Properties

Label 720.2.by.a.49.2
Level $720$
Weight $2$
Character 720.49
Analytic conductor $5.749$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(49,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.by (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 49.2
Root \(-0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 720.49
Dual form 720.2.by.a.529.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{3} +(2.23205 + 0.133975i) q^{5} +(0.866025 - 0.500000i) q^{7} +(-1.50000 - 2.59808i) q^{9} +(-1.00000 - 1.73205i) q^{11} +(-5.19615 - 3.00000i) q^{13} +(2.13397 - 3.23205i) q^{15} -2.00000i q^{17} +6.00000 q^{19} -1.73205i q^{21} +(-0.866025 - 0.500000i) q^{23} +(4.96410 + 0.598076i) q^{25} -5.19615 q^{27} +(4.50000 + 7.79423i) q^{29} +(-1.00000 + 1.73205i) q^{31} -3.46410 q^{33} +(2.00000 - 1.00000i) q^{35} +2.00000i q^{37} +(-9.00000 + 5.19615i) q^{39} +(5.50000 - 9.52628i) q^{41} +(-3.46410 + 2.00000i) q^{43} +(-3.00000 - 6.00000i) q^{45} +(6.06218 - 3.50000i) q^{47} +(-3.00000 + 5.19615i) q^{49} +(-3.00000 - 1.73205i) q^{51} +(-2.00000 - 4.00000i) q^{55} +(5.19615 - 9.00000i) q^{57} +(2.00000 - 3.46410i) q^{59} +(3.50000 + 6.06218i) q^{61} +(-2.59808 - 1.50000i) q^{63} +(-11.1962 - 7.39230i) q^{65} +(-9.52628 - 5.50000i) q^{67} +(-1.50000 + 0.866025i) q^{69} +6.00000 q^{71} +4.00000i q^{73} +(5.19615 - 6.92820i) q^{75} +(-1.73205 - 1.00000i) q^{77} +(6.00000 + 10.3923i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(-9.52628 + 5.50000i) q^{83} +(0.267949 - 4.46410i) q^{85} +15.5885 q^{87} -1.00000 q^{89} -6.00000 q^{91} +(1.73205 + 3.00000i) q^{93} +(13.3923 + 0.803848i) q^{95} +(-6.92820 + 4.00000i) q^{97} +(-3.00000 + 5.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{5} - 6 q^{9} - 4 q^{11} + 12 q^{15} + 24 q^{19} + 6 q^{25} + 18 q^{29} - 4 q^{31} + 8 q^{35} - 36 q^{39} + 22 q^{41} - 12 q^{45} - 12 q^{49} - 12 q^{51} - 8 q^{55} + 8 q^{59} + 14 q^{61} - 24 q^{65}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.866025 1.50000i 0.500000 0.866025i
\(4\) 0 0
\(5\) 2.23205 + 0.133975i 0.998203 + 0.0599153i
\(6\) 0 0
\(7\) 0.866025 0.500000i 0.327327 0.188982i −0.327327 0.944911i \(-0.606148\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 0 0
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 0 0
\(11\) −1.00000 1.73205i −0.301511 0.522233i 0.674967 0.737848i \(-0.264158\pi\)
−0.976478 + 0.215615i \(0.930824\pi\)
\(12\) 0 0
\(13\) −5.19615 3.00000i −1.44115 0.832050i −0.443227 0.896410i \(-0.646166\pi\)
−0.997927 + 0.0643593i \(0.979500\pi\)
\(14\) 0 0
\(15\) 2.13397 3.23205i 0.550990 0.834512i
\(16\) 0 0
\(17\) 2.00000i 0.485071i −0.970143 0.242536i \(-0.922021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) 1.73205i 0.377964i
\(22\) 0 0
\(23\) −0.866025 0.500000i −0.180579 0.104257i 0.406986 0.913434i \(-0.366580\pi\)
−0.587565 + 0.809177i \(0.699913\pi\)
\(24\) 0 0
\(25\) 4.96410 + 0.598076i 0.992820 + 0.119615i
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 0 0
\(29\) 4.50000 + 7.79423i 0.835629 + 1.44735i 0.893517 + 0.449029i \(0.148230\pi\)
−0.0578882 + 0.998323i \(0.518437\pi\)
\(30\) 0 0
\(31\) −1.00000 + 1.73205i −0.179605 + 0.311086i −0.941745 0.336327i \(-0.890815\pi\)
0.762140 + 0.647412i \(0.224149\pi\)
\(32\) 0 0
\(33\) −3.46410 −0.603023
\(34\) 0 0
\(35\) 2.00000 1.00000i 0.338062 0.169031i
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) −9.00000 + 5.19615i −1.44115 + 0.832050i
\(40\) 0 0
\(41\) 5.50000 9.52628i 0.858956 1.48775i −0.0139704 0.999902i \(-0.504447\pi\)
0.872926 0.487852i \(-0.162220\pi\)
\(42\) 0 0
\(43\) −3.46410 + 2.00000i −0.528271 + 0.304997i −0.740312 0.672264i \(-0.765322\pi\)
0.212041 + 0.977261i \(0.431989\pi\)
\(44\) 0 0
\(45\) −3.00000 6.00000i −0.447214 0.894427i
\(46\) 0 0
\(47\) 6.06218 3.50000i 0.884260 0.510527i 0.0121990 0.999926i \(-0.496117\pi\)
0.872060 + 0.489398i \(0.162783\pi\)
\(48\) 0 0
\(49\) −3.00000 + 5.19615i −0.428571 + 0.742307i
\(50\) 0 0
\(51\) −3.00000 1.73205i −0.420084 0.242536i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) −2.00000 4.00000i −0.269680 0.539360i
\(56\) 0 0
\(57\) 5.19615 9.00000i 0.688247 1.19208i
\(58\) 0 0
\(59\) 2.00000 3.46410i 0.260378 0.450988i −0.705965 0.708247i \(-0.749486\pi\)
0.966342 + 0.257260i \(0.0828195\pi\)
\(60\) 0 0
\(61\) 3.50000 + 6.06218i 0.448129 + 0.776182i 0.998264 0.0588933i \(-0.0187572\pi\)
−0.550135 + 0.835076i \(0.685424\pi\)
\(62\) 0 0
\(63\) −2.59808 1.50000i −0.327327 0.188982i
\(64\) 0 0
\(65\) −11.1962 7.39230i −1.38871 0.916903i
\(66\) 0 0
\(67\) −9.52628 5.50000i −1.16382 0.671932i −0.211604 0.977356i \(-0.567869\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) 0 0
\(69\) −1.50000 + 0.866025i −0.180579 + 0.104257i
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) 0 0
\(75\) 5.19615 6.92820i 0.600000 0.800000i
\(76\) 0 0
\(77\) −1.73205 1.00000i −0.197386 0.113961i
\(78\) 0 0
\(79\) 6.00000 + 10.3923i 0.675053 + 1.16923i 0.976453 + 0.215728i \(0.0692125\pi\)
−0.301401 + 0.953498i \(0.597454\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) −9.52628 + 5.50000i −1.04565 + 0.603703i −0.921427 0.388552i \(-0.872976\pi\)
−0.124218 + 0.992255i \(0.539642\pi\)
\(84\) 0 0
\(85\) 0.267949 4.46410i 0.0290632 0.484200i
\(86\) 0 0
\(87\) 15.5885 1.67126
\(88\) 0 0
\(89\) −1.00000 −0.106000 −0.0529999 0.998595i \(-0.516878\pi\)
−0.0529999 + 0.998595i \(0.516878\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) 0 0
\(93\) 1.73205 + 3.00000i 0.179605 + 0.311086i
\(94\) 0 0
\(95\) 13.3923 + 0.803848i 1.37402 + 0.0824730i
\(96\) 0 0
\(97\) −6.92820 + 4.00000i −0.703452 + 0.406138i −0.808632 0.588315i \(-0.799792\pi\)
0.105180 + 0.994453i \(0.466458\pi\)
\(98\) 0 0
\(99\) −3.00000 + 5.19615i −0.301511 + 0.522233i
\(100\) 0 0
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 0 0
\(103\) 6.92820 + 4.00000i 0.682656 + 0.394132i 0.800855 0.598858i \(-0.204379\pi\)
−0.118199 + 0.992990i \(0.537712\pi\)
\(104\) 0 0
\(105\) 0.232051 3.86603i 0.0226458 0.377285i
\(106\) 0 0
\(107\) 3.00000i 0.290021i −0.989430 0.145010i \(-0.953678\pi\)
0.989430 0.145010i \(-0.0463216\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) 3.00000 + 1.73205i 0.284747 + 0.164399i
\(112\) 0 0
\(113\) 10.3923 + 6.00000i 0.977626 + 0.564433i 0.901553 0.432670i \(-0.142428\pi\)
0.0760733 + 0.997102i \(0.475762\pi\)
\(114\) 0 0
\(115\) −1.86603 1.23205i −0.174008 0.114889i
\(116\) 0 0
\(117\) 18.0000i 1.66410i
\(118\) 0 0
\(119\) −1.00000 1.73205i −0.0916698 0.158777i
\(120\) 0 0
\(121\) 3.50000 6.06218i 0.318182 0.551107i
\(122\) 0 0
\(123\) −9.52628 16.5000i −0.858956 1.48775i
\(124\) 0 0
\(125\) 11.0000 + 2.00000i 0.983870 + 0.178885i
\(126\) 0 0
\(127\) 19.0000i 1.68598i 0.537931 + 0.842989i \(0.319206\pi\)
−0.537931 + 0.842989i \(0.680794\pi\)
\(128\) 0 0
\(129\) 6.92820i 0.609994i
\(130\) 0 0
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) 5.19615 3.00000i 0.450564 0.260133i
\(134\) 0 0
\(135\) −11.5981 0.696152i −0.998203 0.0599153i
\(136\) 0 0
\(137\) 10.3923 6.00000i 0.887875 0.512615i 0.0146279 0.999893i \(-0.495344\pi\)
0.873247 + 0.487278i \(0.162010\pi\)
\(138\) 0 0
\(139\) −8.00000 + 13.8564i −0.678551 + 1.17529i 0.296866 + 0.954919i \(0.404058\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 12.1244i 1.02105i
\(142\) 0 0
\(143\) 12.0000i 1.00349i
\(144\) 0 0
\(145\) 9.00000 + 18.0000i 0.747409 + 1.49482i
\(146\) 0 0
\(147\) 5.19615 + 9.00000i 0.428571 + 0.742307i
\(148\) 0 0
\(149\) −0.500000 + 0.866025i −0.0409616 + 0.0709476i −0.885779 0.464107i \(-0.846375\pi\)
0.844818 + 0.535054i \(0.179709\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) −5.19615 + 3.00000i −0.420084 + 0.242536i
\(154\) 0 0
\(155\) −2.46410 + 3.73205i −0.197921 + 0.299766i
\(156\) 0 0
\(157\) −3.46410 2.00000i −0.276465 0.159617i 0.355357 0.934731i \(-0.384359\pi\)
−0.631822 + 0.775113i \(0.717693\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 0 0
\(165\) −7.73205 0.464102i −0.601939 0.0361303i
\(166\) 0 0
\(167\) −2.59808 1.50000i −0.201045 0.116073i 0.396098 0.918208i \(-0.370364\pi\)
−0.597143 + 0.802135i \(0.703697\pi\)
\(168\) 0 0
\(169\) 11.5000 + 19.9186i 0.884615 + 1.53220i
\(170\) 0 0
\(171\) −9.00000 15.5885i −0.688247 1.19208i
\(172\) 0 0
\(173\) 3.46410 2.00000i 0.263371 0.152057i −0.362500 0.931984i \(-0.618077\pi\)
0.625871 + 0.779926i \(0.284744\pi\)
\(174\) 0 0
\(175\) 4.59808 1.96410i 0.347582 0.148472i
\(176\) 0 0
\(177\) −3.46410 6.00000i −0.260378 0.450988i
\(178\) 0 0
\(179\) 2.00000 0.149487 0.0747435 0.997203i \(-0.476186\pi\)
0.0747435 + 0.997203i \(0.476186\pi\)
\(180\) 0 0
\(181\) −13.0000 −0.966282 −0.483141 0.875542i \(-0.660504\pi\)
−0.483141 + 0.875542i \(0.660504\pi\)
\(182\) 0 0
\(183\) 12.1244 0.896258
\(184\) 0 0
\(185\) −0.267949 + 4.46410i −0.0197000 + 0.328207i
\(186\) 0 0
\(187\) −3.46410 + 2.00000i −0.253320 + 0.146254i
\(188\) 0 0
\(189\) −4.50000 + 2.59808i −0.327327 + 0.188982i
\(190\) 0 0
\(191\) 3.00000 + 5.19615i 0.217072 + 0.375980i 0.953912 0.300088i \(-0.0970159\pi\)
−0.736839 + 0.676068i \(0.763683\pi\)
\(192\) 0 0
\(193\) −8.66025 5.00000i −0.623379 0.359908i 0.154805 0.987945i \(-0.450525\pi\)
−0.778183 + 0.628037i \(0.783859\pi\)
\(194\) 0 0
\(195\) −20.7846 + 10.3923i −1.48842 + 0.744208i
\(196\) 0 0
\(197\) 8.00000i 0.569976i 0.958531 + 0.284988i \(0.0919897\pi\)
−0.958531 + 0.284988i \(0.908010\pi\)
\(198\) 0 0
\(199\) −18.0000 −1.27599 −0.637993 0.770042i \(-0.720235\pi\)
−0.637993 + 0.770042i \(0.720235\pi\)
\(200\) 0 0
\(201\) −16.5000 + 9.52628i −1.16382 + 0.671932i
\(202\) 0 0
\(203\) 7.79423 + 4.50000i 0.547048 + 0.315838i
\(204\) 0 0
\(205\) 13.5526 20.5263i 0.946552 1.43362i
\(206\) 0 0
\(207\) 3.00000i 0.208514i
\(208\) 0 0
\(209\) −6.00000 10.3923i −0.415029 0.718851i
\(210\) 0 0
\(211\) 9.00000 15.5885i 0.619586 1.07315i −0.369976 0.929041i \(-0.620634\pi\)
0.989561 0.144112i \(-0.0460326\pi\)
\(212\) 0 0
\(213\) 5.19615 9.00000i 0.356034 0.616670i
\(214\) 0 0
\(215\) −8.00000 + 4.00000i −0.545595 + 0.272798i
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) 0 0
\(219\) 6.00000 + 3.46410i 0.405442 + 0.234082i
\(220\) 0 0
\(221\) −6.00000 + 10.3923i −0.403604 + 0.699062i
\(222\) 0 0
\(223\) 19.9186 11.5000i 1.33385 0.770097i 0.347960 0.937509i \(-0.386874\pi\)
0.985887 + 0.167412i \(0.0535411\pi\)
\(224\) 0 0
\(225\) −5.89230 13.7942i −0.392820 0.919615i
\(226\) 0 0
\(227\) 6.92820 4.00000i 0.459841 0.265489i −0.252136 0.967692i \(-0.581133\pi\)
0.711977 + 0.702202i \(0.247800\pi\)
\(228\) 0 0
\(229\) −3.50000 + 6.06218i −0.231287 + 0.400600i −0.958187 0.286143i \(-0.907627\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) −3.00000 + 1.73205i −0.197386 + 0.113961i
\(232\) 0 0
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 0 0
\(235\) 14.0000 7.00000i 0.913259 0.456630i
\(236\) 0 0
\(237\) 20.7846 1.35011
\(238\) 0 0
\(239\) −14.0000 + 24.2487i −0.905585 + 1.56852i −0.0854543 + 0.996342i \(0.527234\pi\)
−0.820130 + 0.572177i \(0.806099\pi\)
\(240\) 0 0
\(241\) −0.500000 0.866025i −0.0322078 0.0557856i 0.849472 0.527633i \(-0.176921\pi\)
−0.881680 + 0.471848i \(0.843587\pi\)
\(242\) 0 0
\(243\) 7.79423 + 13.5000i 0.500000 + 0.866025i
\(244\) 0 0
\(245\) −7.39230 + 11.1962i −0.472277 + 0.715296i
\(246\) 0 0
\(247\) −31.1769 18.0000i −1.98374 1.14531i
\(248\) 0 0
\(249\) 19.0526i 1.20741i
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 2.00000i 0.125739i
\(254\) 0 0
\(255\) −6.46410 4.26795i −0.404798 0.267269i
\(256\) 0 0
\(257\) −10.3923 6.00000i −0.648254 0.374270i 0.139533 0.990217i \(-0.455440\pi\)
−0.787787 + 0.615948i \(0.788773\pi\)
\(258\) 0 0
\(259\) 1.00000 + 1.73205i 0.0621370 + 0.107624i
\(260\) 0 0
\(261\) 13.5000 23.3827i 0.835629 1.44735i
\(262\) 0 0
\(263\) 13.8564 8.00000i 0.854423 0.493301i −0.00771799 0.999970i \(-0.502457\pi\)
0.862141 + 0.506669i \(0.169123\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −0.866025 + 1.50000i −0.0529999 + 0.0917985i
\(268\) 0 0
\(269\) −3.00000 −0.182913 −0.0914566 0.995809i \(-0.529152\pi\)
−0.0914566 + 0.995809i \(0.529152\pi\)
\(270\) 0 0
\(271\) 14.0000 0.850439 0.425220 0.905090i \(-0.360197\pi\)
0.425220 + 0.905090i \(0.360197\pi\)
\(272\) 0 0
\(273\) −5.19615 + 9.00000i −0.314485 + 0.544705i
\(274\) 0 0
\(275\) −3.92820 9.19615i −0.236880 0.554549i
\(276\) 0 0
\(277\) −19.0526 + 11.0000i −1.14476 + 0.660926i −0.947604 0.319447i \(-0.896503\pi\)
−0.197153 + 0.980373i \(0.563170\pi\)
\(278\) 0 0
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) 1.50000 + 2.59808i 0.0894825 + 0.154988i 0.907293 0.420500i \(-0.138145\pi\)
−0.817810 + 0.575488i \(0.804812\pi\)
\(282\) 0 0
\(283\) −0.866025 0.500000i −0.0514799 0.0297219i 0.474039 0.880504i \(-0.342796\pi\)
−0.525519 + 0.850782i \(0.676129\pi\)
\(284\) 0 0
\(285\) 12.8038 19.3923i 0.758434 1.14870i
\(286\) 0 0
\(287\) 11.0000i 0.649309i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 13.8564i 0.812277i
\(292\) 0 0
\(293\) −15.5885 9.00000i −0.910687 0.525786i −0.0300351 0.999549i \(-0.509562\pi\)
−0.880652 + 0.473763i \(0.842895\pi\)
\(294\) 0 0
\(295\) 4.92820 7.46410i 0.286931 0.434577i
\(296\) 0 0
\(297\) 5.19615 + 9.00000i 0.301511 + 0.522233i
\(298\) 0 0
\(299\) 3.00000 + 5.19615i 0.173494 + 0.300501i
\(300\) 0 0
\(301\) −2.00000 + 3.46410i −0.115278 + 0.199667i
\(302\) 0 0
\(303\) −3.46410 −0.199007
\(304\) 0 0
\(305\) 7.00000 + 14.0000i 0.400819 + 0.801638i
\(306\) 0 0
\(307\) 9.00000i 0.513657i 0.966457 + 0.256829i \(0.0826776\pi\)
−0.966457 + 0.256829i \(0.917322\pi\)
\(308\) 0 0
\(309\) 12.0000 6.92820i 0.682656 0.394132i
\(310\) 0 0
\(311\) 3.00000 5.19615i 0.170114 0.294647i −0.768345 0.640036i \(-0.778920\pi\)
0.938460 + 0.345389i \(0.112253\pi\)
\(312\) 0 0
\(313\) 19.0526 11.0000i 1.07691 0.621757i 0.146852 0.989158i \(-0.453086\pi\)
0.930062 + 0.367402i \(0.119753\pi\)
\(314\) 0 0
\(315\) −5.59808 3.69615i −0.315416 0.208255i
\(316\) 0 0
\(317\) −1.73205 + 1.00000i −0.0972817 + 0.0561656i −0.547852 0.836576i \(-0.684554\pi\)
0.450570 + 0.892741i \(0.351221\pi\)
\(318\) 0 0
\(319\) 9.00000 15.5885i 0.503903 0.872786i
\(320\) 0 0
\(321\) −4.50000 2.59808i −0.251166 0.145010i
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 0 0
\(325\) −24.0000 18.0000i −1.33128 0.998460i
\(326\) 0 0
\(327\) −6.06218 + 10.5000i −0.335239 + 0.580651i
\(328\) 0 0
\(329\) 3.50000 6.06218i 0.192961 0.334219i
\(330\) 0 0
\(331\) −4.00000 6.92820i −0.219860 0.380808i 0.734905 0.678170i \(-0.237227\pi\)
−0.954765 + 0.297361i \(0.903893\pi\)
\(332\) 0 0
\(333\) 5.19615 3.00000i 0.284747 0.164399i
\(334\) 0 0
\(335\) −20.5263 13.5526i −1.12147 0.740455i
\(336\) 0 0
\(337\) −6.92820 4.00000i −0.377403 0.217894i 0.299285 0.954164i \(-0.403252\pi\)
−0.676688 + 0.736270i \(0.736585\pi\)
\(338\) 0 0
\(339\) 18.0000 10.3923i 0.977626 0.564433i
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) 0 0
\(343\) 13.0000i 0.701934i
\(344\) 0 0
\(345\) −3.46410 + 1.73205i −0.186501 + 0.0932505i
\(346\) 0 0
\(347\) −10.3923 6.00000i −0.557888 0.322097i 0.194409 0.980921i \(-0.437721\pi\)
−0.752297 + 0.658824i \(0.771054\pi\)
\(348\) 0 0
\(349\) −5.50000 9.52628i −0.294408 0.509930i 0.680439 0.732805i \(-0.261789\pi\)
−0.974847 + 0.222875i \(0.928456\pi\)
\(350\) 0 0
\(351\) 27.0000 + 15.5885i 1.44115 + 0.832050i
\(352\) 0 0
\(353\) 13.8564 8.00000i 0.737502 0.425797i −0.0836583 0.996495i \(-0.526660\pi\)
0.821160 + 0.570697i \(0.193327\pi\)
\(354\) 0 0
\(355\) 13.3923 + 0.803848i 0.710790 + 0.0426638i
\(356\) 0 0
\(357\) −3.46410 −0.183340
\(358\) 0 0
\(359\) 30.0000 1.58334 0.791670 0.610949i \(-0.209212\pi\)
0.791670 + 0.610949i \(0.209212\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −6.06218 10.5000i −0.318182 0.551107i
\(364\) 0 0
\(365\) −0.535898 + 8.92820i −0.0280502 + 0.467324i
\(366\) 0 0
\(367\) 13.8564 8.00000i 0.723299 0.417597i −0.0926670 0.995697i \(-0.529539\pi\)
0.815966 + 0.578101i \(0.196206\pi\)
\(368\) 0 0
\(369\) −33.0000 −1.71791
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.3923 + 6.00000i 0.538093 + 0.310668i 0.744306 0.667839i \(-0.232781\pi\)
−0.206213 + 0.978507i \(0.566114\pi\)
\(374\) 0 0
\(375\) 12.5263 14.7679i 0.646854 0.762614i
\(376\) 0 0
\(377\) 54.0000i 2.78114i
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) 28.5000 + 16.4545i 1.46010 + 0.842989i
\(382\) 0 0
\(383\) −27.7128 16.0000i −1.41606 0.817562i −0.420109 0.907474i \(-0.638008\pi\)
−0.995950 + 0.0899119i \(0.971341\pi\)
\(384\) 0 0
\(385\) −3.73205 2.46410i −0.190203 0.125582i
\(386\) 0 0
\(387\) 10.3923 + 6.00000i 0.528271 + 0.304997i
\(388\) 0 0
\(389\) 9.50000 + 16.4545i 0.481669 + 0.834275i 0.999779 0.0210389i \(-0.00669738\pi\)
−0.518110 + 0.855314i \(0.673364\pi\)
\(390\) 0 0
\(391\) −1.00000 + 1.73205i −0.0505722 + 0.0875936i
\(392\) 0 0
\(393\) −10.3923 18.0000i −0.524222 0.907980i
\(394\) 0 0
\(395\) 12.0000 + 24.0000i 0.603786 + 1.20757i
\(396\) 0 0
\(397\) 4.00000i 0.200754i −0.994949 0.100377i \(-0.967995\pi\)
0.994949 0.100377i \(-0.0320049\pi\)
\(398\) 0 0
\(399\) 10.3923i 0.520266i
\(400\) 0 0
\(401\) 5.00000 8.66025i 0.249688 0.432472i −0.713751 0.700399i \(-0.753005\pi\)
0.963439 + 0.267927i \(0.0863386\pi\)
\(402\) 0 0
\(403\) 10.3923 6.00000i 0.517678 0.298881i
\(404\) 0 0
\(405\) −11.0885 + 16.7942i −0.550990 + 0.834512i
\(406\) 0 0
\(407\) 3.46410 2.00000i 0.171709 0.0991363i
\(408\) 0 0
\(409\) 19.0000 32.9090i 0.939490 1.62724i 0.173064 0.984911i \(-0.444633\pi\)
0.766426 0.642333i \(-0.222033\pi\)
\(410\) 0 0
\(411\) 20.7846i 1.02523i
\(412\) 0 0
\(413\) 4.00000i 0.196827i
\(414\) 0 0
\(415\) −22.0000 + 11.0000i −1.07994 + 0.539969i
\(416\) 0 0
\(417\) 13.8564 + 24.0000i 0.678551 + 1.17529i
\(418\) 0 0
\(419\) −17.0000 + 29.4449i −0.830504 + 1.43848i 0.0671345 + 0.997744i \(0.478614\pi\)
−0.897639 + 0.440732i \(0.854719\pi\)
\(420\) 0 0
\(421\) −11.0000 19.0526i −0.536107 0.928565i −0.999109 0.0422075i \(-0.986561\pi\)
0.463002 0.886357i \(-0.346772\pi\)
\(422\) 0 0
\(423\) −18.1865 10.5000i −0.884260 0.510527i
\(424\) 0 0
\(425\) 1.19615 9.92820i 0.0580219 0.481589i
\(426\) 0 0
\(427\) 6.06218 + 3.50000i 0.293369 + 0.169377i
\(428\) 0 0
\(429\) 18.0000 + 10.3923i 0.869048 + 0.501745i
\(430\) 0 0
\(431\) −16.0000 −0.770693 −0.385346 0.922772i \(-0.625918\pi\)
−0.385346 + 0.922772i \(0.625918\pi\)
\(432\) 0 0
\(433\) 2.00000i 0.0961139i −0.998845 0.0480569i \(-0.984697\pi\)
0.998845 0.0480569i \(-0.0153029\pi\)
\(434\) 0 0
\(435\) 34.7942 + 2.08846i 1.66826 + 0.100134i
\(436\) 0 0
\(437\) −5.19615 3.00000i −0.248566 0.143509i
\(438\) 0 0
\(439\) −12.0000 20.7846i −0.572729 0.991995i −0.996284 0.0861252i \(-0.972552\pi\)
0.423556 0.905870i \(-0.360782\pi\)
\(440\) 0 0
\(441\) 18.0000 0.857143
\(442\) 0 0
\(443\) −7.79423 + 4.50000i −0.370315 + 0.213801i −0.673596 0.739100i \(-0.735251\pi\)
0.303281 + 0.952901i \(0.401918\pi\)
\(444\) 0 0
\(445\) −2.23205 0.133975i −0.105809 0.00635100i
\(446\) 0 0
\(447\) 0.866025 + 1.50000i 0.0409616 + 0.0709476i
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) −22.0000 −1.03594
\(452\) 0 0
\(453\) 17.3205 0.813788
\(454\) 0 0
\(455\) −13.3923 0.803848i −0.627841 0.0376850i
\(456\) 0 0
\(457\) −8.66025 + 5.00000i −0.405110 + 0.233890i −0.688686 0.725059i \(-0.741812\pi\)
0.283577 + 0.958950i \(0.408479\pi\)
\(458\) 0 0
\(459\) 10.3923i 0.485071i
\(460\) 0 0
\(461\) 10.5000 + 18.1865i 0.489034 + 0.847031i 0.999920 0.0126168i \(-0.00401615\pi\)
−0.510887 + 0.859648i \(0.670683\pi\)
\(462\) 0 0
\(463\) −31.1769 18.0000i −1.44891 0.836531i −0.450497 0.892778i \(-0.648753\pi\)
−0.998417 + 0.0562469i \(0.982087\pi\)
\(464\) 0 0
\(465\) 3.46410 + 6.92820i 0.160644 + 0.321288i
\(466\) 0 0
\(467\) 36.0000i 1.66588i −0.553362 0.832941i \(-0.686655\pi\)
0.553362 0.832941i \(-0.313345\pi\)
\(468\) 0 0
\(469\) −11.0000 −0.507933
\(470\) 0 0
\(471\) −6.00000 + 3.46410i −0.276465 + 0.159617i
\(472\) 0 0
\(473\) 6.92820 + 4.00000i 0.318559 + 0.183920i
\(474\) 0 0
\(475\) 29.7846 + 3.58846i 1.36661 + 0.164650i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −14.0000 24.2487i −0.639676 1.10795i −0.985504 0.169654i \(-0.945735\pi\)
0.345827 0.938298i \(-0.387598\pi\)
\(480\) 0 0
\(481\) 6.00000 10.3923i 0.273576 0.473848i
\(482\) 0 0
\(483\) −0.866025 + 1.50000i −0.0394055 + 0.0682524i
\(484\) 0 0
\(485\) −16.0000 + 8.00000i −0.726523 + 0.363261i
\(486\) 0 0
\(487\) 12.0000i 0.543772i 0.962329 + 0.271886i \(0.0876473\pi\)
−0.962329 + 0.271886i \(0.912353\pi\)
\(488\) 0 0
\(489\) 6.00000 + 3.46410i 0.271329 + 0.156652i
\(490\) 0 0
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 15.5885 9.00000i 0.702069 0.405340i
\(494\) 0 0
\(495\) −7.39230 + 11.1962i −0.332259 + 0.503230i
\(496\) 0 0
\(497\) 5.19615 3.00000i 0.233079 0.134568i
\(498\) 0 0
\(499\) 12.0000 20.7846i 0.537194 0.930447i −0.461860 0.886953i \(-0.652818\pi\)
0.999054 0.0434940i \(-0.0138489\pi\)
\(500\) 0 0
\(501\) −4.50000 + 2.59808i −0.201045 + 0.116073i
\(502\) 0 0
\(503\) 27.0000i 1.20387i 0.798545 + 0.601935i \(0.205603\pi\)
−0.798545 + 0.601935i \(0.794397\pi\)
\(504\) 0 0
\(505\) −2.00000 4.00000i −0.0889988 0.177998i
\(506\) 0 0
\(507\) 39.8372 1.76923
\(508\) 0 0
\(509\) −7.50000 + 12.9904i −0.332432 + 0.575789i −0.982988 0.183669i \(-0.941202\pi\)
0.650556 + 0.759458i \(0.274536\pi\)
\(510\) 0 0
\(511\) 2.00000 + 3.46410i 0.0884748 + 0.153243i
\(512\) 0 0
\(513\) −31.1769 −1.37649
\(514\) 0 0
\(515\) 14.9282 + 9.85641i 0.657815 + 0.434325i
\(516\) 0 0
\(517\) −12.1244 7.00000i −0.533229 0.307860i
\(518\) 0 0
\(519\) 6.92820i 0.304114i
\(520\) 0 0
\(521\) −37.0000 −1.62100 −0.810500 0.585739i \(-0.800804\pi\)
−0.810500 + 0.585739i \(0.800804\pi\)
\(522\) 0 0
\(523\) 29.0000i 1.26808i −0.773300 0.634041i \(-0.781395\pi\)
0.773300 0.634041i \(-0.218605\pi\)
\(524\) 0 0
\(525\) 1.03590 8.59808i 0.0452103 0.375251i
\(526\) 0 0
\(527\) 3.46410 + 2.00000i 0.150899 + 0.0871214i
\(528\) 0 0
\(529\) −11.0000 19.0526i −0.478261 0.828372i
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) −57.1577 + 33.0000i −2.47577 + 1.42939i
\(534\) 0 0
\(535\) 0.401924 6.69615i 0.0173767 0.289500i
\(536\) 0 0
\(537\) 1.73205 3.00000i 0.0747435 0.129460i
\(538\) 0 0
\(539\) 12.0000 0.516877
\(540\) 0 0
\(541\) −17.0000 −0.730887 −0.365444 0.930834i \(-0.619083\pi\)
−0.365444 + 0.930834i \(0.619083\pi\)
\(542\) 0 0
\(543\) −11.2583 + 19.5000i −0.483141 + 0.836825i
\(544\) 0 0
\(545\) −15.6244 0.937822i −0.669274 0.0401719i
\(546\) 0 0
\(547\) −30.3109 + 17.5000i −1.29600 + 0.748246i −0.979711 0.200417i \(-0.935770\pi\)
−0.316289 + 0.948663i \(0.602437\pi\)
\(548\) 0 0
\(549\) 10.5000 18.1865i 0.448129 0.776182i
\(550\) 0 0
\(551\) 27.0000 + 46.7654i 1.15024 + 1.99227i
\(552\) 0 0
\(553\) 10.3923 + 6.00000i 0.441926 + 0.255146i
\(554\) 0 0
\(555\) 6.46410 + 4.26795i 0.274386 + 0.181164i
\(556\) 0 0
\(557\) 24.0000i 1.01691i −0.861088 0.508456i \(-0.830216\pi\)
0.861088 0.508456i \(-0.169784\pi\)
\(558\) 0 0
\(559\) 24.0000 1.01509
\(560\) 0 0
\(561\) 6.92820i 0.292509i
\(562\) 0 0
\(563\) 32.0429 + 18.5000i 1.35045 + 0.779682i 0.988312 0.152443i \(-0.0487140\pi\)
0.362137 + 0.932125i \(0.382047\pi\)
\(564\) 0 0
\(565\) 22.3923 + 14.7846i 0.942051 + 0.621993i
\(566\) 0 0
\(567\) 9.00000i 0.377964i
\(568\) 0 0
\(569\) −1.00000 1.73205i −0.0419222 0.0726113i 0.844303 0.535866i \(-0.180015\pi\)
−0.886225 + 0.463255i \(0.846681\pi\)
\(570\) 0 0
\(571\) −10.0000 + 17.3205i −0.418487 + 0.724841i −0.995788 0.0916910i \(-0.970773\pi\)
0.577301 + 0.816532i \(0.304106\pi\)
\(572\) 0 0
\(573\) 10.3923 0.434145
\(574\) 0 0
\(575\) −4.00000 3.00000i −0.166812 0.125109i
\(576\) 0 0
\(577\) 32.0000i 1.33218i 0.745873 + 0.666089i \(0.232033\pi\)
−0.745873 + 0.666089i \(0.767967\pi\)
\(578\) 0 0
\(579\) −15.0000 + 8.66025i −0.623379 + 0.359908i
\(580\) 0 0
\(581\) −5.50000 + 9.52628i −0.228178 + 0.395217i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −2.41154 + 40.1769i −0.0997050 + 1.66111i
\(586\) 0 0
\(587\) −2.59808 + 1.50000i −0.107234 + 0.0619116i −0.552658 0.833408i \(-0.686386\pi\)
0.445424 + 0.895320i \(0.353053\pi\)
\(588\) 0 0
\(589\) −6.00000 + 10.3923i −0.247226 + 0.428207i
\(590\) 0 0
\(591\) 12.0000 + 6.92820i 0.493614 + 0.284988i
\(592\) 0 0
\(593\) 30.0000i 1.23195i 0.787765 + 0.615976i \(0.211238\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(594\) 0 0
\(595\) −2.00000 4.00000i −0.0819920 0.163984i
\(596\) 0 0
\(597\) −15.5885 + 27.0000i −0.637993 + 1.10504i
\(598\) 0 0
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) 11.0000 + 19.0526i 0.448699 + 0.777170i 0.998302 0.0582563i \(-0.0185541\pi\)
−0.549602 + 0.835426i \(0.685221\pi\)
\(602\) 0 0
\(603\) 33.0000i 1.34386i
\(604\) 0 0
\(605\) 8.62436 13.0622i 0.350630 0.531053i
\(606\) 0 0
\(607\) 0.866025 + 0.500000i 0.0351509 + 0.0202944i 0.517472 0.855700i \(-0.326873\pi\)
−0.482322 + 0.875994i \(0.660206\pi\)
\(608\) 0 0
\(609\) 13.5000 7.79423i 0.547048 0.315838i
\(610\) 0 0
\(611\) −42.0000 −1.69914
\(612\) 0 0
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 0 0
\(615\) −19.0526 38.1051i −0.768273 1.53655i
\(616\) 0 0
\(617\) 27.7128 + 16.0000i 1.11568 + 0.644136i 0.940294 0.340365i \(-0.110551\pi\)
0.175382 + 0.984500i \(0.443884\pi\)
\(618\) 0 0
\(619\) 5.00000 + 8.66025i 0.200967 + 0.348085i 0.948840 0.315757i \(-0.102258\pi\)
−0.747873 + 0.663842i \(0.768925\pi\)
\(620\) 0 0
\(621\) 4.50000 + 2.59808i 0.180579 + 0.104257i
\(622\) 0 0
\(623\) −0.866025 + 0.500000i −0.0346966 + 0.0200321i
\(624\) 0 0
\(625\) 24.2846 + 5.93782i 0.971384 + 0.237513i
\(626\) 0 0
\(627\) −20.7846 −0.830057
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) −15.5885 27.0000i −0.619586 1.07315i
\(634\) 0 0
\(635\) −2.54552 + 42.4090i −0.101016 + 1.68295i
\(636\) 0 0
\(637\) 31.1769 18.0000i 1.23527 0.713186i
\(638\) 0 0
\(639\) −9.00000 15.5885i −0.356034 0.616670i
\(640\) 0 0
\(641\) −6.50000 11.2583i −0.256735 0.444677i 0.708631 0.705580i \(-0.249313\pi\)
−0.965365 + 0.260902i \(0.915980\pi\)
\(642\) 0 0
\(643\) 28.5788 + 16.5000i 1.12704 + 0.650696i 0.943189 0.332258i \(-0.107810\pi\)
0.183851 + 0.982954i \(0.441144\pi\)
\(644\) 0 0
\(645\) −0.928203 + 15.4641i −0.0365480 + 0.608898i
\(646\) 0 0
\(647\) 33.0000i 1.29736i −0.761060 0.648682i \(-0.775321\pi\)
0.761060 0.648682i \(-0.224679\pi\)
\(648\) 0 0
\(649\) −8.00000 −0.314027
\(650\) 0 0
\(651\) 3.00000 + 1.73205i 0.117579 + 0.0678844i
\(652\) 0 0
\(653\) −22.5167 13.0000i −0.881145 0.508729i −0.0101092 0.999949i \(-0.503218\pi\)
−0.871036 + 0.491220i \(0.836551\pi\)
\(654\) 0 0
\(655\) 14.7846 22.3923i 0.577683 0.874940i
\(656\) 0 0
\(657\) 10.3923 6.00000i 0.405442 0.234082i
\(658\) 0 0
\(659\) −10.0000 17.3205i −0.389545 0.674711i 0.602844 0.797859i \(-0.294034\pi\)
−0.992388 + 0.123148i \(0.960701\pi\)
\(660\) 0 0
\(661\) 5.00000 8.66025i 0.194477 0.336845i −0.752252 0.658876i \(-0.771032\pi\)
0.946729 + 0.322031i \(0.104366\pi\)
\(662\) 0 0
\(663\) 10.3923 + 18.0000i 0.403604 + 0.699062i
\(664\) 0 0
\(665\) 12.0000 6.00000i 0.465340 0.232670i
\(666\) 0 0
\(667\) 9.00000i 0.348481i
\(668\) 0 0
\(669\) 39.8372i 1.54019i
\(670\) 0 0
\(671\) 7.00000 12.1244i 0.270232 0.468056i
\(672\) 0 0
\(673\) −5.19615 + 3.00000i −0.200297 + 0.115642i −0.596794 0.802395i \(-0.703559\pi\)
0.396497 + 0.918036i \(0.370226\pi\)
\(674\) 0 0
\(675\) −25.7942 3.10770i −0.992820 0.119615i
\(676\) 0 0
\(677\) 19.0526 11.0000i 0.732249 0.422764i −0.0869952 0.996209i \(-0.527726\pi\)
0.819244 + 0.573444i \(0.194393\pi\)
\(678\) 0 0
\(679\) −4.00000 + 6.92820i −0.153506 + 0.265880i
\(680\) 0 0
\(681\) 13.8564i 0.530979i
\(682\) 0 0
\(683\) 4.00000i 0.153056i 0.997067 + 0.0765279i \(0.0243834\pi\)
−0.997067 + 0.0765279i \(0.975617\pi\)
\(684\) 0 0
\(685\) 24.0000 12.0000i 0.916993 0.458496i
\(686\) 0 0
\(687\) 6.06218 + 10.5000i 0.231287 + 0.400600i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −22.0000 38.1051i −0.836919 1.44959i −0.892458 0.451130i \(-0.851021\pi\)
0.0555386 0.998457i \(-0.482312\pi\)
\(692\) 0 0
\(693\) 6.00000i 0.227921i
\(694\) 0 0
\(695\) −19.7128 + 29.8564i −0.747750 + 1.13252i
\(696\) 0 0
\(697\) −19.0526 11.0000i −0.721667 0.416655i
\(698\) 0 0
\(699\) 15.0000 + 8.66025i 0.567352 + 0.327561i
\(700\) 0 0
\(701\) 13.0000 0.491003 0.245502 0.969396i \(-0.421047\pi\)
0.245502 + 0.969396i \(0.421047\pi\)
\(702\) 0 0
\(703\) 12.0000i 0.452589i
\(704\) 0 0
\(705\) 1.62436 27.0622i 0.0611768 1.01922i
\(706\) 0 0
\(707\) −1.73205 1.00000i −0.0651405 0.0376089i
\(708\) 0 0
\(709\) −13.5000 23.3827i −0.507003 0.878155i −0.999967 0.00810550i \(-0.997420\pi\)
0.492964 0.870050i \(-0.335913\pi\)
\(710\) 0 0
\(711\) 18.0000 31.1769i 0.675053 1.16923i
\(712\) 0 0
\(713\) 1.73205 1.00000i 0.0648658 0.0374503i
\(714\) 0 0
\(715\) −1.60770 + 26.7846i −0.0601244 + 1.00169i
\(716\) 0 0
\(717\) 24.2487 + 42.0000i 0.905585 + 1.56852i
\(718\) 0 0
\(719\) −44.0000 −1.64092 −0.820462 0.571702i \(-0.806283\pi\)
−0.820462 + 0.571702i \(0.806283\pi\)
\(720\) 0 0
\(721\) 8.00000 0.297936
\(722\) 0 0
\(723\) −1.73205 −0.0644157
\(724\) 0 0
\(725\) 17.6769 + 41.3827i 0.656504 + 1.53691i
\(726\) 0 0
\(727\) −18.1865 + 10.5000i −0.674501 + 0.389423i −0.797780 0.602949i \(-0.793992\pi\)
0.123279 + 0.992372i \(0.460659\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 4.00000 + 6.92820i 0.147945 + 0.256249i
\(732\) 0 0
\(733\) 3.46410 + 2.00000i 0.127950 + 0.0738717i 0.562609 0.826723i \(-0.309798\pi\)
−0.434659 + 0.900595i \(0.643131\pi\)
\(734\) 0 0
\(735\) 10.3923 + 20.7846i 0.383326 + 0.766652i
\(736\) 0 0
\(737\) 22.0000i 0.810380i
\(738\) 0 0
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 0 0
\(741\) −54.0000 + 31.1769i −1.98374 + 1.14531i
\(742\) 0 0
\(743\) 12.9904 + 7.50000i 0.476571 + 0.275148i 0.718986 0.695024i \(-0.244606\pi\)
−0.242415 + 0.970173i \(0.577940\pi\)
\(744\) 0 0
\(745\) −1.23205 + 1.86603i −0.0451388 + 0.0683659i
\(746\) 0 0
\(747\) 28.5788 + 16.5000i 1.04565 + 0.603703i
\(748\) 0 0
\(749\) −1.50000 2.59808i −0.0548088 0.0949316i
\(750\) 0 0
\(751\) 13.0000 22.5167i 0.474377 0.821645i −0.525193 0.850983i \(-0.676007\pi\)
0.999570 + 0.0293387i \(0.00934013\pi\)
\(752\) 0 0
\(753\) −15.5885 + 27.0000i −0.568075 + 0.983935i
\(754\) 0 0
\(755\) 10.0000 + 20.0000i 0.363937 + 0.727875i
\(756\) 0 0
\(757\) 10.0000i 0.363456i −0.983349 0.181728i \(-0.941831\pi\)
0.983349 0.181728i \(-0.0581691\pi\)
\(758\) 0 0
\(759\) 3.00000 + 1.73205i 0.108893 + 0.0628695i
\(760\) 0 0
\(761\) 4.50000 7.79423i 0.163125 0.282541i −0.772863 0.634573i \(-0.781176\pi\)
0.935988 + 0.352032i \(0.114509\pi\)
\(762\) 0 0
\(763\) −6.06218 + 3.50000i −0.219466 + 0.126709i
\(764\) 0 0
\(765\) −12.0000 + 6.00000i −0.433861 + 0.216930i
\(766\) 0 0
\(767\) −20.7846 + 12.0000i −0.750489 + 0.433295i
\(768\) 0 0
\(769\) −7.50000 + 12.9904i −0.270457 + 0.468445i −0.968979 0.247143i \(-0.920508\pi\)
0.698522 + 0.715589i \(0.253841\pi\)
\(770\) 0 0
\(771\) −18.0000 + 10.3923i −0.648254 + 0.374270i
\(772\) 0 0
\(773\) 12.0000i 0.431610i −0.976436 0.215805i \(-0.930762\pi\)
0.976436 0.215805i \(-0.0692376\pi\)
\(774\) 0 0
\(775\) −6.00000 + 8.00000i −0.215526 + 0.287368i
\(776\) 0 0
\(777\) 3.46410 0.124274
\(778\) 0 0
\(779\) 33.0000 57.1577i 1.18235 2.04789i
\(780\) 0 0
\(781\) −6.00000 10.3923i −0.214697 0.371866i
\(782\) 0 0
\(783\) −23.3827 40.5000i −0.835629 1.44735i
\(784\) 0 0
\(785\) −7.46410 4.92820i −0.266405 0.175895i
\(786\) 0 0
\(787\) 38.1051 + 22.0000i 1.35830 + 0.784215i 0.989395 0.145251i \(-0.0463991\pi\)
0.368906 + 0.929467i \(0.379732\pi\)
\(788\) 0 0
\(789\) 27.7128i 0.986602i
\(790\) 0 0
\(791\) 12.0000 0.426671
\(792\) 0 0
\(793\) 42.0000i 1.49146i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.73205 + 1.00000i 0.0613524 + 0.0354218i 0.530362 0.847771i \(-0.322056\pi\)
−0.469010 + 0.883193i \(0.655389\pi\)
\(798\) 0 0
\(799\) −7.00000 12.1244i −0.247642 0.428929i
\(800\) 0 0
\(801\) 1.50000 + 2.59808i 0.0529999 + 0.0917985i
\(802\) 0 0
\(803\) 6.92820 4.00000i 0.244491 0.141157i
\(804\) 0 0
\(805\) −2.23205 0.133975i −0.0786695 0.00472198i
\(806\) 0 0
\(807\) −2.59808 + 4.50000i −0.0914566 + 0.158408i
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 12.1244 21.0000i 0.425220 0.736502i
\(814\) 0 0
\(815\) −0.535898 + 8.92820i −0.0187717 + 0.312741i
\(816\) 0 0
\(817\) −20.7846 + 12.0000i −0.727161 + 0.419827i
\(818\) 0 0
\(819\) 9.00000 + 15.5885i 0.314485 + 0.544705i
\(820\) 0 0
\(821\) 15.5000 + 26.8468i 0.540954 + 0.936959i 0.998850 + 0.0479535i \(0.0152699\pi\)
−0.457896 + 0.889006i \(0.651397\pi\)
\(822\) 0 0
\(823\) −12.9904 7.50000i −0.452816 0.261434i 0.256203 0.966623i \(-0.417529\pi\)
−0.709019 + 0.705190i \(0.750862\pi\)
\(824\) 0 0
\(825\) −17.1962 2.07180i −0.598693 0.0721307i
\(826\) 0 0
\(827\) 35.0000i 1.21707i 0.793527 + 0.608535i \(0.208242\pi\)
−0.793527 + 0.608535i \(0.791758\pi\)
\(828\) 0 0
\(829\) −15.0000 −0.520972 −0.260486 0.965478i \(-0.583883\pi\)
−0.260486 + 0.965478i \(0.583883\pi\)
\(830\) 0 0
\(831\) 38.1051i 1.32185i
\(832\) 0 0
\(833\) 10.3923 + 6.00000i 0.360072 + 0.207888i
\(834\) 0 0
\(835\) −5.59808 3.69615i −0.193729 0.127911i
\(836\) 0 0
\(837\) 5.19615 9.00000i 0.179605 0.311086i
\(838\) 0 0
\(839\) −19.0000 32.9090i −0.655953 1.13614i −0.981654 0.190671i \(-0.938934\pi\)
0.325701 0.945473i \(-0.394400\pi\)
\(840\) 0 0
\(841\) −26.0000 + 45.0333i −0.896552 + 1.55287i
\(842\) 0 0
\(843\) 5.19615 0.178965
\(844\) 0 0
\(845\) 23.0000 + 46.0000i 0.791224 + 1.58245i
\(846\) 0 0
\(847\) 7.00000i 0.240523i
\(848\) 0 0
\(849\) −1.50000 + 0.866025i −0.0514799 + 0.0297219i
\(850\) 0 0
\(851\) 1.00000 1.73205i 0.0342796 0.0593739i
\(852\) 0 0
\(853\) −39.8372 + 23.0000i −1.36400 + 0.787505i −0.990153 0.139986i \(-0.955294\pi\)
−0.373845 + 0.927491i \(0.621961\pi\)
\(854\) 0 0
\(855\) −18.0000 36.0000i −0.615587 1.23117i
\(856\) 0 0
\(857\) −15.5885 + 9.00000i −0.532492 + 0.307434i −0.742030 0.670366i \(-0.766137\pi\)
0.209539 + 0.977800i \(0.432804\pi\)
\(858\) 0 0
\(859\) −7.00000 + 12.1244i −0.238837 + 0.413678i −0.960381 0.278691i \(-0.910099\pi\)
0.721544 + 0.692369i \(0.243433\pi\)
\(860\) 0 0
\(861\) −16.5000 9.52628i −0.562318 0.324655i
\(862\) 0 0
\(863\) 45.0000i 1.53182i −0.642949 0.765909i \(-0.722289\pi\)
0.642949 0.765909i \(-0.277711\pi\)
\(864\) 0 0
\(865\) 8.00000 4.00000i 0.272008 0.136004i
\(866\) 0 0
\(867\) 11.2583 19.5000i 0.382353 0.662255i
\(868\) 0 0
\(869\) 12.0000 20.7846i 0.407072 0.705070i
\(870\) 0 0
\(871\) 33.0000 + 57.1577i 1.11816 + 1.93671i
\(872\) 0 0
\(873\) 20.7846 + 12.0000i 0.703452 + 0.406138i
\(874\) 0 0
\(875\) 10.5263 3.76795i 0.355853 0.127380i
\(876\) 0 0
\(877\) −39.8372 23.0000i −1.34521 0.776655i −0.357640 0.933860i \(-0.616418\pi\)
−0.987566 + 0.157205i \(0.949752\pi\)
\(878\) 0 0
\(879\) −27.0000 + 15.5885i −0.910687 + 0.525786i
\(880\) 0 0
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) 0 0
\(883\) 3.00000i 0.100958i 0.998725 + 0.0504790i \(0.0160748\pi\)
−0.998725 + 0.0504790i \(0.983925\pi\)
\(884\) 0 0
\(885\) −6.92820 13.8564i −0.232889 0.465778i
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 9.50000 + 16.4545i 0.318620 + 0.551866i
\(890\) 0 0
\(891\) 18.0000 0.603023
\(892\) 0 0
\(893\) 36.3731 21.0000i 1.21718 0.702738i
\(894\) 0 0
\(895\) 4.46410 + 0.267949i 0.149218 + 0.00895655i
\(896\) 0 0
\(897\) 10.3923 0.346989
\(898\) 0 0
\(899\) −18.0000 −0.600334
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 3.46410 + 6.00000i 0.115278 + 0.199667i
\(904\) 0 0
\(905\) −29.0167 1.74167i −0.964546 0.0578951i
\(906\) 0 0
\(907\) −28.5788 + 16.5000i −0.948945 + 0.547874i −0.892753 0.450546i \(-0.851229\pi\)
−0.0561918 + 0.998420i \(0.517896\pi\)
\(908\) 0 0
\(909\) −3.00000 + 5.19615i −0.0995037 + 0.172345i
\(910\) 0 0
\(911\) 6.00000 + 10.3923i 0.198789 + 0.344312i 0.948136 0.317865i \(-0.102966\pi\)
−0.749347 + 0.662177i \(0.769633\pi\)
\(912\) 0 0
\(913\) 19.0526 + 11.0000i 0.630548 + 0.364047i
\(914\) 0 0
\(915\) 27.0622 + 1.62436i 0.894648 + 0.0536995i
\(916\) 0 0
\(917\) 12.0000i 0.396275i
\(918\) 0 0
\(919\) −36.0000 −1.18753 −0.593765 0.804638i \(-0.702359\pi\)
−0.593765 + 0.804638i \(0.702359\pi\)
\(920\) 0 0
\(921\) 13.5000 + 7.79423i 0.444840 + 0.256829i
\(922\) 0 0
\(923\) −31.1769 18.0000i −1.02620 0.592477i
\(924\) 0 0
\(925\) −1.19615 + 9.92820i −0.0393292 + 0.326437i
\(926\) 0 0
\(927\) 24.0000i 0.788263i
\(928\) 0 0
\(929\) −9.00000 15.5885i −0.295280 0.511441i 0.679770 0.733426i \(-0.262080\pi\)
−0.975050 + 0.221985i \(0.928746\pi\)
\(930\) 0 0
\(931\) −18.0000 + 31.1769i −0.589926 + 1.02178i
\(932\) 0 0
\(933\) −5.19615 9.00000i −0.170114 0.294647i
\(934\) 0 0
\(935\) −8.00000 + 4.00000i −0.261628 + 0.130814i
\(936\) 0 0
\(937\) 52.0000i 1.69877i 0.527777 + 0.849383i \(0.323026\pi\)
−0.527777 + 0.849383i \(0.676974\pi\)
\(938\) 0 0
\(939\) 38.1051i 1.24351i
\(940\) 0 0
\(941\) 20.5000 35.5070i 0.668281 1.15750i −0.310104 0.950703i \(-0.600364\pi\)
0.978385 0.206794i \(-0.0663029\pi\)
\(942\) 0 0
\(943\) −9.52628 + 5.50000i −0.310218 + 0.179105i
\(944\) 0 0
\(945\) −10.3923 + 5.19615i −0.338062 + 0.169031i
\(946\) 0 0
\(947\) 44.1673 25.5000i 1.43524 0.828639i 0.437730 0.899106i \(-0.355783\pi\)
0.997514 + 0.0704677i \(0.0224492\pi\)
\(948\) 0 0
\(949\) 12.0000 20.7846i 0.389536 0.674697i
\(950\) 0 0
\(951\) 3.46410i 0.112331i
\(952\) 0 0
\(953\) 2.00000i 0.0647864i −0.999475 0.0323932i \(-0.989687\pi\)
0.999475 0.0323932i \(-0.0103129\pi\)
\(954\) 0 0
\(955\) 6.00000 + 12.0000i 0.194155 + 0.388311i
\(956\) 0 0
\(957\) −15.5885 27.0000i −0.503903 0.872786i
\(958\) 0 0
\(959\) 6.00000 10.3923i 0.193750 0.335585i
\(960\) 0 0
\(961\) 13.5000 + 23.3827i 0.435484 + 0.754280i
\(962\) 0 0
\(963\) −7.79423 + 4.50000i −0.251166 + 0.145010i
\(964\) 0 0
\(965\) −18.6603 12.3205i −0.600695 0.396611i
\(966\) 0 0
\(967\) −14.7224 8.50000i −0.473441 0.273342i 0.244238 0.969715i \(-0.421462\pi\)
−0.717679 + 0.696374i \(0.754796\pi\)
\(968\) 0 0
\(969\) −18.0000 10.3923i −0.578243 0.333849i
\(970\) 0 0
\(971\) 42.0000 1.34784 0.673922 0.738802i \(-0.264608\pi\)
0.673922 + 0.738802i \(0.264608\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) 0 0
\(975\) −47.7846 + 20.4115i −1.53033 + 0.653693i
\(976\) 0 0
\(977\) −46.7654 27.0000i −1.49616 0.863807i −0.496167 0.868227i \(-0.665259\pi\)
−0.999990 + 0.00442082i \(0.998593\pi\)
\(978\) 0 0
\(979\) 1.00000 + 1.73205i 0.0319601 + 0.0553566i
\(980\) 0 0
\(981\) 10.5000 + 18.1865i 0.335239 + 0.580651i
\(982\) 0 0
\(983\) −16.4545 + 9.50000i −0.524816 + 0.303003i −0.738903 0.673812i \(-0.764656\pi\)
0.214087 + 0.976815i \(0.431323\pi\)
\(984\) 0 0
\(985\) −1.07180 + 17.8564i −0.0341503 + 0.568952i
\(986\) 0 0
\(987\) −6.06218 10.5000i −0.192961 0.334219i
\(988\) 0 0
\(989\) 4.00000 0.127193
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 0 0
\(993\) −13.8564 −0.439720
\(994\) 0 0
\(995\) −40.1769 2.41154i −1.27369 0.0764510i
\(996\) 0 0
\(997\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(998\) 0 0
\(999\) 10.3923i 0.328798i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.by.a.49.2 4
3.2 odd 2 2160.2.by.b.1009.1 4
4.3 odd 2 90.2.i.a.49.2 yes 4
5.4 even 2 inner 720.2.by.a.49.1 4
9.2 odd 6 2160.2.by.b.289.2 4
9.7 even 3 inner 720.2.by.a.529.1 4
12.11 even 2 270.2.i.a.199.1 4
15.14 odd 2 2160.2.by.b.1009.2 4
20.3 even 4 450.2.e.b.301.1 2
20.7 even 4 450.2.e.g.301.1 2
20.19 odd 2 90.2.i.a.49.1 4
36.7 odd 6 90.2.i.a.79.1 yes 4
36.11 even 6 270.2.i.a.19.2 4
36.23 even 6 810.2.c.c.649.1 2
36.31 odd 6 810.2.c.b.649.2 2
45.29 odd 6 2160.2.by.b.289.1 4
45.34 even 6 inner 720.2.by.a.529.2 4
60.23 odd 4 1350.2.e.i.901.1 2
60.47 odd 4 1350.2.e.a.901.1 2
60.59 even 2 270.2.i.a.199.2 4
180.7 even 12 450.2.e.g.151.1 2
180.23 odd 12 4050.2.a.g.1.1 1
180.43 even 12 450.2.e.b.151.1 2
180.47 odd 12 1350.2.e.a.451.1 2
180.59 even 6 810.2.c.c.649.2 2
180.67 even 12 4050.2.a.j.1.1 1
180.79 odd 6 90.2.i.a.79.2 yes 4
180.83 odd 12 1350.2.e.i.451.1 2
180.103 even 12 4050.2.a.x.1.1 1
180.119 even 6 270.2.i.a.19.1 4
180.139 odd 6 810.2.c.b.649.1 2
180.167 odd 12 4050.2.a.be.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.2.i.a.49.1 4 20.19 odd 2
90.2.i.a.49.2 yes 4 4.3 odd 2
90.2.i.a.79.1 yes 4 36.7 odd 6
90.2.i.a.79.2 yes 4 180.79 odd 6
270.2.i.a.19.1 4 180.119 even 6
270.2.i.a.19.2 4 36.11 even 6
270.2.i.a.199.1 4 12.11 even 2
270.2.i.a.199.2 4 60.59 even 2
450.2.e.b.151.1 2 180.43 even 12
450.2.e.b.301.1 2 20.3 even 4
450.2.e.g.151.1 2 180.7 even 12
450.2.e.g.301.1 2 20.7 even 4
720.2.by.a.49.1 4 5.4 even 2 inner
720.2.by.a.49.2 4 1.1 even 1 trivial
720.2.by.a.529.1 4 9.7 even 3 inner
720.2.by.a.529.2 4 45.34 even 6 inner
810.2.c.b.649.1 2 180.139 odd 6
810.2.c.b.649.2 2 36.31 odd 6
810.2.c.c.649.1 2 36.23 even 6
810.2.c.c.649.2 2 180.59 even 6
1350.2.e.a.451.1 2 180.47 odd 12
1350.2.e.a.901.1 2 60.47 odd 4
1350.2.e.i.451.1 2 180.83 odd 12
1350.2.e.i.901.1 2 60.23 odd 4
2160.2.by.b.289.1 4 45.29 odd 6
2160.2.by.b.289.2 4 9.2 odd 6
2160.2.by.b.1009.1 4 3.2 odd 2
2160.2.by.b.1009.2 4 15.14 odd 2
4050.2.a.g.1.1 1 180.23 odd 12
4050.2.a.j.1.1 1 180.67 even 12
4050.2.a.x.1.1 1 180.103 even 12
4050.2.a.be.1.1 1 180.167 odd 12