Properties

Label 450.2.e.b.151.1
Level $450$
Weight $2$
Character 450.151
Analytic conductor $3.593$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [450,2,Mod(151,450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(450, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("450.151");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 450 = 2 \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 450.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.59326809096\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 151.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 450.151
Dual form 450.2.e.b.301.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} -1.73205i q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(1.00000 - 1.73205i) q^{11} +(1.50000 + 0.866025i) q^{12} +(3.00000 + 5.19615i) q^{13} +(0.500000 + 0.866025i) q^{14} +(-0.500000 + 0.866025i) q^{16} -2.00000 q^{17} +(1.50000 + 2.59808i) q^{18} +6.00000 q^{19} +1.73205i q^{21} +(1.00000 + 1.73205i) q^{22} +(-0.500000 - 0.866025i) q^{23} +(-1.50000 + 0.866025i) q^{24} -6.00000 q^{26} +5.19615i q^{27} -1.00000 q^{28} +(-4.50000 + 7.79423i) q^{29} +(1.00000 + 1.73205i) q^{31} +(-0.500000 - 0.866025i) q^{32} +3.46410i q^{33} +(1.00000 - 1.73205i) q^{34} -3.00000 q^{36} +2.00000 q^{37} +(-3.00000 + 5.19615i) q^{38} +(-9.00000 - 5.19615i) q^{39} +(5.50000 + 9.52628i) q^{41} +(-1.50000 - 0.866025i) q^{42} +(2.00000 - 3.46410i) q^{43} -2.00000 q^{44} +1.00000 q^{46} +(3.50000 - 6.06218i) q^{47} -1.73205i q^{48} +(3.00000 + 5.19615i) q^{49} +(3.00000 - 1.73205i) q^{51} +(3.00000 - 5.19615i) q^{52} +(-4.50000 - 2.59808i) q^{54} +(0.500000 - 0.866025i) q^{56} +(-9.00000 + 5.19615i) q^{57} +(-4.50000 - 7.79423i) q^{58} +(2.00000 + 3.46410i) q^{59} +(3.50000 - 6.06218i) q^{61} -2.00000 q^{62} +(-1.50000 - 2.59808i) q^{63} +1.00000 q^{64} +(-3.00000 - 1.73205i) q^{66} +(5.50000 + 9.52628i) q^{67} +(1.00000 + 1.73205i) q^{68} +(1.50000 + 0.866025i) q^{69} -6.00000 q^{71} +(1.50000 - 2.59808i) q^{72} -4.00000 q^{73} +(-1.00000 + 1.73205i) q^{74} +(-3.00000 - 5.19615i) q^{76} +(-1.00000 - 1.73205i) q^{77} +(9.00000 - 5.19615i) q^{78} +(6.00000 - 10.3923i) q^{79} +(-4.50000 - 7.79423i) q^{81} -11.0000 q^{82} +(5.50000 - 9.52628i) q^{83} +(1.50000 - 0.866025i) q^{84} +(2.00000 + 3.46410i) q^{86} -15.5885i q^{87} +(1.00000 - 1.73205i) q^{88} +1.00000 q^{89} +6.00000 q^{91} +(-0.500000 + 0.866025i) q^{92} +(-3.00000 - 1.73205i) q^{93} +(3.50000 + 6.06218i) q^{94} +(1.50000 + 0.866025i) q^{96} +(4.00000 - 6.92820i) q^{97} -6.00000 q^{98} +(-3.00000 - 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 3 q^{3} - q^{4} + q^{7} + 2 q^{8} + 3 q^{9} + 2 q^{11} + 3 q^{12} + 6 q^{13} + q^{14} - q^{16} - 4 q^{17} + 3 q^{18} + 12 q^{19} + 2 q^{22} - q^{23} - 3 q^{24} - 12 q^{26} - 2 q^{28}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/450\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0 0
\(6\) 1.73205i 0.707107i
\(7\) 0.500000 0.866025i 0.188982 0.327327i −0.755929 0.654654i \(-0.772814\pi\)
0.944911 + 0.327327i \(0.106148\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) 1.00000 1.73205i 0.301511 0.522233i −0.674967 0.737848i \(-0.735842\pi\)
0.976478 + 0.215615i \(0.0691756\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) 3.00000 + 5.19615i 0.832050 + 1.44115i 0.896410 + 0.443227i \(0.146166\pi\)
−0.0643593 + 0.997927i \(0.520500\pi\)
\(14\) 0.500000 + 0.866025i 0.133631 + 0.231455i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.00000 −0.485071 −0.242536 0.970143i \(-0.577979\pi\)
−0.242536 + 0.970143i \(0.577979\pi\)
\(18\) 1.50000 + 2.59808i 0.353553 + 0.612372i
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 1.00000 + 1.73205i 0.213201 + 0.369274i
\(23\) −0.500000 0.866025i −0.104257 0.180579i 0.809177 0.587565i \(-0.199913\pi\)
−0.913434 + 0.406986i \(0.866580\pi\)
\(24\) −1.50000 + 0.866025i −0.306186 + 0.176777i
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) 5.19615i 1.00000i
\(28\) −1.00000 −0.188982
\(29\) −4.50000 + 7.79423i −0.835629 + 1.44735i 0.0578882 + 0.998323i \(0.481563\pi\)
−0.893517 + 0.449029i \(0.851770\pi\)
\(30\) 0 0
\(31\) 1.00000 + 1.73205i 0.179605 + 0.311086i 0.941745 0.336327i \(-0.109185\pi\)
−0.762140 + 0.647412i \(0.775851\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 3.46410i 0.603023i
\(34\) 1.00000 1.73205i 0.171499 0.297044i
\(35\) 0 0
\(36\) −3.00000 −0.500000
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) −3.00000 + 5.19615i −0.486664 + 0.842927i
\(39\) −9.00000 5.19615i −1.44115 0.832050i
\(40\) 0 0
\(41\) 5.50000 + 9.52628i 0.858956 + 1.48775i 0.872926 + 0.487852i \(0.162220\pi\)
−0.0139704 + 0.999902i \(0.504447\pi\)
\(42\) −1.50000 0.866025i −0.231455 0.133631i
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) 3.50000 6.06218i 0.510527 0.884260i −0.489398 0.872060i \(-0.662783\pi\)
0.999926 0.0121990i \(-0.00388317\pi\)
\(48\) 1.73205i 0.250000i
\(49\) 3.00000 + 5.19615i 0.428571 + 0.742307i
\(50\) 0 0
\(51\) 3.00000 1.73205i 0.420084 0.242536i
\(52\) 3.00000 5.19615i 0.416025 0.720577i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) −4.50000 2.59808i −0.612372 0.353553i
\(55\) 0 0
\(56\) 0.500000 0.866025i 0.0668153 0.115728i
\(57\) −9.00000 + 5.19615i −1.19208 + 0.688247i
\(58\) −4.50000 7.79423i −0.590879 1.02343i
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) −2.00000 −0.254000
\(63\) −1.50000 2.59808i −0.188982 0.327327i
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.00000 1.73205i −0.369274 0.213201i
\(67\) 5.50000 + 9.52628i 0.671932 + 1.16382i 0.977356 + 0.211604i \(0.0678686\pi\)
−0.305424 + 0.952217i \(0.598798\pi\)
\(68\) 1.00000 + 1.73205i 0.121268 + 0.210042i
\(69\) 1.50000 + 0.866025i 0.180579 + 0.104257i
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 1.50000 2.59808i 0.176777 0.306186i
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −1.00000 + 1.73205i −0.116248 + 0.201347i
\(75\) 0 0
\(76\) −3.00000 5.19615i −0.344124 0.596040i
\(77\) −1.00000 1.73205i −0.113961 0.197386i
\(78\) 9.00000 5.19615i 1.01905 0.588348i
\(79\) 6.00000 10.3923i 0.675053 1.16923i −0.301401 0.953498i \(-0.597454\pi\)
0.976453 0.215728i \(-0.0692125\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −11.0000 −1.21475
\(83\) 5.50000 9.52628i 0.603703 1.04565i −0.388552 0.921427i \(-0.627024\pi\)
0.992255 0.124218i \(-0.0396422\pi\)
\(84\) 1.50000 0.866025i 0.163663 0.0944911i
\(85\) 0 0
\(86\) 2.00000 + 3.46410i 0.215666 + 0.373544i
\(87\) 15.5885i 1.67126i
\(88\) 1.00000 1.73205i 0.106600 0.184637i
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) −0.500000 + 0.866025i −0.0521286 + 0.0902894i
\(93\) −3.00000 1.73205i −0.311086 0.179605i
\(94\) 3.50000 + 6.06218i 0.360997 + 0.625266i
\(95\) 0 0
\(96\) 1.50000 + 0.866025i 0.153093 + 0.0883883i
\(97\) 4.00000 6.92820i 0.406138 0.703452i −0.588315 0.808632i \(-0.700208\pi\)
0.994453 + 0.105180i \(0.0335417\pi\)
\(98\) −6.00000 −0.606092
\(99\) −3.00000 5.19615i −0.301511 0.522233i
\(100\) 0 0
\(101\) −1.00000 + 1.73205i −0.0995037 + 0.172345i −0.911479 0.411346i \(-0.865059\pi\)
0.811976 + 0.583691i \(0.198392\pi\)
\(102\) 3.46410i 0.342997i
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) 3.00000 + 5.19615i 0.294174 + 0.509525i
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) 4.50000 2.59808i 0.433013 0.250000i
\(109\) 7.00000 0.670478 0.335239 0.942133i \(-0.391183\pi\)
0.335239 + 0.942133i \(0.391183\pi\)
\(110\) 0 0
\(111\) −3.00000 + 1.73205i −0.284747 + 0.164399i
\(112\) 0.500000 + 0.866025i 0.0472456 + 0.0818317i
\(113\) −6.00000 10.3923i −0.564433 0.977626i −0.997102 0.0760733i \(-0.975762\pi\)
0.432670 0.901553i \(-0.357572\pi\)
\(114\) 10.3923i 0.973329i
\(115\) 0 0
\(116\) 9.00000 0.835629
\(117\) 18.0000 1.66410
\(118\) −4.00000 −0.368230
\(119\) −1.00000 + 1.73205i −0.0916698 + 0.158777i
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 3.50000 + 6.06218i 0.316875 + 0.548844i
\(123\) −16.5000 9.52628i −1.48775 0.858956i
\(124\) 1.00000 1.73205i 0.0898027 0.155543i
\(125\) 0 0
\(126\) 3.00000 0.267261
\(127\) −19.0000 −1.68598 −0.842989 0.537931i \(-0.819206\pi\)
−0.842989 + 0.537931i \(0.819206\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 6.92820i 0.609994i
\(130\) 0 0
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) 3.00000 1.73205i 0.261116 0.150756i
\(133\) 3.00000 5.19615i 0.260133 0.450564i
\(134\) −11.0000 −0.950255
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) −1.50000 + 0.866025i −0.127688 + 0.0737210i
\(139\) −8.00000 13.8564i −0.678551 1.17529i −0.975417 0.220366i \(-0.929275\pi\)
0.296866 0.954919i \(-0.404058\pi\)
\(140\) 0 0
\(141\) 12.1244i 1.02105i
\(142\) 3.00000 5.19615i 0.251754 0.436051i
\(143\) 12.0000 1.00349
\(144\) 1.50000 + 2.59808i 0.125000 + 0.216506i
\(145\) 0 0
\(146\) 2.00000 3.46410i 0.165521 0.286691i
\(147\) −9.00000 5.19615i −0.742307 0.428571i
\(148\) −1.00000 1.73205i −0.0821995 0.142374i
\(149\) 0.500000 + 0.866025i 0.0409616 + 0.0709476i 0.885779 0.464107i \(-0.153625\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(150\) 0 0
\(151\) −5.00000 + 8.66025i −0.406894 + 0.704761i −0.994540 0.104357i \(-0.966722\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(152\) 6.00000 0.486664
\(153\) −3.00000 + 5.19615i −0.242536 + 0.420084i
\(154\) 2.00000 0.161165
\(155\) 0 0
\(156\) 10.3923i 0.832050i
\(157\) −2.00000 3.46410i −0.159617 0.276465i 0.775113 0.631822i \(-0.217693\pi\)
−0.934731 + 0.355357i \(0.884359\pi\)
\(158\) 6.00000 + 10.3923i 0.477334 + 0.826767i
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 9.00000 0.707107
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 5.50000 9.52628i 0.429478 0.743877i
\(165\) 0 0
\(166\) 5.50000 + 9.52628i 0.426883 + 0.739383i
\(167\) 1.50000 + 2.59808i 0.116073 + 0.201045i 0.918208 0.396098i \(-0.129636\pi\)
−0.802135 + 0.597143i \(0.796303\pi\)
\(168\) 1.73205i 0.133631i
\(169\) −11.5000 + 19.9186i −0.884615 + 1.53220i
\(170\) 0 0
\(171\) 9.00000 15.5885i 0.688247 1.19208i
\(172\) −4.00000 −0.304997
\(173\) 2.00000 3.46410i 0.152057 0.263371i −0.779926 0.625871i \(-0.784744\pi\)
0.931984 + 0.362500i \(0.118077\pi\)
\(174\) 13.5000 + 7.79423i 1.02343 + 0.590879i
\(175\) 0 0
\(176\) 1.00000 + 1.73205i 0.0753778 + 0.130558i
\(177\) −6.00000 3.46410i −0.450988 0.260378i
\(178\) −0.500000 + 0.866025i −0.0374766 + 0.0649113i
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) −3.00000 + 5.19615i −0.222375 + 0.385164i
\(183\) 12.1244i 0.896258i
\(184\) −0.500000 0.866025i −0.0368605 0.0638442i
\(185\) 0 0
\(186\) 3.00000 1.73205i 0.219971 0.127000i
\(187\) −2.00000 + 3.46410i −0.146254 + 0.253320i
\(188\) −7.00000 −0.510527
\(189\) 4.50000 + 2.59808i 0.327327 + 0.188982i
\(190\) 0 0
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) −1.50000 + 0.866025i −0.108253 + 0.0625000i
\(193\) 5.00000 + 8.66025i 0.359908 + 0.623379i 0.987945 0.154805i \(-0.0494748\pi\)
−0.628037 + 0.778183i \(0.716141\pi\)
\(194\) 4.00000 + 6.92820i 0.287183 + 0.497416i
\(195\) 0 0
\(196\) 3.00000 5.19615i 0.214286 0.371154i
\(197\) 8.00000 0.569976 0.284988 0.958531i \(-0.408010\pi\)
0.284988 + 0.958531i \(0.408010\pi\)
\(198\) 6.00000 0.426401
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) 0 0
\(201\) −16.5000 9.52628i −1.16382 0.671932i
\(202\) −1.00000 1.73205i −0.0703598 0.121867i
\(203\) 4.50000 + 7.79423i 0.315838 + 0.547048i
\(204\) −3.00000 1.73205i −0.210042 0.121268i
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) −3.00000 −0.208514
\(208\) −6.00000 −0.416025
\(209\) 6.00000 10.3923i 0.415029 0.718851i
\(210\) 0 0
\(211\) −9.00000 15.5885i −0.619586 1.07315i −0.989561 0.144112i \(-0.953967\pi\)
0.369976 0.929041i \(-0.379366\pi\)
\(212\) 0 0
\(213\) 9.00000 5.19615i 0.616670 0.356034i
\(214\) −1.50000 + 2.59808i −0.102538 + 0.177601i
\(215\) 0 0
\(216\) 5.19615i 0.353553i
\(217\) 2.00000 0.135769
\(218\) −3.50000 + 6.06218i −0.237050 + 0.410582i
\(219\) 6.00000 3.46410i 0.405442 0.234082i
\(220\) 0 0
\(221\) −6.00000 10.3923i −0.403604 0.699062i
\(222\) 3.46410i 0.232495i
\(223\) −11.5000 + 19.9186i −0.770097 + 1.33385i 0.167412 + 0.985887i \(0.446459\pi\)
−0.937509 + 0.347960i \(0.886874\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) 4.00000 6.92820i 0.265489 0.459841i −0.702202 0.711977i \(-0.747800\pi\)
0.967692 + 0.252136i \(0.0811332\pi\)
\(228\) 9.00000 + 5.19615i 0.596040 + 0.344124i
\(229\) 3.50000 + 6.06218i 0.231287 + 0.400600i 0.958187 0.286143i \(-0.0923732\pi\)
−0.726900 + 0.686743i \(0.759040\pi\)
\(230\) 0 0
\(231\) 3.00000 + 1.73205i 0.197386 + 0.113961i
\(232\) −4.50000 + 7.79423i −0.295439 + 0.511716i
\(233\) −10.0000 −0.655122 −0.327561 0.944830i \(-0.606227\pi\)
−0.327561 + 0.944830i \(0.606227\pi\)
\(234\) −9.00000 + 15.5885i −0.588348 + 1.01905i
\(235\) 0 0
\(236\) 2.00000 3.46410i 0.130189 0.225494i
\(237\) 20.7846i 1.35011i
\(238\) −1.00000 1.73205i −0.0648204 0.112272i
\(239\) −14.0000 24.2487i −0.905585 1.56852i −0.820130 0.572177i \(-0.806099\pi\)
−0.0854543 0.996342i \(-0.527234\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) −7.00000 −0.449977
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) −7.00000 −0.448129
\(245\) 0 0
\(246\) 16.5000 9.52628i 1.05200 0.607373i
\(247\) 18.0000 + 31.1769i 1.14531 + 1.98374i
\(248\) 1.00000 + 1.73205i 0.0635001 + 0.109985i
\(249\) 19.0526i 1.20741i
\(250\) 0 0
\(251\) 18.0000 1.13615 0.568075 0.822977i \(-0.307688\pi\)
0.568075 + 0.822977i \(0.307688\pi\)
\(252\) −1.50000 + 2.59808i −0.0944911 + 0.163663i
\(253\) −2.00000 −0.125739
\(254\) 9.50000 16.4545i 0.596083 1.03245i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −6.00000 10.3923i −0.374270 0.648254i 0.615948 0.787787i \(-0.288773\pi\)
−0.990217 + 0.139533i \(0.955440\pi\)
\(258\) −6.00000 3.46410i −0.373544 0.215666i
\(259\) 1.00000 1.73205i 0.0621370 0.107624i
\(260\) 0 0
\(261\) 13.5000 + 23.3827i 0.835629 + 1.44735i
\(262\) 12.0000 0.741362
\(263\) −8.00000 + 13.8564i −0.493301 + 0.854423i −0.999970 0.00771799i \(-0.997543\pi\)
0.506669 + 0.862141i \(0.330877\pi\)
\(264\) 3.46410i 0.213201i
\(265\) 0 0
\(266\) 3.00000 + 5.19615i 0.183942 + 0.318597i
\(267\) −1.50000 + 0.866025i −0.0917985 + 0.0529999i
\(268\) 5.50000 9.52628i 0.335966 0.581910i
\(269\) 3.00000 0.182913 0.0914566 0.995809i \(-0.470848\pi\)
0.0914566 + 0.995809i \(0.470848\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) 1.00000 1.73205i 0.0606339 0.105021i
\(273\) −9.00000 + 5.19615i −0.544705 + 0.314485i
\(274\) −6.00000 10.3923i −0.362473 0.627822i
\(275\) 0 0
\(276\) 1.73205i 0.104257i
\(277\) 11.0000 19.0526i 0.660926 1.14476i −0.319447 0.947604i \(-0.603497\pi\)
0.980373 0.197153i \(-0.0631696\pi\)
\(278\) 16.0000 0.959616
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 1.50000 2.59808i 0.0894825 0.154988i −0.817810 0.575488i \(-0.804812\pi\)
0.907293 + 0.420500i \(0.138145\pi\)
\(282\) −10.5000 6.06218i −0.625266 0.360997i
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 0 0
\(286\) −6.00000 + 10.3923i −0.354787 + 0.614510i
\(287\) 11.0000 0.649309
\(288\) −3.00000 −0.176777
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 13.8564i 0.812277i
\(292\) 2.00000 + 3.46410i 0.117041 + 0.202721i
\(293\) 9.00000 + 15.5885i 0.525786 + 0.910687i 0.999549 + 0.0300351i \(0.00956192\pi\)
−0.473763 + 0.880652i \(0.657105\pi\)
\(294\) 9.00000 5.19615i 0.524891 0.303046i
\(295\) 0 0
\(296\) 2.00000 0.116248
\(297\) 9.00000 + 5.19615i 0.522233 + 0.301511i
\(298\) −1.00000 −0.0579284
\(299\) 3.00000 5.19615i 0.173494 0.300501i
\(300\) 0 0
\(301\) −2.00000 3.46410i −0.115278 0.199667i
\(302\) −5.00000 8.66025i −0.287718 0.498342i
\(303\) 3.46410i 0.199007i
\(304\) −3.00000 + 5.19615i −0.172062 + 0.298020i
\(305\) 0 0
\(306\) −3.00000 5.19615i −0.171499 0.297044i
\(307\) −9.00000 −0.513657 −0.256829 0.966457i \(-0.582678\pi\)
−0.256829 + 0.966457i \(0.582678\pi\)
\(308\) −1.00000 + 1.73205i −0.0569803 + 0.0986928i
\(309\) −12.0000 6.92820i −0.682656 0.394132i
\(310\) 0 0
\(311\) −3.00000 5.19615i −0.170114 0.294647i 0.768345 0.640036i \(-0.221080\pi\)
−0.938460 + 0.345389i \(0.887747\pi\)
\(312\) −9.00000 5.19615i −0.509525 0.294174i
\(313\) 11.0000 19.0526i 0.621757 1.07691i −0.367402 0.930062i \(-0.619753\pi\)
0.989158 0.146852i \(-0.0469141\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) 1.00000 1.73205i 0.0561656 0.0972817i −0.836576 0.547852i \(-0.815446\pi\)
0.892741 + 0.450570i \(0.148779\pi\)
\(318\) 0 0
\(319\) 9.00000 + 15.5885i 0.503903 + 0.872786i
\(320\) 0 0
\(321\) −4.50000 + 2.59808i −0.251166 + 0.145010i
\(322\) 0.500000 0.866025i 0.0278639 0.0482617i
\(323\) −12.0000 −0.667698
\(324\) −4.50000 + 7.79423i −0.250000 + 0.433013i
\(325\) 0 0
\(326\) −2.00000 + 3.46410i −0.110770 + 0.191859i
\(327\) −10.5000 + 6.06218i −0.580651 + 0.335239i
\(328\) 5.50000 + 9.52628i 0.303687 + 0.526001i
\(329\) −3.50000 6.06218i −0.192961 0.334219i
\(330\) 0 0
\(331\) 4.00000 6.92820i 0.219860 0.380808i −0.734905 0.678170i \(-0.762773\pi\)
0.954765 + 0.297361i \(0.0961066\pi\)
\(332\) −11.0000 −0.603703
\(333\) 3.00000 5.19615i 0.164399 0.284747i
\(334\) −3.00000 −0.164153
\(335\) 0 0
\(336\) −1.50000 0.866025i −0.0818317 0.0472456i
\(337\) −4.00000 6.92820i −0.217894 0.377403i 0.736270 0.676688i \(-0.236585\pi\)
−0.954164 + 0.299285i \(0.903252\pi\)
\(338\) −11.5000 19.9186i −0.625518 1.08343i
\(339\) 18.0000 + 10.3923i 0.977626 + 0.564433i
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) 9.00000 + 15.5885i 0.486664 + 0.842927i
\(343\) 13.0000 0.701934
\(344\) 2.00000 3.46410i 0.107833 0.186772i
\(345\) 0 0
\(346\) 2.00000 + 3.46410i 0.107521 + 0.186231i
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) −13.5000 + 7.79423i −0.723676 + 0.417815i
\(349\) 5.50000 9.52628i 0.294408 0.509930i −0.680439 0.732805i \(-0.738211\pi\)
0.974847 + 0.222875i \(0.0715441\pi\)
\(350\) 0 0
\(351\) −27.0000 + 15.5885i −1.44115 + 0.832050i
\(352\) −2.00000 −0.106600
\(353\) 8.00000 13.8564i 0.425797 0.737502i −0.570697 0.821160i \(-0.693327\pi\)
0.996495 + 0.0836583i \(0.0266604\pi\)
\(354\) 6.00000 3.46410i 0.318896 0.184115i
\(355\) 0 0
\(356\) −0.500000 0.866025i −0.0264999 0.0458993i
\(357\) 3.46410i 0.183340i
\(358\) −1.00000 + 1.73205i −0.0528516 + 0.0915417i
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 6.50000 11.2583i 0.341632 0.591725i
\(363\) −10.5000 6.06218i −0.551107 0.318182i
\(364\) −3.00000 5.19615i −0.157243 0.272352i
\(365\) 0 0
\(366\) −10.5000 6.06218i −0.548844 0.316875i
\(367\) 8.00000 13.8564i 0.417597 0.723299i −0.578101 0.815966i \(-0.696206\pi\)
0.995697 + 0.0926670i \(0.0295392\pi\)
\(368\) 1.00000 0.0521286
\(369\) 33.0000 1.71791
\(370\) 0 0
\(371\) 0 0
\(372\) 3.46410i 0.179605i
\(373\) −6.00000 10.3923i −0.310668 0.538093i 0.667839 0.744306i \(-0.267219\pi\)
−0.978507 + 0.206213i \(0.933886\pi\)
\(374\) −2.00000 3.46410i −0.103418 0.179124i
\(375\) 0 0
\(376\) 3.50000 6.06218i 0.180499 0.312633i
\(377\) −54.0000 −2.78114
\(378\) −4.50000 + 2.59808i −0.231455 + 0.133631i
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 28.5000 16.4545i 1.46010 0.842989i
\(382\) −3.00000 5.19615i −0.153493 0.265858i
\(383\) −16.0000 27.7128i −0.817562 1.41606i −0.907474 0.420109i \(-0.861992\pi\)
0.0899119 0.995950i \(-0.471341\pi\)
\(384\) 1.73205i 0.0883883i
\(385\) 0 0
\(386\) −10.0000 −0.508987
\(387\) −6.00000 10.3923i −0.304997 0.528271i
\(388\) −8.00000 −0.406138
\(389\) −9.50000 + 16.4545i −0.481669 + 0.834275i −0.999779 0.0210389i \(-0.993303\pi\)
0.518110 + 0.855314i \(0.326636\pi\)
\(390\) 0 0
\(391\) 1.00000 + 1.73205i 0.0505722 + 0.0875936i
\(392\) 3.00000 + 5.19615i 0.151523 + 0.262445i
\(393\) 18.0000 + 10.3923i 0.907980 + 0.524222i
\(394\) −4.00000 + 6.92820i −0.201517 + 0.349038i
\(395\) 0 0
\(396\) −3.00000 + 5.19615i −0.150756 + 0.261116i
\(397\) −4.00000 −0.200754 −0.100377 0.994949i \(-0.532005\pi\)
−0.100377 + 0.994949i \(0.532005\pi\)
\(398\) 9.00000 15.5885i 0.451129 0.781379i
\(399\) 10.3923i 0.520266i
\(400\) 0 0
\(401\) 5.00000 + 8.66025i 0.249688 + 0.432472i 0.963439 0.267927i \(-0.0863386\pi\)
−0.713751 + 0.700399i \(0.753005\pi\)
\(402\) 16.5000 9.52628i 0.822945 0.475128i
\(403\) −6.00000 + 10.3923i −0.298881 + 0.517678i
\(404\) 2.00000 0.0995037
\(405\) 0 0
\(406\) −9.00000 −0.446663
\(407\) 2.00000 3.46410i 0.0991363 0.171709i
\(408\) 3.00000 1.73205i 0.148522 0.0857493i
\(409\) −19.0000 32.9090i −0.939490 1.62724i −0.766426 0.642333i \(-0.777967\pi\)
−0.173064 0.984911i \(-0.555367\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) 4.00000 6.92820i 0.197066 0.341328i
\(413\) 4.00000 0.196827
\(414\) 1.50000 2.59808i 0.0737210 0.127688i
\(415\) 0 0
\(416\) 3.00000 5.19615i 0.147087 0.254762i
\(417\) 24.0000 + 13.8564i 1.17529 + 0.678551i
\(418\) 6.00000 + 10.3923i 0.293470 + 0.508304i
\(419\) −17.0000 29.4449i −0.830504 1.43848i −0.897639 0.440732i \(-0.854719\pi\)
0.0671345 0.997744i \(-0.478614\pi\)
\(420\) 0 0
\(421\) −11.0000 + 19.0526i −0.536107 + 0.928565i 0.463002 + 0.886357i \(0.346772\pi\)
−0.999109 + 0.0422075i \(0.986561\pi\)
\(422\) 18.0000 0.876226
\(423\) −10.5000 18.1865i −0.510527 0.884260i
\(424\) 0 0
\(425\) 0 0
\(426\) 10.3923i 0.503509i
\(427\) −3.50000 6.06218i −0.169377 0.293369i
\(428\) −1.50000 2.59808i −0.0725052 0.125583i
\(429\) −18.0000 + 10.3923i −0.869048 + 0.501745i
\(430\) 0 0
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) −4.50000 2.59808i −0.216506 0.125000i
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) −1.00000 + 1.73205i −0.0480015 + 0.0831411i
\(435\) 0 0
\(436\) −3.50000 6.06218i −0.167620 0.290326i
\(437\) −3.00000 5.19615i −0.143509 0.248566i
\(438\) 6.92820i 0.331042i
\(439\) −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i \(0.360782\pi\)
−0.996284 + 0.0861252i \(0.972552\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 12.0000 0.570782
\(443\) 4.50000 7.79423i 0.213801 0.370315i −0.739100 0.673596i \(-0.764749\pi\)
0.952901 + 0.303281i \(0.0980821\pi\)
\(444\) 3.00000 + 1.73205i 0.142374 + 0.0821995i
\(445\) 0 0
\(446\) −11.5000 19.9186i −0.544541 0.943172i
\(447\) −1.50000 0.866025i −0.0709476 0.0409616i
\(448\) 0.500000 0.866025i 0.0236228 0.0409159i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 22.0000 1.03594
\(452\) −6.00000 + 10.3923i −0.282216 + 0.488813i
\(453\) 17.3205i 0.813788i
\(454\) 4.00000 + 6.92820i 0.187729 + 0.325157i
\(455\) 0 0
\(456\) −9.00000 + 5.19615i −0.421464 + 0.243332i
\(457\) 5.00000 8.66025i 0.233890 0.405110i −0.725059 0.688686i \(-0.758188\pi\)
0.958950 + 0.283577i \(0.0915211\pi\)
\(458\) −7.00000 −0.327089
\(459\) 10.3923i 0.485071i
\(460\) 0 0
\(461\) 10.5000 18.1865i 0.489034 0.847031i −0.510887 0.859648i \(-0.670683\pi\)
0.999920 + 0.0126168i \(0.00401615\pi\)
\(462\) −3.00000 + 1.73205i −0.139573 + 0.0805823i
\(463\) −18.0000 31.1769i −0.836531 1.44891i −0.892778 0.450497i \(-0.851247\pi\)
0.0562469 0.998417i \(-0.482087\pi\)
\(464\) −4.50000 7.79423i −0.208907 0.361838i
\(465\) 0 0
\(466\) 5.00000 8.66025i 0.231621 0.401179i
\(467\) 36.0000 1.66588 0.832941 0.553362i \(-0.186655\pi\)
0.832941 + 0.553362i \(0.186655\pi\)
\(468\) −9.00000 15.5885i −0.416025 0.720577i
\(469\) 11.0000 0.507933
\(470\) 0 0
\(471\) 6.00000 + 3.46410i 0.276465 + 0.159617i
\(472\) 2.00000 + 3.46410i 0.0920575 + 0.159448i
\(473\) −4.00000 6.92820i −0.183920 0.318559i
\(474\) −18.0000 10.3923i −0.826767 0.477334i
\(475\) 0 0
\(476\) 2.00000 0.0916698
\(477\) 0 0
\(478\) 28.0000 1.28069
\(479\) −14.0000 + 24.2487i −0.639676 + 1.10795i 0.345827 + 0.938298i \(0.387598\pi\)
−0.985504 + 0.169654i \(0.945735\pi\)
\(480\) 0 0
\(481\) 6.00000 + 10.3923i 0.273576 + 0.473848i
\(482\) −0.500000 0.866025i −0.0227744 0.0394464i
\(483\) 1.50000 0.866025i 0.0682524 0.0394055i
\(484\) 3.50000 6.06218i 0.159091 0.275554i
\(485\) 0 0
\(486\) −13.5000 + 7.79423i −0.612372 + 0.353553i
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 3.50000 6.06218i 0.158438 0.274422i
\(489\) −6.00000 + 3.46410i −0.271329 + 0.156652i
\(490\) 0 0
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 19.0526i 0.858956i
\(493\) 9.00000 15.5885i 0.405340 0.702069i
\(494\) −36.0000 −1.61972
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) −3.00000 + 5.19615i −0.134568 + 0.233079i
\(498\) −16.5000 9.52628i −0.739383 0.426883i
\(499\) 12.0000 + 20.7846i 0.537194 + 0.930447i 0.999054 + 0.0434940i \(0.0138489\pi\)
−0.461860 + 0.886953i \(0.652818\pi\)
\(500\) 0 0
\(501\) −4.50000 2.59808i −0.201045 0.116073i
\(502\) −9.00000 + 15.5885i −0.401690 + 0.695747i
\(503\) 27.0000 1.20387 0.601935 0.798545i \(-0.294397\pi\)
0.601935 + 0.798545i \(0.294397\pi\)
\(504\) −1.50000 2.59808i −0.0668153 0.115728i
\(505\) 0 0
\(506\) 1.00000 1.73205i 0.0444554 0.0769991i
\(507\) 39.8372i 1.76923i
\(508\) 9.50000 + 16.4545i 0.421494 + 0.730050i
\(509\) 7.50000 + 12.9904i 0.332432 + 0.575789i 0.982988 0.183669i \(-0.0587976\pi\)
−0.650556 + 0.759458i \(0.725464\pi\)
\(510\) 0 0
\(511\) −2.00000 + 3.46410i −0.0884748 + 0.153243i
\(512\) 1.00000 0.0441942
\(513\) 31.1769i 1.37649i
\(514\) 12.0000 0.529297
\(515\) 0 0
\(516\) 6.00000 3.46410i 0.264135 0.152499i
\(517\) −7.00000 12.1244i −0.307860 0.533229i
\(518\) 1.00000 + 1.73205i 0.0439375 + 0.0761019i
\(519\) 6.92820i 0.304114i
\(520\) 0 0
\(521\) −37.0000 −1.62100 −0.810500 0.585739i \(-0.800804\pi\)
−0.810500 + 0.585739i \(0.800804\pi\)
\(522\) −27.0000 −1.18176
\(523\) −29.0000 −1.26808 −0.634041 0.773300i \(-0.718605\pi\)
−0.634041 + 0.773300i \(0.718605\pi\)
\(524\) −6.00000 + 10.3923i −0.262111 + 0.453990i
\(525\) 0 0
\(526\) −8.00000 13.8564i −0.348817 0.604168i
\(527\) −2.00000 3.46410i −0.0871214 0.150899i
\(528\) −3.00000 1.73205i −0.130558 0.0753778i
\(529\) 11.0000 19.0526i 0.478261 0.828372i
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) −6.00000 −0.260133
\(533\) −33.0000 + 57.1577i −1.42939 + 2.47577i
\(534\) 1.73205i 0.0749532i
\(535\) 0 0
\(536\) 5.50000 + 9.52628i 0.237564 + 0.411473i
\(537\) −3.00000 + 1.73205i −0.129460 + 0.0747435i
\(538\) −1.50000 + 2.59808i −0.0646696 + 0.112011i
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 7.00000 12.1244i 0.300676 0.520786i
\(543\) 19.5000 11.2583i 0.836825 0.483141i
\(544\) 1.00000 + 1.73205i 0.0428746 + 0.0742611i
\(545\) 0 0
\(546\) 10.3923i 0.444750i
\(547\) −17.5000 + 30.3109i −0.748246 + 1.29600i 0.200417 + 0.979711i \(0.435770\pi\)
−0.948663 + 0.316289i \(0.897563\pi\)
\(548\) 12.0000 0.512615
\(549\) −10.5000 18.1865i −0.448129 0.776182i
\(550\) 0 0
\(551\) −27.0000 + 46.7654i −1.15024 + 1.99227i
\(552\) 1.50000 + 0.866025i 0.0638442 + 0.0368605i
\(553\) −6.00000 10.3923i −0.255146 0.441926i
\(554\) 11.0000 + 19.0526i 0.467345 + 0.809466i
\(555\) 0 0
\(556\) −8.00000 + 13.8564i −0.339276 + 0.587643i
\(557\) −24.0000 −1.01691 −0.508456 0.861088i \(-0.669784\pi\)
−0.508456 + 0.861088i \(0.669784\pi\)
\(558\) −3.00000 + 5.19615i −0.127000 + 0.219971i
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 6.92820i 0.292509i
\(562\) 1.50000 + 2.59808i 0.0632737 + 0.109593i
\(563\) 18.5000 + 32.0429i 0.779682 + 1.35045i 0.932125 + 0.362137i \(0.117953\pi\)
−0.152443 + 0.988312i \(0.548714\pi\)
\(564\) 10.5000 6.06218i 0.442130 0.255264i
\(565\) 0 0
\(566\) 1.00000 0.0420331
\(567\) −9.00000 −0.377964
\(568\) −6.00000 −0.251754
\(569\) 1.00000 1.73205i 0.0419222 0.0726113i −0.844303 0.535866i \(-0.819985\pi\)
0.886225 + 0.463255i \(0.153319\pi\)
\(570\) 0 0
\(571\) 10.0000 + 17.3205i 0.418487 + 0.724841i 0.995788 0.0916910i \(-0.0292272\pi\)
−0.577301 + 0.816532i \(0.695894\pi\)
\(572\) −6.00000 10.3923i −0.250873 0.434524i
\(573\) 10.3923i 0.434145i
\(574\) −5.50000 + 9.52628i −0.229566 + 0.397619i
\(575\) 0 0
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) 32.0000 1.33218 0.666089 0.745873i \(-0.267967\pi\)
0.666089 + 0.745873i \(0.267967\pi\)
\(578\) 6.50000 11.2583i 0.270364 0.468285i
\(579\) −15.0000 8.66025i −0.623379 0.359908i
\(580\) 0 0
\(581\) −5.50000 9.52628i −0.228178 0.395217i
\(582\) −12.0000 6.92820i −0.497416 0.287183i
\(583\) 0 0
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) −1.50000 + 2.59808i −0.0619116 + 0.107234i −0.895320 0.445424i \(-0.853053\pi\)
0.833408 + 0.552658i \(0.186386\pi\)
\(588\) 10.3923i 0.428571i
\(589\) 6.00000 + 10.3923i 0.247226 + 0.428207i
\(590\) 0 0
\(591\) −12.0000 + 6.92820i −0.493614 + 0.284988i
\(592\) −1.00000 + 1.73205i −0.0410997 + 0.0711868i
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) −9.00000 + 5.19615i −0.369274 + 0.213201i
\(595\) 0 0
\(596\) 0.500000 0.866025i 0.0204808 0.0354738i
\(597\) 27.0000 15.5885i 1.10504 0.637993i
\(598\) 3.00000 + 5.19615i 0.122679 + 0.212486i
\(599\) 6.00000 + 10.3923i 0.245153 + 0.424618i 0.962175 0.272433i \(-0.0878284\pi\)
−0.717021 + 0.697051i \(0.754495\pi\)
\(600\) 0 0
\(601\) 11.0000 19.0526i 0.448699 0.777170i −0.549602 0.835426i \(-0.685221\pi\)
0.998302 + 0.0582563i \(0.0185541\pi\)
\(602\) 4.00000 0.163028
\(603\) 33.0000 1.34386
\(604\) 10.0000 0.406894
\(605\) 0 0
\(606\) 3.00000 + 1.73205i 0.121867 + 0.0703598i
\(607\) −0.500000 0.866025i −0.0202944 0.0351509i 0.855700 0.517472i \(-0.173127\pi\)
−0.875994 + 0.482322i \(0.839794\pi\)
\(608\) −3.00000 5.19615i −0.121666 0.210732i
\(609\) −13.5000 7.79423i −0.547048 0.315838i
\(610\) 0 0
\(611\) 42.0000 1.69914
\(612\) 6.00000 0.242536
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) 4.50000 7.79423i 0.181605 0.314549i
\(615\) 0 0
\(616\) −1.00000 1.73205i −0.0402911 0.0697863i
\(617\) 16.0000 + 27.7128i 0.644136 + 1.11568i 0.984500 + 0.175382i \(0.0561162\pi\)
−0.340365 + 0.940294i \(0.610551\pi\)
\(618\) 12.0000 6.92820i 0.482711 0.278693i
\(619\) 5.00000 8.66025i 0.200967 0.348085i −0.747873 0.663842i \(-0.768925\pi\)
0.948840 + 0.315757i \(0.102258\pi\)
\(620\) 0 0
\(621\) 4.50000 2.59808i 0.180579 0.104257i
\(622\) 6.00000 0.240578
\(623\) 0.500000 0.866025i 0.0200321 0.0346966i
\(624\) 9.00000 5.19615i 0.360288 0.208013i
\(625\) 0 0
\(626\) 11.0000 + 19.0526i 0.439648 + 0.761493i
\(627\) 20.7846i 0.830057i
\(628\) −2.00000 + 3.46410i −0.0798087 + 0.138233i
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 6.00000 10.3923i 0.238667 0.413384i
\(633\) 27.0000 + 15.5885i 1.07315 + 0.619586i
\(634\) 1.00000 + 1.73205i 0.0397151 + 0.0687885i
\(635\) 0 0
\(636\) 0 0
\(637\) −18.0000 + 31.1769i −0.713186 + 1.23527i
\(638\) −18.0000 −0.712627
\(639\) −9.00000 + 15.5885i −0.356034 + 0.616670i
\(640\) 0 0
\(641\) −6.50000 + 11.2583i −0.256735 + 0.444677i −0.965365 0.260902i \(-0.915980\pi\)
0.708631 + 0.705580i \(0.249313\pi\)
\(642\) 5.19615i 0.205076i
\(643\) 16.5000 + 28.5788i 0.650696 + 1.12704i 0.982954 + 0.183851i \(0.0588563\pi\)
−0.332258 + 0.943189i \(0.607810\pi\)
\(644\) 0.500000 + 0.866025i 0.0197028 + 0.0341262i
\(645\) 0 0
\(646\) 6.00000 10.3923i 0.236067 0.408880i
\(647\) 33.0000 1.29736 0.648682 0.761060i \(-0.275321\pi\)
0.648682 + 0.761060i \(0.275321\pi\)
\(648\) −4.50000 7.79423i −0.176777 0.306186i
\(649\) 8.00000 0.314027
\(650\) 0 0
\(651\) −3.00000 + 1.73205i −0.117579 + 0.0678844i
\(652\) −2.00000 3.46410i −0.0783260 0.135665i
\(653\) 13.0000 + 22.5167i 0.508729 + 0.881145i 0.999949 + 0.0101092i \(0.00321793\pi\)
−0.491220 + 0.871036i \(0.663449\pi\)
\(654\) 12.1244i 0.474100i
\(655\) 0 0
\(656\) −11.0000 −0.429478
\(657\) −6.00000 + 10.3923i −0.234082 + 0.405442i
\(658\) 7.00000 0.272888
\(659\) −10.0000 + 17.3205i −0.389545 + 0.674711i −0.992388 0.123148i \(-0.960701\pi\)
0.602844 + 0.797859i \(0.294034\pi\)
\(660\) 0 0
\(661\) 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i \(-0.104366\pi\)
−0.752252 + 0.658876i \(0.771032\pi\)
\(662\) 4.00000 + 6.92820i 0.155464 + 0.269272i
\(663\) 18.0000 + 10.3923i 0.699062 + 0.403604i
\(664\) 5.50000 9.52628i 0.213441 0.369691i
\(665\) 0 0
\(666\) 3.00000 + 5.19615i 0.116248 + 0.201347i
\(667\) 9.00000 0.348481
\(668\) 1.50000 2.59808i 0.0580367 0.100523i
\(669\) 39.8372i 1.54019i
\(670\) 0 0
\(671\) −7.00000 12.1244i −0.270232 0.468056i
\(672\) 1.50000 0.866025i 0.0578638 0.0334077i
\(673\) −3.00000 + 5.19615i −0.115642 + 0.200297i −0.918036 0.396497i \(-0.870226\pi\)
0.802395 + 0.596794i \(0.203559\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) −11.0000 + 19.0526i −0.422764 + 0.732249i −0.996209 0.0869952i \(-0.972274\pi\)
0.573444 + 0.819244i \(0.305607\pi\)
\(678\) −18.0000 + 10.3923i −0.691286 + 0.399114i
\(679\) −4.00000 6.92820i −0.153506 0.265880i
\(680\) 0 0
\(681\) 13.8564i 0.530979i
\(682\) −2.00000 + 3.46410i −0.0765840 + 0.132647i
\(683\) 4.00000 0.153056 0.0765279 0.997067i \(-0.475617\pi\)
0.0765279 + 0.997067i \(0.475617\pi\)
\(684\) −18.0000 −0.688247
\(685\) 0 0
\(686\) −6.50000 + 11.2583i −0.248171 + 0.429845i
\(687\) −10.5000 6.06218i −0.400600 0.231287i
\(688\) 2.00000 + 3.46410i 0.0762493 + 0.132068i
\(689\) 0 0
\(690\) 0 0
\(691\) 22.0000 38.1051i 0.836919 1.44959i −0.0555386 0.998457i \(-0.517688\pi\)
0.892458 0.451130i \(-0.148979\pi\)
\(692\) −4.00000 −0.152057
\(693\) −6.00000 −0.227921
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) 15.5885i 0.590879i
\(697\) −11.0000 19.0526i −0.416655 0.721667i
\(698\) 5.50000 + 9.52628i 0.208178 + 0.360575i
\(699\) 15.0000 8.66025i 0.567352 0.327561i
\(700\) 0 0
\(701\) 13.0000 0.491003 0.245502 0.969396i \(-0.421047\pi\)
0.245502 + 0.969396i \(0.421047\pi\)
\(702\) 31.1769i 1.17670i
\(703\) 12.0000 0.452589
\(704\) 1.00000 1.73205i 0.0376889 0.0652791i
\(705\) 0 0
\(706\) 8.00000 + 13.8564i 0.301084 + 0.521493i
\(707\) 1.00000 + 1.73205i 0.0376089 + 0.0651405i
\(708\) 6.92820i 0.260378i
\(709\) 13.5000 23.3827i 0.507003 0.878155i −0.492964 0.870050i \(-0.664087\pi\)
0.999967 0.00810550i \(-0.00258009\pi\)
\(710\) 0 0
\(711\) −18.0000 31.1769i −0.675053 1.16923i
\(712\) 1.00000 0.0374766
\(713\) 1.00000 1.73205i 0.0374503 0.0648658i
\(714\) 3.00000 + 1.73205i 0.112272 + 0.0648204i
\(715\) 0 0
\(716\) −1.00000 1.73205i −0.0373718 0.0647298i
\(717\) 42.0000 + 24.2487i 1.56852 + 0.905585i
\(718\) −15.0000 + 25.9808i −0.559795 + 0.969593i
\(719\) −44.0000 −1.64092 −0.820462 0.571702i \(-0.806283\pi\)
−0.820462 + 0.571702i \(0.806283\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) −8.50000 + 14.7224i −0.316337 + 0.547912i
\(723\) 1.73205i 0.0644157i
\(724\) 6.50000 + 11.2583i 0.241571 + 0.418413i
\(725\) 0 0
\(726\) 10.5000 6.06218i 0.389692 0.224989i
\(727\) −10.5000 + 18.1865i −0.389423 + 0.674501i −0.992372 0.123279i \(-0.960659\pi\)
0.602949 + 0.797780i \(0.293992\pi\)
\(728\) 6.00000 0.222375
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) −4.00000 + 6.92820i −0.147945 + 0.256249i
\(732\) 10.5000 6.06218i 0.388091 0.224065i
\(733\) −2.00000 3.46410i −0.0738717 0.127950i 0.826723 0.562609i \(-0.190202\pi\)
−0.900595 + 0.434659i \(0.856869\pi\)
\(734\) 8.00000 + 13.8564i 0.295285 + 0.511449i
\(735\) 0 0
\(736\) −0.500000 + 0.866025i −0.0184302 + 0.0319221i
\(737\) 22.0000 0.810380
\(738\) −16.5000 + 28.5788i −0.607373 + 1.05200i
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 0 0
\(741\) −54.0000 31.1769i −1.98374 1.14531i
\(742\) 0 0
\(743\) 7.50000 + 12.9904i 0.275148 + 0.476571i 0.970173 0.242415i \(-0.0779397\pi\)
−0.695024 + 0.718986i \(0.744606\pi\)
\(744\) −3.00000 1.73205i −0.109985 0.0635001i
\(745\) 0 0
\(746\) 12.0000 0.439351
\(747\) −16.5000 28.5788i −0.603703 1.04565i
\(748\) 4.00000 0.146254
\(749\) 1.50000 2.59808i 0.0548088 0.0949316i
\(750\) 0 0
\(751\) −13.0000 22.5167i −0.474377 0.821645i 0.525193 0.850983i \(-0.323993\pi\)
−0.999570 + 0.0293387i \(0.990660\pi\)
\(752\) 3.50000 + 6.06218i 0.127632 + 0.221065i
\(753\) −27.0000 + 15.5885i −0.983935 + 0.568075i
\(754\) 27.0000 46.7654i 0.983282 1.70309i
\(755\) 0 0
\(756\) 5.19615i 0.188982i
\(757\) −10.0000 −0.363456 −0.181728 0.983349i \(-0.558169\pi\)
−0.181728 + 0.983349i \(0.558169\pi\)
\(758\) 8.00000 13.8564i 0.290573 0.503287i
\(759\) 3.00000 1.73205i 0.108893 0.0628695i
\(760\) 0 0
\(761\) 4.50000 + 7.79423i 0.163125 + 0.282541i 0.935988 0.352032i \(-0.114509\pi\)
−0.772863 + 0.634573i \(0.781176\pi\)
\(762\) 32.9090i 1.19217i
\(763\) 3.50000 6.06218i 0.126709 0.219466i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) −12.0000 + 20.7846i −0.433295 + 0.750489i
\(768\) 1.50000 + 0.866025i 0.0541266 + 0.0312500i
\(769\) 7.50000 + 12.9904i 0.270457 + 0.468445i 0.968979 0.247143i \(-0.0794919\pi\)
−0.698522 + 0.715589i \(0.746159\pi\)
\(770\) 0 0
\(771\) 18.0000 + 10.3923i 0.648254 + 0.374270i
\(772\) 5.00000 8.66025i 0.179954 0.311689i
\(773\) 12.0000 0.431610 0.215805 0.976436i \(-0.430762\pi\)
0.215805 + 0.976436i \(0.430762\pi\)
\(774\) 12.0000 0.431331
\(775\) 0 0
\(776\) 4.00000 6.92820i 0.143592 0.248708i
\(777\) 3.46410i 0.124274i
\(778\) −9.50000 16.4545i −0.340592 0.589922i
\(779\) 33.0000 + 57.1577i 1.18235 + 2.04789i
\(780\) 0 0
\(781\) −6.00000 + 10.3923i −0.214697 + 0.371866i
\(782\) −2.00000 −0.0715199
\(783\) −40.5000 23.3827i −1.44735 0.835629i
\(784\) −6.00000 −0.214286
\(785\) 0 0
\(786\) −18.0000 + 10.3923i −0.642039 + 0.370681i
\(787\) −22.0000 38.1051i −0.784215 1.35830i −0.929467 0.368906i \(-0.879732\pi\)
0.145251 0.989395i \(-0.453601\pi\)
\(788\) −4.00000 6.92820i −0.142494 0.246807i
\(789\) 27.7128i 0.986602i
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) −3.00000 5.19615i −0.106600 0.184637i
\(793\) 42.0000 1.49146
\(794\) 2.00000 3.46410i 0.0709773 0.122936i
\(795\) 0 0
\(796\) 9.00000 + 15.5885i 0.318997 + 0.552518i
\(797\) 1.00000 + 1.73205i 0.0354218 + 0.0613524i 0.883193 0.469010i \(-0.155389\pi\)
−0.847771 + 0.530362i \(0.822056\pi\)
\(798\) −9.00000 5.19615i −0.318597 0.183942i
\(799\) −7.00000 + 12.1244i −0.247642 + 0.428929i
\(800\) 0 0
\(801\) 1.50000 2.59808i 0.0529999 0.0917985i
\(802\) −10.0000 −0.353112
\(803\) −4.00000 + 6.92820i −0.141157 + 0.244491i
\(804\) 19.0526i 0.671932i
\(805\) 0 0
\(806\) −6.00000 10.3923i −0.211341 0.366053i
\(807\) −4.50000 + 2.59808i −0.158408 + 0.0914566i
\(808\) −1.00000 + 1.73205i −0.0351799 + 0.0609333i
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 4.50000 7.79423i 0.157919 0.273524i
\(813\) 21.0000 12.1244i 0.736502 0.425220i
\(814\) 2.00000 + 3.46410i 0.0701000 + 0.121417i
\(815\) 0 0
\(816\) 3.46410i 0.121268i
\(817\) 12.0000 20.7846i 0.419827 0.727161i
\(818\) 38.0000 1.32864
\(819\) 9.00000 15.5885i 0.314485 0.544705i
\(820\) 0 0
\(821\) 15.5000 26.8468i 0.540954 0.936959i −0.457896 0.889006i \(-0.651397\pi\)
0.998850 0.0479535i \(-0.0152699\pi\)
\(822\) 18.0000 + 10.3923i 0.627822 + 0.362473i
\(823\) −7.50000 12.9904i −0.261434 0.452816i 0.705190 0.709019i \(-0.250862\pi\)
−0.966623 + 0.256203i \(0.917529\pi\)
\(824\) 4.00000 + 6.92820i 0.139347 + 0.241355i
\(825\) 0 0
\(826\) −2.00000 + 3.46410i −0.0695889 + 0.120532i
\(827\) −35.0000 −1.21707 −0.608535 0.793527i \(-0.708242\pi\)
−0.608535 + 0.793527i \(0.708242\pi\)
\(828\) 1.50000 + 2.59808i 0.0521286 + 0.0902894i
\(829\) 15.0000 0.520972 0.260486 0.965478i \(-0.416117\pi\)
0.260486 + 0.965478i \(0.416117\pi\)
\(830\) 0 0
\(831\) 38.1051i 1.32185i
\(832\) 3.00000 + 5.19615i 0.104006 + 0.180144i
\(833\) −6.00000 10.3923i −0.207888 0.360072i
\(834\) −24.0000 + 13.8564i −0.831052 + 0.479808i
\(835\) 0 0
\(836\) −12.0000 −0.415029
\(837\) −9.00000 + 5.19615i −0.311086 + 0.179605i
\(838\) 34.0000 1.17451
\(839\) −19.0000 + 32.9090i −0.655953 + 1.13614i 0.325701 + 0.945473i \(0.394400\pi\)
−0.981654 + 0.190671i \(0.938934\pi\)
\(840\) 0 0
\(841\) −26.0000 45.0333i −0.896552 1.55287i
\(842\) −11.0000 19.0526i −0.379085 0.656595i
\(843\) 5.19615i 0.178965i
\(844\) −9.00000 + 15.5885i −0.309793 + 0.536577i
\(845\) 0 0
\(846\) 21.0000 0.721995
\(847\) 7.00000 0.240523
\(848\) 0 0
\(849\) 1.50000 + 0.866025i 0.0514799 + 0.0297219i
\(850\) 0 0
\(851\) −1.00000 1.73205i −0.0342796 0.0593739i
\(852\) −9.00000 5.19615i −0.308335 0.178017i
\(853\) −23.0000 + 39.8372i −0.787505 + 1.36400i 0.139986 + 0.990153i \(0.455294\pi\)
−0.927491 + 0.373845i \(0.878039\pi\)
\(854\) 7.00000 0.239535
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 9.00000 15.5885i 0.307434 0.532492i −0.670366 0.742030i \(-0.733863\pi\)
0.977800 + 0.209539i \(0.0671963\pi\)
\(858\) 20.7846i 0.709575i
\(859\) −7.00000 12.1244i −0.238837 0.413678i 0.721544 0.692369i \(-0.243433\pi\)
−0.960381 + 0.278691i \(0.910099\pi\)
\(860\) 0 0
\(861\) −16.5000 + 9.52628i −0.562318 + 0.324655i
\(862\) −8.00000 + 13.8564i −0.272481 + 0.471951i
\(863\) −45.0000 −1.53182 −0.765909 0.642949i \(-0.777711\pi\)
−0.765909 + 0.642949i \(0.777711\pi\)
\(864\) 4.50000 2.59808i 0.153093 0.0883883i
\(865\) 0 0
\(866\) −1.00000 + 1.73205i −0.0339814 + 0.0588575i
\(867\) 19.5000 11.2583i 0.662255 0.382353i
\(868\) −1.00000 1.73205i −0.0339422 0.0587896i
\(869\) −12.0000 20.7846i −0.407072 0.705070i
\(870\) 0 0
\(871\) −33.0000 + 57.1577i −1.11816 + 1.93671i
\(872\) 7.00000 0.237050
\(873\) −12.0000 20.7846i −0.406138 0.703452i
\(874\) 6.00000 0.202953
\(875\) 0 0
\(876\) −6.00000 3.46410i −0.202721 0.117041i
\(877\) −23.0000 39.8372i −0.776655 1.34521i −0.933860 0.357640i \(-0.883582\pi\)
0.157205 0.987566i \(-0.449752\pi\)
\(878\) −12.0000 20.7846i −0.404980 0.701447i
\(879\) −27.0000 15.5885i −0.910687 0.525786i
\(880\) 0 0
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) −9.00000 + 15.5885i −0.303046 + 0.524891i
\(883\) 3.00000 0.100958 0.0504790 0.998725i \(-0.483925\pi\)
0.0504790 + 0.998725i \(0.483925\pi\)
\(884\) −6.00000 + 10.3923i −0.201802 + 0.349531i
\(885\) 0 0
\(886\) 4.50000 + 7.79423i 0.151180 + 0.261852i
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) −3.00000 + 1.73205i −0.100673 + 0.0581238i
\(889\) −9.50000 + 16.4545i −0.318620 + 0.551866i
\(890\) 0 0
\(891\) −18.0000 −0.603023
\(892\) 23.0000 0.770097
\(893\) 21.0000 36.3731i 0.702738 1.21718i
\(894\) 1.50000 0.866025i 0.0501675 0.0289642i
\(895\) 0 0
\(896\) 0.500000 + 0.866025i 0.0167038 + 0.0289319i
\(897\) 10.3923i 0.346989i
\(898\) −9.00000 + 15.5885i −0.300334 + 0.520194i
\(899\) −18.0000 −0.600334
\(900\) 0 0
\(901\) 0 0
\(902\) −11.0000 + 19.0526i −0.366260 + 0.634381i
\(903\) 6.00000 + 3.46410i 0.199667 + 0.115278i
\(904\) −6.00000 10.3923i −0.199557 0.345643i
\(905\) 0 0
\(906\) 15.0000 + 8.66025i 0.498342 + 0.287718i
\(907\) −16.5000 + 28.5788i −0.547874 + 0.948945i 0.450546 + 0.892753i \(0.351229\pi\)
−0.998420 + 0.0561918i \(0.982104\pi\)
\(908\) −8.00000 −0.265489
\(909\) 3.00000 + 5.19615i 0.0995037 + 0.172345i
\(910\) 0 0
\(911\) −6.00000 + 10.3923i −0.198789 + 0.344312i −0.948136 0.317865i \(-0.897034\pi\)
0.749347 + 0.662177i \(0.230367\pi\)
\(912\) 10.3923i 0.344124i
\(913\) −11.0000 19.0526i −0.364047 0.630548i
\(914\) 5.00000 + 8.66025i 0.165385 + 0.286456i
\(915\) 0 0
\(916\) 3.50000 6.06218i 0.115643 0.200300i
\(917\) −12.0000 −0.396275
\(918\) 9.00000 + 5.19615i 0.297044 + 0.171499i
\(919\) −36.0000 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(920\) 0 0
\(921\) 13.5000 7.79423i 0.444840 0.256829i
\(922\) 10.5000 + 18.1865i 0.345799 + 0.598942i
\(923\) −18.0000 31.1769i −0.592477 1.02620i
\(924\) 3.46410i 0.113961i
\(925\) 0 0
\(926\) 36.0000 1.18303
\(927\) 24.0000 0.788263
\(928\) 9.00000 0.295439
\(929\) 9.00000 15.5885i 0.295280 0.511441i −0.679770 0.733426i \(-0.737920\pi\)
0.975050 + 0.221985i \(0.0712536\pi\)
\(930\) 0 0
\(931\) 18.0000 + 31.1769i 0.589926 + 1.02178i
\(932\) 5.00000 + 8.66025i 0.163780 + 0.283676i
\(933\) 9.00000 + 5.19615i 0.294647 + 0.170114i
\(934\) −18.0000 + 31.1769i −0.588978 + 1.02014i
\(935\) 0 0
\(936\) 18.0000 0.588348
\(937\) 52.0000 1.69877 0.849383 0.527777i \(-0.176974\pi\)
0.849383 + 0.527777i \(0.176974\pi\)
\(938\) −5.50000 + 9.52628i −0.179581 + 0.311044i
\(939\) 38.1051i 1.24351i
\(940\) 0 0
\(941\) 20.5000 + 35.5070i 0.668281 + 1.15750i 0.978385 + 0.206794i \(0.0663029\pi\)
−0.310104 + 0.950703i \(0.600364\pi\)
\(942\) −6.00000 + 3.46410i −0.195491 + 0.112867i
\(943\) 5.50000 9.52628i 0.179105 0.310218i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 8.00000 0.260102
\(947\) 25.5000 44.1673i 0.828639 1.43524i −0.0704677 0.997514i \(-0.522449\pi\)
0.899106 0.437730i \(-0.144217\pi\)
\(948\) 18.0000 10.3923i 0.584613 0.337526i
\(949\) −12.0000 20.7846i −0.389536 0.674697i
\(950\) 0 0
\(951\) 3.46410i 0.112331i
\(952\) −1.00000 + 1.73205i −0.0324102 + 0.0561361i
\(953\) 2.00000 0.0647864 0.0323932 0.999475i \(-0.489687\pi\)
0.0323932 + 0.999475i \(0.489687\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −14.0000 + 24.2487i −0.452792 + 0.784259i
\(957\) −27.0000 15.5885i −0.872786 0.503903i
\(958\) −14.0000 24.2487i −0.452319 0.783440i
\(959\) 6.00000 + 10.3923i 0.193750 + 0.335585i
\(960\) 0 0
\(961\) 13.5000 23.3827i 0.435484 0.754280i
\(962\) −12.0000 −0.386896
\(963\) 4.50000 7.79423i 0.145010 0.251166i
\(964\) 1.00000 0.0322078
\(965\) 0 0
\(966\) 1.73205i 0.0557278i
\(967\) 8.50000 + 14.7224i 0.273342 + 0.473441i 0.969715 0.244238i \(-0.0785377\pi\)
−0.696374 + 0.717679i \(0.745204\pi\)
\(968\) 3.50000 + 6.06218i 0.112494 + 0.194846i
\(969\) 18.0000 10.3923i 0.578243 0.333849i
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 15.5885i 0.500000i
\(973\) −16.0000 −0.512936
\(974\) 6.00000 10.3923i 0.192252 0.332991i
\(975\) 0 0
\(976\) 3.50000 + 6.06218i 0.112032 + 0.194046i
\(977\) −27.0000 46.7654i −0.863807 1.49616i −0.868227 0.496167i \(-0.834741\pi\)
0.00442082 0.999990i \(-0.498593\pi\)
\(978\) 6.92820i 0.221540i
\(979\) 1.00000 1.73205i 0.0319601 0.0553566i
\(980\) 0 0
\(981\) 10.5000 18.1865i 0.335239 0.580651i
\(982\) 0 0
\(983\) 9.50000 16.4545i 0.303003 0.524816i −0.673812 0.738903i \(-0.735344\pi\)
0.976815 + 0.214087i \(0.0686775\pi\)
\(984\) −16.5000 9.52628i −0.526001 0.303687i
\(985\) 0 0
\(986\) 9.00000 + 15.5885i 0.286618 + 0.496438i
\(987\) 10.5000 + 6.06218i 0.334219 + 0.192961i
\(988\) 18.0000 31.1769i 0.572656 0.991870i
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 1.00000 1.73205i 0.0317500 0.0549927i
\(993\) 13.8564i 0.439720i
\(994\) −3.00000 5.19615i −0.0951542 0.164812i
\(995\) 0 0
\(996\) 16.5000 9.52628i 0.522823 0.301852i
\(997\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(998\) −24.0000 −0.759707
\(999\) 10.3923i 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 450.2.e.b.151.1 2
3.2 odd 2 1350.2.e.i.451.1 2
5.2 odd 4 90.2.i.a.79.1 yes 4
5.3 odd 4 90.2.i.a.79.2 yes 4
5.4 even 2 450.2.e.g.151.1 2
9.2 odd 6 4050.2.a.g.1.1 1
9.4 even 3 inner 450.2.e.b.301.1 2
9.5 odd 6 1350.2.e.i.901.1 2
9.7 even 3 4050.2.a.x.1.1 1
15.2 even 4 270.2.i.a.19.2 4
15.8 even 4 270.2.i.a.19.1 4
15.14 odd 2 1350.2.e.a.451.1 2
20.3 even 4 720.2.by.a.529.2 4
20.7 even 4 720.2.by.a.529.1 4
45.2 even 12 810.2.c.c.649.1 2
45.4 even 6 450.2.e.g.301.1 2
45.7 odd 12 810.2.c.b.649.2 2
45.13 odd 12 90.2.i.a.49.1 4
45.14 odd 6 1350.2.e.a.901.1 2
45.22 odd 12 90.2.i.a.49.2 yes 4
45.23 even 12 270.2.i.a.199.2 4
45.29 odd 6 4050.2.a.be.1.1 1
45.32 even 12 270.2.i.a.199.1 4
45.34 even 6 4050.2.a.j.1.1 1
45.38 even 12 810.2.c.c.649.2 2
45.43 odd 12 810.2.c.b.649.1 2
60.23 odd 4 2160.2.by.b.289.1 4
60.47 odd 4 2160.2.by.b.289.2 4
180.23 odd 12 2160.2.by.b.1009.2 4
180.67 even 12 720.2.by.a.49.2 4
180.103 even 12 720.2.by.a.49.1 4
180.167 odd 12 2160.2.by.b.1009.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.a.49.1 4 45.13 odd 12
90.2.i.a.49.2 yes 4 45.22 odd 12
90.2.i.a.79.1 yes 4 5.2 odd 4
90.2.i.a.79.2 yes 4 5.3 odd 4
270.2.i.a.19.1 4 15.8 even 4
270.2.i.a.19.2 4 15.2 even 4
270.2.i.a.199.1 4 45.32 even 12
270.2.i.a.199.2 4 45.23 even 12
450.2.e.b.151.1 2 1.1 even 1 trivial
450.2.e.b.301.1 2 9.4 even 3 inner
450.2.e.g.151.1 2 5.4 even 2
450.2.e.g.301.1 2 45.4 even 6
720.2.by.a.49.1 4 180.103 even 12
720.2.by.a.49.2 4 180.67 even 12
720.2.by.a.529.1 4 20.7 even 4
720.2.by.a.529.2 4 20.3 even 4
810.2.c.b.649.1 2 45.43 odd 12
810.2.c.b.649.2 2 45.7 odd 12
810.2.c.c.649.1 2 45.2 even 12
810.2.c.c.649.2 2 45.38 even 12
1350.2.e.a.451.1 2 15.14 odd 2
1350.2.e.a.901.1 2 45.14 odd 6
1350.2.e.i.451.1 2 3.2 odd 2
1350.2.e.i.901.1 2 9.5 odd 6
2160.2.by.b.289.1 4 60.23 odd 4
2160.2.by.b.289.2 4 60.47 odd 4
2160.2.by.b.1009.1 4 180.167 odd 12
2160.2.by.b.1009.2 4 180.23 odd 12
4050.2.a.g.1.1 1 9.2 odd 6
4050.2.a.j.1.1 1 45.34 even 6
4050.2.a.x.1.1 1 9.7 even 3
4050.2.a.be.1.1 1 45.29 odd 6