Properties

Label 270.2.i.a.199.2
Level $270$
Weight $2$
Character 270.199
Analytic conductor $2.156$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(19,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.2
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 270.199
Dual form 270.2.i.a.19.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(1.23205 + 1.86603i) q^{5} +(0.866025 - 0.500000i) q^{7} -1.00000i q^{8} +(2.00000 + 1.00000i) q^{10} +(-1.00000 - 1.73205i) q^{11} +(5.19615 + 3.00000i) q^{13} +(0.500000 - 0.866025i) q^{14} +(-0.500000 - 0.866025i) q^{16} -2.00000i q^{17} -6.00000 q^{19} +(2.23205 - 0.133975i) q^{20} +(-1.73205 - 1.00000i) q^{22} +(0.866025 + 0.500000i) q^{23} +(-1.96410 + 4.59808i) q^{25} +6.00000 q^{26} -1.00000i q^{28} +(-4.50000 - 7.79423i) q^{29} +(1.00000 - 1.73205i) q^{31} +(-0.866025 - 0.500000i) q^{32} +(-1.00000 - 1.73205i) q^{34} +(2.00000 + 1.00000i) q^{35} -2.00000i q^{37} +(-5.19615 + 3.00000i) q^{38} +(1.86603 - 1.23205i) q^{40} +(-5.50000 + 9.52628i) q^{41} +(-3.46410 + 2.00000i) q^{43} -2.00000 q^{44} +1.00000 q^{46} +(-6.06218 + 3.50000i) q^{47} +(-3.00000 + 5.19615i) q^{49} +(0.598076 + 4.96410i) q^{50} +(5.19615 - 3.00000i) q^{52} +(2.00000 - 4.00000i) q^{55} +(-0.500000 - 0.866025i) q^{56} +(-7.79423 - 4.50000i) q^{58} +(2.00000 - 3.46410i) q^{59} +(3.50000 + 6.06218i) q^{61} -2.00000i q^{62} -1.00000 q^{64} +(0.803848 + 13.3923i) q^{65} +(-9.52628 - 5.50000i) q^{67} +(-1.73205 - 1.00000i) q^{68} +(2.23205 - 0.133975i) q^{70} +6.00000 q^{71} -4.00000i q^{73} +(-1.00000 - 1.73205i) q^{74} +(-3.00000 + 5.19615i) q^{76} +(-1.73205 - 1.00000i) q^{77} +(-6.00000 - 10.3923i) q^{79} +(1.00000 - 2.00000i) q^{80} +11.0000i q^{82} +(9.52628 - 5.50000i) q^{83} +(3.73205 - 2.46410i) q^{85} +(-2.00000 + 3.46410i) q^{86} +(-1.73205 + 1.00000i) q^{88} +1.00000 q^{89} +6.00000 q^{91} +(0.866025 - 0.500000i) q^{92} +(-3.50000 + 6.06218i) q^{94} +(-7.39230 - 11.1962i) q^{95} +(6.92820 - 4.00000i) q^{97} +6.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{5} + 8 q^{10} - 4 q^{11} + 2 q^{14} - 2 q^{16} - 24 q^{19} + 2 q^{20} + 6 q^{25} + 24 q^{26} - 18 q^{29} + 4 q^{31} - 4 q^{34} + 8 q^{35} + 4 q^{40} - 22 q^{41} - 8 q^{44} + 4 q^{46}+ \cdots + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 0.500000i 0.612372 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.23205 + 1.86603i 0.550990 + 0.834512i
\(6\) 0 0
\(7\) 0.866025 0.500000i 0.327327 0.188982i −0.327327 0.944911i \(-0.606148\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 2.00000 + 1.00000i 0.632456 + 0.316228i
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) 5.19615 + 3.00000i 1.44115 + 0.832050i 0.997927 0.0643593i \(-0.0205004\pi\)
0.443227 + 0.896410i \(0.353834\pi\)
\(14\) 0.500000 0.866025i 0.133631 0.231455i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 2.23205 0.133975i 0.499102 0.0299576i
\(21\) 0 0
\(22\) −1.73205 1.00000i −0.369274 0.213201i
\(23\) 0.866025 + 0.500000i 0.180579 + 0.104257i 0.587565 0.809177i \(-0.300087\pi\)
−0.406986 + 0.913434i \(0.633420\pi\)
\(24\) 0 0
\(25\) −1.96410 + 4.59808i −0.392820 + 0.919615i
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 1.00000i 0.188982i
\(29\) −4.50000 7.79423i −0.835629 1.44735i −0.893517 0.449029i \(-0.851770\pi\)
0.0578882 0.998323i \(-0.481563\pi\)
\(30\) 0 0
\(31\) 1.00000 1.73205i 0.179605 0.311086i −0.762140 0.647412i \(-0.775851\pi\)
0.941745 + 0.336327i \(0.109185\pi\)
\(32\) −0.866025 0.500000i −0.153093 0.0883883i
\(33\) 0 0
\(34\) −1.00000 1.73205i −0.171499 0.297044i
\(35\) 2.00000 + 1.00000i 0.338062 + 0.169031i
\(36\) 0 0
\(37\) 2.00000i 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) −5.19615 + 3.00000i −0.842927 + 0.486664i
\(39\) 0 0
\(40\) 1.86603 1.23205i 0.295045 0.194804i
\(41\) −5.50000 + 9.52628i −0.858956 + 1.48775i 0.0139704 + 0.999902i \(0.495553\pi\)
−0.872926 + 0.487852i \(0.837780\pi\)
\(42\) 0 0
\(43\) −3.46410 + 2.00000i −0.528271 + 0.304997i −0.740312 0.672264i \(-0.765322\pi\)
0.212041 + 0.977261i \(0.431989\pi\)
\(44\) −2.00000 −0.301511
\(45\) 0 0
\(46\) 1.00000 0.147442
\(47\) −6.06218 + 3.50000i −0.884260 + 0.510527i −0.872060 0.489398i \(-0.837217\pi\)
−0.0121990 + 0.999926i \(0.503883\pi\)
\(48\) 0 0
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0.598076 + 4.96410i 0.0845807 + 0.702030i
\(51\) 0 0
\(52\) 5.19615 3.00000i 0.720577 0.416025i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 2.00000 4.00000i 0.269680 0.539360i
\(56\) −0.500000 0.866025i −0.0668153 0.115728i
\(57\) 0 0
\(58\) −7.79423 4.50000i −1.02343 0.590879i
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) 3.50000 + 6.06218i 0.448129 + 0.776182i 0.998264 0.0588933i \(-0.0187572\pi\)
−0.550135 + 0.835076i \(0.685424\pi\)
\(62\) 2.00000i 0.254000i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0.803848 + 13.3923i 0.0997050 + 1.66111i
\(66\) 0 0
\(67\) −9.52628 5.50000i −1.16382 0.671932i −0.211604 0.977356i \(-0.567869\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) −1.73205 1.00000i −0.210042 0.121268i
\(69\) 0 0
\(70\) 2.23205 0.133975i 0.266781 0.0160130i
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i −0.972217 0.234082i \(-0.924791\pi\)
0.972217 0.234082i \(-0.0752085\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) 0 0
\(76\) −3.00000 + 5.19615i −0.344124 + 0.596040i
\(77\) −1.73205 1.00000i −0.197386 0.113961i
\(78\) 0 0
\(79\) −6.00000 10.3923i −0.675053 1.16923i −0.976453 0.215728i \(-0.930788\pi\)
0.301401 0.953498i \(-0.402546\pi\)
\(80\) 1.00000 2.00000i 0.111803 0.223607i
\(81\) 0 0
\(82\) 11.0000i 1.21475i
\(83\) 9.52628 5.50000i 1.04565 0.603703i 0.124218 0.992255i \(-0.460358\pi\)
0.921427 + 0.388552i \(0.127024\pi\)
\(84\) 0 0
\(85\) 3.73205 2.46410i 0.404798 0.267269i
\(86\) −2.00000 + 3.46410i −0.215666 + 0.373544i
\(87\) 0 0
\(88\) −1.73205 + 1.00000i −0.184637 + 0.106600i
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0.866025 0.500000i 0.0902894 0.0521286i
\(93\) 0 0
\(94\) −3.50000 + 6.06218i −0.360997 + 0.625266i
\(95\) −7.39230 11.1962i −0.758434 1.14870i
\(96\) 0 0
\(97\) 6.92820 4.00000i 0.703452 0.406138i −0.105180 0.994453i \(-0.533542\pi\)
0.808632 + 0.588315i \(0.200208\pi\)
\(98\) 6.00000i 0.606092i
\(99\) 0 0
\(100\) 3.00000 + 4.00000i 0.300000 + 0.400000i
\(101\) 1.00000 + 1.73205i 0.0995037 + 0.172345i 0.911479 0.411346i \(-0.134941\pi\)
−0.811976 + 0.583691i \(0.801608\pi\)
\(102\) 0 0
\(103\) 6.92820 + 4.00000i 0.682656 + 0.394132i 0.800855 0.598858i \(-0.204379\pi\)
−0.118199 + 0.992990i \(0.537712\pi\)
\(104\) 3.00000 5.19615i 0.294174 0.509525i
\(105\) 0 0
\(106\) 0 0
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) −0.267949 4.46410i −0.0255480 0.425635i
\(111\) 0 0
\(112\) −0.866025 0.500000i −0.0818317 0.0472456i
\(113\) 10.3923 + 6.00000i 0.977626 + 0.564433i 0.901553 0.432670i \(-0.142428\pi\)
0.0760733 + 0.997102i \(0.475762\pi\)
\(114\) 0 0
\(115\) 0.133975 + 2.23205i 0.0124932 + 0.208140i
\(116\) −9.00000 −0.835629
\(117\) 0 0
\(118\) 4.00000i 0.368230i
\(119\) −1.00000 1.73205i −0.0916698 0.158777i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 6.06218 + 3.50000i 0.548844 + 0.316875i
\(123\) 0 0
\(124\) −1.00000 1.73205i −0.0898027 0.155543i
\(125\) −11.0000 + 2.00000i −0.983870 + 0.178885i
\(126\) 0 0
\(127\) 19.0000i 1.68598i 0.537931 + 0.842989i \(0.319206\pi\)
−0.537931 + 0.842989i \(0.680794\pi\)
\(128\) −0.866025 + 0.500000i −0.0765466 + 0.0441942i
\(129\) 0 0
\(130\) 7.39230 + 11.1962i 0.648348 + 0.981968i
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) −5.19615 + 3.00000i −0.450564 + 0.260133i
\(134\) −11.0000 −0.950255
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) 0 0
\(139\) 8.00000 13.8564i 0.678551 1.17529i −0.296866 0.954919i \(-0.595942\pi\)
0.975417 0.220366i \(-0.0707252\pi\)
\(140\) 1.86603 1.23205i 0.157708 0.104127i
\(141\) 0 0
\(142\) 5.19615 3.00000i 0.436051 0.251754i
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 9.00000 18.0000i 0.747409 1.49482i
\(146\) −2.00000 3.46410i −0.165521 0.286691i
\(147\) 0 0
\(148\) −1.73205 1.00000i −0.142374 0.0821995i
\(149\) 0.500000 0.866025i 0.0409616 0.0709476i −0.844818 0.535054i \(-0.820291\pi\)
0.885779 + 0.464107i \(0.153625\pi\)
\(150\) 0 0
\(151\) −5.00000 8.66025i −0.406894 0.704761i 0.587646 0.809118i \(-0.300055\pi\)
−0.994540 + 0.104357i \(0.966722\pi\)
\(152\) 6.00000i 0.486664i
\(153\) 0 0
\(154\) −2.00000 −0.161165
\(155\) 4.46410 0.267949i 0.358565 0.0215222i
\(156\) 0 0
\(157\) 3.46410 + 2.00000i 0.276465 + 0.159617i 0.631822 0.775113i \(-0.282307\pi\)
−0.355357 + 0.934731i \(0.615641\pi\)
\(158\) −10.3923 6.00000i −0.826767 0.477334i
\(159\) 0 0
\(160\) −0.133975 2.23205i −0.0105916 0.176459i
\(161\) 1.00000 0.0788110
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 5.50000 + 9.52628i 0.429478 + 0.743877i
\(165\) 0 0
\(166\) 5.50000 9.52628i 0.426883 0.739383i
\(167\) 2.59808 + 1.50000i 0.201045 + 0.116073i 0.597143 0.802135i \(-0.296303\pi\)
−0.396098 + 0.918208i \(0.629636\pi\)
\(168\) 0 0
\(169\) 11.5000 + 19.9186i 0.884615 + 1.53220i
\(170\) 2.00000 4.00000i 0.153393 0.306786i
\(171\) 0 0
\(172\) 4.00000i 0.304997i
\(173\) 3.46410 2.00000i 0.263371 0.152057i −0.362500 0.931984i \(-0.618077\pi\)
0.625871 + 0.779926i \(0.284744\pi\)
\(174\) 0 0
\(175\) 0.598076 + 4.96410i 0.0452103 + 0.375251i
\(176\) −1.00000 + 1.73205i −0.0753778 + 0.130558i
\(177\) 0 0
\(178\) 0.866025 0.500000i 0.0649113 0.0374766i
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) 5.19615 3.00000i 0.385164 0.222375i
\(183\) 0 0
\(184\) 0.500000 0.866025i 0.0368605 0.0638442i
\(185\) 3.73205 2.46410i 0.274386 0.181164i
\(186\) 0 0
\(187\) −3.46410 + 2.00000i −0.253320 + 0.146254i
\(188\) 7.00000i 0.510527i
\(189\) 0 0
\(190\) −12.0000 6.00000i −0.870572 0.435286i
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) 0 0
\(193\) 8.66025 + 5.00000i 0.623379 + 0.359908i 0.778183 0.628037i \(-0.216141\pi\)
−0.154805 + 0.987945i \(0.549475\pi\)
\(194\) 4.00000 6.92820i 0.287183 0.497416i
\(195\) 0 0
\(196\) 3.00000 + 5.19615i 0.214286 + 0.371154i
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) 18.0000 1.27599 0.637993 0.770042i \(-0.279765\pi\)
0.637993 + 0.770042i \(0.279765\pi\)
\(200\) 4.59808 + 1.96410i 0.325133 + 0.138883i
\(201\) 0 0
\(202\) 1.73205 + 1.00000i 0.121867 + 0.0703598i
\(203\) −7.79423 4.50000i −0.547048 0.315838i
\(204\) 0 0
\(205\) −24.5526 + 1.47372i −1.71483 + 0.102929i
\(206\) 8.00000 0.557386
\(207\) 0 0
\(208\) 6.00000i 0.416025i
\(209\) 6.00000 + 10.3923i 0.415029 + 0.718851i
\(210\) 0 0
\(211\) −9.00000 + 15.5885i −0.619586 + 1.07315i 0.369976 + 0.929041i \(0.379366\pi\)
−0.989561 + 0.144112i \(0.953967\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 1.50000 + 2.59808i 0.102538 + 0.177601i
\(215\) −8.00000 4.00000i −0.545595 0.272798i
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) −6.06218 + 3.50000i −0.410582 + 0.237050i
\(219\) 0 0
\(220\) −2.46410 3.73205i −0.166130 0.251615i
\(221\) 6.00000 10.3923i 0.403604 0.699062i
\(222\) 0 0
\(223\) 19.9186 11.5000i 1.33385 0.770097i 0.347960 0.937509i \(-0.386874\pi\)
0.985887 + 0.167412i \(0.0535411\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 12.0000 0.798228
\(227\) −6.92820 + 4.00000i −0.459841 + 0.265489i −0.711977 0.702202i \(-0.752200\pi\)
0.252136 + 0.967692i \(0.418867\pi\)
\(228\) 0 0
\(229\) −3.50000 + 6.06218i −0.231287 + 0.400600i −0.958187 0.286143i \(-0.907627\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 1.23205 + 1.86603i 0.0812390 + 0.123042i
\(231\) 0 0
\(232\) −7.79423 + 4.50000i −0.511716 + 0.295439i
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 0 0
\(235\) −14.0000 7.00000i −0.913259 0.456630i
\(236\) −2.00000 3.46410i −0.130189 0.225494i
\(237\) 0 0
\(238\) −1.73205 1.00000i −0.112272 0.0648204i
\(239\) −14.0000 + 24.2487i −0.905585 + 1.56852i −0.0854543 + 0.996342i \(0.527234\pi\)
−0.820130 + 0.572177i \(0.806099\pi\)
\(240\) 0 0
\(241\) −0.500000 0.866025i −0.0322078 0.0557856i 0.849472 0.527633i \(-0.176921\pi\)
−0.881680 + 0.471848i \(0.843587\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) 7.00000 0.448129
\(245\) −13.3923 + 0.803848i −0.855603 + 0.0513559i
\(246\) 0 0
\(247\) −31.1769 18.0000i −1.98374 1.14531i
\(248\) −1.73205 1.00000i −0.109985 0.0635001i
\(249\) 0 0
\(250\) −8.52628 + 7.23205i −0.539249 + 0.457395i
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.125739i
\(254\) 9.50000 + 16.4545i 0.596083 + 1.03245i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −10.3923 6.00000i −0.648254 0.374270i 0.139533 0.990217i \(-0.455440\pi\)
−0.787787 + 0.615948i \(0.788773\pi\)
\(258\) 0 0
\(259\) −1.00000 1.73205i −0.0621370 0.107624i
\(260\) 12.0000 + 6.00000i 0.744208 + 0.372104i
\(261\) 0 0
\(262\) 12.0000i 0.741362i
\(263\) −13.8564 + 8.00000i −0.854423 + 0.493301i −0.862141 0.506669i \(-0.830877\pi\)
0.00771799 + 0.999970i \(0.497543\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −3.00000 + 5.19615i −0.183942 + 0.318597i
\(267\) 0 0
\(268\) −9.52628 + 5.50000i −0.581910 + 0.335966i
\(269\) 3.00000 0.182913 0.0914566 0.995809i \(-0.470848\pi\)
0.0914566 + 0.995809i \(0.470848\pi\)
\(270\) 0 0
\(271\) −14.0000 −0.850439 −0.425220 0.905090i \(-0.639803\pi\)
−0.425220 + 0.905090i \(0.639803\pi\)
\(272\) −1.73205 + 1.00000i −0.105021 + 0.0606339i
\(273\) 0 0
\(274\) 6.00000 10.3923i 0.362473 0.627822i
\(275\) 9.92820 1.19615i 0.598693 0.0721307i
\(276\) 0 0
\(277\) 19.0526 11.0000i 1.14476 0.660926i 0.197153 0.980373i \(-0.436830\pi\)
0.947604 + 0.319447i \(0.103497\pi\)
\(278\) 16.0000i 0.959616i
\(279\) 0 0
\(280\) 1.00000 2.00000i 0.0597614 0.119523i
\(281\) −1.50000 2.59808i −0.0894825 0.154988i 0.817810 0.575488i \(-0.195188\pi\)
−0.907293 + 0.420500i \(0.861855\pi\)
\(282\) 0 0
\(283\) −0.866025 0.500000i −0.0514799 0.0297219i 0.474039 0.880504i \(-0.342796\pi\)
−0.525519 + 0.850782i \(0.676129\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) 0 0
\(286\) −6.00000 10.3923i −0.354787 0.614510i
\(287\) 11.0000i 0.649309i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) −1.20577 20.0885i −0.0708053 1.17963i
\(291\) 0 0
\(292\) −3.46410 2.00000i −0.202721 0.117041i
\(293\) −15.5885 9.00000i −0.910687 0.525786i −0.0300351 0.999549i \(-0.509562\pi\)
−0.880652 + 0.473763i \(0.842895\pi\)
\(294\) 0 0
\(295\) 8.92820 0.535898i 0.519820 0.0312012i
\(296\) −2.00000 −0.116248
\(297\) 0 0
\(298\) 1.00000i 0.0579284i
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 0 0
\(301\) −2.00000 + 3.46410i −0.115278 + 0.199667i
\(302\) −8.66025 5.00000i −0.498342 0.287718i
\(303\) 0 0
\(304\) 3.00000 + 5.19615i 0.172062 + 0.298020i
\(305\) −7.00000 + 14.0000i −0.400819 + 0.801638i
\(306\) 0 0
\(307\) 9.00000i 0.513657i 0.966457 + 0.256829i \(0.0826776\pi\)
−0.966457 + 0.256829i \(0.917322\pi\)
\(308\) −1.73205 + 1.00000i −0.0986928 + 0.0569803i
\(309\) 0 0
\(310\) 3.73205 2.46410i 0.211966 0.139952i
\(311\) 3.00000 5.19615i 0.170114 0.294647i −0.768345 0.640036i \(-0.778920\pi\)
0.938460 + 0.345389i \(0.112253\pi\)
\(312\) 0 0
\(313\) −19.0526 + 11.0000i −1.07691 + 0.621757i −0.930062 0.367402i \(-0.880247\pi\)
−0.146852 + 0.989158i \(0.546914\pi\)
\(314\) 4.00000 0.225733
\(315\) 0 0
\(316\) −12.0000 −0.675053
\(317\) −1.73205 + 1.00000i −0.0972817 + 0.0561656i −0.547852 0.836576i \(-0.684554\pi\)
0.450570 + 0.892741i \(0.351221\pi\)
\(318\) 0 0
\(319\) −9.00000 + 15.5885i −0.503903 + 0.872786i
\(320\) −1.23205 1.86603i −0.0688737 0.104314i
\(321\) 0 0
\(322\) 0.866025 0.500000i 0.0482617 0.0278639i
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) −24.0000 + 18.0000i −1.33128 + 0.998460i
\(326\) 2.00000 + 3.46410i 0.110770 + 0.191859i
\(327\) 0 0
\(328\) 9.52628 + 5.50000i 0.526001 + 0.303687i
\(329\) −3.50000 + 6.06218i −0.192961 + 0.334219i
\(330\) 0 0
\(331\) 4.00000 + 6.92820i 0.219860 + 0.380808i 0.954765 0.297361i \(-0.0961066\pi\)
−0.734905 + 0.678170i \(0.762773\pi\)
\(332\) 11.0000i 0.603703i
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) −1.47372 24.5526i −0.0805180 1.34145i
\(336\) 0 0
\(337\) 6.92820 + 4.00000i 0.377403 + 0.217894i 0.676688 0.736270i \(-0.263415\pi\)
−0.299285 + 0.954164i \(0.596748\pi\)
\(338\) 19.9186 + 11.5000i 1.08343 + 0.625518i
\(339\) 0 0
\(340\) −0.267949 4.46410i −0.0145316 0.242100i
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 2.00000 + 3.46410i 0.107833 + 0.186772i
\(345\) 0 0
\(346\) 2.00000 3.46410i 0.107521 0.186231i
\(347\) 10.3923 + 6.00000i 0.557888 + 0.322097i 0.752297 0.658824i \(-0.228946\pi\)
−0.194409 + 0.980921i \(0.562279\pi\)
\(348\) 0 0
\(349\) −5.50000 9.52628i −0.294408 0.509930i 0.680439 0.732805i \(-0.261789\pi\)
−0.974847 + 0.222875i \(0.928456\pi\)
\(350\) 3.00000 + 4.00000i 0.160357 + 0.213809i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) 13.8564 8.00000i 0.737502 0.425797i −0.0836583 0.996495i \(-0.526660\pi\)
0.821160 + 0.570697i \(0.193327\pi\)
\(354\) 0 0
\(355\) 7.39230 + 11.1962i 0.392343 + 0.594230i
\(356\) 0.500000 0.866025i 0.0264999 0.0458993i
\(357\) 0 0
\(358\) 1.73205 1.00000i 0.0915417 0.0528516i
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) −11.2583 + 6.50000i −0.591725 + 0.341632i
\(363\) 0 0
\(364\) 3.00000 5.19615i 0.157243 0.272352i
\(365\) 7.46410 4.92820i 0.390689 0.257954i
\(366\) 0 0
\(367\) 13.8564 8.00000i 0.723299 0.417597i −0.0926670 0.995697i \(-0.529539\pi\)
0.815966 + 0.578101i \(0.196206\pi\)
\(368\) 1.00000i 0.0521286i
\(369\) 0 0
\(370\) 2.00000 4.00000i 0.103975 0.207950i
\(371\) 0 0
\(372\) 0 0
\(373\) −10.3923 6.00000i −0.538093 0.310668i 0.206213 0.978507i \(-0.433886\pi\)
−0.744306 + 0.667839i \(0.767219\pi\)
\(374\) −2.00000 + 3.46410i −0.103418 + 0.179124i
\(375\) 0 0
\(376\) 3.50000 + 6.06218i 0.180499 + 0.312633i
\(377\) 54.0000i 2.78114i
\(378\) 0 0
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) −13.3923 + 0.803848i −0.687011 + 0.0412365i
\(381\) 0 0
\(382\) 5.19615 + 3.00000i 0.265858 + 0.153493i
\(383\) 27.7128 + 16.0000i 1.41606 + 0.817562i 0.995950 0.0899119i \(-0.0286586\pi\)
0.420109 + 0.907474i \(0.361992\pi\)
\(384\) 0 0
\(385\) −0.267949 4.46410i −0.0136560 0.227512i
\(386\) 10.0000 0.508987
\(387\) 0 0
\(388\) 8.00000i 0.406138i
\(389\) −9.50000 16.4545i −0.481669 0.834275i 0.518110 0.855314i \(-0.326636\pi\)
−0.999779 + 0.0210389i \(0.993303\pi\)
\(390\) 0 0
\(391\) 1.00000 1.73205i 0.0505722 0.0875936i
\(392\) 5.19615 + 3.00000i 0.262445 + 0.151523i
\(393\) 0 0
\(394\) 4.00000 + 6.92820i 0.201517 + 0.349038i
\(395\) 12.0000 24.0000i 0.603786 1.20757i
\(396\) 0 0
\(397\) 4.00000i 0.200754i 0.994949 + 0.100377i \(0.0320049\pi\)
−0.994949 + 0.100377i \(0.967995\pi\)
\(398\) 15.5885 9.00000i 0.781379 0.451129i
\(399\) 0 0
\(400\) 4.96410 0.598076i 0.248205 0.0299038i
\(401\) −5.00000 + 8.66025i −0.249688 + 0.432472i −0.963439 0.267927i \(-0.913661\pi\)
0.713751 + 0.700399i \(0.246995\pi\)
\(402\) 0 0
\(403\) 10.3923 6.00000i 0.517678 0.298881i
\(404\) 2.00000 0.0995037
\(405\) 0 0
\(406\) −9.00000 −0.446663
\(407\) −3.46410 + 2.00000i −0.171709 + 0.0991363i
\(408\) 0 0
\(409\) 19.0000 32.9090i 0.939490 1.62724i 0.173064 0.984911i \(-0.444633\pi\)
0.766426 0.642333i \(-0.222033\pi\)
\(410\) −20.5263 + 13.5526i −1.01372 + 0.669313i
\(411\) 0 0
\(412\) 6.92820 4.00000i 0.341328 0.197066i
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) 22.0000 + 11.0000i 1.07994 + 0.539969i
\(416\) −3.00000 5.19615i −0.147087 0.254762i
\(417\) 0 0
\(418\) 10.3923 + 6.00000i 0.508304 + 0.293470i
\(419\) −17.0000 + 29.4449i −0.830504 + 1.43848i 0.0671345 + 0.997744i \(0.478614\pi\)
−0.897639 + 0.440732i \(0.854719\pi\)
\(420\) 0 0
\(421\) −11.0000 19.0526i −0.536107 0.928565i −0.999109 0.0422075i \(-0.986561\pi\)
0.463002 0.886357i \(-0.346772\pi\)
\(422\) 18.0000i 0.876226i
\(423\) 0 0
\(424\) 0 0
\(425\) 9.19615 + 3.92820i 0.446079 + 0.190546i
\(426\) 0 0
\(427\) 6.06218 + 3.50000i 0.293369 + 0.169377i
\(428\) 2.59808 + 1.50000i 0.125583 + 0.0725052i
\(429\) 0 0
\(430\) −8.92820 + 0.535898i −0.430556 + 0.0258433i
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 2.00000i 0.0961139i 0.998845 + 0.0480569i \(0.0153029\pi\)
−0.998845 + 0.0480569i \(0.984697\pi\)
\(434\) −1.00000 1.73205i −0.0480015 0.0831411i
\(435\) 0 0
\(436\) −3.50000 + 6.06218i −0.167620 + 0.290326i
\(437\) −5.19615 3.00000i −0.248566 0.143509i
\(438\) 0 0
\(439\) 12.0000 + 20.7846i 0.572729 + 0.991995i 0.996284 + 0.0861252i \(0.0274485\pi\)
−0.423556 + 0.905870i \(0.639218\pi\)
\(440\) −4.00000 2.00000i −0.190693 0.0953463i
\(441\) 0 0
\(442\) 12.0000i 0.570782i
\(443\) 7.79423 4.50000i 0.370315 0.213801i −0.303281 0.952901i \(-0.598082\pi\)
0.673596 + 0.739100i \(0.264749\pi\)
\(444\) 0 0
\(445\) 1.23205 + 1.86603i 0.0584048 + 0.0884581i
\(446\) 11.5000 19.9186i 0.544541 0.943172i
\(447\) 0 0
\(448\) −0.866025 + 0.500000i −0.0409159 + 0.0236228i
\(449\) 18.0000 0.849473 0.424736 0.905317i \(-0.360367\pi\)
0.424736 + 0.905317i \(0.360367\pi\)
\(450\) 0 0
\(451\) 22.0000 1.03594
\(452\) 10.3923 6.00000i 0.488813 0.282216i
\(453\) 0 0
\(454\) −4.00000 + 6.92820i −0.187729 + 0.325157i
\(455\) 7.39230 + 11.1962i 0.346557 + 0.524884i
\(456\) 0 0
\(457\) 8.66025 5.00000i 0.405110 0.233890i −0.283577 0.958950i \(-0.591521\pi\)
0.688686 + 0.725059i \(0.258188\pi\)
\(458\) 7.00000i 0.327089i
\(459\) 0 0
\(460\) 2.00000 + 1.00000i 0.0932505 + 0.0466252i
\(461\) −10.5000 18.1865i −0.489034 0.847031i 0.510887 0.859648i \(-0.329317\pi\)
−0.999920 + 0.0126168i \(0.995984\pi\)
\(462\) 0 0
\(463\) −31.1769 18.0000i −1.44891 0.836531i −0.450497 0.892778i \(-0.648753\pi\)
−0.998417 + 0.0562469i \(0.982087\pi\)
\(464\) −4.50000 + 7.79423i −0.208907 + 0.361838i
\(465\) 0 0
\(466\) 5.00000 + 8.66025i 0.231621 + 0.401179i
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) −15.6244 + 0.937822i −0.720698 + 0.0432585i
\(471\) 0 0
\(472\) −3.46410 2.00000i −0.159448 0.0920575i
\(473\) 6.92820 + 4.00000i 0.318559 + 0.183920i
\(474\) 0 0
\(475\) 11.7846 27.5885i 0.540715 1.26585i
\(476\) −2.00000 −0.0916698
\(477\) 0 0
\(478\) 28.0000i 1.28069i
\(479\) −14.0000 24.2487i −0.639676 1.10795i −0.985504 0.169654i \(-0.945735\pi\)
0.345827 0.938298i \(-0.387598\pi\)
\(480\) 0 0
\(481\) 6.00000 10.3923i 0.273576 0.473848i
\(482\) −0.866025 0.500000i −0.0394464 0.0227744i
\(483\) 0 0
\(484\) −3.50000 6.06218i −0.159091 0.275554i
\(485\) 16.0000 + 8.00000i 0.726523 + 0.363261i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 6.06218 3.50000i 0.274422 0.158438i
\(489\) 0 0
\(490\) −11.1962 + 7.39230i −0.505791 + 0.333950i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) −15.5885 + 9.00000i −0.702069 + 0.405340i
\(494\) −36.0000 −1.61972
\(495\) 0 0
\(496\) −2.00000 −0.0898027
\(497\) 5.19615 3.00000i 0.233079 0.134568i
\(498\) 0 0
\(499\) −12.0000 + 20.7846i −0.537194 + 0.930447i 0.461860 + 0.886953i \(0.347182\pi\)
−0.999054 + 0.0434940i \(0.986151\pi\)
\(500\) −3.76795 + 10.5263i −0.168508 + 0.470750i
\(501\) 0 0
\(502\) −15.5885 + 9.00000i −0.695747 + 0.401690i
\(503\) 27.0000i 1.20387i −0.798545 0.601935i \(-0.794397\pi\)
0.798545 0.601935i \(-0.205603\pi\)
\(504\) 0 0
\(505\) −2.00000 + 4.00000i −0.0889988 + 0.177998i
\(506\) −1.00000 1.73205i −0.0444554 0.0769991i
\(507\) 0 0
\(508\) 16.4545 + 9.50000i 0.730050 + 0.421494i
\(509\) 7.50000 12.9904i 0.332432 0.575789i −0.650556 0.759458i \(-0.725464\pi\)
0.982988 + 0.183669i \(0.0587976\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −12.0000 −0.529297
\(515\) 1.07180 + 17.8564i 0.0472290 + 0.786847i
\(516\) 0 0
\(517\) 12.1244 + 7.00000i 0.533229 + 0.307860i
\(518\) −1.73205 1.00000i −0.0761019 0.0439375i
\(519\) 0 0
\(520\) 13.3923 0.803848i 0.587291 0.0352510i
\(521\) 37.0000 1.62100 0.810500 0.585739i \(-0.199196\pi\)
0.810500 + 0.585739i \(0.199196\pi\)
\(522\) 0 0
\(523\) 29.0000i 1.26808i −0.773300 0.634041i \(-0.781395\pi\)
0.773300 0.634041i \(-0.218605\pi\)
\(524\) −6.00000 10.3923i −0.262111 0.453990i
\(525\) 0 0
\(526\) −8.00000 + 13.8564i −0.348817 + 0.604168i
\(527\) −3.46410 2.00000i −0.150899 0.0871214i
\(528\) 0 0
\(529\) −11.0000 19.0526i −0.478261 0.828372i
\(530\) 0 0
\(531\) 0 0
\(532\) 6.00000i 0.260133i
\(533\) −57.1577 + 33.0000i −2.47577 + 1.42939i
\(534\) 0 0
\(535\) −5.59808 + 3.69615i −0.242026 + 0.159799i
\(536\) −5.50000 + 9.52628i −0.237564 + 0.411473i
\(537\) 0 0
\(538\) 2.59808 1.50000i 0.112011 0.0646696i
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) −12.1244 + 7.00000i −0.520786 + 0.300676i
\(543\) 0 0
\(544\) −1.00000 + 1.73205i −0.0428746 + 0.0742611i
\(545\) −8.62436 13.0622i −0.369427 0.559522i
\(546\) 0 0
\(547\) −30.3109 + 17.5000i −1.29600 + 0.748246i −0.979711 0.200417i \(-0.935770\pi\)
−0.316289 + 0.948663i \(0.602437\pi\)
\(548\) 12.0000i 0.512615i
\(549\) 0 0
\(550\) 8.00000 6.00000i 0.341121 0.255841i
\(551\) 27.0000 + 46.7654i 1.15024 + 1.99227i
\(552\) 0 0
\(553\) −10.3923 6.00000i −0.441926 0.255146i
\(554\) 11.0000 19.0526i 0.467345 0.809466i
\(555\) 0 0
\(556\) −8.00000 13.8564i −0.339276 0.587643i
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) −24.0000 −1.01509
\(560\) −0.133975 2.23205i −0.00566146 0.0943214i
\(561\) 0 0
\(562\) −2.59808 1.50000i −0.109593 0.0632737i
\(563\) −32.0429 18.5000i −1.35045 0.779682i −0.362137 0.932125i \(-0.617953\pi\)
−0.988312 + 0.152443i \(0.951286\pi\)
\(564\) 0 0
\(565\) 1.60770 + 26.7846i 0.0676362 + 1.12684i
\(566\) −1.00000 −0.0420331
\(567\) 0 0
\(568\) 6.00000i 0.251754i
\(569\) 1.00000 + 1.73205i 0.0419222 + 0.0726113i 0.886225 0.463255i \(-0.153319\pi\)
−0.844303 + 0.535866i \(0.819985\pi\)
\(570\) 0 0
\(571\) 10.0000 17.3205i 0.418487 0.724841i −0.577301 0.816532i \(-0.695894\pi\)
0.995788 + 0.0916910i \(0.0292272\pi\)
\(572\) −10.3923 6.00000i −0.434524 0.250873i
\(573\) 0 0
\(574\) 5.50000 + 9.52628i 0.229566 + 0.397619i
\(575\) −4.00000 + 3.00000i −0.166812 + 0.125109i
\(576\) 0 0
\(577\) 32.0000i 1.33218i −0.745873 0.666089i \(-0.767967\pi\)
0.745873 0.666089i \(-0.232033\pi\)
\(578\) 11.2583 6.50000i 0.468285 0.270364i
\(579\) 0 0
\(580\) −11.0885 16.7942i −0.460423 0.697342i
\(581\) 5.50000 9.52628i 0.228178 0.395217i
\(582\) 0 0
\(583\) 0 0
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 2.59808 1.50000i 0.107234 0.0619116i −0.445424 0.895320i \(-0.646947\pi\)
0.552658 + 0.833408i \(0.313614\pi\)
\(588\) 0 0
\(589\) −6.00000 + 10.3923i −0.247226 + 0.428207i
\(590\) 7.46410 4.92820i 0.307292 0.202891i
\(591\) 0 0
\(592\) −1.73205 + 1.00000i −0.0711868 + 0.0410997i
\(593\) 30.0000i 1.23195i 0.787765 + 0.615976i \(0.211238\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(594\) 0 0
\(595\) 2.00000 4.00000i 0.0819920 0.163984i
\(596\) −0.500000 0.866025i −0.0204808 0.0354738i
\(597\) 0 0
\(598\) 5.19615 + 3.00000i 0.212486 + 0.122679i
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) 11.0000 + 19.0526i 0.448699 + 0.777170i 0.998302 0.0582563i \(-0.0185541\pi\)
−0.549602 + 0.835426i \(0.685221\pi\)
\(602\) 4.00000i 0.163028i
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 15.6244 0.937822i 0.635220 0.0381279i
\(606\) 0 0
\(607\) 0.866025 + 0.500000i 0.0351509 + 0.0202944i 0.517472 0.855700i \(-0.326873\pi\)
−0.482322 + 0.875994i \(0.660206\pi\)
\(608\) 5.19615 + 3.00000i 0.210732 + 0.121666i
\(609\) 0 0
\(610\) 0.937822 + 15.6244i 0.0379713 + 0.632612i
\(611\) −42.0000 −1.69914
\(612\) 0 0
\(613\) 34.0000i 1.37325i −0.727013 0.686624i \(-0.759092\pi\)
0.727013 0.686624i \(-0.240908\pi\)
\(614\) 4.50000 + 7.79423i 0.181605 + 0.314549i
\(615\) 0 0
\(616\) −1.00000 + 1.73205i −0.0402911 + 0.0697863i
\(617\) 27.7128 + 16.0000i 1.11568 + 0.644136i 0.940294 0.340365i \(-0.110551\pi\)
0.175382 + 0.984500i \(0.443884\pi\)
\(618\) 0 0
\(619\) −5.00000 8.66025i −0.200967 0.348085i 0.747873 0.663842i \(-0.231075\pi\)
−0.948840 + 0.315757i \(0.897742\pi\)
\(620\) 2.00000 4.00000i 0.0803219 0.160644i
\(621\) 0 0
\(622\) 6.00000i 0.240578i
\(623\) 0.866025 0.500000i 0.0346966 0.0200321i
\(624\) 0 0
\(625\) −17.2846 18.0622i −0.691384 0.722487i
\(626\) −11.0000 + 19.0526i −0.439648 + 0.761493i
\(627\) 0 0
\(628\) 3.46410 2.00000i 0.138233 0.0798087i
\(629\) −4.00000 −0.159490
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −10.3923 + 6.00000i −0.413384 + 0.238667i
\(633\) 0 0
\(634\) −1.00000 + 1.73205i −0.0397151 + 0.0687885i
\(635\) −35.4545 + 23.4090i −1.40697 + 0.928956i
\(636\) 0 0
\(637\) −31.1769 + 18.0000i −1.23527 + 0.713186i
\(638\) 18.0000i 0.712627i
\(639\) 0 0
\(640\) −2.00000 1.00000i −0.0790569 0.0395285i
\(641\) 6.50000 + 11.2583i 0.256735 + 0.444677i 0.965365 0.260902i \(-0.0840201\pi\)
−0.708631 + 0.705580i \(0.750687\pi\)
\(642\) 0 0
\(643\) 28.5788 + 16.5000i 1.12704 + 0.650696i 0.943189 0.332258i \(-0.107810\pi\)
0.183851 + 0.982954i \(0.441144\pi\)
\(644\) 0.500000 0.866025i 0.0197028 0.0341262i
\(645\) 0 0
\(646\) 6.00000 + 10.3923i 0.236067 + 0.408880i
\(647\) 33.0000i 1.29736i 0.761060 + 0.648682i \(0.224679\pi\)
−0.761060 + 0.648682i \(0.775321\pi\)
\(648\) 0 0
\(649\) −8.00000 −0.314027
\(650\) −11.7846 + 27.5885i −0.462230 + 1.08211i
\(651\) 0 0
\(652\) 3.46410 + 2.00000i 0.135665 + 0.0783260i
\(653\) −22.5167 13.0000i −0.881145 0.508729i −0.0101092 0.999949i \(-0.503218\pi\)
−0.871036 + 0.491220i \(0.836551\pi\)
\(654\) 0 0
\(655\) 26.7846 1.60770i 1.04656 0.0628178i
\(656\) 11.0000 0.429478
\(657\) 0 0
\(658\) 7.00000i 0.272888i
\(659\) −10.0000 17.3205i −0.389545 0.674711i 0.602844 0.797859i \(-0.294034\pi\)
−0.992388 + 0.123148i \(0.960701\pi\)
\(660\) 0 0
\(661\) 5.00000 8.66025i 0.194477 0.336845i −0.752252 0.658876i \(-0.771032\pi\)
0.946729 + 0.322031i \(0.104366\pi\)
\(662\) 6.92820 + 4.00000i 0.269272 + 0.155464i
\(663\) 0 0
\(664\) −5.50000 9.52628i −0.213441 0.369691i
\(665\) −12.0000 6.00000i −0.465340 0.232670i
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) 2.59808 1.50000i 0.100523 0.0580367i
\(669\) 0 0
\(670\) −13.5526 20.5263i −0.523581 0.792999i
\(671\) 7.00000 12.1244i 0.270232 0.468056i
\(672\) 0 0
\(673\) 5.19615 3.00000i 0.200297 0.115642i −0.396497 0.918036i \(-0.629774\pi\)
0.596794 + 0.802395i \(0.296441\pi\)
\(674\) 8.00000 0.308148
\(675\) 0 0
\(676\) 23.0000 0.884615
\(677\) 19.0526 11.0000i 0.732249 0.422764i −0.0869952 0.996209i \(-0.527726\pi\)
0.819244 + 0.573444i \(0.194393\pi\)
\(678\) 0 0
\(679\) 4.00000 6.92820i 0.153506 0.265880i
\(680\) −2.46410 3.73205i −0.0944940 0.143118i
\(681\) 0 0
\(682\) −3.46410 + 2.00000i −0.132647 + 0.0765840i
\(683\) 4.00000i 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) 24.0000 + 12.0000i 0.916993 + 0.458496i
\(686\) 6.50000 + 11.2583i 0.248171 + 0.429845i
\(687\) 0 0
\(688\) 3.46410 + 2.00000i 0.132068 + 0.0762493i
\(689\) 0 0
\(690\) 0 0
\(691\) 22.0000 + 38.1051i 0.836919 + 1.44959i 0.892458 + 0.451130i \(0.148979\pi\)
−0.0555386 + 0.998457i \(0.517688\pi\)
\(692\) 4.00000i 0.152057i
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 35.7128 2.14359i 1.35466 0.0813111i
\(696\) 0 0
\(697\) 19.0526 + 11.0000i 0.721667 + 0.416655i
\(698\) −9.52628 5.50000i −0.360575 0.208178i
\(699\) 0 0
\(700\) 4.59808 + 1.96410i 0.173791 + 0.0742361i
\(701\) −13.0000 −0.491003 −0.245502 0.969396i \(-0.578953\pi\)
−0.245502 + 0.969396i \(0.578953\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 1.00000 + 1.73205i 0.0376889 + 0.0652791i
\(705\) 0 0
\(706\) 8.00000 13.8564i 0.301084 0.521493i
\(707\) 1.73205 + 1.00000i 0.0651405 + 0.0376089i
\(708\) 0 0
\(709\) −13.5000 23.3827i −0.507003 0.878155i −0.999967 0.00810550i \(-0.997420\pi\)
0.492964 0.870050i \(-0.335913\pi\)
\(710\) 12.0000 + 6.00000i 0.450352 + 0.225176i
\(711\) 0 0
\(712\) 1.00000i 0.0374766i
\(713\) 1.73205 1.00000i 0.0648658 0.0374503i
\(714\) 0 0
\(715\) 22.3923 14.7846i 0.837425 0.552913i
\(716\) 1.00000 1.73205i 0.0373718 0.0647298i
\(717\) 0 0
\(718\) 25.9808 15.0000i 0.969593 0.559795i
\(719\) −44.0000 −1.64092 −0.820462 0.571702i \(-0.806283\pi\)
−0.820462 + 0.571702i \(0.806283\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 14.7224 8.50000i 0.547912 0.316337i
\(723\) 0 0
\(724\) −6.50000 + 11.2583i −0.241571 + 0.418413i
\(725\) 44.6769 5.38269i 1.65926 0.199908i
\(726\) 0 0
\(727\) −18.1865 + 10.5000i −0.674501 + 0.389423i −0.797780 0.602949i \(-0.793992\pi\)
0.123279 + 0.992372i \(0.460659\pi\)
\(728\) 6.00000i 0.222375i
\(729\) 0 0
\(730\) 4.00000 8.00000i 0.148047 0.296093i
\(731\) 4.00000 + 6.92820i 0.147945 + 0.256249i
\(732\) 0 0
\(733\) −3.46410 2.00000i −0.127950 0.0738717i 0.434659 0.900595i \(-0.356869\pi\)
−0.562609 + 0.826723i \(0.690202\pi\)
\(734\) 8.00000 13.8564i 0.295285 0.511449i
\(735\) 0 0
\(736\) −0.500000 0.866025i −0.0184302 0.0319221i
\(737\) 22.0000i 0.810380i
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) −0.267949 4.46410i −0.00985001 0.164104i
\(741\) 0 0
\(742\) 0 0
\(743\) −12.9904 7.50000i −0.476571 0.275148i 0.242415 0.970173i \(-0.422060\pi\)
−0.718986 + 0.695024i \(0.755394\pi\)
\(744\) 0 0
\(745\) 2.23205 0.133975i 0.0817760 0.00490845i
\(746\) −12.0000 −0.439351
\(747\) 0 0
\(748\) 4.00000i 0.146254i
\(749\) 1.50000 + 2.59808i 0.0548088 + 0.0949316i
\(750\) 0 0
\(751\) −13.0000 + 22.5167i −0.474377 + 0.821645i −0.999570 0.0293387i \(-0.990660\pi\)
0.525193 + 0.850983i \(0.323993\pi\)
\(752\) 6.06218 + 3.50000i 0.221065 + 0.127632i
\(753\) 0 0
\(754\) −27.0000 46.7654i −0.983282 1.70309i
\(755\) 10.0000 20.0000i 0.363937 0.727875i
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) 13.8564 8.00000i 0.503287 0.290573i
\(759\) 0 0
\(760\) −11.1962 + 7.39230i −0.406127 + 0.268147i
\(761\) −4.50000 + 7.79423i −0.163125 + 0.282541i −0.935988 0.352032i \(-0.885491\pi\)
0.772863 + 0.634573i \(0.218824\pi\)
\(762\) 0 0
\(763\) −6.06218 + 3.50000i −0.219466 + 0.126709i
\(764\) 6.00000 0.217072
\(765\) 0 0
\(766\) 32.0000 1.15621
\(767\) 20.7846 12.0000i 0.750489 0.433295i
\(768\) 0 0
\(769\) −7.50000 + 12.9904i −0.270457 + 0.468445i −0.968979 0.247143i \(-0.920508\pi\)
0.698522 + 0.715589i \(0.253841\pi\)
\(770\) −2.46410 3.73205i −0.0888001 0.134494i
\(771\) 0 0
\(772\) 8.66025 5.00000i 0.311689 0.179954i
\(773\) 12.0000i 0.431610i −0.976436 0.215805i \(-0.930762\pi\)
0.976436 0.215805i \(-0.0692376\pi\)
\(774\) 0 0
\(775\) 6.00000 + 8.00000i 0.215526 + 0.287368i
\(776\) −4.00000 6.92820i −0.143592 0.248708i
\(777\) 0 0
\(778\) −16.4545 9.50000i −0.589922 0.340592i
\(779\) 33.0000 57.1577i 1.18235 2.04789i
\(780\) 0 0
\(781\) −6.00000 10.3923i −0.214697 0.371866i
\(782\) 2.00000i 0.0715199i
\(783\) 0 0
\(784\) 6.00000 0.214286
\(785\) 0.535898 + 8.92820i 0.0191270 + 0.318661i
\(786\) 0 0
\(787\) 38.1051 + 22.0000i 1.35830 + 0.784215i 0.989395 0.145251i \(-0.0463991\pi\)
0.368906 + 0.929467i \(0.379732\pi\)
\(788\) 6.92820 + 4.00000i 0.246807 + 0.142494i
\(789\) 0 0
\(790\) −1.60770 26.7846i −0.0571992 0.952954i
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 42.0000i 1.49146i
\(794\) 2.00000 + 3.46410i 0.0709773 + 0.122936i
\(795\) 0 0
\(796\) 9.00000 15.5885i 0.318997 0.552518i
\(797\) 1.73205 + 1.00000i 0.0613524 + 0.0354218i 0.530362 0.847771i \(-0.322056\pi\)
−0.469010 + 0.883193i \(0.655389\pi\)
\(798\) 0 0
\(799\) 7.00000 + 12.1244i 0.247642 + 0.428929i
\(800\) 4.00000 3.00000i 0.141421 0.106066i
\(801\) 0 0
\(802\) 10.0000i 0.353112i
\(803\) −6.92820 + 4.00000i −0.244491 + 0.141157i
\(804\) 0 0
\(805\) 1.23205 + 1.86603i 0.0434241 + 0.0657688i
\(806\) 6.00000 10.3923i 0.211341 0.366053i
\(807\) 0 0
\(808\) 1.73205 1.00000i 0.0609333 0.0351799i
\(809\) −30.0000 −1.05474 −0.527372 0.849635i \(-0.676823\pi\)
−0.527372 + 0.849635i \(0.676823\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) −7.79423 + 4.50000i −0.273524 + 0.157919i
\(813\) 0 0
\(814\) −2.00000 + 3.46410i −0.0701000 + 0.121417i
\(815\) −7.46410 + 4.92820i −0.261456 + 0.172627i
\(816\) 0 0
\(817\) 20.7846 12.0000i 0.727161 0.419827i
\(818\) 38.0000i 1.32864i
\(819\) 0 0
\(820\) −11.0000 + 22.0000i −0.384137 + 0.768273i
\(821\) −15.5000 26.8468i −0.540954 0.936959i −0.998850 0.0479535i \(-0.984730\pi\)
0.457896 0.889006i \(-0.348603\pi\)
\(822\) 0 0
\(823\) −12.9904 7.50000i −0.452816 0.261434i 0.256203 0.966623i \(-0.417529\pi\)
−0.709019 + 0.705190i \(0.750862\pi\)
\(824\) 4.00000 6.92820i 0.139347 0.241355i
\(825\) 0 0
\(826\) −2.00000 3.46410i −0.0695889 0.120532i
\(827\) 35.0000i 1.21707i −0.793527 0.608535i \(-0.791758\pi\)
0.793527 0.608535i \(-0.208242\pi\)
\(828\) 0 0
\(829\) −15.0000 −0.520972 −0.260486 0.965478i \(-0.583883\pi\)
−0.260486 + 0.965478i \(0.583883\pi\)
\(830\) 24.5526 1.47372i 0.852232 0.0511536i
\(831\) 0 0
\(832\) −5.19615 3.00000i −0.180144 0.104006i
\(833\) 10.3923 + 6.00000i 0.360072 + 0.207888i
\(834\) 0 0
\(835\) 0.401924 + 6.69615i 0.0139091 + 0.231730i
\(836\) 12.0000 0.415029
\(837\) 0 0
\(838\) 34.0000i 1.17451i
\(839\) −19.0000 32.9090i −0.655953 1.13614i −0.981654 0.190671i \(-0.938934\pi\)
0.325701 0.945473i \(-0.394400\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) −19.0526 11.0000i −0.656595 0.379085i
\(843\) 0 0
\(844\) 9.00000 + 15.5885i 0.309793 + 0.536577i
\(845\) −23.0000 + 46.0000i −0.791224 + 1.58245i
\(846\) 0 0
\(847\) 7.00000i 0.240523i
\(848\) 0 0
\(849\) 0 0
\(850\) 9.92820 1.19615i 0.340535 0.0410277i
\(851\) 1.00000 1.73205i 0.0342796 0.0593739i
\(852\) 0 0
\(853\) 39.8372 23.0000i 1.36400 0.787505i 0.373845 0.927491i \(-0.378039\pi\)
0.990153 + 0.139986i \(0.0447058\pi\)
\(854\) 7.00000 0.239535
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) −15.5885 + 9.00000i −0.532492 + 0.307434i −0.742030 0.670366i \(-0.766137\pi\)
0.209539 + 0.977800i \(0.432804\pi\)
\(858\) 0 0
\(859\) 7.00000 12.1244i 0.238837 0.413678i −0.721544 0.692369i \(-0.756567\pi\)
0.960381 + 0.278691i \(0.0899005\pi\)
\(860\) −7.46410 + 4.92820i −0.254524 + 0.168050i
\(861\) 0 0
\(862\) −13.8564 + 8.00000i −0.471951 + 0.272481i
\(863\) 45.0000i 1.53182i 0.642949 + 0.765909i \(0.277711\pi\)
−0.642949 + 0.765909i \(0.722289\pi\)
\(864\) 0 0
\(865\) 8.00000 + 4.00000i 0.272008 + 0.136004i
\(866\) 1.00000 + 1.73205i 0.0339814 + 0.0588575i
\(867\) 0 0
\(868\) −1.73205 1.00000i −0.0587896 0.0339422i
\(869\) −12.0000 + 20.7846i −0.407072 + 0.705070i
\(870\) 0 0
\(871\) −33.0000 57.1577i −1.11816 1.93671i
\(872\) 7.00000i 0.237050i
\(873\) 0 0
\(874\) −6.00000 −0.202953
\(875\) −8.52628 + 7.23205i −0.288241 + 0.244488i
\(876\) 0 0
\(877\) 39.8372 + 23.0000i 1.34521 + 0.776655i 0.987566 0.157205i \(-0.0502483\pi\)
0.357640 + 0.933860i \(0.383582\pi\)
\(878\) 20.7846 + 12.0000i 0.701447 + 0.404980i
\(879\) 0 0
\(880\) −4.46410 + 0.267949i −0.150485 + 0.00903257i
\(881\) 15.0000 0.505363 0.252681 0.967550i \(-0.418688\pi\)
0.252681 + 0.967550i \(0.418688\pi\)
\(882\) 0 0
\(883\) 3.00000i 0.100958i 0.998725 + 0.0504790i \(0.0160748\pi\)
−0.998725 + 0.0504790i \(0.983925\pi\)
\(884\) −6.00000 10.3923i −0.201802 0.349531i
\(885\) 0 0
\(886\) 4.50000 7.79423i 0.151180 0.261852i
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 9.50000 + 16.4545i 0.318620 + 0.551866i
\(890\) 2.00000 + 1.00000i 0.0670402 + 0.0335201i
\(891\) 0 0
\(892\) 23.0000i 0.770097i
\(893\) 36.3731 21.0000i 1.21718 0.702738i
\(894\) 0 0
\(895\) 2.46410 + 3.73205i 0.0823658 + 0.124749i
\(896\) −0.500000 + 0.866025i −0.0167038 + 0.0289319i
\(897\) 0 0
\(898\) 15.5885 9.00000i 0.520194 0.300334i
\(899\) −18.0000 −0.600334
\(900\) 0 0
\(901\) 0 0
\(902\) 19.0526 11.0000i 0.634381 0.366260i
\(903\) 0 0
\(904\) 6.00000 10.3923i 0.199557 0.345643i
\(905\) −16.0167 24.2583i −0.532412 0.806374i
\(906\) 0 0
\(907\) −28.5788 + 16.5000i −0.948945 + 0.547874i −0.892753 0.450546i \(-0.851229\pi\)
−0.0561918 + 0.998420i \(0.517896\pi\)
\(908\) 8.00000i 0.265489i
\(909\) 0 0
\(910\) 12.0000 + 6.00000i 0.397796 + 0.198898i
\(911\) 6.00000 + 10.3923i 0.198789 + 0.344312i 0.948136 0.317865i \(-0.102966\pi\)
−0.749347 + 0.662177i \(0.769633\pi\)
\(912\) 0 0
\(913\) −19.0526 11.0000i −0.630548 0.364047i
\(914\) 5.00000 8.66025i 0.165385 0.286456i
\(915\) 0 0
\(916\) 3.50000 + 6.06218i 0.115643 + 0.200300i
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) 36.0000 1.18753 0.593765 0.804638i \(-0.297641\pi\)
0.593765 + 0.804638i \(0.297641\pi\)
\(920\) 2.23205 0.133975i 0.0735885 0.00441701i
\(921\) 0 0
\(922\) −18.1865 10.5000i −0.598942 0.345799i
\(923\) 31.1769 + 18.0000i 1.02620 + 0.592477i
\(924\) 0 0
\(925\) 9.19615 + 3.92820i 0.302368 + 0.129159i
\(926\) −36.0000 −1.18303
\(927\) 0 0
\(928\) 9.00000i 0.295439i
\(929\) 9.00000 + 15.5885i 0.295280 + 0.511441i 0.975050 0.221985i \(-0.0712536\pi\)
−0.679770 + 0.733426i \(0.737920\pi\)
\(930\) 0 0
\(931\) 18.0000 31.1769i 0.589926 1.02178i
\(932\) 8.66025 + 5.00000i 0.283676 + 0.163780i
\(933\) 0 0
\(934\) 18.0000 + 31.1769i 0.588978 + 1.02014i
\(935\) −8.00000 4.00000i −0.261628 0.130814i
\(936\) 0 0
\(937\) 52.0000i 1.69877i −0.527777 0.849383i \(-0.676974\pi\)
0.527777 0.849383i \(-0.323026\pi\)
\(938\) −9.52628 + 5.50000i −0.311044 + 0.179581i
\(939\) 0 0
\(940\) −13.0622 + 8.62436i −0.426041 + 0.281295i
\(941\) −20.5000 + 35.5070i −0.668281 + 1.15750i 0.310104 + 0.950703i \(0.399636\pi\)
−0.978385 + 0.206794i \(0.933697\pi\)
\(942\) 0 0
\(943\) −9.52628 + 5.50000i −0.310218 + 0.179105i
\(944\) −4.00000 −0.130189
\(945\) 0 0
\(946\) 8.00000 0.260102
\(947\) −44.1673 + 25.5000i −1.43524 + 0.828639i −0.997514 0.0704677i \(-0.977551\pi\)
−0.437730 + 0.899106i \(0.644217\pi\)
\(948\) 0 0
\(949\) 12.0000 20.7846i 0.389536 0.674697i
\(950\) −3.58846 29.7846i −0.116425 0.966340i
\(951\) 0 0
\(952\) −1.73205 + 1.00000i −0.0561361 + 0.0324102i
\(953\) 2.00000i 0.0647864i −0.999475 0.0323932i \(-0.989687\pi\)
0.999475 0.0323932i \(-0.0103129\pi\)
\(954\) 0 0
\(955\) −6.00000 + 12.0000i −0.194155 + 0.388311i
\(956\) 14.0000 + 24.2487i 0.452792 + 0.784259i
\(957\) 0 0
\(958\) −24.2487 14.0000i −0.783440 0.452319i
\(959\) 6.00000 10.3923i 0.193750 0.335585i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 12.0000i 0.386896i
\(963\) 0 0
\(964\) −1.00000 −0.0322078
\(965\) 1.33975 + 22.3205i 0.0431279 + 0.718523i
\(966\) 0 0
\(967\) −14.7224 8.50000i −0.473441 0.273342i 0.244238 0.969715i \(-0.421462\pi\)
−0.717679 + 0.696374i \(0.754796\pi\)
\(968\) −6.06218 3.50000i −0.194846 0.112494i
\(969\) 0 0
\(970\) 17.8564 1.07180i 0.573335 0.0344133i
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) 6.00000 + 10.3923i 0.192252 + 0.332991i
\(975\) 0 0
\(976\) 3.50000 6.06218i 0.112032 0.194046i
\(977\) −46.7654 27.0000i −1.49616 0.863807i −0.496167 0.868227i \(-0.665259\pi\)
−0.999990 + 0.00442082i \(0.998593\pi\)
\(978\) 0 0
\(979\) −1.00000 1.73205i −0.0319601 0.0553566i
\(980\) −6.00000 + 12.0000i −0.191663 + 0.383326i
\(981\) 0 0
\(982\) 0 0
\(983\) 16.4545 9.50000i 0.524816 0.303003i −0.214087 0.976815i \(-0.568677\pi\)
0.738903 + 0.673812i \(0.235344\pi\)
\(984\) 0 0
\(985\) −14.9282 + 9.85641i −0.475652 + 0.314051i
\(986\) −9.00000 + 15.5885i −0.286618 + 0.496438i
\(987\) 0 0
\(988\) −31.1769 + 18.0000i −0.991870 + 0.572656i
\(989\) −4.00000 −0.127193
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) −1.73205 + 1.00000i −0.0549927 + 0.0317500i
\(993\) 0 0
\(994\) 3.00000 5.19615i 0.0951542 0.164812i
\(995\) 22.1769 + 33.5885i 0.703055 + 1.06483i
\(996\) 0 0
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 24.0000i 0.759707i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.2.i.a.199.2 4
3.2 odd 2 90.2.i.a.49.1 4
4.3 odd 2 2160.2.by.b.1009.2 4
5.2 odd 4 1350.2.e.i.901.1 2
5.3 odd 4 1350.2.e.a.901.1 2
5.4 even 2 inner 270.2.i.a.199.1 4
9.2 odd 6 90.2.i.a.79.2 yes 4
9.4 even 3 810.2.c.c.649.2 2
9.5 odd 6 810.2.c.b.649.1 2
9.7 even 3 inner 270.2.i.a.19.1 4
12.11 even 2 720.2.by.a.49.1 4
15.2 even 4 450.2.e.b.301.1 2
15.8 even 4 450.2.e.g.301.1 2
15.14 odd 2 90.2.i.a.49.2 yes 4
20.19 odd 2 2160.2.by.b.1009.1 4
36.7 odd 6 2160.2.by.b.289.1 4
36.11 even 6 720.2.by.a.529.2 4
45.2 even 12 450.2.e.b.151.1 2
45.4 even 6 810.2.c.c.649.1 2
45.7 odd 12 1350.2.e.i.451.1 2
45.13 odd 12 4050.2.a.be.1.1 1
45.14 odd 6 810.2.c.b.649.2 2
45.22 odd 12 4050.2.a.g.1.1 1
45.23 even 12 4050.2.a.j.1.1 1
45.29 odd 6 90.2.i.a.79.1 yes 4
45.32 even 12 4050.2.a.x.1.1 1
45.34 even 6 inner 270.2.i.a.19.2 4
45.38 even 12 450.2.e.g.151.1 2
45.43 odd 12 1350.2.e.a.451.1 2
60.59 even 2 720.2.by.a.49.2 4
180.79 odd 6 2160.2.by.b.289.2 4
180.119 even 6 720.2.by.a.529.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.a.49.1 4 3.2 odd 2
90.2.i.a.49.2 yes 4 15.14 odd 2
90.2.i.a.79.1 yes 4 45.29 odd 6
90.2.i.a.79.2 yes 4 9.2 odd 6
270.2.i.a.19.1 4 9.7 even 3 inner
270.2.i.a.19.2 4 45.34 even 6 inner
270.2.i.a.199.1 4 5.4 even 2 inner
270.2.i.a.199.2 4 1.1 even 1 trivial
450.2.e.b.151.1 2 45.2 even 12
450.2.e.b.301.1 2 15.2 even 4
450.2.e.g.151.1 2 45.38 even 12
450.2.e.g.301.1 2 15.8 even 4
720.2.by.a.49.1 4 12.11 even 2
720.2.by.a.49.2 4 60.59 even 2
720.2.by.a.529.1 4 180.119 even 6
720.2.by.a.529.2 4 36.11 even 6
810.2.c.b.649.1 2 9.5 odd 6
810.2.c.b.649.2 2 45.14 odd 6
810.2.c.c.649.1 2 45.4 even 6
810.2.c.c.649.2 2 9.4 even 3
1350.2.e.a.451.1 2 45.43 odd 12
1350.2.e.a.901.1 2 5.3 odd 4
1350.2.e.i.451.1 2 45.7 odd 12
1350.2.e.i.901.1 2 5.2 odd 4
2160.2.by.b.289.1 4 36.7 odd 6
2160.2.by.b.289.2 4 180.79 odd 6
2160.2.by.b.1009.1 4 20.19 odd 2
2160.2.by.b.1009.2 4 4.3 odd 2
4050.2.a.g.1.1 1 45.22 odd 12
4050.2.a.j.1.1 1 45.23 even 12
4050.2.a.x.1.1 1 45.32 even 12
4050.2.a.be.1.1 1 45.13 odd 12