Properties

Label 270.2.i.a.19.1
Level $270$
Weight $2$
Character 270.19
Analytic conductor $2.156$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(19,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 270.19
Dual form 270.2.i.a.199.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-2.23205 + 0.133975i) q^{5} +(-0.866025 - 0.500000i) q^{7} -1.00000i q^{8} +(2.00000 + 1.00000i) q^{10} +(-1.00000 + 1.73205i) q^{11} +(-5.19615 + 3.00000i) q^{13} +(0.500000 + 0.866025i) q^{14} +(-0.500000 + 0.866025i) q^{16} -2.00000i q^{17} -6.00000 q^{19} +(-1.23205 - 1.86603i) q^{20} +(1.73205 - 1.00000i) q^{22} +(-0.866025 + 0.500000i) q^{23} +(4.96410 - 0.598076i) q^{25} +6.00000 q^{26} -1.00000i q^{28} +(-4.50000 + 7.79423i) q^{29} +(1.00000 + 1.73205i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-1.00000 + 1.73205i) q^{34} +(2.00000 + 1.00000i) q^{35} -2.00000i q^{37} +(5.19615 + 3.00000i) q^{38} +(0.133975 + 2.23205i) q^{40} +(-5.50000 - 9.52628i) q^{41} +(3.46410 + 2.00000i) q^{43} -2.00000 q^{44} +1.00000 q^{46} +(6.06218 + 3.50000i) q^{47} +(-3.00000 - 5.19615i) q^{49} +(-4.59808 - 1.96410i) q^{50} +(-5.19615 - 3.00000i) q^{52} +(2.00000 - 4.00000i) q^{55} +(-0.500000 + 0.866025i) q^{56} +(7.79423 - 4.50000i) q^{58} +(2.00000 + 3.46410i) q^{59} +(3.50000 - 6.06218i) q^{61} -2.00000i q^{62} -1.00000 q^{64} +(11.1962 - 7.39230i) q^{65} +(9.52628 - 5.50000i) q^{67} +(1.73205 - 1.00000i) q^{68} +(-1.23205 - 1.86603i) q^{70} +6.00000 q^{71} -4.00000i q^{73} +(-1.00000 + 1.73205i) q^{74} +(-3.00000 - 5.19615i) q^{76} +(1.73205 - 1.00000i) q^{77} +(-6.00000 + 10.3923i) q^{79} +(1.00000 - 2.00000i) q^{80} +11.0000i q^{82} +(-9.52628 - 5.50000i) q^{83} +(0.267949 + 4.46410i) q^{85} +(-2.00000 - 3.46410i) q^{86} +(1.73205 + 1.00000i) q^{88} +1.00000 q^{89} +6.00000 q^{91} +(-0.866025 - 0.500000i) q^{92} +(-3.50000 - 6.06218i) q^{94} +(13.3923 - 0.803848i) q^{95} +(-6.92820 - 4.00000i) q^{97} +6.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5} + 8 q^{10} - 4 q^{11} + 2 q^{14} - 2 q^{16} - 24 q^{19} + 2 q^{20} + 6 q^{25} + 24 q^{26} - 18 q^{29} + 4 q^{31} - 4 q^{34} + 8 q^{35} + 4 q^{40} - 22 q^{41} - 8 q^{44} + 4 q^{46}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −2.23205 + 0.133975i −0.998203 + 0.0599153i
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i 0.327327 0.944911i \(-0.393852\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000 + 1.00000i 0.632456 + 0.316228i
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) −5.19615 + 3.00000i −1.44115 + 0.832050i −0.997927 0.0643593i \(-0.979500\pi\)
−0.443227 + 0.896410i \(0.646166\pi\)
\(14\) 0.500000 + 0.866025i 0.133631 + 0.231455i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −1.23205 1.86603i −0.275495 0.417256i
\(21\) 0 0
\(22\) 1.73205 1.00000i 0.369274 0.213201i
\(23\) −0.866025 + 0.500000i −0.180579 + 0.104257i −0.587565 0.809177i \(-0.699913\pi\)
0.406986 + 0.913434i \(0.366580\pi\)
\(24\) 0 0
\(25\) 4.96410 0.598076i 0.992820 0.119615i
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 1.00000i 0.188982i
\(29\) −4.50000 + 7.79423i −0.835629 + 1.44735i 0.0578882 + 0.998323i \(0.481563\pi\)
−0.893517 + 0.449029i \(0.851770\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) 0 0
\(34\) −1.00000 + 1.73205i −0.171499 + 0.297044i
\(35\) 2.00000 + 1.00000i 0.338062 + 0.169031i
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 5.19615 + 3.00000i 0.842927 + 0.486664i
\(39\) 0 0
\(40\) 0.133975 + 2.23205i 0.0211832 + 0.352918i
\(41\) −5.50000 9.52628i −0.858956 1.48775i −0.872926 0.487852i \(-0.837780\pi\)
0.0139704 0.999902i \(-0.495553\pi\)
\(42\) 0 0
\(43\) 3.46410 + 2.00000i 0.528271 + 0.304997i 0.740312 0.672264i \(-0.234678\pi\)
−0.212041 + 0.977261i \(0.568011\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 6.06218 + 3.50000i 0.884260 + 0.510527i 0.872060 0.489398i \(-0.162783\pi\)
0.0121990 + 0.999926i \(0.496117\pi\)
\(48\) 0 0
\(49\) −3.00000 5.19615i −0.428571 0.742307i
\(50\) −4.59808 1.96410i −0.650266 0.277766i
\(51\) 0 0
\(52\) −5.19615 3.00000i −0.720577 0.416025i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 2.00000 4.00000i 0.269680 0.539360i
\(56\) −0.500000 + 0.866025i −0.0668153 + 0.115728i
\(57\) 0 0
\(58\) 7.79423 4.50000i 1.02343 0.590879i
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 2.00000i 0.254000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 11.1962 7.39230i 1.38871 0.916903i
\(66\) 0 0
\(67\) 9.52628 5.50000i 1.16382 0.671932i 0.211604 0.977356i \(-0.432131\pi\)
0.952217 + 0.305424i \(0.0987981\pi\)
\(68\) 1.73205 1.00000i 0.210042 0.121268i
\(69\) 0 0
\(70\) −1.23205 1.86603i −0.147258 0.223033i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) −1.00000 + 1.73205i −0.116248 + 0.201347i
\(75\) 0 0
\(76\) −3.00000 5.19615i −0.344124 0.596040i
\(77\) 1.73205 1.00000i 0.197386 0.113961i
\(78\) 0 0
\(79\) −6.00000 + 10.3923i −0.675053 + 1.16923i 0.301401 + 0.953498i \(0.402546\pi\)
−0.976453 + 0.215728i \(0.930788\pi\)
\(80\) 1.00000 2.00000i 0.111803 0.223607i
\(81\) 0 0
\(82\) 11.0000i 1.21475i
\(83\) −9.52628 5.50000i −1.04565 0.603703i −0.124218 0.992255i \(-0.539642\pi\)
−0.921427 + 0.388552i \(0.872976\pi\)
\(84\) 0 0
\(85\) 0.267949 + 4.46410i 0.0290632 + 0.484200i
\(86\) −2.00000 3.46410i −0.215666 0.373544i
\(87\) 0 0
\(88\) 1.73205 + 1.00000i 0.184637 + 0.106600i
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) −0.866025 0.500000i −0.0902894 0.0521286i
\(93\) 0 0
\(94\) −3.50000 6.06218i −0.360997 0.625266i
\(95\) 13.3923 0.803848i 1.37402 0.0824730i
\(96\) 0 0
\(97\) −6.92820 4.00000i −0.703452 0.406138i 0.105180 0.994453i \(-0.466458\pi\)
−0.808632 + 0.588315i \(0.799792\pi\)
\(98\) 6.00000i 0.606092i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) 1.00000 1.73205i 0.0995037 0.172345i −0.811976 0.583691i \(-0.801608\pi\)
0.911479 + 0.411346i \(0.134941\pi\)
\(102\) 0 0
\(103\) −6.92820 + 4.00000i −0.682656 + 0.394132i −0.800855 0.598858i \(-0.795621\pi\)
0.118199 + 0.992990i \(0.462288\pi\)
\(104\) 3.00000 + 5.19615i 0.294174 + 0.509525i
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) −3.73205 + 2.46410i −0.355837 + 0.234943i
\(111\) 0 0
\(112\) 0.866025 0.500000i 0.0818317 0.0472456i
\(113\) −10.3923 + 6.00000i −0.977626 + 0.564433i −0.901553 0.432670i \(-0.857572\pi\)
−0.0760733 + 0.997102i \(0.524238\pi\)
\(114\) 0 0
\(115\) 1.86603 1.23205i 0.174008 0.114889i
\(116\) −9.00000 −0.835629
\(117\) 0 0
\(118\) 4.00000i 0.368230i
\(119\) −1.00000 + 1.73205i −0.0916698 + 0.158777i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) −6.06218 + 3.50000i −0.548844 + 0.316875i
\(123\) 0 0
\(124\) −1.00000 + 1.73205i −0.0898027 + 0.155543i
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 19.0000i 1.68598i 0.537931 + 0.842989i \(0.319206\pi\)
−0.537931 + 0.842989i \(0.680794\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) −13.3923 + 0.803848i −1.17458 + 0.0705021i
\(131\) 6.00000 + 10.3923i 0.524222 + 0.907980i 0.999602 + 0.0281993i \(0.00897729\pi\)
−0.475380 + 0.879781i \(0.657689\pi\)
\(132\) 0 0
\(133\) 5.19615 + 3.00000i 0.450564 + 0.260133i
\(134\) −11.0000 −0.950255
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) −10.3923 6.00000i −0.887875 0.512615i −0.0146279 0.999893i \(-0.504656\pi\)
−0.873247 + 0.487278i \(0.837990\pi\)
\(138\) 0 0
\(139\) 8.00000 + 13.8564i 0.678551 + 1.17529i 0.975417 + 0.220366i \(0.0707252\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0.133975 + 2.23205i 0.0113229 + 0.188643i
\(141\) 0 0
\(142\) −5.19615 3.00000i −0.436051 0.251754i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 9.00000 18.0000i 0.747409 1.49482i
\(146\) −2.00000 + 3.46410i −0.165521 + 0.286691i
\(147\) 0 0
\(148\) 1.73205 1.00000i 0.142374 0.0821995i
\(149\) 0.500000 + 0.866025i 0.0409616 + 0.0709476i 0.885779 0.464107i \(-0.153625\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(150\) 0 0
\(151\) −5.00000 + 8.66025i −0.406894 + 0.704761i −0.994540 0.104357i \(-0.966722\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(152\) 6.00000i 0.486664i
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) −2.46410 3.73205i −0.197921 0.299766i
\(156\) 0 0
\(157\) −3.46410 + 2.00000i −0.276465 + 0.159617i −0.631822 0.775113i \(-0.717693\pi\)
0.355357 + 0.934731i \(0.384359\pi\)
\(158\) 10.3923 6.00000i 0.826767 0.477334i
\(159\) 0 0
\(160\) −1.86603 + 1.23205i −0.147522 + 0.0974022i
\(161\) 1.00000 0.0788110
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 5.50000 9.52628i 0.429478 0.743877i
\(165\) 0 0
\(166\) 5.50000 + 9.52628i 0.426883 + 0.739383i
\(167\) −2.59808 + 1.50000i −0.201045 + 0.116073i −0.597143 0.802135i \(-0.703697\pi\)
0.396098 + 0.918208i \(0.370364\pi\)
\(168\) 0 0
\(169\) 11.5000 19.9186i 0.884615 1.53220i
\(170\) 2.00000 4.00000i 0.153393 0.306786i
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) −3.46410 2.00000i −0.263371 0.152057i 0.362500 0.931984i \(-0.381923\pi\)
−0.625871 + 0.779926i \(0.715256\pi\)
\(174\) 0 0
\(175\) −4.59808 1.96410i −0.347582 0.148472i
\(176\) −1.00000 1.73205i −0.0753778 0.130558i
\(177\) 0 0
\(178\) −0.866025 0.500000i −0.0649113 0.0374766i
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) −5.19615 3.00000i −0.385164 0.222375i
\(183\) 0 0
\(184\) 0.500000 + 0.866025i 0.0368605 + 0.0638442i
\(185\) 0.267949 + 4.46410i 0.0197000 + 0.328207i
\(186\) 0 0
\(187\) 3.46410 + 2.00000i 0.253320 + 0.146254i
\(188\) 7.00000i 0.510527i
\(189\) 0 0
\(190\) −12.0000 6.00000i −0.870572 0.435286i
\(191\) 3.00000 5.19615i 0.217072 0.375980i −0.736839 0.676068i \(-0.763683\pi\)
0.953912 + 0.300088i \(0.0970159\pi\)
\(192\) 0 0
\(193\) −8.66025 + 5.00000i −0.623379 + 0.359908i −0.778183 0.628037i \(-0.783859\pi\)
0.154805 + 0.987945i \(0.450525\pi\)
\(194\) 4.00000 + 6.92820i 0.287183 + 0.497416i
\(195\) 0 0
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) −0.598076 4.96410i −0.0422904 0.351015i
\(201\) 0 0
\(202\) −1.73205 + 1.00000i −0.121867 + 0.0703598i
\(203\) 7.79423 4.50000i 0.547048 0.315838i
\(204\) 0 0
\(205\) 13.5526 + 20.5263i 0.946552 + 1.43362i
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) 6.00000i 0.416025i
\(209\) 6.00000 10.3923i 0.415029 0.718851i
\(210\) 0 0
\(211\) −9.00000 15.5885i −0.619586 1.07315i −0.989561 0.144112i \(-0.953967\pi\)
0.369976 0.929041i \(-0.379366\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.50000 2.59808i 0.102538 0.177601i
\(215\) −8.00000 4.00000i −0.545595 0.272798i
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) 6.06218 + 3.50000i 0.410582 + 0.237050i
\(219\) 0 0
\(220\) 4.46410 0.267949i 0.300970 0.0180651i
\(221\) 6.00000 + 10.3923i 0.403604 + 0.699062i
\(222\) 0 0
\(223\) −19.9186 11.5000i −1.33385 0.770097i −0.347960 0.937509i \(-0.613126\pi\)
−0.985887 + 0.167412i \(0.946459\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) 6.92820 + 4.00000i 0.459841 + 0.265489i 0.711977 0.702202i \(-0.247800\pi\)
−0.252136 + 0.967692i \(0.581133\pi\)
\(228\) 0 0
\(229\) −3.50000 6.06218i −0.231287 0.400600i 0.726900 0.686743i \(-0.240960\pi\)
−0.958187 + 0.286143i \(0.907627\pi\)
\(230\) −2.23205 + 0.133975i −0.147177 + 0.00883402i
\(231\) 0 0
\(232\) 7.79423 + 4.50000i 0.511716 + 0.295439i
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 0 0
\(235\) −14.0000 7.00000i −0.913259 0.456630i
\(236\) −2.00000 + 3.46410i −0.130189 + 0.225494i
\(237\) 0 0
\(238\) 1.73205 1.00000i 0.112272 0.0648204i
\(239\) −14.0000 24.2487i −0.905585 1.56852i −0.820130 0.572177i \(-0.806099\pi\)
−0.0854543 0.996342i \(-0.527234\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) 7.00000 0.448129
\(245\) 7.39230 + 11.1962i 0.472277 + 0.715296i
\(246\) 0 0
\(247\) 31.1769 18.0000i 1.98374 1.14531i
\(248\) 1.73205 1.00000i 0.109985 0.0635001i
\(249\) 0 0
\(250\) 10.5263 + 3.76795i 0.665740 + 0.238306i
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.125739i
\(254\) 9.50000 16.4545i 0.596083 1.03245i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 10.3923 6.00000i 0.648254 0.374270i −0.139533 0.990217i \(-0.544560\pi\)
0.787787 + 0.615948i \(0.211227\pi\)
\(258\) 0 0
\(259\) −1.00000 + 1.73205i −0.0621370 + 0.107624i
\(260\) 12.0000 + 6.00000i 0.744208 + 0.372104i
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) 13.8564 + 8.00000i 0.854423 + 0.493301i 0.862141 0.506669i \(-0.169123\pi\)
−0.00771799 + 0.999970i \(0.502457\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −3.00000 5.19615i −0.183942 0.318597i
\(267\) 0 0
\(268\) 9.52628 + 5.50000i 0.581910 + 0.335966i
\(269\) 3.00000 0.182913 0.0914566 0.995809i \(-0.470848\pi\)
0.0914566 + 0.995809i \(0.470848\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 1.73205 + 1.00000i 0.105021 + 0.0606339i
\(273\) 0 0
\(274\) 6.00000 + 10.3923i 0.362473 + 0.627822i
\(275\) −3.92820 + 9.19615i −0.236880 + 0.554549i
\(276\) 0 0
\(277\) −19.0526 11.0000i −1.14476 0.660926i −0.197153 0.980373i \(-0.563170\pi\)
−0.947604 + 0.319447i \(0.896503\pi\)
\(278\) 16.0000i 0.959616i
\(279\) 0 0
\(280\) 1.00000 2.00000i 0.0597614 0.119523i
\(281\) −1.50000 + 2.59808i −0.0894825 + 0.154988i −0.907293 0.420500i \(-0.861855\pi\)
0.817810 + 0.575488i \(0.195188\pi\)
\(282\) 0 0
\(283\) 0.866025 0.500000i 0.0514799 0.0297219i −0.474039 0.880504i \(-0.657204\pi\)
0.525519 + 0.850782i \(0.323871\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) −6.00000 + 10.3923i −0.354787 + 0.614510i
\(287\) 11.0000i 0.649309i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) −16.7942 + 11.0885i −0.986191 + 0.651137i
\(291\) 0 0
\(292\) 3.46410 2.00000i 0.202721 0.117041i
\(293\) 15.5885 9.00000i 0.910687 0.525786i 0.0300351 0.999549i \(-0.490438\pi\)
0.880652 + 0.473763i \(0.157105\pi\)
\(294\) 0 0
\(295\) −4.92820 7.46410i −0.286931 0.434577i
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 1.00000i 0.0579284i
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) 8.66025 5.00000i 0.498342 0.287718i
\(303\) 0 0
\(304\) 3.00000 5.19615i 0.172062 0.298020i
\(305\) −7.00000 + 14.0000i −0.400819 + 0.801638i
\(306\) 0 0
\(307\) 9.00000i 0.513657i 0.966457 + 0.256829i \(0.0826776\pi\)
−0.966457 + 0.256829i \(0.917322\pi\)
\(308\) 1.73205 + 1.00000i 0.0986928 + 0.0569803i
\(309\) 0 0
\(310\) 0.267949 + 4.46410i 0.0152185 + 0.253544i
\(311\) 3.00000 + 5.19615i 0.170114 + 0.294647i 0.938460 0.345389i \(-0.112253\pi\)
−0.768345 + 0.640036i \(0.778920\pi\)
\(312\) 0 0
\(313\) 19.0526 + 11.0000i 1.07691 + 0.621757i 0.930062 0.367402i \(-0.119753\pi\)
0.146852 + 0.989158i \(0.453086\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) 1.73205 + 1.00000i 0.0972817 + 0.0561656i 0.547852 0.836576i \(-0.315446\pi\)
−0.450570 + 0.892741i \(0.648779\pi\)
\(318\) 0 0
\(319\) −9.00000 15.5885i −0.503903 0.872786i
\(320\) 2.23205 0.133975i 0.124775 0.00748941i
\(321\) 0 0
\(322\) −0.866025 0.500000i −0.0482617 0.0278639i
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) −24.0000 + 18.0000i −1.33128 + 0.998460i
\(326\) 2.00000 3.46410i 0.110770 0.191859i
\(327\) 0 0
\(328\) −9.52628 + 5.50000i −0.526001 + 0.303687i
\(329\) −3.50000 6.06218i −0.192961 0.334219i
\(330\) 0 0
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) 11.0000i 0.603703i
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) −20.5263 + 13.5526i −1.12147 + 0.740455i
\(336\) 0 0
\(337\) −6.92820 + 4.00000i −0.377403 + 0.217894i −0.676688 0.736270i \(-0.736585\pi\)
0.299285 + 0.954164i \(0.403252\pi\)
\(338\) −19.9186 + 11.5000i −1.08343 + 0.625518i
\(339\) 0 0
\(340\) −3.73205 + 2.46410i −0.202399 + 0.133635i
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 2.00000 3.46410i 0.107833 0.186772i
\(345\) 0 0
\(346\) 2.00000 + 3.46410i 0.107521 + 0.186231i
\(347\) −10.3923 + 6.00000i −0.557888 + 0.322097i −0.752297 0.658824i \(-0.771054\pi\)
0.194409 + 0.980921i \(0.437721\pi\)
\(348\) 0 0
\(349\) −5.50000 + 9.52628i −0.294408 + 0.509930i −0.974847 0.222875i \(-0.928456\pi\)
0.680439 + 0.732805i \(0.261789\pi\)
\(350\) 3.00000 + 4.00000i 0.160357 + 0.213809i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) −13.8564 8.00000i −0.737502 0.425797i 0.0836583 0.996495i \(-0.473340\pi\)
−0.821160 + 0.570697i \(0.806673\pi\)
\(354\) 0 0
\(355\) −13.3923 + 0.803848i −0.710790 + 0.0426638i
\(356\) 0.500000 + 0.866025i 0.0264999 + 0.0458993i
\(357\) 0 0
\(358\) −1.73205 1.00000i −0.0915417 0.0528516i
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 11.2583 + 6.50000i 0.591725 + 0.341632i
\(363\) 0 0
\(364\) 3.00000 + 5.19615i 0.157243 + 0.272352i
\(365\) 0.535898 + 8.92820i 0.0280502 + 0.467324i
\(366\) 0 0
\(367\) −13.8564 8.00000i −0.723299 0.417597i 0.0926670 0.995697i \(-0.470461\pi\)
−0.815966 + 0.578101i \(0.803794\pi\)
\(368\) 1.00000i 0.0521286i
\(369\) 0 0
\(370\) 2.00000 4.00000i 0.103975 0.207950i
\(371\) 0 0
\(372\) 0 0
\(373\) 10.3923 6.00000i 0.538093 0.310668i −0.206213 0.978507i \(-0.566114\pi\)
0.744306 + 0.667839i \(0.232781\pi\)
\(374\) −2.00000 3.46410i −0.103418 0.179124i
\(375\) 0 0
\(376\) 3.50000 6.06218i 0.180499 0.312633i
\(377\) 54.0000i 2.78114i
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) 7.39230 + 11.1962i 0.379217 + 0.574351i
\(381\) 0 0
\(382\) −5.19615 + 3.00000i −0.265858 + 0.153493i
\(383\) −27.7128 + 16.0000i −1.41606 + 0.817562i −0.995950 0.0899119i \(-0.971341\pi\)
−0.420109 + 0.907474i \(0.638008\pi\)
\(384\) 0 0
\(385\) −3.73205 + 2.46410i −0.190203 + 0.125582i
\(386\) 10.0000 0.508987
\(387\) 0 0
\(388\) 8.00000i 0.406138i
\(389\) −9.50000 + 16.4545i −0.481669 + 0.834275i −0.999779 0.0210389i \(-0.993303\pi\)
0.518110 + 0.855314i \(0.326636\pi\)
\(390\) 0 0
\(391\) 1.00000 + 1.73205i 0.0505722 + 0.0875936i
\(392\) −5.19615 + 3.00000i −0.262445 + 0.151523i
\(393\) 0 0
\(394\) 4.00000 6.92820i 0.201517 0.349038i
\(395\) 12.0000 24.0000i 0.603786 1.20757i
\(396\) 0 0
\(397\) 4.00000i 0.200754i 0.994949 + 0.100377i \(0.0320049\pi\)
−0.994949 + 0.100377i \(0.967995\pi\)
\(398\) −15.5885 9.00000i −0.781379 0.451129i
\(399\) 0 0
\(400\) −1.96410 + 4.59808i −0.0982051 + 0.229904i
\(401\) −5.00000 8.66025i −0.249688 0.432472i 0.713751 0.700399i \(-0.246995\pi\)
−0.963439 + 0.267927i \(0.913661\pi\)
\(402\) 0 0
\(403\) −10.3923 6.00000i −0.517678 0.298881i
\(404\) 2.00000 0.0995037
\(405\) 0 0
\(406\) −9.00000 −0.446663
\(407\) 3.46410 + 2.00000i 0.171709 + 0.0991363i
\(408\) 0 0
\(409\) 19.0000 + 32.9090i 0.939490 + 1.62724i 0.766426 + 0.642333i \(0.222033\pi\)
0.173064 + 0.984911i \(0.444633\pi\)
\(410\) −1.47372 24.5526i −0.0727819 1.21256i
\(411\) 0 0
\(412\) −6.92820 4.00000i −0.341328 0.197066i
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 22.0000 + 11.0000i 1.07994 + 0.539969i
\(416\) −3.00000 + 5.19615i −0.147087 + 0.254762i
\(417\) 0 0
\(418\) −10.3923 + 6.00000i −0.508304 + 0.293470i
\(419\) −17.0000 29.4449i −0.830504 1.43848i −0.897639 0.440732i \(-0.854719\pi\)
0.0671345 0.997744i \(-0.478614\pi\)
\(420\) 0 0
\(421\) −11.0000 + 19.0526i −0.536107 + 0.928565i 0.463002 + 0.886357i \(0.346772\pi\)
−0.999109 + 0.0422075i \(0.986561\pi\)
\(422\) 18.0000i 0.876226i
\(423\) 0 0
\(424\) 0 0
\(425\) −1.19615 9.92820i −0.0580219 0.481589i
\(426\) 0 0
\(427\) −6.06218 + 3.50000i −0.293369 + 0.169377i
\(428\) −2.59808 + 1.50000i −0.125583 + 0.0725052i
\(429\) 0 0
\(430\) 4.92820 + 7.46410i 0.237659 + 0.359951i
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 2.00000i 0.0961139i 0.998845 + 0.0480569i \(0.0153029\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) −1.00000 + 1.73205i −0.0480015 + 0.0831411i
\(435\) 0 0
\(436\) −3.50000 6.06218i −0.167620 0.290326i
\(437\) 5.19615 3.00000i 0.248566 0.143509i
\(438\) 0 0
\(439\) 12.0000 20.7846i 0.572729 0.991995i −0.423556 0.905870i \(-0.639218\pi\)
0.996284 0.0861252i \(-0.0274485\pi\)
\(440\) −4.00000 2.00000i −0.190693 0.0953463i
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) −7.79423 4.50000i −0.370315 0.213801i 0.303281 0.952901i \(-0.401918\pi\)
−0.673596 + 0.739100i \(0.735251\pi\)
\(444\) 0 0
\(445\) −2.23205 + 0.133975i −0.105809 + 0.00635100i
\(446\) 11.5000 + 19.9186i 0.544541 + 0.943172i
\(447\) 0 0
\(448\) 0.866025 + 0.500000i 0.0409159 + 0.0236228i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 22.0000 1.03594
\(452\) −10.3923 6.00000i −0.488813 0.282216i
\(453\) 0 0
\(454\) −4.00000 6.92820i −0.187729 0.325157i
\(455\) −13.3923 + 0.803848i −0.627841 + 0.0376850i
\(456\) 0 0
\(457\) −8.66025 5.00000i −0.405110 0.233890i 0.283577 0.958950i \(-0.408479\pi\)
−0.688686 + 0.725059i \(0.741812\pi\)
\(458\) 7.00000i 0.327089i
\(459\) 0 0
\(460\) 2.00000 + 1.00000i 0.0932505 + 0.0466252i
\(461\) −10.5000 + 18.1865i −0.489034 + 0.847031i −0.999920 0.0126168i \(-0.995984\pi\)
0.510887 + 0.859648i \(0.329317\pi\)
\(462\) 0 0
\(463\) 31.1769 18.0000i 1.44891 0.836531i 0.450497 0.892778i \(-0.351247\pi\)
0.998417 + 0.0562469i \(0.0179134\pi\)
\(464\) −4.50000 7.79423i −0.208907 0.361838i
\(465\) 0 0
\(466\) 5.00000 8.66025i 0.231621 0.401179i
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 8.62436 + 13.0622i 0.397812 + 0.602513i
\(471\) 0 0
\(472\) 3.46410 2.00000i 0.159448 0.0920575i
\(473\) −6.92820 + 4.00000i −0.318559 + 0.183920i
\(474\) 0 0
\(475\) −29.7846 + 3.58846i −1.36661 + 0.164650i
\(476\) −2.00000 −0.0916698
\(477\) 0 0
\(478\) 28.0000i 1.28069i
\(479\) −14.0000 + 24.2487i −0.639676 + 1.10795i 0.345827 + 0.938298i \(0.387598\pi\)
−0.985504 + 0.169654i \(0.945735\pi\)
\(480\) 0 0
\(481\) 6.00000 + 10.3923i 0.273576 + 0.473848i
\(482\) 0.866025 0.500000i 0.0394464 0.0227744i
\(483\) 0 0
\(484\) −3.50000 + 6.06218i −0.159091 + 0.275554i
\(485\) 16.0000 + 8.00000i 0.726523 + 0.363261i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) −6.06218 3.50000i −0.274422 0.158438i
\(489\) 0 0
\(490\) −0.803848 13.3923i −0.0363141 0.605003i
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 15.5885 + 9.00000i 0.702069 + 0.405340i
\(494\) −36.0000 −1.61972
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) −5.19615 3.00000i −0.233079 0.134568i
\(498\) 0 0
\(499\) −12.0000 20.7846i −0.537194 0.930447i −0.999054 0.0434940i \(-0.986151\pi\)
0.461860 0.886953i \(-0.347182\pi\)
\(500\) −7.23205 8.52628i −0.323427 0.381307i
\(501\) 0 0
\(502\) 15.5885 + 9.00000i 0.695747 + 0.401690i
\(503\) 27.0000i 1.20387i −0.798545 0.601935i \(-0.794397\pi\)
0.798545 0.601935i \(-0.205603\pi\)
\(504\) 0 0
\(505\) −2.00000 + 4.00000i −0.0889988 + 0.177998i
\(506\) −1.00000 + 1.73205i −0.0444554 + 0.0769991i
\(507\) 0 0
\(508\) −16.4545 + 9.50000i −0.730050 + 0.421494i
\(509\) 7.50000 + 12.9904i 0.332432 + 0.575789i 0.982988 0.183669i \(-0.0587976\pi\)
−0.650556 + 0.759458i \(0.725464\pi\)
\(510\) 0 0
\(511\) −2.00000 + 3.46410i −0.0884748 + 0.153243i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −12.0000 −0.529297
\(515\) 14.9282 9.85641i 0.657815 0.434325i
\(516\) 0 0
\(517\) −12.1244 + 7.00000i −0.533229 + 0.307860i
\(518\) 1.73205 1.00000i 0.0761019 0.0439375i
\(519\) 0 0
\(520\) −7.39230 11.1962i −0.324174 0.490984i
\(521\) 37.0000 1.62100 0.810500 0.585739i \(-0.199196\pi\)
0.810500 + 0.585739i \(0.199196\pi\)
\(522\) 0 0
\(523\) 29.0000i 1.26808i −0.773300 0.634041i \(-0.781395\pi\)
0.773300 0.634041i \(-0.218605\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) −8.00000 13.8564i −0.348817 0.604168i
\(527\) 3.46410 2.00000i 0.150899 0.0871214i
\(528\) 0 0
\(529\) −11.0000 + 19.0526i −0.478261 + 0.828372i
\(530\) 0 0
\(531\) 0 0
\(532\) 6.00000i 0.260133i
\(533\) 57.1577 + 33.0000i 2.47577 + 1.42939i
\(534\) 0 0
\(535\) −0.401924 6.69615i −0.0173767 0.289500i
\(536\) −5.50000 9.52628i −0.237564 0.411473i
\(537\) 0 0
\(538\) −2.59808 1.50000i −0.112011 0.0646696i
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 12.1244 + 7.00000i 0.520786 + 0.300676i
\(543\) 0 0
\(544\) −1.00000 1.73205i −0.0428746 0.0742611i
\(545\) 15.6244 0.937822i 0.669274 0.0401719i
\(546\) 0 0
\(547\) 30.3109 + 17.5000i 1.29600 + 0.748246i 0.979711 0.200417i \(-0.0642296\pi\)
0.316289 + 0.948663i \(0.397563\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 0 0
\(550\) 8.00000 6.00000i 0.341121 0.255841i
\(551\) 27.0000 46.7654i 1.15024 1.99227i
\(552\) 0 0
\(553\) 10.3923 6.00000i 0.441926 0.255146i
\(554\) 11.0000 + 19.0526i 0.467345 + 0.809466i
\(555\) 0 0
\(556\) −8.00000 + 13.8564i −0.339276 + 0.587643i
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) −1.86603 + 1.23205i −0.0788540 + 0.0520636i
\(561\) 0 0
\(562\) 2.59808 1.50000i 0.109593 0.0632737i
\(563\) 32.0429 18.5000i 1.35045 0.779682i 0.362137 0.932125i \(-0.382047\pi\)
0.988312 + 0.152443i \(0.0487140\pi\)
\(564\) 0 0
\(565\) 22.3923 14.7846i 0.942051 0.621993i
\(566\) −1.00000 −0.0420331
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 1.00000 1.73205i 0.0419222 0.0726113i −0.844303 0.535866i \(-0.819985\pi\)
0.886225 + 0.463255i \(0.153319\pi\)
\(570\) 0 0
\(571\) 10.0000 + 17.3205i 0.418487 + 0.724841i 0.995788 0.0916910i \(-0.0292272\pi\)
−0.577301 + 0.816532i \(0.695894\pi\)
\(572\) 10.3923 6.00000i 0.434524 0.250873i
\(573\) 0 0
\(574\) 5.50000 9.52628i 0.229566 0.397619i
\(575\) −4.00000 + 3.00000i −0.166812 + 0.125109i
\(576\) 0 0
\(577\) 32.0000i 1.33218i −0.745873 0.666089i \(-0.767967\pi\)
0.745873 0.666089i \(-0.232033\pi\)
\(578\) −11.2583 6.50000i −0.468285 0.270364i
\(579\) 0 0
\(580\) 20.0885 1.20577i 0.834128 0.0500669i
\(581\) 5.50000 + 9.52628i 0.228178 + 0.395217i
\(582\) 0 0
\(583\) 0 0
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) −2.59808 1.50000i −0.107234 0.0619116i 0.445424 0.895320i \(-0.353053\pi\)
−0.552658 + 0.833408i \(0.686386\pi\)
\(588\) 0 0
\(589\) −6.00000 10.3923i −0.247226 0.428207i
\(590\) 0.535898 + 8.92820i 0.0220626 + 0.367568i
\(591\) 0 0
\(592\) 1.73205 + 1.00000i 0.0711868 + 0.0410997i
\(593\) 30.0000i 1.23195i 0.787765 + 0.615976i \(0.211238\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(594\) 0 0
\(595\) 2.00000 4.00000i 0.0819920 0.163984i
\(596\) −0.500000 + 0.866025i −0.0204808 + 0.0354738i
\(597\) 0 0
\(598\) −5.19615 + 3.00000i −0.212486 + 0.122679i
\(599\) 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i \(-0.0878284\pi\)
−0.717021 + 0.697051i \(0.754495\pi\)
\(600\) 0 0
\(601\) 11.0000 19.0526i 0.448699 0.777170i −0.549602 0.835426i \(-0.685221\pi\)
0.998302 + 0.0582563i \(0.0185541\pi\)
\(602\) 4.00000i 0.163028i
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) −8.62436 13.0622i −0.350630 0.531053i
\(606\) 0 0
\(607\) −0.866025 + 0.500000i −0.0351509 + 0.0202944i −0.517472 0.855700i \(-0.673127\pi\)
0.482322 + 0.875994i \(0.339794\pi\)
\(608\) −5.19615 + 3.00000i −0.210732 + 0.121666i
\(609\) 0 0
\(610\) 13.0622 8.62436i 0.528872 0.349190i
\(611\) −42.0000 −1.69914
\(612\) 0 0
\(613\) 34.0000i 1.37325i −0.727013 0.686624i \(-0.759092\pi\)
0.727013 0.686624i \(-0.240908\pi\)
\(614\) 4.50000 7.79423i 0.181605 0.314549i
\(615\) 0 0
\(616\) −1.00000 1.73205i −0.0402911 0.0697863i
\(617\) −27.7128 + 16.0000i −1.11568 + 0.644136i −0.940294 0.340365i \(-0.889449\pi\)
−0.175382 + 0.984500i \(0.556116\pi\)
\(618\) 0 0
\(619\) −5.00000 + 8.66025i −0.200967 + 0.348085i −0.948840 0.315757i \(-0.897742\pi\)
0.747873 + 0.663842i \(0.231075\pi\)
\(620\) 2.00000 4.00000i 0.0803219 0.160644i
\(621\) 0 0
\(622\) 6.00000i 0.240578i
\(623\) −0.866025 0.500000i −0.0346966 0.0200321i
\(624\) 0 0
\(625\) 24.2846 5.93782i 0.971384 0.237513i
\(626\) −11.0000 19.0526i −0.439648 0.761493i
\(627\) 0 0
\(628\) −3.46410 2.00000i −0.138233 0.0798087i
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 10.3923 + 6.00000i 0.413384 + 0.238667i
\(633\) 0 0
\(634\) −1.00000 1.73205i −0.0397151 0.0687885i
\(635\) −2.54552 42.4090i −0.101016 1.68295i
\(636\) 0 0
\(637\) 31.1769 + 18.0000i 1.23527 + 0.713186i
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) −2.00000 1.00000i −0.0790569 0.0395285i
\(641\) 6.50000 11.2583i 0.256735 0.444677i −0.708631 0.705580i \(-0.750687\pi\)
0.965365 + 0.260902i \(0.0840201\pi\)
\(642\) 0 0
\(643\) −28.5788 + 16.5000i −1.12704 + 0.650696i −0.943189 0.332258i \(-0.892190\pi\)
−0.183851 + 0.982954i \(0.558856\pi\)
\(644\) 0.500000 + 0.866025i 0.0197028 + 0.0341262i
\(645\) 0 0
\(646\) 6.00000 10.3923i 0.236067 0.408880i
\(647\) 33.0000i 1.29736i 0.761060 + 0.648682i \(0.224679\pi\)
−0.761060 + 0.648682i \(0.775321\pi\)
\(648\) 0 0
\(649\) −8.00000 −0.314027
\(650\) 29.7846 3.58846i 1.16825 0.140751i
\(651\) 0 0
\(652\) −3.46410 + 2.00000i −0.135665 + 0.0783260i
\(653\) 22.5167 13.0000i 0.881145 0.508729i 0.0101092 0.999949i \(-0.496782\pi\)
0.871036 + 0.491220i \(0.163449\pi\)
\(654\) 0 0
\(655\) −14.7846 22.3923i −0.577683 0.874940i
\(656\) 11.0000 0.429478
\(657\) 0 0
\(658\) 7.00000i 0.272888i
\(659\) −10.0000 + 17.3205i −0.389545 + 0.674711i −0.992388 0.123148i \(-0.960701\pi\)
0.602844 + 0.797859i \(0.294034\pi\)
\(660\) 0 0
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) −6.92820 + 4.00000i −0.269272 + 0.155464i
\(663\) 0 0
\(664\) −5.50000 + 9.52628i −0.213441 + 0.369691i
\(665\) −12.0000 6.00000i −0.465340 0.232670i
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) −2.59808 1.50000i −0.100523 0.0580367i
\(669\) 0 0
\(670\) 24.5526 1.47372i 0.948548 0.0569348i
\(671\) 7.00000 + 12.1244i 0.270232 + 0.468056i
\(672\) 0 0
\(673\) −5.19615 3.00000i −0.200297 0.115642i 0.396497 0.918036i \(-0.370226\pi\)
−0.596794 + 0.802395i \(0.703559\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) −19.0526 11.0000i −0.732249 0.422764i 0.0869952 0.996209i \(-0.472274\pi\)
−0.819244 + 0.573444i \(0.805607\pi\)
\(678\) 0 0
\(679\) 4.00000 + 6.92820i 0.153506 + 0.265880i
\(680\) 4.46410 0.267949i 0.171190 0.0102754i
\(681\) 0 0
\(682\) 3.46410 + 2.00000i 0.132647 + 0.0765840i
\(683\) 4.00000i 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 24.0000 + 12.0000i 0.916993 + 0.458496i
\(686\) 6.50000 11.2583i 0.248171 0.429845i
\(687\) 0 0
\(688\) −3.46410 + 2.00000i −0.132068 + 0.0762493i
\(689\) 0 0
\(690\) 0 0
\(691\) 22.0000 38.1051i 0.836919 1.44959i −0.0555386 0.998457i \(-0.517688\pi\)
0.892458 0.451130i \(-0.148979\pi\)
\(692\) 4.00000i 0.152057i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) −19.7128 29.8564i −0.747750 1.13252i
\(696\) 0 0
\(697\) −19.0526 + 11.0000i −0.721667 + 0.416655i
\(698\) 9.52628 5.50000i 0.360575 0.208178i
\(699\) 0 0
\(700\) −0.598076 4.96410i −0.0226052 0.187625i
\(701\) −13.0000 −0.491003 −0.245502 0.969396i \(-0.578953\pi\)
−0.245502 + 0.969396i \(0.578953\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 1.00000 1.73205i 0.0376889 0.0652791i
\(705\) 0 0
\(706\) 8.00000 + 13.8564i 0.301084 + 0.521493i
\(707\) −1.73205 + 1.00000i −0.0651405 + 0.0376089i
\(708\) 0 0
\(709\) −13.5000 + 23.3827i −0.507003 + 0.878155i 0.492964 + 0.870050i \(0.335913\pi\)
−0.999967 + 0.00810550i \(0.997420\pi\)
\(710\) 12.0000 + 6.00000i 0.450352 + 0.225176i
\(711\) 0 0
\(712\) 1.00000i 0.0374766i
\(713\) −1.73205 1.00000i −0.0648658 0.0374503i
\(714\) 0 0
\(715\) 1.60770 + 26.7846i 0.0601244 + 1.00169i
\(716\) 1.00000 + 1.73205i 0.0373718 + 0.0647298i
\(717\) 0 0
\(718\) −25.9808 15.0000i −0.969593 0.559795i
\(719\) −44.0000 −1.64092 −0.820462 0.571702i \(-0.806283\pi\)
−0.820462 + 0.571702i \(0.806283\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) −14.7224 8.50000i −0.547912 0.316337i
\(723\) 0 0
\(724\) −6.50000 11.2583i −0.241571 0.418413i
\(725\) −17.6769 + 41.3827i −0.656504 + 1.53691i
\(726\) 0 0
\(727\) 18.1865 + 10.5000i 0.674501 + 0.389423i 0.797780 0.602949i \(-0.206008\pi\)
−0.123279 + 0.992372i \(0.539341\pi\)
\(728\) 6.00000i 0.222375i
\(729\) 0 0
\(730\) 4.00000 8.00000i 0.148047 0.296093i
\(731\) 4.00000 6.92820i 0.147945 0.256249i
\(732\) 0 0
\(733\) 3.46410 2.00000i 0.127950 0.0738717i −0.434659 0.900595i \(-0.643131\pi\)
0.562609 + 0.826723i \(0.309798\pi\)
\(734\) 8.00000 + 13.8564i 0.295285 + 0.511449i
\(735\) 0 0
\(736\) −0.500000 + 0.866025i −0.0184302 + 0.0319221i
\(737\) 22.0000i 0.810380i
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) −3.73205 + 2.46410i −0.137193 + 0.0905822i
\(741\) 0 0
\(742\) 0 0
\(743\) 12.9904 7.50000i 0.476571 0.275148i −0.242415 0.970173i \(-0.577940\pi\)
0.718986 + 0.695024i \(0.244606\pi\)
\(744\) 0 0
\(745\) −1.23205 1.86603i −0.0451388 0.0683659i
\(746\) −12.0000 −0.439351
\(747\) 0 0
\(748\) 4.00000i 0.146254i
\(749\) 1.50000 2.59808i 0.0548088 0.0949316i
\(750\) 0 0
\(751\) −13.0000 22.5167i −0.474377 0.821645i 0.525193 0.850983i \(-0.323993\pi\)
−0.999570 + 0.0293387i \(0.990660\pi\)
\(752\) −6.06218 + 3.50000i −0.221065 + 0.127632i
\(753\) 0 0
\(754\) −27.0000 + 46.7654i −0.983282 + 1.70309i
\(755\) 10.0000 20.0000i 0.363937 0.727875i
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) −13.8564 8.00000i −0.503287 0.290573i
\(759\) 0 0
\(760\) −0.803848 13.3923i −0.0291586 0.485790i
\(761\) −4.50000 7.79423i −0.163125 0.282541i 0.772863 0.634573i \(-0.218824\pi\)
−0.935988 + 0.352032i \(0.885491\pi\)
\(762\) 0 0
\(763\) 6.06218 + 3.50000i 0.219466 + 0.126709i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) −20.7846 12.0000i −0.750489 0.433295i
\(768\) 0 0
\(769\) −7.50000 12.9904i −0.270457 0.468445i 0.698522 0.715589i \(-0.253841\pi\)
−0.968979 + 0.247143i \(0.920508\pi\)
\(770\) 4.46410 0.267949i 0.160875 0.00965622i
\(771\) 0 0
\(772\) −8.66025 5.00000i −0.311689 0.179954i
\(773\) 12.0000i 0.431610i −0.976436 0.215805i \(-0.930762\pi\)
0.976436 0.215805i \(-0.0692376\pi\)
\(774\) 0 0
\(775\) 6.00000 + 8.00000i 0.215526 + 0.287368i
\(776\) −4.00000 + 6.92820i −0.143592 + 0.248708i
\(777\) 0 0
\(778\) 16.4545 9.50000i 0.589922 0.340592i
\(779\) 33.0000 + 57.1577i 1.18235 + 2.04789i
\(780\) 0 0
\(781\) −6.00000 + 10.3923i −0.214697 + 0.371866i
\(782\) 2.00000i 0.0715199i
\(783\) 0 0
\(784\) 6.00000 0.214286
\(785\) 7.46410 4.92820i 0.266405 0.175895i
\(786\) 0 0
\(787\) −38.1051 + 22.0000i −1.35830 + 0.784215i −0.989395 0.145251i \(-0.953601\pi\)
−0.368906 + 0.929467i \(0.620268\pi\)
\(788\) −6.92820 + 4.00000i −0.246807 + 0.142494i
\(789\) 0 0
\(790\) −22.3923 + 14.7846i −0.796682 + 0.526013i
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 42.0000i 1.49146i
\(794\) 2.00000 3.46410i 0.0709773 0.122936i
\(795\) 0 0
\(796\) 9.00000 + 15.5885i 0.318997 + 0.552518i
\(797\) −1.73205 + 1.00000i −0.0613524 + 0.0354218i −0.530362 0.847771i \(-0.677944\pi\)
0.469010 + 0.883193i \(0.344611\pi\)
\(798\) 0 0
\(799\) 7.00000 12.1244i 0.247642 0.428929i
\(800\) 4.00000 3.00000i 0.141421 0.106066i
\(801\) 0 0
\(802\) 10.0000i 0.353112i
\(803\) 6.92820 + 4.00000i 0.244491 + 0.141157i
\(804\) 0 0
\(805\) −2.23205 + 0.133975i −0.0786695 + 0.00472198i
\(806\) 6.00000 + 10.3923i 0.211341 + 0.366053i
\(807\) 0 0
\(808\) −1.73205 1.00000i −0.0609333 0.0351799i
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 7.79423 + 4.50000i 0.273524 + 0.157919i
\(813\) 0 0
\(814\) −2.00000 3.46410i −0.0701000 0.121417i
\(815\) −0.535898 8.92820i −0.0187717 0.312741i
\(816\) 0 0
\(817\) −20.7846 12.0000i −0.727161 0.419827i
\(818\) 38.0000i 1.32864i
\(819\) 0 0
\(820\) −11.0000 + 22.0000i −0.384137 + 0.768273i
\(821\) −15.5000 + 26.8468i −0.540954 + 0.936959i 0.457896 + 0.889006i \(0.348603\pi\)
−0.998850 + 0.0479535i \(0.984730\pi\)
\(822\) 0 0
\(823\) 12.9904 7.50000i 0.452816 0.261434i −0.256203 0.966623i \(-0.582471\pi\)
0.709019 + 0.705190i \(0.249138\pi\)
\(824\) 4.00000 + 6.92820i 0.139347 + 0.241355i
\(825\) 0 0
\(826\) −2.00000 + 3.46410i −0.0695889 + 0.120532i
\(827\) 35.0000i 1.21707i −0.793527 0.608535i \(-0.791758\pi\)
0.793527 0.608535i \(-0.208242\pi\)
\(828\) 0 0
\(829\) −15.0000 −0.520972 −0.260486 0.965478i \(-0.583883\pi\)
−0.260486 + 0.965478i \(0.583883\pi\)
\(830\) −13.5526 20.5263i −0.470416 0.712478i
\(831\) 0 0
\(832\) 5.19615 3.00000i 0.180144 0.104006i
\(833\) −10.3923 + 6.00000i −0.360072 + 0.207888i
\(834\) 0 0
\(835\) 5.59808 3.69615i 0.193729 0.127911i
\(836\) 12.0000 0.415029
\(837\) 0 0
\(838\) 34.0000i 1.17451i
\(839\) −19.0000 + 32.9090i −0.655953 + 1.13614i 0.325701 + 0.945473i \(0.394400\pi\)
−0.981654 + 0.190671i \(0.938934\pi\)
\(840\) 0 0
\(841\) −26.0000 45.0333i −0.896552 1.55287i
\(842\) 19.0526 11.0000i 0.656595 0.379085i
\(843\) 0 0
\(844\) 9.00000 15.5885i 0.309793 0.536577i
\(845\) −23.0000 + 46.0000i −0.791224 + 1.58245i
\(846\) 0 0
\(847\) 7.00000i 0.240523i
\(848\) 0 0
\(849\) 0 0
\(850\) −3.92820 + 9.19615i −0.134736 + 0.315425i
\(851\) 1.00000 + 1.73205i 0.0342796 + 0.0593739i
\(852\) 0 0
\(853\) −39.8372 23.0000i −1.36400 0.787505i −0.373845 0.927491i \(-0.621961\pi\)
−0.990153 + 0.139986i \(0.955294\pi\)
\(854\) 7.00000 0.239535
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 15.5885 + 9.00000i 0.532492 + 0.307434i 0.742030 0.670366i \(-0.233863\pi\)
−0.209539 + 0.977800i \(0.567196\pi\)
\(858\) 0 0
\(859\) 7.00000 + 12.1244i 0.238837 + 0.413678i 0.960381 0.278691i \(-0.0899005\pi\)
−0.721544 + 0.692369i \(0.756567\pi\)
\(860\) −0.535898 8.92820i −0.0182740 0.304449i
\(861\) 0 0
\(862\) 13.8564 + 8.00000i 0.471951 + 0.272481i
\(863\) 45.0000i 1.53182i 0.642949 + 0.765909i \(0.277711\pi\)
−0.642949 + 0.765909i \(0.722289\pi\)
\(864\) 0 0
\(865\) 8.00000 + 4.00000i 0.272008 + 0.136004i
\(866\) 1.00000 1.73205i 0.0339814 0.0588575i
\(867\) 0 0
\(868\) 1.73205 1.00000i 0.0587896 0.0339422i
\(869\) −12.0000 20.7846i −0.407072 0.705070i
\(870\) 0 0
\(871\) −33.0000 + 57.1577i −1.11816 + 1.93671i
\(872\) 7.00000i 0.237050i
\(873\) 0 0
\(874\) −6.00000 −0.202953
\(875\) 10.5263 + 3.76795i 0.355853 + 0.127380i
\(876\) 0 0
\(877\) −39.8372 + 23.0000i −1.34521 + 0.776655i −0.987566 0.157205i \(-0.949752\pi\)
−0.357640 + 0.933860i \(0.616418\pi\)
\(878\) −20.7846 + 12.0000i −0.701447 + 0.404980i
\(879\) 0 0
\(880\) 2.46410 + 3.73205i 0.0830648 + 0.125807i
\(881\) 15.0000 0.505363 0.252681 0.967550i \(-0.418688\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(882\) 0 0
\(883\) 3.00000i 0.100958i 0.998725 + 0.0504790i \(0.0160748\pi\)
−0.998725 + 0.0504790i \(0.983925\pi\)
\(884\) −6.00000 + 10.3923i −0.201802 + 0.349531i
\(885\) 0 0
\(886\) 4.50000 + 7.79423i 0.151180 + 0.261852i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 9.50000 16.4545i 0.318620 0.551866i
\(890\) 2.00000 + 1.00000i 0.0670402 + 0.0335201i
\(891\) 0 0
\(892\) 23.0000i 0.770097i
\(893\) −36.3731 21.0000i −1.21718 0.702738i
\(894\) 0 0
\(895\) −4.46410 + 0.267949i −0.149218 + 0.00895655i
\(896\) −0.500000 0.866025i −0.0167038 0.0289319i
\(897\) 0 0
\(898\) −15.5885 9.00000i −0.520194 0.300334i
\(899\) −18.0000 −0.600334
\(900\) 0 0
\(901\) 0 0
\(902\) −19.0526 11.0000i −0.634381 0.366260i
\(903\) 0 0
\(904\) 6.00000 + 10.3923i 0.199557 + 0.345643i
\(905\) 29.0167 1.74167i 0.964546 0.0578951i
\(906\) 0 0
\(907\) 28.5788 + 16.5000i 0.948945 + 0.547874i 0.892753 0.450546i \(-0.148771\pi\)
0.0561918 + 0.998420i \(0.482104\pi\)
\(908\) 8.00000i 0.265489i
\(909\) 0 0
\(910\) 12.0000 + 6.00000i 0.397796 + 0.198898i
\(911\) 6.00000 10.3923i 0.198789 0.344312i −0.749347 0.662177i \(-0.769633\pi\)
0.948136 + 0.317865i \(0.102966\pi\)
\(912\) 0 0
\(913\) 19.0526 11.0000i 0.630548 0.364047i
\(914\) 5.00000 + 8.66025i 0.165385 + 0.286456i
\(915\) 0 0
\(916\) 3.50000 6.06218i 0.115643 0.200300i
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) 36.0000 1.18753 0.593765 0.804638i \(-0.297641\pi\)
0.593765 + 0.804638i \(0.297641\pi\)
\(920\) −1.23205 1.86603i −0.0406195 0.0615210i
\(921\) 0 0
\(922\) 18.1865 10.5000i 0.598942 0.345799i
\(923\) −31.1769 + 18.0000i −1.02620 + 0.592477i
\(924\) 0 0
\(925\) −1.19615 9.92820i −0.0393292 0.326437i
\(926\) −36.0000 −1.18303
\(927\) 0 0
\(928\) 9.00000i 0.295439i
\(929\) 9.00000 15.5885i 0.295280 0.511441i −0.679770 0.733426i \(-0.737920\pi\)
0.975050 + 0.221985i \(0.0712536\pi\)
\(930\) 0 0
\(931\) 18.0000 + 31.1769i 0.589926 + 1.02178i
\(932\) −8.66025 + 5.00000i −0.283676 + 0.163780i
\(933\) 0 0
\(934\) 18.0000 31.1769i 0.588978 1.02014i
\(935\) −8.00000 4.00000i −0.261628 0.130814i
\(936\) 0 0
\(937\) 52.0000i 1.69877i −0.527777 0.849383i \(-0.676974\pi\)
0.527777 0.849383i \(-0.323026\pi\)
\(938\) 9.52628 + 5.50000i 0.311044 + 0.179581i
\(939\) 0 0
\(940\) −0.937822 15.6244i −0.0305884 0.509610i
\(941\) −20.5000 35.5070i −0.668281 1.15750i −0.978385 0.206794i \(-0.933697\pi\)
0.310104 0.950703i \(-0.399636\pi\)
\(942\) 0 0
\(943\) 9.52628 + 5.50000i 0.310218 + 0.179105i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 8.00000 0.260102
\(947\) 44.1673 + 25.5000i 1.43524 + 0.828639i 0.997514 0.0704677i \(-0.0224492\pi\)
0.437730 + 0.899106i \(0.355783\pi\)
\(948\) 0 0
\(949\) 12.0000 + 20.7846i 0.389536 + 0.674697i
\(950\) 27.5885 + 11.7846i 0.895088 + 0.382343i
\(951\) 0 0
\(952\) 1.73205 + 1.00000i 0.0561361 + 0.0324102i
\(953\) 2.00000i 0.0647864i −0.999475 0.0323932i \(-0.989687\pi\)
0.999475 0.0323932i \(-0.0103129\pi\)
\(954\) 0 0
\(955\) −6.00000 + 12.0000i −0.194155 + 0.388311i
\(956\) 14.0000 24.2487i 0.452792 0.784259i
\(957\) 0 0
\(958\) 24.2487 14.0000i 0.783440 0.452319i
\(959\) 6.00000 + 10.3923i 0.193750 + 0.335585i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) 12.0000i 0.386896i
\(963\) 0 0
\(964\) −1.00000 −0.0322078
\(965\) 18.6603 12.3205i 0.600695 0.396611i
\(966\) 0 0
\(967\) 14.7224 8.50000i 0.473441 0.273342i −0.244238 0.969715i \(-0.578538\pi\)
0.717679 + 0.696374i \(0.245204\pi\)
\(968\) 6.06218 3.50000i 0.194846 0.112494i
\(969\) 0 0
\(970\) −9.85641 14.9282i −0.316470 0.479316i
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) 6.00000 10.3923i 0.192252 0.332991i
\(975\) 0 0
\(976\) 3.50000 + 6.06218i 0.112032 + 0.194046i
\(977\) 46.7654 27.0000i 1.49616 0.863807i 0.496167 0.868227i \(-0.334741\pi\)
0.999990 + 0.00442082i \(0.00140720\pi\)
\(978\) 0 0
\(979\) −1.00000 + 1.73205i −0.0319601 + 0.0553566i
\(980\) −6.00000 + 12.0000i −0.191663 + 0.383326i
\(981\) 0 0
\(982\) 0 0
\(983\) −16.4545 9.50000i −0.524816 0.303003i 0.214087 0.976815i \(-0.431323\pi\)
−0.738903 + 0.673812i \(0.764656\pi\)
\(984\) 0 0
\(985\) −1.07180 17.8564i −0.0341503 0.568952i
\(986\) −9.00000 15.5885i −0.286618 0.496438i
\(987\) 0 0
\(988\) 31.1769 + 18.0000i 0.991870 + 0.572656i
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 1.73205 + 1.00000i 0.0549927 + 0.0317500i
\(993\) 0 0
\(994\) 3.00000 + 5.19615i 0.0951542 + 0.164812i
\(995\) −40.1769 + 2.41154i −1.27369 + 0.0764510i
\(996\) 0 0
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 24.0000i 0.759707i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.i.a.19.1 4
3.2 odd 2 90.2.i.a.79.2 yes 4
4.3 odd 2 2160.2.by.b.289.1 4
5.2 odd 4 1350.2.e.i.451.1 2
5.3 odd 4 1350.2.e.a.451.1 2
5.4 even 2 inner 270.2.i.a.19.2 4
9.2 odd 6 810.2.c.b.649.1 2
9.4 even 3 inner 270.2.i.a.199.2 4
9.5 odd 6 90.2.i.a.49.1 4
9.7 even 3 810.2.c.c.649.2 2
12.11 even 2 720.2.by.a.529.2 4
15.2 even 4 450.2.e.b.151.1 2
15.8 even 4 450.2.e.g.151.1 2
15.14 odd 2 90.2.i.a.79.1 yes 4
20.19 odd 2 2160.2.by.b.289.2 4
36.23 even 6 720.2.by.a.49.1 4
36.31 odd 6 2160.2.by.b.1009.2 4
45.2 even 12 4050.2.a.x.1.1 1
45.4 even 6 inner 270.2.i.a.199.1 4
45.7 odd 12 4050.2.a.g.1.1 1
45.13 odd 12 1350.2.e.a.901.1 2
45.14 odd 6 90.2.i.a.49.2 yes 4
45.22 odd 12 1350.2.e.i.901.1 2
45.23 even 12 450.2.e.g.301.1 2
45.29 odd 6 810.2.c.b.649.2 2
45.32 even 12 450.2.e.b.301.1 2
45.34 even 6 810.2.c.c.649.1 2
45.38 even 12 4050.2.a.j.1.1 1
45.43 odd 12 4050.2.a.be.1.1 1
60.59 even 2 720.2.by.a.529.1 4
180.59 even 6 720.2.by.a.49.2 4
180.139 odd 6 2160.2.by.b.1009.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.a.49.1 4 9.5 odd 6
90.2.i.a.49.2 yes 4 45.14 odd 6
90.2.i.a.79.1 yes 4 15.14 odd 2
90.2.i.a.79.2 yes 4 3.2 odd 2
270.2.i.a.19.1 4 1.1 even 1 trivial
270.2.i.a.19.2 4 5.4 even 2 inner
270.2.i.a.199.1 4 45.4 even 6 inner
270.2.i.a.199.2 4 9.4 even 3 inner
450.2.e.b.151.1 2 15.2 even 4
450.2.e.b.301.1 2 45.32 even 12
450.2.e.g.151.1 2 15.8 even 4
450.2.e.g.301.1 2 45.23 even 12
720.2.by.a.49.1 4 36.23 even 6
720.2.by.a.49.2 4 180.59 even 6
720.2.by.a.529.1 4 60.59 even 2
720.2.by.a.529.2 4 12.11 even 2
810.2.c.b.649.1 2 9.2 odd 6
810.2.c.b.649.2 2 45.29 odd 6
810.2.c.c.649.1 2 45.34 even 6
810.2.c.c.649.2 2 9.7 even 3
1350.2.e.a.451.1 2 5.3 odd 4
1350.2.e.a.901.1 2 45.13 odd 12
1350.2.e.i.451.1 2 5.2 odd 4
1350.2.e.i.901.1 2 45.22 odd 12
2160.2.by.b.289.1 4 4.3 odd 2
2160.2.by.b.289.2 4 20.19 odd 2
2160.2.by.b.1009.1 4 180.139 odd 6
2160.2.by.b.1009.2 4 36.31 odd 6
4050.2.a.g.1.1 1 45.7 odd 12
4050.2.a.j.1.1 1 45.38 even 12
4050.2.a.x.1.1 1 45.2 even 12
4050.2.a.be.1.1 1 45.43 odd 12