\pi\)
\(24\) 0 0
\(25\) 1.44949 2.51059i 0.289898 0.502118i
\(26\) 4.89898 0.960769
\(27\) 0 0
\(28\) 0 0
\(29\) −3.44949 + 5.97469i −0.640554 + 1.10947i 0.344755 + 0.938693i \(0.387962\pi\)
−0.985309 + 0.170780i \(0.945371\pi\)
\(30\) 0 0
\(31\) 3.00000 + 5.19615i 0.538816 + 0.933257i 0.998968 + 0.0454165i \(0.0144615\pi\)
−0.460152 + 0.887840i \(0.652205\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.00000 1.73205i 0.171499 0.297044i
\(35\) 0 0
\(36\) 0 0
\(37\) 11.7980 1.93957 0.969786 0.243956i \(-0.0784453\pi\)
0.969786 + 0.243956i \(0.0784453\pi\)
\(38\) −1.27526 + 2.20881i −0.206874 + 0.358316i
\(39\) 0 0
\(40\) −0.724745 1.25529i −0.114592 0.198480i
\(41\) −4.89898 8.48528i −0.765092 1.32518i −0.940198 0.340629i \(-0.889360\pi\)
0.175106 0.984550i \(-0.443973\pi\)
\(42\) 0 0
\(43\) −3.44949 + 5.97469i −0.526042 + 0.911132i 0.473497 + 0.880795i \(0.342991\pi\)
−0.999540 + 0.0303367i \(0.990342\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) −1.00000 −0.147442
\(47\) −4.89898 + 8.48528i −0.714590 + 1.23771i 0.248528 + 0.968625i \(0.420053\pi\)
−0.963118 + 0.269081i \(0.913280\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −1.44949 2.51059i −0.204989 0.355051i
\(51\) 0 0
\(52\) 2.44949 4.24264i 0.339683 0.588348i
\(53\) 10.8990 1.49709 0.748545 0.663084i \(-0.230753\pi\)
0.748545 + 0.663084i \(0.230753\pi\)
\(54\) 0 0
\(55\) 2.89898 0.390898
\(56\) 0 0
\(57\) 0 0
\(58\) 3.44949 + 5.97469i 0.452940 + 0.784515i
\(59\) 1.00000 + 1.73205i 0.130189 + 0.225494i 0.923749 0.382998i \(-0.125108\pi\)
−0.793560 + 0.608492i \(0.791775\pi\)
\(60\) 0 0
\(61\) 3.27526 5.67291i 0.419353 0.726341i −0.576521 0.817082i \(-0.695590\pi\)
0.995875 + 0.0907408i \(0.0289235\pi\)
\(62\) 6.00000 0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −3.55051 + 6.14966i −0.440387 + 0.762772i
\(66\) 0 0
\(67\) 6.44949 + 11.1708i 0.787931 + 1.36474i 0.927233 + 0.374486i \(0.122181\pi\)
−0.139302 + 0.990250i \(0.544486\pi\)
\(68\) −1.00000 1.73205i −0.121268 0.210042i
\(69\) 0 0
\(70\) 0 0
\(71\) −0.101021 −0.0119889 −0.00599446 0.999982i \(-0.501908\pi\)
−0.00599446 + 0.999982i \(0.501908\pi\)
\(72\) 0 0
\(73\) 6.89898 0.807464 0.403732 0.914877i \(-0.367713\pi\)
0.403732 + 0.914877i \(0.367713\pi\)
\(74\) 5.89898 10.2173i 0.685742 1.18774i
\(75\) 0 0
\(76\) 1.27526 + 2.20881i 0.146282 + 0.253368i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.949490 1.64456i 0.106826 0.185028i −0.807657 0.589653i \(-0.799265\pi\)
0.914483 + 0.404625i \(0.132598\pi\)
\(80\) −1.44949 −0.162058
\(81\) 0 0
\(82\) −9.79796 −1.08200
\(83\) −1.00000 + 1.73205i −0.109764 + 0.190117i −0.915675 0.401920i \(-0.868343\pi\)
0.805910 + 0.592037i \(0.201676\pi\)
\(84\) 0 0
\(85\) 1.44949 + 2.51059i 0.157219 + 0.272312i
\(86\) 3.44949 + 5.97469i 0.371968 + 0.644268i
\(87\) 0 0
\(88\) −1.00000 + 1.73205i −0.106600 + 0.184637i
\(89\) −16.8990 −1.79129 −0.895644 0.444771i \(-0.853285\pi\)
−0.895644 + 0.444771i \(0.853285\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −0.500000 + 0.866025i −0.0521286 + 0.0902894i
\(93\) 0 0
\(94\) 4.89898 + 8.48528i 0.505291 + 0.875190i
\(95\) −1.84847 3.20164i −0.189649 0.328482i
\(96\) 0 0
\(97\) 1.44949 2.51059i 0.147173 0.254912i −0.783008 0.622011i \(-0.786316\pi\)
0.930182 + 0.367099i \(0.119649\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.89898 −0.289898
\(101\) 8.62372 14.9367i 0.858093 1.48626i −0.0156533 0.999877i \(-0.504983\pi\)
0.873746 0.486383i \(-0.161684\pi\)
\(102\) 0 0
\(103\) 7.00000 + 12.1244i 0.689730 + 1.19465i 0.971925 + 0.235291i \(0.0756043\pi\)
−0.282194 + 0.959357i \(0.591062\pi\)
\(104\) −2.44949 4.24264i −0.240192 0.416025i
\(105\) 0 0
\(106\) 5.44949 9.43879i 0.529301 0.916777i
\(107\) 12.0000 1.16008 0.580042 0.814587i \(-0.303036\pi\)
0.580042 + 0.814587i \(0.303036\pi\)
\(108\) 0 0
\(109\) 12.6969 1.21615 0.608073 0.793881i \(-0.291943\pi\)
0.608073 + 0.793881i \(0.291943\pi\)
\(110\) 1.44949 2.51059i 0.138203 0.239375i
\(111\) 0 0
\(112\) 0 0
\(113\) −3.05051 5.28364i −0.286968 0.497043i 0.686117 0.727492i \(-0.259314\pi\)
−0.973084 + 0.230449i \(0.925981\pi\)
\(114\) 0 0
\(115\) 0.724745 1.25529i 0.0675828 0.117057i
\(116\) 6.89898 0.640554
\(117\) 0 0
\(118\) 2.00000 0.184115
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −3.27526 5.67291i −0.296528 0.513601i
\(123\) 0 0
\(124\) 3.00000 5.19615i 0.269408 0.466628i
\(125\) 11.4495 1.02407
\(126\) 0 0
\(127\) −3.00000 −0.266207 −0.133103 0.991102i \(-0.542494\pi\)
−0.133103 + 0.991102i \(0.542494\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 3.55051 + 6.14966i 0.311400 + 0.539361i
\(131\) 4.27526 + 7.40496i 0.373531 + 0.646974i 0.990106 0.140322i \(-0.0448137\pi\)
−0.616575 + 0.787296i \(0.711480\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 12.8990 1.11430
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 3.89898 6.75323i 0.333112 0.576967i −0.650008 0.759927i \(-0.725235\pi\)
0.983120 + 0.182960i \(0.0585678\pi\)
\(138\) 0 0
\(139\) 2.27526 + 3.94086i 0.192985 + 0.334259i 0.946238 0.323471i \(-0.104850\pi\)
−0.753253 + 0.657730i \(0.771517\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.0505103 + 0.0874863i −0.00423873 + 0.00734169i
\(143\) 9.79796 0.819346
\(144\) 0 0
\(145\) −10.0000 −0.830455
\(146\) 3.44949 5.97469i 0.285482 0.494469i
\(147\) 0 0
\(148\) −5.89898 10.2173i −0.484893 0.839860i
\(149\) −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i \(-0.245707\pi\)
−0.962348 + 0.271821i \(0.912374\pi\)
\(150\) 0 0
\(151\) 2.50000 4.33013i 0.203447 0.352381i −0.746190 0.665733i \(-0.768119\pi\)
0.949637 + 0.313353i \(0.101452\pi\)
\(152\) 2.55051 0.206874
\(153\) 0 0
\(154\) 0 0
\(155\) −4.34847 + 7.53177i −0.349277 + 0.604966i
\(156\) 0 0
\(157\) −4.17423 7.22999i −0.333140 0.577016i 0.649986 0.759947i \(-0.274775\pi\)
−0.983126 + 0.182931i \(0.941442\pi\)
\(158\) −0.949490 1.64456i −0.0755373 0.130835i
\(159\) 0 0
\(160\) −0.724745 + 1.25529i −0.0572961 + 0.0992398i
\(161\) 0 0
\(162\) 0 0
\(163\) −19.7980 −1.55070 −0.775348 0.631534i \(-0.782425\pi\)
−0.775348 + 0.631534i \(0.782425\pi\)
\(164\) −4.89898 + 8.48528i −0.382546 + 0.662589i
\(165\) 0 0
\(166\) 1.00000 + 1.73205i 0.0776151 + 0.134433i
\(167\) 5.34847 + 9.26382i 0.413877 + 0.716856i 0.995310 0.0967384i \(-0.0308410\pi\)
−0.581433 + 0.813594i \(0.697508\pi\)
\(168\) 0 0
\(169\) −5.50000 + 9.52628i −0.423077 + 0.732791i
\(170\) 2.89898 0.222342
\(171\) 0 0
\(172\) 6.89898 0.526042
\(173\) 1.55051 2.68556i 0.117883 0.204180i −0.801045 0.598604i \(-0.795723\pi\)
0.918929 + 0.394424i \(0.129056\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1.00000 + 1.73205i 0.0753778 + 0.130558i
\(177\) 0 0
\(178\) −8.44949 + 14.6349i −0.633316 + 1.09694i
\(179\) −20.6969 −1.54696 −0.773481 0.633820i \(-0.781486\pi\)
−0.773481 + 0.633820i \(0.781486\pi\)
\(180\) 0 0
\(181\) 10.3485 0.769196 0.384598 0.923084i \(-0.374340\pi\)
0.384598 + 0.923084i \(0.374340\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.500000 + 0.866025i 0.0368605 + 0.0638442i
\(185\) 8.55051 + 14.8099i 0.628646 + 1.08885i
\(186\) 0 0
\(187\) 2.00000 3.46410i 0.146254 0.253320i
\(188\) 9.79796 0.714590
\(189\) 0 0
\(190\) −3.69694 −0.268204
\(191\) 2.05051 3.55159i 0.148370 0.256984i −0.782255 0.622958i \(-0.785931\pi\)
0.930625 + 0.365974i \(0.119264\pi\)
\(192\) 0 0
\(193\) 8.94949 + 15.5010i 0.644198 + 1.11578i 0.984486 + 0.175463i \(0.0561422\pi\)
−0.340288 + 0.940321i \(0.610524\pi\)
\(194\) −1.44949 2.51059i −0.104067 0.180250i
\(195\) 0 0
\(196\) 0 0
\(197\) −16.6969 −1.18961 −0.594804 0.803871i \(-0.702770\pi\)
−0.594804 + 0.803871i \(0.702770\pi\)
\(198\) 0 0
\(199\) 2.89898 0.205503 0.102752 0.994707i \(-0.467235\pi\)
0.102752 + 0.994707i \(0.467235\pi\)
\(200\) −1.44949 + 2.51059i −0.102494 + 0.177526i
\(201\) 0 0
\(202\) −8.62372 14.9367i −0.606763 1.05094i
\(203\) 0 0
\(204\) 0 0
\(205\) 7.10102 12.2993i 0.495957 0.859022i
\(206\) 14.0000 0.975426
\(207\) 0 0
\(208\) −4.89898 −0.339683
\(209\) −2.55051 + 4.41761i −0.176422 + 0.305573i
\(210\) 0 0
\(211\) −6.44949 11.1708i −0.444001 0.769033i 0.553981 0.832529i \(-0.313108\pi\)
−0.997982 + 0.0634968i \(0.979775\pi\)
\(212\) −5.44949 9.43879i −0.374272 0.648259i
\(213\) 0 0
\(214\) 6.00000 10.3923i 0.410152 0.710403i
\(215\) −10.0000 −0.681994
\(216\) 0 0
\(217\) 0 0
\(218\) 6.34847 10.9959i 0.429973 0.744734i
\(219\) 0 0
\(220\) −1.44949 2.51059i −0.0977246 0.169264i
\(221\) 4.89898 + 8.48528i 0.329541 + 0.570782i
\(222\) 0 0
\(223\) −5.55051 + 9.61377i −0.371690 + 0.643785i −0.989826 0.142286i \(-0.954555\pi\)
0.618136 + 0.786071i \(0.287888\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −6.10102 −0.405834
\(227\) 2.72474 4.71940i 0.180848 0.313237i −0.761322 0.648374i \(-0.775449\pi\)
0.942169 + 0.335137i \(0.108783\pi\)
\(228\) 0 0
\(229\) 0.623724 + 1.08032i 0.0412169 + 0.0713897i 0.885898 0.463880i \(-0.153543\pi\)
−0.844681 + 0.535270i \(0.820210\pi\)
\(230\) −0.724745 1.25529i −0.0477883 0.0827717i
\(231\) 0 0
\(232\) 3.44949 5.97469i 0.226470 0.392258i
\(233\) 7.00000 0.458585 0.229293 0.973358i \(-0.426359\pi\)
0.229293 + 0.973358i \(0.426359\pi\)
\(234\) 0 0
\(235\) −14.2020 −0.926439
\(236\) 1.00000 1.73205i 0.0650945 0.112747i
\(237\) 0 0
\(238\) 0 0
\(239\) 3.39898 + 5.88721i 0.219862 + 0.380812i 0.954766 0.297360i \(-0.0961061\pi\)
−0.734904 + 0.678171i \(0.762773\pi\)
\(240\) 0 0
\(241\) 0.449490 0.778539i 0.0289542 0.0501501i −0.851185 0.524865i \(-0.824116\pi\)
0.880139 + 0.474715i \(0.157449\pi\)
\(242\) 7.00000 0.449977
\(243\) 0 0
\(244\) −6.55051 −0.419353
\(245\) 0 0
\(246\) 0 0
\(247\) −6.24745 10.8209i −0.397516 0.688517i
\(248\) −3.00000 5.19615i −0.190500 0.329956i
\(249\) 0 0
\(250\) 5.72474 9.91555i 0.362065 0.627114i
\(251\) 17.4495 1.10140 0.550701 0.834703i \(-0.314360\pi\)
0.550701 + 0.834703i \(0.314360\pi\)
\(252\) 0 0
\(253\) −2.00000 −0.125739
\(254\) −1.50000 + 2.59808i −0.0941184 + 0.163018i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −4.10102 7.10318i −0.255815 0.443084i 0.709302 0.704905i \(-0.249010\pi\)
−0.965116 + 0.261821i \(0.915677\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 7.10102 0.440387
\(261\) 0 0
\(262\) 8.55051 0.528252
\(263\) 12.9495 22.4292i 0.798500 1.38304i −0.122093 0.992519i \(-0.538961\pi\)
0.920593 0.390523i \(-0.127706\pi\)
\(264\) 0 0
\(265\) 7.89898 + 13.6814i 0.485230 + 0.840444i
\(266\) 0 0
\(267\) 0 0
\(268\) 6.44949 11.1708i 0.393965 0.682368i
\(269\) −18.3485 −1.11873 −0.559363 0.828923i \(-0.688954\pi\)
−0.559363 + 0.828923i \(0.688954\pi\)
\(270\) 0 0
\(271\) −7.10102 −0.431356 −0.215678 0.976465i \(-0.569196\pi\)
−0.215678 + 0.976465i \(0.569196\pi\)
\(272\) −1.00000 + 1.73205i −0.0606339 + 0.105021i
\(273\) 0 0
\(274\) −3.89898 6.75323i −0.235546 0.407978i
\(275\) −2.89898 5.02118i −0.174815 0.302789i
\(276\) 0 0
\(277\) 9.34847 16.1920i 0.561695 0.972884i −0.435654 0.900114i \(-0.643483\pi\)
0.997349 0.0727700i \(-0.0231839\pi\)
\(278\) 4.55051 0.272921
\(279\) 0 0
\(280\) 0 0
\(281\) −9.50000 + 16.4545i −0.566722 + 0.981592i 0.430165 + 0.902750i \(0.358455\pi\)
−0.996887 + 0.0788417i \(0.974878\pi\)
\(282\) 0 0
\(283\) −12.7247 22.0399i −0.756408 1.31014i −0.944672 0.328018i \(-0.893619\pi\)
0.188264 0.982118i \(-0.439714\pi\)
\(284\) 0.0505103 + 0.0874863i 0.00299723 + 0.00519136i
\(285\) 0 0
\(286\) 4.89898 8.48528i 0.289683 0.501745i
\(287\) 0 0
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) −5.00000 + 8.66025i −0.293610 + 0.508548i
\(291\) 0 0
\(292\) −3.44949 5.97469i −0.201866 0.349642i
\(293\) −1.37628 2.38378i −0.0804029 0.139262i 0.823020 0.568012i \(-0.192287\pi\)
−0.903423 + 0.428750i \(0.858954\pi\)
\(294\) 0 0
\(295\) −1.44949 + 2.51059i −0.0843926 + 0.146172i
\(296\) −11.7980 −0.685742
\(297\) 0 0
\(298\) −6.00000 −0.347571
\(299\) 2.44949 4.24264i 0.141658 0.245358i
\(300\) 0 0
\(301\) 0 0
\(302\) −2.50000 4.33013i −0.143859 0.249171i
\(303\) 0 0
\(304\) 1.27526 2.20881i 0.0731409 0.126684i
\(305\) 9.49490 0.543676
\(306\) 0 0
\(307\) −25.2474 −1.44095 −0.720474 0.693482i \(-0.756076\pi\)
−0.720474 + 0.693482i \(0.756076\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 4.34847 + 7.53177i 0.246976 + 0.427776i
\(311\) −15.3485 26.5843i −0.870332 1.50746i −0.861654 0.507497i \(-0.830571\pi\)
−0.00867810 0.999962i \(-0.502762\pi\)
\(312\) 0 0
\(313\) −2.34847 + 4.06767i −0.132743 + 0.229918i −0.924733 0.380616i \(-0.875712\pi\)
0.791990 + 0.610534i \(0.209045\pi\)
\(314\) −8.34847 −0.471131
\(315\) 0 0
\(316\) −1.89898 −0.106826
\(317\) 10.3485 17.9241i 0.581228 1.00672i −0.414106 0.910229i \(-0.635906\pi\)
0.995334 0.0964878i \(-0.0307609\pi\)
\(318\) 0 0
\(319\) 6.89898 + 11.9494i 0.386269 + 0.669037i
\(320\) 0.724745 + 1.25529i 0.0405145 + 0.0701731i
\(321\) 0 0
\(322\) 0 0
\(323\) −5.10102 −0.283828
\(324\) 0 0
\(325\) 14.2020 0.787787
\(326\) −9.89898 + 17.1455i −0.548254 + 0.949603i
\(327\) 0 0
\(328\) 4.89898 + 8.48528i 0.270501 + 0.468521i
\(329\) 0 0
\(330\) 0 0
\(331\) −2.34847 + 4.06767i −0.129084 + 0.223579i −0.923322 0.384027i \(-0.874537\pi\)
0.794238 + 0.607606i \(0.207870\pi\)
\(332\) 2.00000 0.109764
\(333\) 0 0
\(334\) 10.6969 0.585310
\(335\) −9.34847 + 16.1920i −0.510761 + 0.884665i
\(336\) 0 0
\(337\) 11.6969 + 20.2597i 0.637173 + 1.10362i 0.986050 + 0.166447i \(0.0532296\pi\)
−0.348877 + 0.937168i \(0.613437\pi\)
\(338\) 5.50000 + 9.52628i 0.299161 + 0.518161i
\(339\) 0 0
\(340\) 1.44949 2.51059i 0.0786096 0.136156i
\(341\) 12.0000 0.649836
\(342\) 0 0
\(343\) 0 0
\(344\) 3.44949 5.97469i 0.185984 0.322134i
\(345\) 0 0
\(346\) −1.55051 2.68556i −0.0833559 0.144377i
\(347\) 9.79796 + 16.9706i 0.525982 + 0.911028i 0.999542 + 0.0302659i \(0.00963541\pi\)
−0.473560 + 0.880762i \(0.657031\pi\)
\(348\) 0 0
\(349\) 5.55051 9.61377i 0.297112 0.514613i −0.678362 0.734728i \(-0.737310\pi\)
0.975474 + 0.220115i \(0.0706432\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 2.00000 0.106600
\(353\) 3.00000 5.19615i 0.159674 0.276563i −0.775077 0.631867i \(-0.782289\pi\)
0.934751 + 0.355303i \(0.115622\pi\)
\(354\) 0 0
\(355\) −0.0732141 0.126811i −0.00388580 0.00673040i
\(356\) 8.44949 + 14.6349i 0.447822 + 0.775651i
\(357\) 0 0
\(358\) −10.3485 + 17.9241i −0.546934 + 0.947317i
\(359\) 8.79796 0.464339 0.232169 0.972675i \(-0.425418\pi\)
0.232169 + 0.972675i \(0.425418\pi\)
\(360\) 0 0
\(361\) −12.4949 −0.657626
\(362\) 5.17423 8.96204i 0.271952 0.471034i
\(363\) 0 0
\(364\) 0 0
\(365\) 5.00000 + 8.66025i 0.261712 + 0.453298i
\(366\) 0 0
\(367\) −6.89898 + 11.9494i −0.360124 + 0.623753i −0.987981 0.154576i \(-0.950599\pi\)
0.627857 + 0.778329i \(0.283932\pi\)
\(368\) 1.00000 0.0521286
\(369\) 0 0
\(370\) 17.1010 0.889040
\(371\) 0 0
\(372\) 0 0
\(373\) 3.44949 + 5.97469i 0.178608 + 0.309358i 0.941404 0.337281i \(-0.109507\pi\)
−0.762796 + 0.646639i \(0.776174\pi\)
\(374\) −2.00000 3.46410i −0.103418 0.179124i
\(375\) 0 0
\(376\) 4.89898 8.48528i 0.252646 0.437595i
\(377\) −33.7980 −1.74068
\(378\) 0 0
\(379\) 22.4949 1.15549 0.577743 0.816219i \(-0.303934\pi\)
0.577743 + 0.816219i \(0.303934\pi\)
\(380\) −1.84847 + 3.20164i −0.0948245 + 0.164241i
\(381\) 0 0
\(382\) −2.05051 3.55159i −0.104913 0.181715i
\(383\) 1.44949 + 2.51059i 0.0740655 + 0.128285i 0.900679 0.434484i \(-0.143069\pi\)
−0.826614 + 0.562769i \(0.809736\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.8990 0.911034
\(387\) 0 0
\(388\) −2.89898 −0.147173
\(389\) −12.4495 + 21.5631i −0.631214 + 1.09330i 0.356090 + 0.934452i \(0.384110\pi\)
−0.987304 + 0.158843i \(0.949224\pi\)
\(390\) 0 0
\(391\) −1.00000 1.73205i −0.0505722 0.0875936i
\(392\) 0 0
\(393\) 0 0
\(394\) −8.34847 + 14.4600i −0.420590 + 0.728483i
\(395\) 2.75255 0.138496
\(396\) 0 0
\(397\) −38.6969 −1.94214 −0.971072 0.238788i \(-0.923250\pi\)
−0.971072 + 0.238788i \(0.923250\pi\)
\(398\) 1.44949 2.51059i 0.0726564 0.125844i
\(399\) 0 0
\(400\) 1.44949 + 2.51059i 0.0724745 + 0.125529i
\(401\) −9.94949 17.2330i −0.496854 0.860576i 0.503140 0.864205i \(-0.332178\pi\)
−0.999993 + 0.00362911i \(0.998845\pi\)
\(402\) 0 0
\(403\) −14.6969 + 25.4558i −0.732107 + 1.26805i
\(404\) −17.2474 −0.858093
\(405\) 0 0
\(406\) 0 0
\(407\) 11.7980 20.4347i 0.584803 1.01291i
\(408\) 0 0
\(409\) −6.89898 11.9494i −0.341133 0.590859i 0.643511 0.765437i \(-0.277477\pi\)
−0.984643 + 0.174578i \(0.944144\pi\)
\(410\) −7.10102 12.2993i −0.350694 0.607421i
\(411\) 0 0
\(412\) 7.00000 12.1244i 0.344865 0.597324i
\(413\) 0 0
\(414\) 0 0
\(415\) −2.89898 −0.142305
\(416\) −2.44949 + 4.24264i −0.120096 + 0.208013i
\(417\) 0 0
\(418\) 2.55051 + 4.41761i 0.124750 + 0.216073i
\(419\) −14.7247 25.5040i −0.719351 1.24595i −0.961257 0.275653i \(-0.911106\pi\)
0.241906 0.970300i \(-0.422227\pi\)
\(420\) 0 0
\(421\) −11.4495 + 19.8311i −0.558014 + 0.966509i 0.439648 + 0.898170i \(0.355103\pi\)
−0.997662 + 0.0683385i \(0.978230\pi\)
\(422\) −12.8990 −0.627912
\(423\) 0 0
\(424\) −10.8990 −0.529301
\(425\) 2.89898 5.02118i 0.140621 0.243563i
\(426\) 0 0
\(427\) 0 0
\(428\) −6.00000 10.3923i −0.290021 0.502331i
\(429\) 0 0
\(430\) −5.00000 + 8.66025i −0.241121 + 0.417635i
\(431\) −31.5959 −1.52192 −0.760961 0.648798i \(-0.775272\pi\)
−0.760961 + 0.648798i \(0.775272\pi\)
\(432\) 0 0
\(433\) 7.79796 0.374746 0.187373 0.982289i \(-0.440003\pi\)
0.187373 + 0.982289i \(0.440003\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −6.34847 10.9959i −0.304037 0.526607i
\(437\) 1.27526 + 2.20881i 0.0610037 + 0.105662i
\(438\) 0 0
\(439\) 1.10102 1.90702i 0.0525488 0.0910173i −0.838554 0.544818i \(-0.816599\pi\)
0.891103 + 0.453801i \(0.149932\pi\)
\(440\) −2.89898 −0.138203
\(441\) 0 0
\(442\) 9.79796 0.466041
\(443\) −7.44949 + 12.9029i −0.353936 + 0.613035i −0.986935 0.161117i \(-0.948490\pi\)
0.632999 + 0.774152i \(0.281824\pi\)
\(444\) 0 0
\(445\) −12.2474 21.2132i −0.580585 1.00560i
\(446\) 5.55051 + 9.61377i 0.262824 + 0.455225i
\(447\) 0 0
\(448\) 0 0
\(449\) −20.5959 −0.971981 −0.485991 0.873964i \(-0.661541\pi\)
−0.485991 + 0.873964i \(0.661541\pi\)
\(450\) 0 0
\(451\) −19.5959 −0.922736
\(452\) −3.05051 + 5.28364i −0.143484 + 0.248521i
\(453\) 0 0
\(454\) −2.72474 4.71940i −0.127879 0.221492i
\(455\) 0 0
\(456\) 0 0
\(457\) 8.74745 15.1510i 0.409188 0.708735i −0.585611 0.810593i \(-0.699145\pi\)
0.994799 + 0.101857i \(0.0324785\pi\)
\(458\) 1.24745 0.0582895
\(459\) 0 0
\(460\) −1.44949 −0.0675828
\(461\) −2.82577 + 4.89437i −0.131609 + 0.227954i −0.924297 0.381674i \(-0.875348\pi\)
0.792688 + 0.609628i \(0.208681\pi\)
\(462\) 0 0
\(463\) −1.84847 3.20164i −0.0859057 0.148793i 0.819871 0.572548i \(-0.194045\pi\)
−0.905777 + 0.423755i \(0.860712\pi\)
\(464\) −3.44949 5.97469i −0.160139 0.277368i
\(465\) 0 0
\(466\) 3.50000 6.06218i 0.162134 0.280825i
\(467\) 10.0000 0.462745 0.231372 0.972865i \(-0.425678\pi\)
0.231372 + 0.972865i \(0.425678\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −7.10102 + 12.2993i −0.327546 + 0.567326i
\(471\) 0 0
\(472\) −1.00000 1.73205i −0.0460287 0.0797241i
\(473\) 6.89898 + 11.9494i 0.317215 + 0.549433i
\(474\) 0 0
\(475\) −3.69694 + 6.40329i −0.169627 + 0.293803i
\(476\) 0 0
\(477\) 0 0
\(478\) 6.79796 0.310931
\(479\) −4.79796 + 8.31031i −0.219224 + 0.379708i −0.954571 0.297983i \(-0.903686\pi\)
0.735347 + 0.677691i \(0.237019\pi\)
\(480\) 0 0
\(481\) 28.8990 + 50.0545i 1.31768 + 2.28229i
\(482\) −0.449490 0.778539i −0.0204737 0.0354615i
\(483\) 0 0
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) 4.20204 0.190805
\(486\) 0 0
\(487\) −36.3939 −1.64916 −0.824582 0.565742i \(-0.808590\pi\)
−0.824582 + 0.565742i \(0.808590\pi\)
\(488\) −3.27526 + 5.67291i −0.148264 + 0.256800i
\(489\) 0 0
\(490\) 0 0
\(491\) 7.89898 + 13.6814i 0.356476 + 0.617434i 0.987369 0.158435i \(-0.0506448\pi\)
−0.630893 + 0.775869i \(0.717312\pi\)
\(492\) 0 0
\(493\) −6.89898 + 11.9494i −0.310714 + 0.538173i
\(494\) −12.4949 −0.562172
\(495\) 0 0
\(496\) −6.00000 −0.269408
\(497\) 0 0
\(498\) 0 0
\(499\) 12.6969 + 21.9917i 0.568393 + 0.984486i 0.996725 + 0.0808642i \(0.0257680\pi\)
−0.428332 + 0.903621i \(0.640899\pi\)
\(500\) −5.72474 9.91555i −0.256018 0.443437i
\(501\) 0 0
\(502\) 8.72474 15.1117i 0.389404 0.674468i
\(503\) −24.4949 −1.09217 −0.546087 0.837729i \(-0.683883\pi\)
−0.546087 + 0.837729i \(0.683883\pi\)
\(504\) 0 0
\(505\) 25.0000 1.11249
\(506\) −1.00000 + 1.73205i −0.0444554 + 0.0769991i
\(507\) 0 0
\(508\) 1.50000 + 2.59808i 0.0665517 + 0.115271i
\(509\) 3.55051 + 6.14966i 0.157374 + 0.272579i 0.933921 0.357480i \(-0.116364\pi\)
−0.776547 + 0.630059i \(0.783031\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −8.20204 −0.361777
\(515\) −10.1464 + 17.5741i −0.447105 + 0.774409i
\(516\) 0 0
\(517\) 9.79796 + 16.9706i 0.430914 + 0.746364i
\(518\) 0 0
\(519\) 0 0
\(520\) 3.55051 6.14966i 0.155700 0.269681i
\(521\) −9.30306 −0.407575 −0.203787 0.979015i \(-0.565325\pi\)
−0.203787 + 0.979015i \(0.565325\pi\)
\(522\) 0 0
\(523\) 14.3485 0.627415 0.313707 0.949520i \(-0.398429\pi\)
0.313707 + 0.949520i \(0.398429\pi\)
\(524\) 4.27526 7.40496i 0.186765 0.323487i
\(525\) 0 0
\(526\) −12.9495 22.4292i −0.564625 0.977958i
\(527\) 6.00000 + 10.3923i 0.261364 + 0.452696i
\(528\) 0 0
\(529\) 11.0000 19.0526i 0.478261 0.828372i
\(530\) 15.7980 0.686219
\(531\) 0 0
\(532\) 0 0
\(533\) 24.0000 41.5692i 1.03956 1.80056i
\(534\) 0 0
\(535\) 8.69694 + 15.0635i 0.376001 + 0.651254i
\(536\) −6.44949 11.1708i −0.278576 0.482507i
\(537\) 0 0
\(538\) −9.17423 + 15.8902i −0.395529 + 0.685077i
\(539\) 0 0
\(540\) 0 0
\(541\) −18.4949 −0.795158 −0.397579 0.917568i \(-0.630149\pi\)
−0.397579 + 0.917568i \(0.630149\pi\)
\(542\) −3.55051 + 6.14966i −0.152507 + 0.264151i
\(543\) 0 0
\(544\) 1.00000 + 1.73205i 0.0428746 + 0.0742611i
\(545\) 9.20204 + 15.9384i 0.394172 + 0.682726i
\(546\) 0 0
\(547\) 3.79796 6.57826i 0.162389 0.281266i −0.773336 0.633996i \(-0.781413\pi\)
0.935725 + 0.352730i \(0.114747\pi\)
\(548\) −7.79796 −0.333112
\(549\) 0 0
\(550\) −5.79796 −0.247226
\(551\) 8.79796 15.2385i 0.374806 0.649182i
\(552\) 0 0
\(553\) 0 0
\(554\) −9.34847 16.1920i −0.397178 0.687933i
\(555\) 0 0
\(556\) 2.27526 3.94086i 0.0964923 0.167130i
\(557\) 12.8990 0.546547 0.273274 0.961936i \(-0.411894\pi\)
0.273274 + 0.961936i \(0.411894\pi\)
\(558\) 0 0
\(559\) −33.7980 −1.42950
\(560\) 0 0
\(561\) 0 0
\(562\) 9.50000 + 16.4545i 0.400733 + 0.694090i
\(563\) 19.9722 + 34.5929i 0.841728 + 1.45791i 0.888433 + 0.459006i \(0.151794\pi\)
−0.0467054 + 0.998909i \(0.514872\pi\)
\(564\) 0 0
\(565\) 4.42168 7.65858i 0.186022 0.322199i
\(566\) −25.4495 −1.06972
\(567\) 0 0
\(568\) 0.101021 0.00423873
\(569\) −15.0000 + 25.9808i −0.628833 + 1.08917i 0.358954 + 0.933355i \(0.383134\pi\)
−0.987786 + 0.155815i \(0.950200\pi\)
\(570\) 0 0
\(571\) −16.8990 29.2699i −0.707200 1.22491i −0.965892 0.258947i \(-0.916625\pi\)
0.258691 0.965960i \(-0.416709\pi\)
\(572\) −4.89898 8.48528i −0.204837 0.354787i
\(573\) 0 0
\(574\) 0 0
\(575\) −2.89898 −0.120896
\(576\) 0 0
\(577\) 15.5959 0.649267 0.324633 0.945840i \(-0.394759\pi\)
0.324633 + 0.945840i \(0.394759\pi\)
\(578\) −6.50000 + 11.2583i −0.270364 + 0.468285i
\(579\) 0 0
\(580\) 5.00000 + 8.66025i 0.207614 + 0.359597i
\(581\) 0 0
\(582\) 0 0
\(583\) 10.8990 18.8776i 0.451390 0.781830i
\(584\) −6.89898 −0.285482
\(585\) 0 0
\(586\) −2.75255 −0.113707
\(587\) −8.07321 + 13.9832i −0.333217 + 0.577149i −0.983141 0.182850i \(-0.941468\pi\)
0.649924 + 0.760000i \(0.274801\pi\)
\(588\) 0 0
\(589\) −7.65153 13.2528i −0.315276 0.546074i
\(590\) 1.44949 + 2.51059i 0.0596745 + 0.103359i
\(591\) 0 0
\(592\) −5.89898 + 10.2173i −0.242447 + 0.419930i
\(593\) 14.6969 0.603531 0.301765 0.953382i \(-0.402424\pi\)
0.301765 + 0.953382i \(0.402424\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.00000 + 5.19615i −0.122885 + 0.212843i
\(597\) 0 0
\(598\) −2.44949 4.24264i −0.100167 0.173494i
\(599\) −16.8990 29.2699i −0.690474 1.19594i −0.971683 0.236289i \(-0.924069\pi\)
0.281209 0.959646i \(-0.409264\pi\)
\(600\) 0 0
\(601\) 8.34847 14.4600i 0.340541 0.589835i −0.643992 0.765032i \(-0.722723\pi\)
0.984533 + 0.175198i \(0.0560564\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −5.00000 −0.203447
\(605\) −5.07321 + 8.78706i −0.206255 + 0.357245i
\(606\) 0 0
\(607\) 10.3485 + 17.9241i 0.420031 + 0.727516i 0.995942 0.0899969i \(-0.0286857\pi\)
−0.575911 + 0.817513i \(0.695352\pi\)
\(608\) −1.27526 2.20881i −0.0517184 0.0895789i
\(609\) 0 0
\(610\) 4.74745 8.22282i 0.192219 0.332932i
\(611\) −48.0000 −1.94187
\(612\) 0 0
\(613\) −14.6969 −0.593604 −0.296802 0.954939i \(-0.595920\pi\)
−0.296802 + 0.954939i \(0.595920\pi\)
\(614\) −12.6237 + 21.8649i −0.509452 + 0.882397i
\(615\) 0 0
\(616\) 0 0
\(617\) −7.69694 13.3315i −0.309867 0.536706i 0.668466 0.743743i \(-0.266951\pi\)
−0.978333 + 0.207037i \(0.933618\pi\)
\(618\) 0 0
\(619\) 15.0732 26.1076i 0.605844 1.04935i −0.386074 0.922468i \(-0.626169\pi\)
0.991918 0.126884i \(-0.0404976\pi\)
\(620\) 8.69694 0.349277
\(621\) 0 0
\(622\) −30.6969 −1.23084
\(623\) 0 0
\(624\) 0 0
\(625\) 1.05051 + 1.81954i 0.0420204 + 0.0727815i
\(626\) 2.34847 + 4.06767i 0.0938637 + 0.162577i
\(627\) 0 0
\(628\) −4.17423 + 7.22999i −0.166570 + 0.288508i
\(629\) 23.5959 0.940831
\(630\) 0 0
\(631\) 27.8990 1.11064 0.555320 0.831636i \(-0.312596\pi\)
0.555320 + 0.831636i \(0.312596\pi\)
\(632\) −0.949490 + 1.64456i −0.0377687 + 0.0654173i
\(633\) 0 0
\(634\) −10.3485 17.9241i −0.410990 0.711856i
\(635\) −2.17423 3.76588i −0.0862819 0.149445i
\(636\) 0 0
\(637\) 0 0
\(638\) 13.7980 0.546266
\(639\) 0 0
\(640\) 1.44949 0.0572961
\(641\) −3.74745 + 6.49077i −0.148015 + 0.256370i −0.930494 0.366308i \(-0.880622\pi\)
0.782479 + 0.622678i \(0.213955\pi\)
\(642\) 0 0
\(643\) −19.6969 34.1161i −0.776771 1.34541i −0.933793 0.357812i \(-0.883523\pi\)
0.157022 0.987595i \(-0.449811\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −2.55051 + 4.41761i −0.100348 + 0.173809i
\(647\) −50.6969 −1.99310 −0.996551 0.0829807i \(-0.973556\pi\)
−0.996551 + 0.0829807i \(0.973556\pi\)
\(648\) 0 0
\(649\) 4.00000 0.157014
\(650\) 7.10102 12.2993i 0.278525 0.482419i
\(651\) 0 0
\(652\) 9.89898 + 17.1455i 0.387674 + 0.671471i
\(653\) 4.89898 + 8.48528i 0.191712 + 0.332055i 0.945818 0.324698i \(-0.105263\pi\)
−0.754106 + 0.656753i \(0.771929\pi\)
\(654\) 0 0
\(655\) −6.19694 + 10.7334i −0.242134 + 0.419389i
\(656\) 9.79796 0.382546
\(657\) 0 0
\(658\) 0 0
\(659\) −12.3485 + 21.3882i −0.481028 + 0.833165i −0.999763 0.0217701i \(-0.993070\pi\)
0.518735 + 0.854935i \(0.326403\pi\)
\(660\) 0 0
\(661\) 2.27526 + 3.94086i 0.0884972 + 0.153282i 0.906876 0.421397i \(-0.138460\pi\)
−0.818379 + 0.574679i \(0.805127\pi\)
\(662\) 2.34847 + 4.06767i 0.0912758 + 0.158094i
\(663\) 0 0
\(664\) 1.00000 1.73205i 0.0388075 0.0672166i
\(665\) 0 0
\(666\) 0 0
\(667\) 6.89898 0.267130
\(668\) 5.34847 9.26382i 0.206938 0.358428i
\(669\) 0 0
\(670\) 9.34847 + 16.1920i 0.361163 + 0.625552i
\(671\) −6.55051 11.3458i −0.252880 0.438000i
\(672\) 0 0
\(673\) 4.29796 7.44428i 0.165674 0.286956i −0.771220 0.636568i \(-0.780353\pi\)
0.936894 + 0.349612i \(0.113687\pi\)
\(674\) 23.3939 0.901098
\(675\) 0 0
\(676\) 11.0000 0.423077
\(677\) −7.34847 + 12.7279i −0.282425 + 0.489174i −0.971981 0.235058i \(-0.924472\pi\)
0.689557 + 0.724232i \(0.257805\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −1.44949 2.51059i −0.0555854 0.0962767i
\(681\) 0 0
\(682\) 6.00000 10.3923i 0.229752 0.397942i
\(683\) −51.7980 −1.98199 −0.990997 0.133885i \(-0.957255\pi\)
−0.990997 + 0.133885i \(0.957255\pi\)
\(684\) 0 0
\(685\) 11.3031 0.431868
\(686\) 0 0
\(687\) 0 0
\(688\) −3.44949 5.97469i −0.131511 0.227783i
\(689\) 26.6969 + 46.2405i 1.01707 + 1.76162i
\(690\) 0 0
\(691\) 25.5227 44.2066i 0.970929 1.68170i 0.278168 0.960533i \(-0.410273\pi\)
0.692762 0.721167i \(-0.256394\pi\)
\(692\) −3.10102 −0.117883
\(693\) 0 0
\(694\) 19.5959 0.743851
\(695\) −3.29796 + 5.71223i −0.125099 + 0.216677i
\(696\) 0 0
\(697\) −9.79796 16.9706i −0.371124 0.642806i
\(698\) −5.55051 9.61377i −0.210090 0.363886i
\(699\) 0 0
\(700\) 0 0
\(701\) 7.39388 0.279263 0.139631 0.990204i \(-0.455408\pi\)
0.139631 + 0.990204i \(0.455408\pi\)
\(702\) 0 0
\(703\) −30.0908 −1.13490
\(704\) 1.00000 1.73205i 0.0376889 0.0652791i
\(705\) 0 0
\(706\) −3.00000 5.19615i −0.112906 0.195560i
\(707\) 0 0
\(708\) 0 0
\(709\) −13.7980 + 23.8988i −0.518193 + 0.897537i 0.481583 + 0.876400i \(0.340062\pi\)
−0.999777 + 0.0211367i \(0.993271\pi\)
\(710\) −0.146428 −0.00549535
\(711\) 0 0
\(712\) 16.8990 0.633316
\(713\) 3.00000 5.19615i 0.112351 0.194597i
\(714\) 0 0
\(715\) 7.10102 + 12.2993i 0.265563 + 0.459969i
\(716\) 10.3485 + 17.9241i 0.386740 + 0.669854i
\(717\) 0 0
\(718\) 4.39898 7.61926i 0.164168 0.284348i
\(719\) 9.79796 0.365402 0.182701 0.983169i \(-0.441516\pi\)
0.182701 + 0.983169i \(0.441516\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.24745 + 10.8209i −0.232506 + 0.402712i
\(723\) 0 0
\(724\) −5.17423 8.96204i −0.192299 0.333071i
\(725\) 10.0000 + 17.3205i 0.371391 + 0.643268i
\(726\) 0 0
\(727\) −4.24745 + 7.35680i −0.157529 + 0.272848i −0.933977 0.357333i \(-0.883686\pi\)
0.776448 + 0.630181i \(0.217019\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 10.0000 0.370117
\(731\) −6.89898 + 11.9494i −0.255168 + 0.441964i
\(732\) 0 0
\(733\) −8.72474 15.1117i −0.322256 0.558163i 0.658697 0.752408i \(-0.271108\pi\)
−0.980953 + 0.194245i \(0.937774\pi\)
\(734\) 6.89898 + 11.9494i 0.254646 + 0.441060i
\(735\) 0 0
\(736\) 0.500000 0.866025i 0.0184302 0.0319221i
\(737\) 25.7980 0.950280
\(738\) 0 0
\(739\) 13.5959 0.500134 0.250067 0.968229i \(-0.419547\pi\)
0.250067 + 0.968229i \(0.419547\pi\)
\(740\) 8.55051 14.8099i 0.314323 0.544423i
\(741\) 0 0
\(742\) 0 0
\(743\) 18.0000 + 31.1769i 0.660356 + 1.14377i 0.980522 + 0.196409i \(0.0629279\pi\)
−0.320166 + 0.947361i \(0.603739\pi\)
\(744\) 0 0
\(745\) 4.34847 7.53177i 0.159316 0.275943i
\(746\) 6.89898 0.252590
\(747\) 0 0
\(748\) −4.00000 −0.146254
\(749\) 0 0
\(750\) 0 0
\(751\) −0.702041 1.21597i −0.0256178 0.0443714i 0.852932 0.522022i \(-0.174822\pi\)
−0.878550 + 0.477650i \(0.841489\pi\)
\(752\) −4.89898 8.48528i −0.178647 0.309426i
\(753\) 0 0
\(754\) −16.8990 + 29.2699i −0.615425 + 1.06595i
\(755\) 7.24745 0.263762
\(756\) 0 0
\(757\) −35.3939 −1.28641 −0.643206 0.765693i \(-0.722396\pi\)
−0.643206 + 0.765693i \(0.722396\pi\)
\(758\) 11.2474 19.4812i 0.408526 0.707587i
\(759\) 0 0
\(760\) 1.84847 + 3.20164i 0.0670510 + 0.116136i
\(761\) −1.00000 1.73205i −0.0362500 0.0627868i 0.847331 0.531065i \(-0.178208\pi\)
−0.883581 + 0.468278i \(0.844875\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −4.10102 −0.148370
\(765\) 0 0
\(766\) 2.89898 0.104744
\(767\) −4.89898 + 8.48528i −0.176892 + 0.306386i
\(768\) 0 0
\(769\) −17.0454 29.5235i −0.614673 1.06465i −0.990442 0.137932i \(-0.955955\pi\)
0.375769 0.926714i \(-0.377379\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.94949 15.5010i 0.322099 0.557892i
\(773\) 33.9444 1.22089 0.610447 0.792057i \(-0.290990\pi\)
0.610447 + 0.792057i \(0.290990\pi\)
\(774\) 0 0
\(775\) 17.3939 0.624807
\(776\) −1.44949 + 2.51059i −0.0520336 + 0.0901249i
\(777\) 0 0
\(778\) 12.4495 + 21.5631i 0.446336 + 0.773076i
\(779\) 12.4949 + 21.6418i 0.447676 + 0.775398i
\(780\) 0 0
\(781\) −0.101021 + 0.174973i −0.00361480 + 0.00626101i
\(782\) −2.00000 −0.0715199
\(783\) 0 0
\(784\) 0 0
\(785\) 6.05051 10.4798i 0.215952 0.374040i
\(786\) 0 0
\(787\) −5.69694 9.86739i −0.203074 0.351734i 0.746443 0.665449i \(-0.231760\pi\)
−0.949517 + 0.313715i \(0.898427\pi\)
\(788\) 8.34847 + 14.4600i 0.297402 + 0.515115i
\(789\) 0 0
\(790\) 1.37628 2.38378i 0.0489657 0.0848111i
\(791\) 0 0
\(792\) 0 0
\(793\) 32.0908 1.13958
\(794\) −19.3485 + 33.5125i −0.686651 + 1.18932i
\(795\) 0 0
\(796\) −1.44949 2.51059i −0.0513758 0.0889855i
\(797\) 8.97219 + 15.5403i 0.317811 + 0.550465i 0.980031 0.198844i \(-0.0637188\pi\)
−0.662220 + 0.749310i \(0.730385\pi\)
\(798\) 0 0
\(799\) −9.79796 + 16.9706i −0.346627 + 0.600375i
\(800\) 2.89898 0.102494
\(801\) 0 0
\(802\) −19.8990 −0.702657
\(803\) 6.89898 11.9494i 0.243460 0.421685i
\(804\) 0 0
\(805\) 0 0
\(806\) 14.6969 + 25.4558i 0.517678 + 0.896644i
\(807\) 0 0
\(808\) −8.62372 + 14.9367i −0.303382 + 0.525472i
\(809\) 16.2020 0.569633 0.284817 0.958582i \(-0.408067\pi\)
0.284817 + 0.958582i \(0.408067\pi\)
\(810\) 0 0
\(811\) 2.00000 0.0702295 0.0351147 0.999383i \(-0.488820\pi\)
0.0351147 + 0.999383i \(0.488820\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −11.7980 20.4347i −0.413518 0.716235i
\(815\) −14.3485 24.8523i −0.502605 0.870537i
\(816\) 0 0
\(817\) 8.79796 15.2385i 0.307802 0.533128i
\(818\) −13.7980 −0.482434
\(819\) 0 0
\(820\) −14.2020 −0.495957
\(821\) 0.202041 0.349945i 0.00705128 0.0122132i −0.862478 0.506094i \(-0.831089\pi\)
0.869530 + 0.493881i \(0.164422\pi\)
\(822\) 0 0
\(823\) 6.69694 + 11.5994i 0.233441 + 0.404331i 0.958818 0.284020i \(-0.0916682\pi\)
−0.725378 + 0.688351i \(0.758335\pi\)
\(824\) −7.00000 12.1244i −0.243857 0.422372i
\(825\) 0 0
\(826\) 0 0
\(827\) 36.4949 1.26905 0.634526 0.772902i \(-0.281195\pi\)
0.634526 + 0.772902i \(0.281195\pi\)
\(828\) 0 0
\(829\) −1.30306 −0.0452572 −0.0226286 0.999744i \(-0.507204\pi\)
−0.0226286 + 0.999744i \(0.507204\pi\)
\(830\) −1.44949 + 2.51059i −0.0503125 + 0.0871438i
\(831\) 0 0
\(832\) 2.44949 + 4.24264i 0.0849208 + 0.147087i
\(833\) 0 0
\(834\) 0 0
\(835\) −7.75255 + 13.4278i −0.268288 + 0.464689i
\(836\) 5.10102 0.176422
\(837\) 0 0
\(838\) −29.4495 −1.01732
\(839\) 17.5505 30.3984i 0.605911 1.04947i −0.385996 0.922500i \(-0.626142\pi\)
0.991907 0.126968i \(-0.0405245\pi\)
\(840\) 0 0
\(841\) −9.29796 16.1045i −0.320619 0.555329i
\(842\) 11.4495 + 19.8311i 0.394575 + 0.683425i
\(843\) 0 0
\(844\) −6.44949 + 11.1708i −0.222001 + 0.384516i
\(845\) −15.9444 −0.548504
\(846\) 0 0
\(847\) 0 0
\(848\) −5.44949 + 9.43879i −0.187136 + 0.324129i
\(849\) 0 0
\(850\) −2.89898 5.02118i −0.0994342 0.172225i
\(851\) −5.89898 10.2173i −0.202214 0.350246i
\(852\) 0 0
\(853\) 12.4217 21.5150i 0.425310 0.736659i −0.571139 0.820853i \(-0.693498\pi\)
0.996449 + 0.0841942i \(0.0268316\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −12.0000 −0.410152
\(857\) 17.4495 30.2234i 0.596063 1.03241i −0.397333 0.917675i \(-0.630064\pi\)
0.993396 0.114737i \(-0.0366026\pi\)
\(858\) 0 0
\(859\) −5.00000 8.66025i −0.170598 0.295484i 0.768031 0.640412i \(-0.221237\pi\)
−0.938629 + 0.344928i \(0.887903\pi\)
\(860\) 5.00000 + 8.66025i 0.170499 + 0.295312i
\(861\) 0 0
\(862\) −15.7980 + 27.3629i −0.538081 + 0.931983i
\(863\) −11.8990 −0.405046 −0.202523 0.979278i \(-0.564914\pi\)
−0.202523 + 0.979278i \(0.564914\pi\)
\(864\) 0 0
\(865\) 4.49490 0.152831
\(866\) 3.89898 6.75323i 0.132493 0.229484i
\(867\) 0 0
\(868\) 0 0
\(869\) −1.89898 3.28913i −0.0644185 0.111576i
\(870\) 0 0
\(871\) −31.5959 + 54.7257i −1.07059 + 1.85431i
\(872\) −12.6969 −0.429973
\(873\) 0 0
\(874\) 2.55051 0.0862723
\(875\) 0 0
\(876\) 0 0
\(877\) −11.2474 19.4812i −0.379799 0.657832i 0.611233 0.791450i \(-0.290674\pi\)
−0.991033 + 0.133619i \(0.957340\pi\)
\(878\) −1.10102 1.90702i −0.0371576 0.0643589i
\(879\) 0 0
\(880\) −1.44949 + 2.51059i −0.0488623 + 0.0846320i
\(881\) 19.5959 0.660203 0.330102 0.943945i \(-0.392917\pi\)
0.330102 + 0.943945i \(0.392917\pi\)
\(882\) 0 0
\(883\) −19.7980 −0.666254 −0.333127 0.942882i \(-0.608104\pi\)
−0.333127 + 0.942882i \(0.608104\pi\)
\(884\) 4.89898 8.48528i 0.164771 0.285391i
\(885\) 0 0
\(886\) 7.44949 + 12.9029i 0.250271 + 0.433481i
\(887\) 7.10102 + 12.2993i 0.238429 + 0.412971i 0.960264 0.279094i \(-0.0900343\pi\)
−0.721835 + 0.692065i \(0.756701\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −24.4949 −0.821071
\(891\) 0 0
\(892\) 11.1010 0.371690
\(893\) 12.4949 21.6418i 0.418126 0.724215i
\(894\) 0 0
\(895\) −15.0000 25.9808i −0.501395 0.868441i
\(896\) 0 0
\(897\) 0 0
\(898\) −10.2980 + 17.8366i −0.343647 + 0.595215i
\(899\) −41.3939 −1.38056
\(900\) 0 0
\(901\) 21.7980 0.726195
\(902\) −9.79796 + 16.9706i −0.326236 + 0.565058i
\(903\) 0 0
\(904\) 3.05051 + 5.28364i 0.101458 + 0.175731i
\(905\) 7.50000 + 12.9904i 0.249308 + 0.431815i
\(906\) 0 0
\(907\) −1.34847 + 2.33562i −0.0447752 + 0.0775529i −0.887544 0.460722i \(-0.847590\pi\)
0.842769 + 0.538275i \(0.180924\pi\)
\(908\) −5.44949 −0.180848
\(909\) 0 0
\(910\) 0 0
\(911\) 25.9949 45.0245i 0.861249 1.49173i −0.00947432 0.999955i \(-0.503016\pi\)
0.870724 0.491773i \(-0.163651\pi\)
\(912\) 0 0
\(913\) 2.00000 + 3.46410i 0.0661903 + 0.114645i
\(914\) −8.74745 15.1510i −0.289340 0.501151i
\(915\) 0 0
\(916\) 0.623724 1.08032i 0.0206084 0.0356949i
\(917\) 0 0
\(918\) 0 0
\(919\) −25.6969 −0.847664 −0.423832 0.905741i \(-0.639315\pi\)
−0.423832 + 0.905741i \(0.639315\pi\)
\(920\) −0.724745 + 1.25529i −0.0238941 + 0.0413858i
\(921\) 0 0
\(922\) 2.82577 + 4.89437i 0.0930616 + 0.161187i
\(923\) −0.247449 0.428594i −0.00814487 0.0141073i
\(924\) 0 0
\(925\) 17.1010 29.6198i 0.562278 0.973894i
\(926\) −3.69694 −0.121489
\(927\) 0 0
\(928\) −6.89898 −0.226470
\(929\) −17.1464 + 29.6985i −0.562556 + 0.974376i 0.434716 + 0.900567i \(0.356849\pi\)
−0.997272 + 0.0738083i \(0.976485\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −3.50000 6.06218i −0.114646 0.198573i
\(933\) 0 0
\(934\) 5.00000 8.66025i 0.163605 0.283372i
\(935\) 5.79796 0.189614
\(936\) 0 0
\(937\) −45.5959 −1.48955 −0.744777 0.667314i \(-0.767444\pi\)
−0.744777 + 0.667314i \(0.767444\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 7.10102 + 12.2993i 0.231610 + 0.401160i
\(941\) 0.724745 + 1.25529i 0.0236260 + 0.0409214i 0.877597 0.479400i \(-0.159146\pi\)
−0.853971 + 0.520321i \(0.825812\pi\)
\(942\) 0 0
\(943\) −4.89898 + 8.48528i −0.159533 + 0.276319i
\(944\) −2.00000 −0.0650945
\(945\) 0 0
\(946\) 13.7980 0.448610
\(947\) 26.2474 45.4619i 0.852927 1.47731i −0.0256270 0.999672i \(-0.508158\pi\)
0.878554 0.477642i \(-0.158508\pi\)
\(948\) 0 0
\(949\) 16.8990 + 29.2699i 0.548564 + 0.950141i
\(950\) 3.69694 + 6.40329i 0.119945 + 0.207750i
\(951\) 0 0
\(952\) 0 0
\(953\) 3.39388 0.109938 0.0549692 0.998488i \(-0.482494\pi\)
0.0549692 + 0.998488i \(0.482494\pi\)
\(954\) 0 0
\(955\) 5.94439 0.192356
\(956\) 3.39898 5.88721i 0.109931 0.190406i
\(957\) 0 0
\(958\) 4.79796 + 8.31031i 0.155015 + 0.268494i
\(959\) 0 0
\(960\) 0 0
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) 57.7980 1.86348
\(963\) 0 0
\(964\) −0.898979 −0.0289542
\(965\) −12.9722 + 22.4685i −0.417590 + 0.723287i
\(966\) 0 0
\(967\) −12.2980 21.3007i −0.395476 0.684984i 0.597686 0.801730i \(-0.296087\pi\)
−0.993162 + 0.116746i \(0.962754\pi\)
\(968\) −3.50000 6.06218i −0.112494 0.194846i
\(969\) 0 0
\(970\) 2.10102 3.63907i 0.0674597 0.116844i
\(971\) −0.0556128 −0.00178470 −0.000892350 1.00000i \(-0.500284\pi\)
−0.000892350 1.00000i \(0.500284\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −18.1969 + 31.5180i −0.583068 + 1.00990i
\(975\) 0 0
\(976\) 3.27526 + 5.67291i 0.104838 + 0.181585i
\(977\) −18.7980 32.5590i −0.601400 1.04166i −0.992609 0.121354i \(-0.961276\pi\)
0.391209 0.920302i \(-0.372057\pi\)
\(978\) 0 0
\(979\) −16.8990 + 29.2699i −0.540094 + 0.935470i
\(980\) 0 0
\(981\) 0 0
\(982\) 15.7980 0.504133
\(983\) 16.5959 28.7450i 0.529328 0.916822i −0.470087 0.882620i \(-0.655778\pi\)
0.999415 0.0342024i \(-0.0108891\pi\)
\(984\) 0 0
\(985\) −12.1010 20.9596i −0.385571 0.667828i
\(986\) 6.89898 + 11.9494i 0.219708 + 0.380546i
\(987\) 0 0
\(988\) −6.24745 + 10.8209i −0.198758 + 0.344259i
\(989\) 6.89898 0.219375
\(990\) 0 0
\(991\) −1.79796 −0.0571140 −0.0285570 0.999592i \(-0.509091\pi\)
−0.0285570 + 0.999592i \(0.509091\pi\)
\(992\) −3.00000 + 5.19615i −0.0952501 + 0.164978i
\(993\) 0 0
\(994\) 0 0
\(995\) 2.10102 + 3.63907i 0.0666068 + 0.115366i
\(996\) 0 0
\(997\) 26.0732 45.1601i 0.825747 1.43024i −0.0756001 0.997138i \(-0.524087\pi\)
0.901347 0.433097i \(-0.142579\pi\)
\(998\) 25.3939 0.803829
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.f.k.883.2 4
3.2 odd 2 882.2.f.j.295.1 4
7.2 even 3 2646.2.e.k.2125.2 4
7.3 odd 6 2646.2.h.m.667.2 4
7.4 even 3 2646.2.h.n.667.1 4
7.5 odd 6 2646.2.e.l.2125.1 4
7.6 odd 2 378.2.f.d.127.1 4
9.2 odd 6 7938.2.a.bn.1.2 2
9.4 even 3 inner 2646.2.f.k.1765.2 4
9.5 odd 6 882.2.f.j.589.2 4
9.7 even 3 7938.2.a.bm.1.1 2
21.2 odd 6 882.2.e.n.655.2 4
21.5 even 6 882.2.e.m.655.1 4
21.11 odd 6 882.2.h.l.79.1 4
21.17 even 6 882.2.h.k.79.2 4
21.20 even 2 126.2.f.c.43.2 4
28.27 even 2 3024.2.r.e.2017.1 4
63.4 even 3 2646.2.e.k.1549.2 4
63.5 even 6 882.2.h.k.67.2 4
63.13 odd 6 378.2.f.d.253.1 4
63.20 even 6 1134.2.a.p.1.1 2
63.23 odd 6 882.2.h.l.67.1 4
63.31 odd 6 2646.2.e.l.1549.1 4
63.32 odd 6 882.2.e.n.373.2 4
63.34 odd 6 1134.2.a.i.1.2 2
63.40 odd 6 2646.2.h.m.361.2 4
63.41 even 6 126.2.f.c.85.1 yes 4
63.58 even 3 2646.2.h.n.361.1 4
63.59 even 6 882.2.e.m.373.1 4
84.83 odd 2 1008.2.r.e.673.1 4
252.83 odd 6 9072.2.a.bk.1.1 2
252.139 even 6 3024.2.r.e.1009.1 4
252.167 odd 6 1008.2.r.e.337.2 4
252.223 even 6 9072.2.a.bd.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.f.c.43.2 4 21.20 even 2
126.2.f.c.85.1 yes 4 63.41 even 6
378.2.f.d.127.1 4 7.6 odd 2
378.2.f.d.253.1 4 63.13 odd 6
882.2.e.m.373.1 4 63.59 even 6
882.2.e.m.655.1 4 21.5 even 6
882.2.e.n.373.2 4 63.32 odd 6
882.2.e.n.655.2 4 21.2 odd 6
882.2.f.j.295.1 4 3.2 odd 2
882.2.f.j.589.2 4 9.5 odd 6
882.2.h.k.67.2 4 63.5 even 6
882.2.h.k.79.2 4 21.17 even 6
882.2.h.l.67.1 4 63.23 odd 6
882.2.h.l.79.1 4 21.11 odd 6
1008.2.r.e.337.2 4 252.167 odd 6
1008.2.r.e.673.1 4 84.83 odd 2
1134.2.a.i.1.2 2 63.34 odd 6
1134.2.a.p.1.1 2 63.20 even 6
2646.2.e.k.1549.2 4 63.4 even 3
2646.2.e.k.2125.2 4 7.2 even 3
2646.2.e.l.1549.1 4 63.31 odd 6
2646.2.e.l.2125.1 4 7.5 odd 6
2646.2.f.k.883.2 4 1.1 even 1 trivial
2646.2.f.k.1765.2 4 9.4 even 3 inner
2646.2.h.m.361.2 4 63.40 odd 6
2646.2.h.m.667.2 4 7.3 odd 6
2646.2.h.n.361.1 4 63.58 even 3
2646.2.h.n.667.1 4 7.4 even 3
3024.2.r.e.1009.1 4 252.139 even 6
3024.2.r.e.2017.1 4 28.27 even 2
7938.2.a.bm.1.1 2 9.7 even 3
7938.2.a.bn.1.2 2 9.2 odd 6
9072.2.a.bd.1.2 2 252.223 even 6
9072.2.a.bk.1.1 2 252.83 odd 6