Properties

Label 275.2.bm.b.118.2
Level $275$
Weight $2$
Character 275.118
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(7,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 118.2
Character \(\chi\) \(=\) 275.118
Dual form 275.2.bm.b.7.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.482327 - 0.0763931i) q^{2} +(-0.517260 + 1.01518i) q^{3} +(-1.67531 - 0.544341i) q^{4} +(0.327041 - 0.450133i) q^{6} +(2.59854 - 1.32402i) q^{7} +(1.63669 + 0.833936i) q^{8} +(1.00032 + 1.37683i) q^{9} +O(q^{10})\) \(q+(-0.482327 - 0.0763931i) q^{2} +(-0.517260 + 1.01518i) q^{3} +(-1.67531 - 0.544341i) q^{4} +(0.327041 - 0.450133i) q^{6} +(2.59854 - 1.32402i) q^{7} +(1.63669 + 0.833936i) q^{8} +(1.00032 + 1.37683i) q^{9} +(-3.15977 + 1.00788i) q^{11} +(1.41917 - 1.41917i) q^{12} +(-0.457808 + 2.89049i) q^{13} +(-1.35449 + 0.440102i) q^{14} +(2.12449 + 1.54353i) q^{16} +(0.824113 + 5.20325i) q^{17} +(-0.377304 - 0.740500i) q^{18} +(1.26677 + 3.89873i) q^{19} +3.32285i q^{21} +(1.60104 - 0.244743i) q^{22} +(2.12046 + 2.12046i) q^{23} +(-1.69319 + 1.23017i) q^{24} +(0.441627 - 1.35919i) q^{26} +(-5.29116 + 0.838037i) q^{27} +(-5.07408 + 0.803656i) q^{28} +(0.817241 - 2.51521i) q^{29} +(5.45328 - 3.96204i) q^{31} +(-3.50456 - 3.50456i) q^{32} +(0.611244 - 3.72907i) q^{33} -2.57262i q^{34} +(-0.926389 - 2.85113i) q^{36} +(0.528116 + 1.03649i) q^{37} +(-0.313163 - 1.97724i) q^{38} +(-2.69755 - 1.95989i) q^{39} +(-3.38136 + 1.09867i) q^{41} +(0.253843 - 1.60270i) q^{42} +(5.07292 - 5.07292i) q^{43} +(5.84223 + 0.0314826i) q^{44} +(-0.860769 - 1.18475i) q^{46} +(3.28041 + 1.67145i) q^{47} +(-2.66588 + 1.35833i) q^{48} +(0.884888 - 1.21794i) q^{49} +(-5.70851 - 1.85481i) q^{51} +(2.34038 - 4.59325i) q^{52} +(1.45955 + 0.231169i) q^{53} +2.61609 q^{54} +5.35716 q^{56} +(-4.61316 - 0.730652i) q^{57} +(-0.586323 + 1.15072i) q^{58} +(-1.52672 - 0.496061i) q^{59} +(-4.07810 + 5.61302i) q^{61} +(-2.93294 + 1.49441i) q^{62} +(4.42234 + 2.25330i) q^{63} +(-1.66445 - 2.29092i) q^{64} +(-0.579695 + 1.75194i) q^{66} +(-1.31471 + 1.31471i) q^{67} +(1.45170 - 9.16564i) q^{68} +(-3.24948 + 1.05582i) q^{69} +(-2.32441 - 1.68878i) q^{71} +(0.489036 + 3.08765i) q^{72} +(-6.71992 - 13.1886i) q^{73} +(-0.175544 - 0.540270i) q^{74} -7.22113i q^{76} +(-6.87635 + 6.80264i) q^{77} +(1.15138 + 1.15138i) q^{78} +(12.3342 - 8.96129i) q^{79} +(0.308439 - 0.949277i) q^{81} +(1.71486 - 0.271606i) q^{82} +(-6.60041 + 1.04540i) q^{83} +(1.80876 - 5.56680i) q^{84} +(-2.83434 + 2.05927i) q^{86} +(2.13066 + 2.13066i) q^{87} +(-6.01208 - 0.985459i) q^{88} +11.1726i q^{89} +(2.63744 + 8.11720i) q^{91} +(-2.39818 - 4.70669i) q^{92} +(1.20142 + 7.58545i) q^{93} +(-1.45454 - 1.05679i) q^{94} +(5.37052 - 1.74499i) q^{96} +(1.57505 - 9.94447i) q^{97} +(-0.519848 + 0.519848i) q^{98} +(-4.54848 - 3.34226i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36} + 8 q^{37} - 10 q^{38} + 40 q^{41} + 10 q^{42} + 60 q^{46} + 28 q^{47} + 54 q^{48} + 20 q^{51} + 50 q^{52} + 24 q^{53} - 80 q^{56} - 30 q^{57} + 50 q^{58} - 60 q^{61} - 100 q^{62} + 30 q^{63} - 100 q^{66} + 8 q^{67} + 30 q^{68} + 24 q^{71} - 80 q^{72} - 50 q^{73} - 70 q^{77} - 60 q^{78} - 12 q^{81} + 10 q^{82} - 90 q^{83} + 100 q^{86} - 170 q^{88} + 20 q^{91} + 68 q^{92} + 8 q^{93} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.482327 0.0763931i −0.341057 0.0540181i −0.0164432 0.999865i \(-0.505234\pi\)
−0.324614 + 0.945847i \(0.605234\pi\)
\(3\) −0.517260 + 1.01518i −0.298640 + 0.586114i −0.990753 0.135675i \(-0.956680\pi\)
0.692114 + 0.721789i \(0.256680\pi\)
\(4\) −1.67531 0.544341i −0.837655 0.272170i
\(5\) 0 0
\(6\) 0.327041 0.450133i 0.133514 0.183766i
\(7\) 2.59854 1.32402i 0.982157 0.500434i 0.112266 0.993678i \(-0.464189\pi\)
0.869891 + 0.493244i \(0.164189\pi\)
\(8\) 1.63669 + 0.833936i 0.578658 + 0.294841i
\(9\) 1.00032 + 1.37683i 0.333442 + 0.458943i
\(10\) 0 0
\(11\) −3.15977 + 1.00788i −0.952708 + 0.303888i
\(12\) 1.41917 1.41917i 0.409680 0.409680i
\(13\) −0.457808 + 2.89049i −0.126973 + 0.801677i 0.839208 + 0.543811i \(0.183019\pi\)
−0.966181 + 0.257866i \(0.916981\pi\)
\(14\) −1.35449 + 0.440102i −0.362004 + 0.117622i
\(15\) 0 0
\(16\) 2.12449 + 1.54353i 0.531123 + 0.385884i
\(17\) 0.824113 + 5.20325i 0.199877 + 1.26197i 0.859797 + 0.510636i \(0.170590\pi\)
−0.659920 + 0.751336i \(0.729410\pi\)
\(18\) −0.377304 0.740500i −0.0889313 0.174538i
\(19\) 1.26677 + 3.89873i 0.290618 + 0.894429i 0.984658 + 0.174494i \(0.0558288\pi\)
−0.694041 + 0.719936i \(0.744171\pi\)
\(20\) 0 0
\(21\) 3.32285i 0.725105i
\(22\) 1.60104 0.244743i 0.341343 0.0521795i
\(23\) 2.12046 + 2.12046i 0.442147 + 0.442147i 0.892733 0.450586i \(-0.148785\pi\)
−0.450586 + 0.892733i \(0.648785\pi\)
\(24\) −1.69319 + 1.23017i −0.345621 + 0.251108i
\(25\) 0 0
\(26\) 0.441627 1.35919i 0.0866101 0.266558i
\(27\) −5.29116 + 0.838037i −1.01828 + 0.161280i
\(28\) −5.07408 + 0.803656i −0.958912 + 0.151877i
\(29\) 0.817241 2.51521i 0.151758 0.467063i −0.846060 0.533088i \(-0.821032\pi\)
0.997818 + 0.0660248i \(0.0210316\pi\)
\(30\) 0 0
\(31\) 5.45328 3.96204i 0.979438 0.711603i 0.0218548 0.999761i \(-0.493043\pi\)
0.957583 + 0.288158i \(0.0930429\pi\)
\(32\) −3.50456 3.50456i −0.619524 0.619524i
\(33\) 0.611244 3.72907i 0.106404 0.649148i
\(34\) 2.57262i 0.441201i
\(35\) 0 0
\(36\) −0.926389 2.85113i −0.154398 0.475189i
\(37\) 0.528116 + 1.03649i 0.0868218 + 0.170397i 0.930335 0.366712i \(-0.119516\pi\)
−0.843513 + 0.537109i \(0.819516\pi\)
\(38\) −0.313163 1.97724i −0.0508018 0.320750i
\(39\) −2.69755 1.95989i −0.431954 0.313833i
\(40\) 0 0
\(41\) −3.38136 + 1.09867i −0.528080 + 0.171584i −0.560909 0.827877i \(-0.689548\pi\)
0.0328289 + 0.999461i \(0.489548\pi\)
\(42\) 0.253843 1.60270i 0.0391688 0.247302i
\(43\) 5.07292 5.07292i 0.773613 0.773613i −0.205123 0.978736i \(-0.565759\pi\)
0.978736 + 0.205123i \(0.0657595\pi\)
\(44\) 5.84223 + 0.0314826i 0.880749 + 0.00474618i
\(45\) 0 0
\(46\) −0.860769 1.18475i −0.126913 0.174681i
\(47\) 3.28041 + 1.67145i 0.478497 + 0.243806i 0.676566 0.736382i \(-0.263467\pi\)
−0.198070 + 0.980188i \(0.563467\pi\)
\(48\) −2.66588 + 1.35833i −0.384786 + 0.196058i
\(49\) 0.884888 1.21794i 0.126413 0.173992i
\(50\) 0 0
\(51\) −5.70851 1.85481i −0.799351 0.259725i
\(52\) 2.34038 4.59325i 0.324552 0.636970i
\(53\) 1.45955 + 0.231169i 0.200484 + 0.0317536i 0.255869 0.966712i \(-0.417639\pi\)
−0.0553847 + 0.998465i \(0.517639\pi\)
\(54\) 2.61609 0.356005
\(55\) 0 0
\(56\) 5.35716 0.715881
\(57\) −4.61316 0.730652i −0.611028 0.0967773i
\(58\) −0.586323 + 1.15072i −0.0769879 + 0.151097i
\(59\) −1.52672 0.496061i −0.198762 0.0645817i 0.207944 0.978141i \(-0.433323\pi\)
−0.406706 + 0.913559i \(0.633323\pi\)
\(60\) 0 0
\(61\) −4.07810 + 5.61302i −0.522147 + 0.718674i −0.985908 0.167286i \(-0.946500\pi\)
0.463761 + 0.885960i \(0.346500\pi\)
\(62\) −2.93294 + 1.49441i −0.372483 + 0.189790i
\(63\) 4.42234 + 2.25330i 0.557163 + 0.283889i
\(64\) −1.66445 2.29092i −0.208056 0.286365i
\(65\) 0 0
\(66\) −0.579695 + 1.75194i −0.0713556 + 0.215649i
\(67\) −1.31471 + 1.31471i −0.160617 + 0.160617i −0.782840 0.622223i \(-0.786230\pi\)
0.622223 + 0.782840i \(0.286230\pi\)
\(68\) 1.45170 9.16564i 0.176044 1.11150i
\(69\) −3.24948 + 1.05582i −0.391192 + 0.127106i
\(70\) 0 0
\(71\) −2.32441 1.68878i −0.275857 0.200422i 0.441251 0.897384i \(-0.354535\pi\)
−0.717108 + 0.696962i \(0.754535\pi\)
\(72\) 0.489036 + 3.08765i 0.0576334 + 0.363883i
\(73\) −6.71992 13.1886i −0.786507 1.54361i −0.838464 0.544957i \(-0.816546\pi\)
0.0519568 0.998649i \(-0.483454\pi\)
\(74\) −0.175544 0.540270i −0.0204066 0.0628051i
\(75\) 0 0
\(76\) 7.22113i 0.828321i
\(77\) −6.87635 + 6.80264i −0.783633 + 0.775232i
\(78\) 1.15138 + 1.15138i 0.130368 + 0.130368i
\(79\) 12.3342 8.96129i 1.38770 1.00822i 0.391589 0.920140i \(-0.371926\pi\)
0.996113 0.0880839i \(-0.0280744\pi\)
\(80\) 0 0
\(81\) 0.308439 0.949277i 0.0342710 0.105475i
\(82\) 1.71486 0.271606i 0.189374 0.0299939i
\(83\) −6.60041 + 1.04540i −0.724489 + 0.114748i −0.507778 0.861488i \(-0.669533\pi\)
−0.216711 + 0.976236i \(0.569533\pi\)
\(84\) 1.80876 5.56680i 0.197352 0.607388i
\(85\) 0 0
\(86\) −2.83434 + 2.05927i −0.305635 + 0.222057i
\(87\) 2.13066 + 2.13066i 0.228431 + 0.228431i
\(88\) −6.01208 0.985459i −0.640890 0.105050i
\(89\) 11.1726i 1.18429i 0.805830 + 0.592147i \(0.201719\pi\)
−0.805830 + 0.592147i \(0.798281\pi\)
\(90\) 0 0
\(91\) 2.63744 + 8.11720i 0.276479 + 0.850914i
\(92\) −2.39818 4.70669i −0.250027 0.490706i
\(93\) 1.20142 + 7.58545i 0.124581 + 0.786575i
\(94\) −1.45454 1.05679i −0.150025 0.108999i
\(95\) 0 0
\(96\) 5.37052 1.74499i 0.548126 0.178097i
\(97\) 1.57505 9.94447i 0.159922 1.00971i −0.768951 0.639308i \(-0.779221\pi\)
0.928873 0.370400i \(-0.120779\pi\)
\(98\) −0.519848 + 0.519848i −0.0525126 + 0.0525126i
\(99\) −4.54848 3.34226i −0.457140 0.335910i
\(100\) 0 0
\(101\) −1.12216 1.54452i −0.111659 0.153686i 0.749530 0.661971i \(-0.230280\pi\)
−0.861189 + 0.508285i \(0.830280\pi\)
\(102\) 2.61167 + 1.33071i 0.258594 + 0.131760i
\(103\) 5.49869 2.80172i 0.541802 0.276062i −0.161597 0.986857i \(-0.551665\pi\)
0.703399 + 0.710795i \(0.251665\pi\)
\(104\) −3.15977 + 4.34905i −0.309841 + 0.426459i
\(105\) 0 0
\(106\) −0.686319 0.222999i −0.0666612 0.0216595i
\(107\) −0.197726 + 0.388059i −0.0191149 + 0.0375151i −0.900367 0.435132i \(-0.856702\pi\)
0.881252 + 0.472647i \(0.156702\pi\)
\(108\) 9.32051 + 1.47622i 0.896866 + 0.142050i
\(109\) −9.46672 −0.906748 −0.453374 0.891320i \(-0.649780\pi\)
−0.453374 + 0.891320i \(0.649780\pi\)
\(110\) 0 0
\(111\) −1.32539 −0.125801
\(112\) 7.56426 + 1.19806i 0.714755 + 0.113206i
\(113\) −9.20080 + 18.0576i −0.865538 + 1.69871i −0.163539 + 0.986537i \(0.552291\pi\)
−0.701999 + 0.712178i \(0.747709\pi\)
\(114\) 2.16923 + 0.704827i 0.203167 + 0.0660131i
\(115\) 0 0
\(116\) −2.73826 + 3.76890i −0.254241 + 0.349933i
\(117\) −4.43766 + 2.26110i −0.410262 + 0.209039i
\(118\) 0.698483 + 0.355895i 0.0643005 + 0.0327628i
\(119\) 9.03071 + 12.4297i 0.827844 + 1.13943i
\(120\) 0 0
\(121\) 8.96835 6.36935i 0.815305 0.579032i
\(122\) 2.39578 2.39578i 0.216903 0.216903i
\(123\) 0.633694 4.00099i 0.0571383 0.360757i
\(124\) −11.2926 + 3.66920i −1.01411 + 0.329504i
\(125\) 0 0
\(126\) −1.96088 1.42466i −0.174689 0.126919i
\(127\) −1.47513 9.31359i −0.130896 0.826447i −0.962540 0.271138i \(-0.912600\pi\)
0.831644 0.555309i \(-0.187400\pi\)
\(128\) 5.12793 + 10.0641i 0.453249 + 0.889551i
\(129\) 2.52591 + 7.77394i 0.222394 + 0.684457i
\(130\) 0 0
\(131\) 7.51676i 0.656743i −0.944549 0.328371i \(-0.893500\pi\)
0.944549 0.328371i \(-0.106500\pi\)
\(132\) −3.05391 + 5.91462i −0.265809 + 0.514802i
\(133\) 8.45377 + 8.45377i 0.733035 + 0.733035i
\(134\) 0.734554 0.533685i 0.0634558 0.0461034i
\(135\) 0 0
\(136\) −2.99035 + 9.20336i −0.256421 + 0.789182i
\(137\) 15.1801 2.40429i 1.29692 0.205413i 0.530466 0.847706i \(-0.322017\pi\)
0.766458 + 0.642294i \(0.222017\pi\)
\(138\) 1.64797 0.261013i 0.140285 0.0222189i
\(139\) 1.28625 3.95867i 0.109098 0.335770i −0.881572 0.472049i \(-0.843514\pi\)
0.990670 + 0.136279i \(0.0435145\pi\)
\(140\) 0 0
\(141\) −3.39364 + 2.46563i −0.285796 + 0.207643i
\(142\) 0.992116 + 0.992116i 0.0832565 + 0.0832565i
\(143\) −1.46670 9.59470i −0.122651 0.802349i
\(144\) 4.46910i 0.372425i
\(145\) 0 0
\(146\) 2.23368 + 6.87457i 0.184861 + 0.568943i
\(147\) 0.778714 + 1.52831i 0.0642273 + 0.126053i
\(148\) −0.320556 2.02391i −0.0263495 0.166364i
\(149\) −14.5440 10.5669i −1.19149 0.865672i −0.198073 0.980187i \(-0.563468\pi\)
−0.993421 + 0.114516i \(0.963468\pi\)
\(150\) 0 0
\(151\) 16.9214 5.49808i 1.37704 0.447427i 0.475345 0.879800i \(-0.342323\pi\)
0.901695 + 0.432372i \(0.142323\pi\)
\(152\) −1.17797 + 7.43742i −0.0955461 + 0.603254i
\(153\) −6.33960 + 6.33960i −0.512526 + 0.512526i
\(154\) 3.83633 2.75579i 0.309140 0.222068i
\(155\) 0 0
\(156\) 3.45239 + 4.75181i 0.276413 + 0.380449i
\(157\) 19.1253 + 9.74483i 1.52636 + 0.777722i 0.997478 0.0709708i \(-0.0226097\pi\)
0.528887 + 0.848693i \(0.322610\pi\)
\(158\) −6.63368 + 3.38003i −0.527748 + 0.268901i
\(159\) −0.989642 + 1.36213i −0.0784837 + 0.108024i
\(160\) 0 0
\(161\) 8.31766 + 2.70257i 0.655524 + 0.212993i
\(162\) −0.221287 + 0.434300i −0.0173859 + 0.0341218i
\(163\) 10.2967 + 1.63083i 0.806497 + 0.127737i 0.546051 0.837752i \(-0.316130\pi\)
0.260446 + 0.965488i \(0.416130\pi\)
\(164\) 6.26288 0.489049
\(165\) 0 0
\(166\) 3.26342 0.253290
\(167\) −11.1538 1.76660i −0.863110 0.136703i −0.290843 0.956771i \(-0.593936\pi\)
−0.572267 + 0.820067i \(0.693936\pi\)
\(168\) −2.77104 + 5.43848i −0.213791 + 0.419588i
\(169\) 4.21842 + 1.37065i 0.324493 + 0.105434i
\(170\) 0 0
\(171\) −4.10070 + 5.64412i −0.313588 + 0.431617i
\(172\) −11.2601 + 5.73731i −0.858575 + 0.437466i
\(173\) 11.7632 + 5.99367i 0.894343 + 0.455691i 0.839847 0.542823i \(-0.182645\pi\)
0.0544963 + 0.998514i \(0.482645\pi\)
\(174\) −0.864909 1.19044i −0.0655686 0.0902474i
\(175\) 0 0
\(176\) −8.26862 2.73598i −0.623270 0.206233i
\(177\) 1.29330 1.29330i 0.0972104 0.0972104i
\(178\) 0.853510 5.38885i 0.0639733 0.403912i
\(179\) 2.11776 0.688100i 0.158288 0.0514310i −0.228801 0.973473i \(-0.573480\pi\)
0.387089 + 0.922042i \(0.373480\pi\)
\(180\) 0 0
\(181\) −3.50687 2.54789i −0.260664 0.189383i 0.449776 0.893141i \(-0.351504\pi\)
−0.710440 + 0.703758i \(0.751504\pi\)
\(182\) −0.652010 4.11663i −0.0483302 0.305145i
\(183\) −3.58879 7.04339i −0.265291 0.520663i
\(184\) 1.70221 + 5.23888i 0.125489 + 0.386215i
\(185\) 0 0
\(186\) 3.75045i 0.274996i
\(187\) −7.84826 15.6105i −0.573922 1.14155i
\(188\) −4.58586 4.58586i −0.334458 0.334458i
\(189\) −12.6397 + 9.18329i −0.919404 + 0.667986i
\(190\) 0 0
\(191\) −1.26010 + 3.87820i −0.0911779 + 0.280617i −0.986239 0.165327i \(-0.947132\pi\)
0.895061 + 0.445944i \(0.147132\pi\)
\(192\) 3.18664 0.504715i 0.229976 0.0364247i
\(193\) −20.6434 + 3.26960i −1.48595 + 0.235351i −0.846047 0.533108i \(-0.821024\pi\)
−0.639899 + 0.768459i \(0.721024\pi\)
\(194\) −1.51938 + 4.67617i −0.109085 + 0.335729i
\(195\) 0 0
\(196\) −2.14544 + 1.55875i −0.153246 + 0.111339i
\(197\) 0.213782 + 0.213782i 0.0152313 + 0.0152313i 0.714681 0.699450i \(-0.246572\pi\)
−0.699450 + 0.714681i \(0.746572\pi\)
\(198\) 1.93853 + 1.95954i 0.137765 + 0.139258i
\(199\) 11.0815i 0.785549i −0.919635 0.392775i \(-0.871515\pi\)
0.919635 0.392775i \(-0.128485\pi\)
\(200\) 0 0
\(201\) −0.654619 2.01471i −0.0461733 0.142107i
\(202\) 0.423258 + 0.830691i 0.0297803 + 0.0584472i
\(203\) −1.20656 7.61793i −0.0846840 0.534674i
\(204\) 8.55387 + 6.21475i 0.598890 + 0.435119i
\(205\) 0 0
\(206\) −2.86620 + 0.931285i −0.199698 + 0.0648857i
\(207\) −0.798364 + 5.04067i −0.0554901 + 0.350351i
\(208\) −5.43417 + 5.43417i −0.376792 + 0.376792i
\(209\) −7.93217 11.0423i −0.548680 0.763815i
\(210\) 0 0
\(211\) −5.20512 7.16423i −0.358335 0.493206i 0.591349 0.806416i \(-0.298596\pi\)
−0.949684 + 0.313210i \(0.898596\pi\)
\(212\) −2.31936 1.18177i −0.159294 0.0811644i
\(213\) 2.91674 1.48615i 0.199852 0.101830i
\(214\) 0.125014 0.172067i 0.00854576 0.0117622i
\(215\) 0 0
\(216\) −9.35886 3.04088i −0.636790 0.206906i
\(217\) 8.92474 17.5158i 0.605851 1.18905i
\(218\) 4.56606 + 0.723193i 0.309253 + 0.0489808i
\(219\) 16.8647 1.13961
\(220\) 0 0
\(221\) −15.4172 −1.03707
\(222\) 0.639273 + 0.101251i 0.0429052 + 0.00679551i
\(223\) 2.80667 5.50839i 0.187948 0.368869i −0.777735 0.628593i \(-0.783631\pi\)
0.965683 + 0.259723i \(0.0836313\pi\)
\(224\) −13.7469 4.46662i −0.918500 0.298439i
\(225\) 0 0
\(226\) 5.81727 8.00679i 0.386959 0.532604i
\(227\) 2.95522 1.50576i 0.196145 0.0999406i −0.353160 0.935563i \(-0.614893\pi\)
0.549304 + 0.835622i \(0.314893\pi\)
\(228\) 7.33074 + 3.73520i 0.485490 + 0.247370i
\(229\) 3.13876 + 4.32013i 0.207415 + 0.285482i 0.900032 0.435823i \(-0.143543\pi\)
−0.692618 + 0.721305i \(0.743543\pi\)
\(230\) 0 0
\(231\) −3.34904 10.4995i −0.220350 0.690813i
\(232\) 3.43509 3.43509i 0.225525 0.225525i
\(233\) 0.691167 4.36386i 0.0452799 0.285886i −0.954650 0.297730i \(-0.903770\pi\)
0.999930 + 0.0118446i \(0.00377033\pi\)
\(234\) 2.31314 0.751584i 0.151215 0.0491326i
\(235\) 0 0
\(236\) 2.28770 + 1.66211i 0.148917 + 0.108194i
\(237\) 2.71735 + 17.1567i 0.176511 + 1.11445i
\(238\) −3.40621 6.68507i −0.220792 0.433329i
\(239\) −3.23012 9.94128i −0.208939 0.643048i −0.999529 0.0307017i \(-0.990226\pi\)
0.790590 0.612346i \(-0.209774\pi\)
\(240\) 0 0
\(241\) 27.8579i 1.79449i 0.441536 + 0.897243i \(0.354434\pi\)
−0.441536 + 0.897243i \(0.645566\pi\)
\(242\) −4.81226 + 2.38699i −0.309344 + 0.153442i
\(243\) −10.5600 10.5600i −0.677425 0.677425i
\(244\) 9.88748 7.18367i 0.632981 0.459888i
\(245\) 0 0
\(246\) −0.611296 + 1.88138i −0.0389748 + 0.119952i
\(247\) −11.8492 + 1.87672i −0.753944 + 0.119413i
\(248\) 12.2294 1.93695i 0.776569 0.122996i
\(249\) 2.35285 7.24134i 0.149106 0.458901i
\(250\) 0 0
\(251\) 8.04670 5.84627i 0.507903 0.369013i −0.304124 0.952632i \(-0.598364\pi\)
0.812028 + 0.583619i \(0.198364\pi\)
\(252\) −6.18223 6.18223i −0.389444 0.389444i
\(253\) −8.83737 4.56302i −0.555601 0.286874i
\(254\) 4.60489i 0.288936i
\(255\) 0 0
\(256\) 0.0455968 + 0.140332i 0.00284980 + 0.00877078i
\(257\) 1.92513 + 3.77828i 0.120086 + 0.235683i 0.943223 0.332161i \(-0.107778\pi\)
−0.823136 + 0.567844i \(0.807778\pi\)
\(258\) −0.624438 3.94254i −0.0388758 0.245452i
\(259\) 2.74467 + 1.99412i 0.170545 + 0.123908i
\(260\) 0 0
\(261\) 4.28052 1.39083i 0.264958 0.0860899i
\(262\) −0.574229 + 3.62554i −0.0354760 + 0.223987i
\(263\) 16.1830 16.1830i 0.997884 0.997884i −0.00211364 0.999998i \(-0.500673\pi\)
0.999998 + 0.00211364i \(0.000672793\pi\)
\(264\) 4.11022 5.59360i 0.252967 0.344262i
\(265\) 0 0
\(266\) −3.43167 4.72330i −0.210409 0.289604i
\(267\) −11.3422 5.77914i −0.694131 0.353677i
\(268\) 2.91819 1.48689i 0.178257 0.0908265i
\(269\) 13.4435 18.5034i 0.819666 1.12817i −0.170094 0.985428i \(-0.554407\pi\)
0.989759 0.142745i \(-0.0455930\pi\)
\(270\) 0 0
\(271\) −1.32229 0.429640i −0.0803237 0.0260987i 0.268580 0.963258i \(-0.413446\pi\)
−0.348903 + 0.937159i \(0.613446\pi\)
\(272\) −6.28057 + 12.3263i −0.380815 + 0.747392i
\(273\) −9.60465 1.52123i −0.581300 0.0920688i
\(274\) −7.50545 −0.453421
\(275\) 0 0
\(276\) 6.01861 0.362278
\(277\) −14.0803 2.23010i −0.846002 0.133994i −0.281639 0.959520i \(-0.590878\pi\)
−0.564363 + 0.825527i \(0.690878\pi\)
\(278\) −0.922808 + 1.81111i −0.0553464 + 0.108623i
\(279\) 10.9101 + 3.54491i 0.653171 + 0.212228i
\(280\) 0 0
\(281\) 14.9161 20.5302i 0.889818 1.22473i −0.0837853 0.996484i \(-0.526701\pi\)
0.973604 0.228246i \(-0.0732990\pi\)
\(282\) 1.82520 0.929988i 0.108689 0.0553800i
\(283\) −6.60300 3.36440i −0.392508 0.199993i 0.246587 0.969121i \(-0.420691\pi\)
−0.639095 + 0.769128i \(0.720691\pi\)
\(284\) 2.97484 + 4.09451i 0.176524 + 0.242964i
\(285\) 0 0
\(286\) −0.0255420 + 4.73983i −0.00151033 + 0.280272i
\(287\) −7.33195 + 7.33195i −0.432791 + 0.432791i
\(288\) 1.31948 8.33087i 0.0777511 0.490901i
\(289\) −10.2266 + 3.32284i −0.601567 + 0.195461i
\(290\) 0 0
\(291\) 9.28071 + 6.74283i 0.544045 + 0.395272i
\(292\) 4.07886 + 25.7529i 0.238697 + 1.50707i
\(293\) 6.66340 + 13.0777i 0.389280 + 0.764005i 0.999604 0.0281472i \(-0.00896072\pi\)
−0.610324 + 0.792152i \(0.708961\pi\)
\(294\) −0.258843 0.796636i −0.0150960 0.0464607i
\(295\) 0 0
\(296\) 2.13682i 0.124200i
\(297\) 15.8742 7.98087i 0.921116 0.463097i
\(298\) 6.20775 + 6.20775i 0.359606 + 0.359606i
\(299\) −7.09994 + 5.15841i −0.410600 + 0.298318i
\(300\) 0 0
\(301\) 6.46553 19.8989i 0.372667 1.14695i
\(302\) −8.58165 + 1.35920i −0.493818 + 0.0782131i
\(303\) 2.14842 0.340276i 0.123423 0.0195483i
\(304\) −3.32657 + 10.2381i −0.190792 + 0.587197i
\(305\) 0 0
\(306\) 3.54206 2.57346i 0.202486 0.147115i
\(307\) −0.874954 0.874954i −0.0499363 0.0499363i 0.681698 0.731634i \(-0.261242\pi\)
−0.731634 + 0.681698i \(0.761242\pi\)
\(308\) 15.2230 7.65344i 0.867409 0.436095i
\(309\) 7.03137i 0.400001i
\(310\) 0 0
\(311\) 4.37162 + 13.4545i 0.247892 + 0.762933i 0.995147 + 0.0983958i \(0.0313711\pi\)
−0.747256 + 0.664537i \(0.768629\pi\)
\(312\) −2.78064 5.45732i −0.157423 0.308960i
\(313\) −0.115706 0.730542i −0.00654011 0.0412927i 0.984202 0.177047i \(-0.0566543\pi\)
−0.990743 + 0.135754i \(0.956654\pi\)
\(314\) −8.48022 6.16124i −0.478566 0.347699i
\(315\) 0 0
\(316\) −25.5415 + 8.29895i −1.43682 + 0.466852i
\(317\) 2.66972 16.8560i 0.149947 0.946726i −0.791892 0.610661i \(-0.790904\pi\)
0.941839 0.336065i \(-0.109096\pi\)
\(318\) 0.581389 0.581389i 0.0326027 0.0326027i
\(319\) −0.0472661 + 8.77118i −0.00264640 + 0.491092i
\(320\) 0 0
\(321\) −0.291674 0.401454i −0.0162796 0.0224070i
\(322\) −3.80538 1.93894i −0.212065 0.108053i
\(323\) −19.2421 + 9.80433i −1.07066 + 0.545527i
\(324\) −1.03346 + 1.42244i −0.0574145 + 0.0790243i
\(325\) 0 0
\(326\) −4.84178 1.57319i −0.268161 0.0871309i
\(327\) 4.89675 9.61042i 0.270791 0.531457i
\(328\) −6.45047 1.02165i −0.356168 0.0564114i
\(329\) 10.7373 0.591967
\(330\) 0 0
\(331\) −14.9189 −0.820016 −0.410008 0.912082i \(-0.634474\pi\)
−0.410008 + 0.912082i \(0.634474\pi\)
\(332\) 11.6268 + 1.84150i 0.638102 + 0.101065i
\(333\) −0.898777 + 1.76395i −0.0492527 + 0.0966638i
\(334\) 5.24485 + 1.70415i 0.286985 + 0.0932472i
\(335\) 0 0
\(336\) −5.12893 + 7.05937i −0.279806 + 0.385120i
\(337\) 8.40891 4.28455i 0.458062 0.233394i −0.209705 0.977765i \(-0.567250\pi\)
0.667767 + 0.744370i \(0.267250\pi\)
\(338\) −1.92995 0.983358i −0.104975 0.0534876i
\(339\) −13.5725 18.6809i −0.737156 1.01461i
\(340\) 0 0
\(341\) −13.2379 + 18.0154i −0.716871 + 0.975589i
\(342\) 2.40905 2.40905i 0.130267 0.130267i
\(343\) −2.50676 + 15.8271i −0.135352 + 0.854581i
\(344\) 12.5333 4.07231i 0.675750 0.219564i
\(345\) 0 0
\(346\) −5.21586 3.78954i −0.280406 0.203727i
\(347\) −3.00971 19.0026i −0.161570 1.02011i −0.926581 0.376094i \(-0.877267\pi\)
0.765012 0.644016i \(-0.222733\pi\)
\(348\) −2.40971 4.72933i −0.129174 0.253518i
\(349\) 4.59599 + 14.1450i 0.246018 + 0.757164i 0.995467 + 0.0951031i \(0.0303181\pi\)
−0.749450 + 0.662061i \(0.769682\pi\)
\(350\) 0 0
\(351\) 15.6777i 0.836813i
\(352\) 14.6058 + 7.54143i 0.778491 + 0.401960i
\(353\) −1.78406 1.78406i −0.0949560 0.0949560i 0.658033 0.752989i \(-0.271389\pi\)
−0.752989 + 0.658033i \(0.771389\pi\)
\(354\) −0.722594 + 0.524995i −0.0384054 + 0.0279032i
\(355\) 0 0
\(356\) 6.08171 18.7176i 0.322330 0.992029i
\(357\) −17.2896 + 2.73840i −0.915063 + 0.144932i
\(358\) −1.07402 + 0.170108i −0.0567636 + 0.00899047i
\(359\) −2.62416 + 8.07635i −0.138498 + 0.426253i −0.996118 0.0880312i \(-0.971942\pi\)
0.857620 + 0.514285i \(0.171942\pi\)
\(360\) 0 0
\(361\) 1.77596 1.29031i 0.0934717 0.0679111i
\(362\) 1.49682 + 1.49682i 0.0786711 + 0.0786711i
\(363\) 1.82707 + 12.3991i 0.0958962 + 0.650783i
\(364\) 15.0345i 0.788021i
\(365\) 0 0
\(366\) 1.19290 + 3.67138i 0.0623541 + 0.191906i
\(367\) 9.63799 + 18.9156i 0.503099 + 0.987387i 0.993277 + 0.115765i \(0.0369318\pi\)
−0.490178 + 0.871622i \(0.663068\pi\)
\(368\) 1.23190 + 7.77792i 0.0642173 + 0.405452i
\(369\) −4.89515 3.55653i −0.254831 0.185146i
\(370\) 0 0
\(371\) 4.09877 1.33177i 0.212797 0.0691420i
\(372\) 2.11633 13.3620i 0.109726 0.692786i
\(373\) 2.57445 2.57445i 0.133300 0.133300i −0.637309 0.770609i \(-0.719952\pi\)
0.770609 + 0.637309i \(0.219952\pi\)
\(374\) 2.59290 + 8.12891i 0.134076 + 0.420336i
\(375\) 0 0
\(376\) 3.97513 + 5.47130i 0.205002 + 0.282161i
\(377\) 6.89604 + 3.51371i 0.355164 + 0.180965i
\(378\) 6.79802 3.46377i 0.349653 0.178157i
\(379\) −9.74713 + 13.4158i −0.500677 + 0.689122i −0.982312 0.187249i \(-0.940043\pi\)
0.481636 + 0.876371i \(0.340043\pi\)
\(380\) 0 0
\(381\) 10.2180 + 3.32002i 0.523483 + 0.170090i
\(382\) 0.904051 1.77430i 0.0462553 0.0907810i
\(383\) −11.2007 1.77402i −0.572330 0.0906481i −0.136440 0.990648i \(-0.543566\pi\)
−0.435890 + 0.900000i \(0.643566\pi\)
\(384\) −12.8694 −0.656736
\(385\) 0 0
\(386\) 10.2067 0.519505
\(387\) 12.0591 + 1.90998i 0.612999 + 0.0970895i
\(388\) −8.05188 + 15.8027i −0.408772 + 0.802260i
\(389\) 0.777554 + 0.252643i 0.0394236 + 0.0128095i 0.328662 0.944447i \(-0.393402\pi\)
−0.289239 + 0.957257i \(0.593402\pi\)
\(390\) 0 0
\(391\) −9.28580 + 12.7808i −0.469603 + 0.646353i
\(392\) 2.46398 1.25546i 0.124450 0.0634102i
\(393\) 7.63086 + 3.88812i 0.384926 + 0.196130i
\(394\) −0.0867814 0.119444i −0.00437198 0.00601752i
\(395\) 0 0
\(396\) 5.80078 + 8.07525i 0.291500 + 0.405796i
\(397\) −11.8504 + 11.8504i −0.594752 + 0.594752i −0.938911 0.344159i \(-0.888164\pi\)
0.344159 + 0.938911i \(0.388164\pi\)
\(398\) −0.846553 + 5.34493i −0.0424339 + 0.267917i
\(399\) −12.9549 + 4.20930i −0.648555 + 0.210728i
\(400\) 0 0
\(401\) 23.0228 + 16.7270i 1.14970 + 0.835308i 0.988441 0.151603i \(-0.0484436\pi\)
0.161262 + 0.986912i \(0.448444\pi\)
\(402\) 0.161831 + 1.02176i 0.00807137 + 0.0509607i
\(403\) 8.95566 + 17.5765i 0.446113 + 0.875547i
\(404\) 1.03922 + 3.19839i 0.0517032 + 0.159126i
\(405\) 0 0
\(406\) 3.76651i 0.186929i
\(407\) −2.71338 2.74279i −0.134497 0.135955i
\(408\) −7.79627 7.79627i −0.385973 0.385973i
\(409\) 1.95998 1.42401i 0.0969146 0.0704126i −0.538273 0.842771i \(-0.680923\pi\)
0.635187 + 0.772358i \(0.280923\pi\)
\(410\) 0 0
\(411\) −5.41127 + 16.6542i −0.266918 + 0.821490i
\(412\) −10.7371 + 1.70059i −0.528979 + 0.0837820i
\(413\) −4.62404 + 0.732376i −0.227534 + 0.0360379i
\(414\) 0.770145 2.37026i 0.0378506 0.116492i
\(415\) 0 0
\(416\) 11.7343 8.52546i 0.575321 0.417995i
\(417\) 3.35343 + 3.35343i 0.164218 + 0.164218i
\(418\) 2.98234 + 5.93199i 0.145871 + 0.290143i
\(419\) 16.4371i 0.803006i 0.915858 + 0.401503i \(0.131512\pi\)
−0.915858 + 0.401503i \(0.868488\pi\)
\(420\) 0 0
\(421\) −3.85294 11.8581i −0.187781 0.577930i 0.812204 0.583373i \(-0.198267\pi\)
−0.999985 + 0.00544310i \(0.998267\pi\)
\(422\) 1.96327 + 3.85314i 0.0955707 + 0.187568i
\(423\) 0.980171 + 6.18855i 0.0476575 + 0.300898i
\(424\) 2.19605 + 1.59552i 0.106649 + 0.0774853i
\(425\) 0 0
\(426\) −1.52036 + 0.493994i −0.0736615 + 0.0239341i
\(427\) −3.16534 + 19.9852i −0.153182 + 0.967151i
\(428\) 0.542488 0.542488i 0.0262222 0.0262222i
\(429\) 10.4990 + 3.47399i 0.506896 + 0.167726i
\(430\) 0 0
\(431\) −11.6588 16.0470i −0.561586 0.772957i 0.429941 0.902857i \(-0.358534\pi\)
−0.991527 + 0.129900i \(0.958534\pi\)
\(432\) −12.5346 6.38668i −0.603070 0.307279i
\(433\) 25.5054 12.9956i 1.22571 0.624531i 0.283314 0.959027i \(-0.408566\pi\)
0.942397 + 0.334496i \(0.108566\pi\)
\(434\) −5.64273 + 7.76656i −0.270860 + 0.372807i
\(435\) 0 0
\(436\) 15.8597 + 5.15313i 0.759541 + 0.246790i
\(437\) −5.58097 + 10.9533i −0.266974 + 0.523966i
\(438\) −8.13431 1.28835i −0.388672 0.0615597i
\(439\) 3.12279 0.149043 0.0745214 0.997219i \(-0.476257\pi\)
0.0745214 + 0.997219i \(0.476257\pi\)
\(440\) 0 0
\(441\) 2.56208 0.122004
\(442\) 7.43613 + 1.17777i 0.353701 + 0.0560207i
\(443\) 14.4087 28.2787i 0.684579 1.34356i −0.243033 0.970018i \(-0.578142\pi\)
0.927612 0.373545i \(-0.121858\pi\)
\(444\) 2.22044 + 0.721465i 0.105378 + 0.0342392i
\(445\) 0 0
\(446\) −1.77454 + 2.44244i −0.0840267 + 0.115653i
\(447\) 18.2503 9.29900i 0.863210 0.439827i
\(448\) −7.35837 3.74928i −0.347650 0.177137i
\(449\) −20.5693 28.3112i −0.970726 1.33609i −0.941679 0.336511i \(-0.890753\pi\)
−0.0290462 0.999578i \(-0.509247\pi\)
\(450\) 0 0
\(451\) 9.57702 6.87957i 0.450964 0.323946i
\(452\) 25.2437 25.2437i 1.18736 1.18736i
\(453\) −3.17119 + 20.0221i −0.148996 + 0.940722i
\(454\) −1.54041 + 0.500510i −0.0722951 + 0.0234901i
\(455\) 0 0
\(456\) −6.94099 5.04293i −0.325042 0.236157i
\(457\) −0.797826 5.03728i −0.0373207 0.235634i 0.961976 0.273134i \(-0.0880604\pi\)
−0.999297 + 0.0375006i \(0.988060\pi\)
\(458\) −1.18388 2.32350i −0.0553191 0.108570i
\(459\) −8.72103 26.8406i −0.407063 1.25281i
\(460\) 0 0
\(461\) 12.4703i 0.580801i 0.956905 + 0.290400i \(0.0937885\pi\)
−0.956905 + 0.290400i \(0.906211\pi\)
\(462\) 0.813245 + 5.32002i 0.0378356 + 0.247510i
\(463\) 19.2728 + 19.2728i 0.895684 + 0.895684i 0.995051 0.0993669i \(-0.0316818\pi\)
−0.0993669 + 0.995051i \(0.531682\pi\)
\(464\) 5.61854 4.08211i 0.260834 0.189507i
\(465\) 0 0
\(466\) −0.666738 + 2.05201i −0.0308860 + 0.0950574i
\(467\) 39.2044 6.20937i 1.81416 0.287335i 0.845184 0.534476i \(-0.179491\pi\)
0.968980 + 0.247141i \(0.0794911\pi\)
\(468\) 8.66527 1.37244i 0.400552 0.0634412i
\(469\) −1.67562 + 5.15703i −0.0773730 + 0.238130i
\(470\) 0 0
\(471\) −19.7855 + 14.3750i −0.911667 + 0.662365i
\(472\) −2.08508 2.08508i −0.0959738 0.0959738i
\(473\) −10.9164 + 21.1422i −0.501936 + 0.972119i
\(474\) 8.48273i 0.389625i
\(475\) 0 0
\(476\) −8.36324 25.7394i −0.383328 1.17976i
\(477\) 1.14174 + 2.24079i 0.0522767 + 0.102599i
\(478\) 0.798528 + 5.04171i 0.0365238 + 0.230602i
\(479\) 30.9491 + 22.4858i 1.41410 + 1.02740i 0.992711 + 0.120523i \(0.0384570\pi\)
0.421388 + 0.906880i \(0.361543\pi\)
\(480\) 0 0
\(481\) −3.23773 + 1.05200i −0.147628 + 0.0479671i
\(482\) 2.12815 13.4366i 0.0969348 0.612022i
\(483\) −7.04599 + 7.04599i −0.320603 + 0.320603i
\(484\) −18.4919 + 5.78879i −0.840539 + 0.263127i
\(485\) 0 0
\(486\) 4.28667 + 5.90009i 0.194447 + 0.267634i
\(487\) −24.2169 12.3391i −1.09737 0.559139i −0.190987 0.981593i \(-0.561169\pi\)
−0.906384 + 0.422454i \(0.861169\pi\)
\(488\) −11.3555 + 5.78591i −0.514039 + 0.261916i
\(489\) −6.98164 + 9.60940i −0.315720 + 0.434552i
\(490\) 0 0
\(491\) 3.77748 + 1.22738i 0.170475 + 0.0553907i 0.393011 0.919534i \(-0.371433\pi\)
−0.222536 + 0.974925i \(0.571433\pi\)
\(492\) −3.23954 + 6.35795i −0.146050 + 0.286638i
\(493\) 13.7608 + 2.17949i 0.619753 + 0.0981593i
\(494\) 5.85854 0.263588
\(495\) 0 0
\(496\) 17.7010 0.794798
\(497\) −8.27608 1.31080i −0.371233 0.0587975i
\(498\) −1.68803 + 3.31295i −0.0756426 + 0.148457i
\(499\) −6.11060 1.98546i −0.273548 0.0888812i 0.169031 0.985611i \(-0.445936\pi\)
−0.442579 + 0.896730i \(0.645936\pi\)
\(500\) 0 0
\(501\) 7.56284 10.4094i 0.337883 0.465056i
\(502\) −4.32776 + 2.20510i −0.193157 + 0.0984186i
\(503\) −36.2878 18.4896i −1.61799 0.824409i −0.999246 0.0388190i \(-0.987640\pi\)
−0.618747 0.785590i \(-0.712360\pi\)
\(504\) 5.35890 + 7.37590i 0.238704 + 0.328549i
\(505\) 0 0
\(506\) 3.91392 + 2.87598i 0.173995 + 0.127853i
\(507\) −3.57347 + 3.57347i −0.158703 + 0.158703i
\(508\) −2.59847 + 16.4061i −0.115289 + 0.727904i
\(509\) 8.83124 2.86944i 0.391438 0.127186i −0.106684 0.994293i \(-0.534023\pi\)
0.498122 + 0.867107i \(0.334023\pi\)
\(510\) 0 0
\(511\) −34.9240 25.3738i −1.54495 1.12247i
\(512\) −3.54520 22.3835i −0.156677 0.989220i
\(513\) −9.96998 19.5672i −0.440185 0.863912i
\(514\) −0.639909 1.96944i −0.0282252 0.0868681i
\(515\) 0 0
\(516\) 14.3987i 0.633868i
\(517\) −12.0500 1.97515i −0.529957 0.0868669i
\(518\) −1.17149 1.17149i −0.0514723 0.0514723i
\(519\) −12.1693 + 8.84152i −0.534173 + 0.388099i
\(520\) 0 0
\(521\) −4.57564 + 14.0824i −0.200462 + 0.616960i 0.799407 + 0.600790i \(0.205147\pi\)
−0.999869 + 0.0161698i \(0.994853\pi\)
\(522\) −2.17086 + 0.343831i −0.0950160 + 0.0150491i
\(523\) 38.3651 6.07643i 1.67759 0.265704i 0.756197 0.654344i \(-0.227055\pi\)
0.921390 + 0.388640i \(0.127055\pi\)
\(524\) −4.09168 + 12.5929i −0.178746 + 0.550124i
\(525\) 0 0
\(526\) −9.04175 + 6.56922i −0.394239 + 0.286431i
\(527\) 25.1096 + 25.1096i 1.09379 + 1.09379i
\(528\) 7.05453 6.97891i 0.307009 0.303718i
\(529\) 14.0073i 0.609011i
\(530\) 0 0
\(531\) −0.844224 2.59825i −0.0366362 0.112755i
\(532\) −9.56095 18.7644i −0.414520 0.813541i
\(533\) −1.62768 10.2768i −0.0705027 0.445136i
\(534\) 5.02916 + 3.65390i 0.217633 + 0.158120i
\(535\) 0 0
\(536\) −3.24815 + 1.05539i −0.140299 + 0.0455859i
\(537\) −0.396884 + 2.50583i −0.0171268 + 0.108134i
\(538\) −7.89771 + 7.89771i −0.340495 + 0.340495i
\(539\) −1.56850 + 4.74029i −0.0675603 + 0.204179i
\(540\) 0 0
\(541\) 10.2392 + 14.0930i 0.440217 + 0.605907i 0.970260 0.242064i \(-0.0778243\pi\)
−0.530043 + 0.847971i \(0.677824\pi\)
\(542\) 0.604957 + 0.308241i 0.0259851 + 0.0132401i
\(543\) 4.40053 2.24218i 0.188845 0.0962213i
\(544\) 15.3469 21.1232i 0.657994 0.905650i
\(545\) 0 0
\(546\) 4.51637 + 1.46746i 0.193283 + 0.0628014i
\(547\) −17.7994 + 34.9333i −0.761048 + 1.49364i 0.105430 + 0.994427i \(0.466378\pi\)
−0.866478 + 0.499215i \(0.833622\pi\)
\(548\) −26.7401 4.23522i −1.14228 0.180920i
\(549\) −11.8076 −0.503936
\(550\) 0 0
\(551\) 10.8414 0.461858
\(552\) −6.19888 0.981807i −0.263842 0.0417885i
\(553\) 20.1859 39.6170i 0.858391 1.68469i
\(554\) 6.62094 + 2.15127i 0.281297 + 0.0913989i
\(555\) 0 0
\(556\) −4.30973 + 5.93184i −0.182773 + 0.251566i
\(557\) −32.7010 + 16.6620i −1.38558 + 0.705991i −0.978277 0.207301i \(-0.933532\pi\)
−0.407307 + 0.913291i \(0.633532\pi\)
\(558\) −4.99143 2.54326i −0.211304 0.107665i
\(559\) 12.3408 + 16.9856i 0.521959 + 0.718416i
\(560\) 0 0
\(561\) 19.9070 + 0.107275i 0.840475 + 0.00452915i
\(562\) −8.76280 + 8.76280i −0.369636 + 0.369636i
\(563\) 2.64077 16.6732i 0.111295 0.702690i −0.867437 0.497547i \(-0.834234\pi\)
0.978732 0.205143i \(-0.0657659\pi\)
\(564\) 7.02754 2.28339i 0.295913 0.0961480i
\(565\) 0 0
\(566\) 2.92779 + 2.12716i 0.123064 + 0.0894114i
\(567\) −0.455374 2.87512i −0.0191239 0.120744i
\(568\) −2.39601 4.70243i −0.100534 0.197310i
\(569\) 0.818531 + 2.51918i 0.0343146 + 0.105609i 0.966747 0.255736i \(-0.0823176\pi\)
−0.932432 + 0.361345i \(0.882318\pi\)
\(570\) 0 0
\(571\) 29.8675i 1.24992i −0.780658 0.624959i \(-0.785116\pi\)
0.780658 0.624959i \(-0.214884\pi\)
\(572\) −2.76562 + 16.8725i −0.115636 + 0.705473i
\(573\) −3.28527 3.28527i −0.137244 0.137244i
\(574\) 4.09651 2.97629i 0.170985 0.124228i
\(575\) 0 0
\(576\) 1.48921 4.58332i 0.0620505 0.190972i
\(577\) 0.354477 0.0561437i 0.0147571 0.00233729i −0.149052 0.988829i \(-0.547622\pi\)
0.163809 + 0.986492i \(0.447622\pi\)
\(578\) 5.18643 0.821450i 0.215727 0.0341678i
\(579\) 7.35878 22.6480i 0.305821 0.941219i
\(580\) 0 0
\(581\) −15.7673 + 11.4556i −0.654138 + 0.475259i
\(582\) −3.96123 3.96123i −0.164198 0.164198i
\(583\) −4.84483 + 0.740605i −0.200652 + 0.0306727i
\(584\) 27.1896i 1.12511i
\(585\) 0 0
\(586\) −2.21490 6.81675i −0.0914965 0.281597i
\(587\) −11.7343 23.0298i −0.484326 0.950543i −0.995827 0.0912603i \(-0.970910\pi\)
0.511501 0.859282i \(-0.329090\pi\)
\(588\) −0.472664 2.98428i −0.0194923 0.123070i
\(589\) 22.3550 + 16.2418i 0.921121 + 0.669233i
\(590\) 0 0
\(591\) −0.327608 + 0.106446i −0.0134760 + 0.00437861i
\(592\) −0.477873 + 3.01717i −0.0196405 + 0.124005i
\(593\) −9.56872 + 9.56872i −0.392940 + 0.392940i −0.875734 0.482794i \(-0.839622\pi\)
0.482794 + 0.875734i \(0.339622\pi\)
\(594\) −8.26626 + 2.63671i −0.339169 + 0.108185i
\(595\) 0 0
\(596\) 18.6138 + 25.6197i 0.762451 + 1.04942i
\(597\) 11.2497 + 5.73203i 0.460421 + 0.234596i
\(598\) 3.81856 1.94565i 0.156153 0.0795637i
\(599\) 6.65542 9.16040i 0.271933 0.374284i −0.651108 0.758985i \(-0.725696\pi\)
0.923041 + 0.384701i \(0.125696\pi\)
\(600\) 0 0
\(601\) −15.6822 5.09545i −0.639689 0.207848i −0.0288267 0.999584i \(-0.509177\pi\)
−0.610862 + 0.791737i \(0.709177\pi\)
\(602\) −4.63864 + 9.10384i −0.189057 + 0.371045i
\(603\) −3.12526 0.494993i −0.127271 0.0201577i
\(604\) −31.3413 −1.27526
\(605\) 0 0
\(606\) −1.06223 −0.0431503
\(607\) −4.92298 0.779724i −0.199818 0.0316480i 0.0557232 0.998446i \(-0.482254\pi\)
−0.255541 + 0.966798i \(0.582254\pi\)
\(608\) 9.22383 18.1028i 0.374076 0.734165i
\(609\) 8.35766 + 2.71557i 0.338670 + 0.110040i
\(610\) 0 0
\(611\) −6.33310 + 8.71677i −0.256210 + 0.352643i
\(612\) 14.0717 7.16989i 0.568814 0.289825i
\(613\) −16.2873 8.29879i −0.657837 0.335185i 0.0930058 0.995666i \(-0.470352\pi\)
−0.750843 + 0.660481i \(0.770352\pi\)
\(614\) 0.355174 + 0.488855i 0.0143337 + 0.0197286i
\(615\) 0 0
\(616\) −16.9274 + 5.39938i −0.682025 + 0.217547i
\(617\) −15.4942 + 15.4942i −0.623773 + 0.623773i −0.946494 0.322721i \(-0.895402\pi\)
0.322721 + 0.946494i \(0.395402\pi\)
\(618\) 0.537149 3.39142i 0.0216073 0.136423i
\(619\) 46.8070 15.2085i 1.88133 0.611282i 0.895114 0.445837i \(-0.147094\pi\)
0.986219 0.165445i \(-0.0529061\pi\)
\(620\) 0 0
\(621\) −12.9967 9.44269i −0.521541 0.378922i
\(622\) −1.08072 6.82342i −0.0433330 0.273594i
\(623\) 14.7928 + 29.0325i 0.592661 + 1.16316i
\(624\) −2.70578 8.32754i −0.108318 0.333368i
\(625\) 0 0
\(626\) 0.361199i 0.0144364i
\(627\) 15.3129 2.34082i 0.611540 0.0934832i
\(628\) −26.7363 26.7363i −1.06689 1.06689i
\(629\) −4.95787 + 3.60210i −0.197683 + 0.143625i
\(630\) 0 0
\(631\) −2.79731 + 8.60924i −0.111359 + 0.342729i −0.991170 0.132595i \(-0.957669\pi\)
0.879811 + 0.475324i \(0.157669\pi\)
\(632\) 27.6604 4.38097i 1.10027 0.174266i
\(633\) 9.96538 1.57836i 0.396088 0.0627342i
\(634\) −2.57536 + 7.92615i −0.102281 + 0.314788i
\(635\) 0 0
\(636\) 2.39942 1.74328i 0.0951431 0.0691255i
\(637\) 3.11534 + 3.11534i 0.123434 + 0.123434i
\(638\) 0.692856 4.22697i 0.0274304 0.167347i
\(639\) 4.88965i 0.193432i
\(640\) 0 0
\(641\) −8.63030 26.5613i −0.340876 1.04911i −0.963755 0.266791i \(-0.914037\pi\)
0.622878 0.782319i \(-0.285963\pi\)
\(642\) 0.110014 + 0.215914i 0.00434190 + 0.00852146i
\(643\) 1.50637 + 9.51085i 0.0594055 + 0.375071i 0.999424 + 0.0339470i \(0.0108078\pi\)
−0.940018 + 0.341124i \(0.889192\pi\)
\(644\) −12.4635 9.05529i −0.491132 0.356828i
\(645\) 0 0
\(646\) 10.0300 3.25893i 0.394624 0.128221i
\(647\) −4.84185 + 30.5702i −0.190353 + 1.20184i 0.688675 + 0.725070i \(0.258193\pi\)
−0.879028 + 0.476770i \(0.841807\pi\)
\(648\) 1.29645 1.29645i 0.0509296 0.0509296i
\(649\) 5.32406 + 0.0286903i 0.208988 + 0.00112619i
\(650\) 0 0
\(651\) 13.1653 + 18.1204i 0.515987 + 0.710195i
\(652\) −16.3624 8.33705i −0.640800 0.326504i
\(653\) 5.44440 2.77406i 0.213056 0.108557i −0.344206 0.938894i \(-0.611852\pi\)
0.557262 + 0.830337i \(0.311852\pi\)
\(654\) −3.09601 + 4.26129i −0.121063 + 0.166630i
\(655\) 0 0
\(656\) −8.87952 2.88513i −0.346687 0.112645i
\(657\) 11.4363 22.4450i 0.446173 0.875665i
\(658\) −5.17890 0.820257i −0.201895 0.0319770i
\(659\) −12.0647 −0.469975 −0.234988 0.971998i \(-0.575505\pi\)
−0.234988 + 0.971998i \(0.575505\pi\)
\(660\) 0 0
\(661\) −29.6228 −1.15219 −0.576097 0.817382i \(-0.695425\pi\)
−0.576097 + 0.817382i \(0.695425\pi\)
\(662\) 7.19579 + 1.13970i 0.279672 + 0.0442957i
\(663\) 7.97469 15.6512i 0.309711 0.607843i
\(664\) −11.6746 3.79331i −0.453063 0.147209i
\(665\) 0 0
\(666\) 0.568258 0.782140i 0.0220196 0.0303073i
\(667\) 7.06635 3.60048i 0.273610 0.139411i
\(668\) 17.7245 + 9.03109i 0.685782 + 0.349423i
\(669\) 4.14023 + 5.69854i 0.160071 + 0.220318i
\(670\) 0 0
\(671\) 7.22862 21.8461i 0.279058 0.843361i
\(672\) 11.6451 11.6451i 0.449220 0.449220i
\(673\) −0.787773 + 4.97380i −0.0303664 + 0.191726i −0.998208 0.0598329i \(-0.980943\pi\)
0.967842 + 0.251559i \(0.0809432\pi\)
\(674\) −4.38316 + 1.42417i −0.168833 + 0.0548571i
\(675\) 0 0
\(676\) −6.32105 4.59251i −0.243117 0.176635i
\(677\) −5.69516 35.9579i −0.218883 1.38197i −0.815180 0.579208i \(-0.803362\pi\)
0.596297 0.802764i \(-0.296638\pi\)
\(678\) 5.11928 + 10.0472i 0.196605 + 0.385859i
\(679\) −9.07388 27.9265i −0.348223 1.07172i
\(680\) 0 0
\(681\) 3.77894i 0.144809i
\(682\) 7.76124 7.67804i 0.297193 0.294007i
\(683\) 8.07353 + 8.07353i 0.308925 + 0.308925i 0.844492 0.535567i \(-0.179902\pi\)
−0.535567 + 0.844492i \(0.679902\pi\)
\(684\) 9.94226 7.22348i 0.380152 0.276197i
\(685\) 0 0
\(686\) 2.41816 7.44232i 0.0923257 0.284149i
\(687\) −6.00926 + 0.951773i −0.229267 + 0.0363124i
\(688\) 18.6076 2.94716i 0.709408 0.112359i
\(689\) −1.33638 + 4.11297i −0.0509122 + 0.156692i
\(690\) 0 0
\(691\) 9.61076 6.98263i 0.365611 0.265632i −0.389778 0.920909i \(-0.627448\pi\)
0.755388 + 0.655277i \(0.227448\pi\)
\(692\) −16.4445 16.4445i −0.625125 0.625125i
\(693\) −16.2447 2.66271i −0.617083 0.101148i
\(694\) 9.39538i 0.356644i
\(695\) 0 0
\(696\) 1.71040 + 5.26407i 0.0648326 + 0.199534i
\(697\) −8.50329 16.6886i −0.322085 0.632127i
\(698\) −1.13619 7.17362i −0.0430054 0.271526i
\(699\) 4.07258 + 2.95891i 0.154039 + 0.111916i
\(700\) 0 0
\(701\) −25.2475 + 8.20342i −0.953586 + 0.309839i −0.744172 0.667988i \(-0.767156\pi\)
−0.209414 + 0.977827i \(0.567156\pi\)
\(702\) −1.19767 + 7.56177i −0.0452030 + 0.285401i
\(703\) −3.37197 + 3.37197i −0.127176 + 0.127176i
\(704\) 7.56826 + 5.56122i 0.285239 + 0.209596i
\(705\) 0 0
\(706\) 0.724212 + 0.996792i 0.0272561 + 0.0375148i
\(707\) −4.96097 2.52774i −0.186576 0.0950654i
\(708\) −2.87068 + 1.46268i −0.107887 + 0.0549710i
\(709\) −10.4984 + 14.4498i −0.394275 + 0.542673i −0.959296 0.282404i \(-0.908868\pi\)
0.565021 + 0.825077i \(0.308868\pi\)
\(710\) 0 0
\(711\) 24.6763 + 8.01783i 0.925435 + 0.300692i
\(712\) −9.31723 + 18.2861i −0.349178 + 0.685301i
\(713\) 19.9648 + 3.16212i 0.747689 + 0.118422i
\(714\) 8.54844 0.319917
\(715\) 0 0
\(716\) −3.92246 −0.146589
\(717\) 11.7630 + 1.86307i 0.439297 + 0.0695778i
\(718\) 1.88268 3.69497i 0.0702611 0.137895i
\(719\) −31.1609 10.1248i −1.16211 0.377592i −0.336416 0.941714i \(-0.609215\pi\)
−0.825691 + 0.564122i \(0.809215\pi\)
\(720\) 0 0
\(721\) 10.5790 14.5608i 0.393984 0.542272i
\(722\) −0.955166 + 0.486681i −0.0355476 + 0.0181124i
\(723\) −28.2808 14.4098i −1.05177 0.535905i
\(724\) 4.48818 + 6.17744i 0.166802 + 0.229583i
\(725\) 0 0
\(726\) 0.0659608 6.12000i 0.00244803 0.227134i
\(727\) −0.964903 + 0.964903i −0.0357863 + 0.0357863i −0.724773 0.688987i \(-0.758056\pi\)
0.688987 + 0.724773i \(0.258056\pi\)
\(728\) −2.45255 + 15.4848i −0.0908976 + 0.573905i
\(729\) 19.0304 6.18335i 0.704830 0.229013i
\(730\) 0 0
\(731\) 30.5763 + 22.2150i 1.13091 + 0.821651i
\(732\) 2.17832 + 13.7534i 0.0805131 + 0.508340i
\(733\) 5.35405 + 10.5079i 0.197756 + 0.388119i 0.968495 0.249033i \(-0.0801126\pi\)
−0.770739 + 0.637151i \(0.780113\pi\)
\(734\) −3.20364 9.85979i −0.118249 0.363932i
\(735\) 0 0
\(736\) 14.8626i 0.547842i
\(737\) 2.82911 5.47925i 0.104212 0.201831i
\(738\) 2.08937 + 2.08937i 0.0769107 + 0.0769107i
\(739\) −34.8645 + 25.3305i −1.28251 + 0.931798i −0.999626 0.0273561i \(-0.991291\pi\)
−0.282884 + 0.959154i \(0.591291\pi\)
\(740\) 0 0
\(741\) 4.22388 12.9998i 0.155168 0.477558i
\(742\) −2.07868 + 0.329231i −0.0763109 + 0.0120865i
\(743\) −37.4472 + 5.93105i −1.37380 + 0.217589i −0.799309 0.600920i \(-0.794801\pi\)
−0.574494 + 0.818509i \(0.694801\pi\)
\(744\) −4.35943 + 13.4170i −0.159825 + 0.491889i
\(745\) 0 0
\(746\) −1.43840 + 1.04506i −0.0526636 + 0.0382623i
\(747\) −8.04189 8.04189i −0.294237 0.294237i
\(748\) 4.65085 + 30.4245i 0.170052 + 1.11243i
\(749\) 1.27018i 0.0464114i
\(750\) 0 0
\(751\) 10.7881 + 33.2025i 0.393665 + 1.21158i 0.929996 + 0.367569i \(0.119810\pi\)
−0.536331 + 0.844008i \(0.680190\pi\)
\(752\) 4.38926 + 8.61441i 0.160060 + 0.314135i
\(753\) 1.77278 + 11.1929i 0.0646036 + 0.407891i
\(754\) −3.05772 2.22157i −0.111356 0.0809047i
\(755\) 0 0
\(756\) 26.1743 8.50454i 0.951950 0.309307i
\(757\) −5.39320 + 34.0513i −0.196019 + 1.23762i 0.671798 + 0.740734i \(0.265522\pi\)
−0.867818 + 0.496883i \(0.834478\pi\)
\(758\) 5.72618 5.72618i 0.207984 0.207984i
\(759\) 9.20349 6.61125i 0.334065 0.239973i
\(760\) 0 0
\(761\) −8.17878 11.2571i −0.296481 0.408071i 0.634625 0.772820i \(-0.281155\pi\)
−0.931106 + 0.364750i \(0.881155\pi\)
\(762\) −4.67478 2.38192i −0.169350 0.0862879i
\(763\) −24.5997 + 12.5342i −0.890568 + 0.453767i
\(764\) 4.22213 5.81126i 0.152751 0.210244i
\(765\) 0 0
\(766\) 5.26689 + 1.71132i 0.190300 + 0.0618323i
\(767\) 2.13280 4.18586i 0.0770110 0.151143i
\(768\) −0.166048 0.0262994i −0.00599174 0.000948998i
\(769\) 13.3273 0.480596 0.240298 0.970699i \(-0.422755\pi\)
0.240298 + 0.970699i \(0.422755\pi\)
\(770\) 0 0
\(771\) −4.83143 −0.174000
\(772\) 36.3639 + 5.75948i 1.30877 + 0.207288i
\(773\) 5.67471 11.1372i 0.204105 0.400579i −0.766151 0.642661i \(-0.777830\pi\)
0.970256 + 0.242082i \(0.0778304\pi\)
\(774\) −5.67053 1.84247i −0.203823 0.0662261i
\(775\) 0 0
\(776\) 10.8709 14.9625i 0.390243 0.537124i
\(777\) −3.44409 + 1.75485i −0.123556 + 0.0629549i
\(778\) −0.355735 0.181256i −0.0127537 0.00649835i
\(779\) −8.56685 11.7913i −0.306939 0.422465i
\(780\) 0 0
\(781\) 9.04671 + 2.99345i 0.323717 + 0.107114i
\(782\) 5.45516 5.45516i 0.195076 0.195076i
\(783\) −2.21631 + 13.9933i −0.0792046 + 0.500078i
\(784\) 3.75988 1.22166i 0.134281 0.0436306i
\(785\) 0 0
\(786\) −3.38355 2.45829i −0.120687 0.0876843i
\(787\) −0.984406 6.21530i −0.0350903 0.221551i 0.963911 0.266223i \(-0.0857758\pi\)
−0.999002 + 0.0446718i \(0.985776\pi\)
\(788\) −0.241781 0.474521i −0.00861308 0.0169041i
\(789\) 8.05781 + 24.7994i 0.286866 + 0.882882i
\(790\) 0 0
\(791\) 59.1055i 2.10155i
\(792\) −4.65723 9.26339i −0.165487 0.329160i
\(793\) −14.3574 14.3574i −0.509846 0.509846i
\(794\) 6.62104 4.81046i 0.234972 0.170717i
\(795\) 0 0
\(796\) −6.03213 + 18.5650i −0.213803 + 0.658019i
\(797\) 1.74680 0.276667i 0.0618750 0.00980003i −0.125420 0.992104i \(-0.540028\pi\)
0.187295 + 0.982304i \(0.440028\pi\)
\(798\) 6.57006 1.04059i 0.232577 0.0368367i
\(799\) −5.99354 + 18.4462i −0.212036 + 0.652581i
\(800\) 0 0
\(801\) −15.3828 + 11.1762i −0.543523 + 0.394893i
\(802\) −9.82669 9.82669i −0.346992 0.346992i
\(803\) 34.5259 + 34.9001i 1.21839 + 1.23160i
\(804\) 3.73160i 0.131603i
\(805\) 0 0
\(806\) −2.97684 9.16176i −0.104855 0.322709i
\(807\) 11.8305 + 23.2186i 0.416453 + 0.817335i
\(808\) −0.548599 3.46372i −0.0192996 0.121853i
\(809\) −14.9294 10.8468i −0.524889 0.381354i 0.293553 0.955943i \(-0.405162\pi\)
−0.818443 + 0.574588i \(0.805162\pi\)
\(810\) 0 0
\(811\) −12.4057 + 4.03086i −0.435624 + 0.141543i −0.518616 0.855007i \(-0.673552\pi\)
0.0829918 + 0.996550i \(0.473552\pi\)
\(812\) −2.12539 + 13.4192i −0.0745865 + 0.470920i
\(813\) 1.12013 1.12013i 0.0392847 0.0392847i
\(814\) 1.09921 + 1.53020i 0.0385273 + 0.0536336i
\(815\) 0 0
\(816\) −9.26472 12.7518i −0.324330 0.446402i
\(817\) 26.2042 + 13.3517i 0.916768 + 0.467117i
\(818\) −1.05413 + 0.537108i −0.0368569 + 0.0187796i
\(819\) −8.53770 + 11.7511i −0.298331 + 0.410618i
\(820\) 0 0
\(821\) −24.7703 8.04835i −0.864489 0.280889i −0.156987 0.987601i \(-0.550178\pi\)
−0.707502 + 0.706711i \(0.750178\pi\)
\(822\) 3.88227 7.61938i 0.135410 0.265756i
\(823\) −4.96237 0.785962i −0.172977 0.0273969i 0.0693449 0.997593i \(-0.477909\pi\)
−0.242322 + 0.970196i \(0.577909\pi\)
\(824\) 11.3361 0.394912
\(825\) 0 0
\(826\) 2.28625 0.0795488
\(827\) 12.0210 + 1.90393i 0.418010 + 0.0662062i 0.361897 0.932218i \(-0.382129\pi\)
0.0561130 + 0.998424i \(0.482129\pi\)
\(828\) 4.08135 8.01010i 0.141837 0.278370i
\(829\) 10.4727 + 3.40277i 0.363730 + 0.118183i 0.485180 0.874415i \(-0.338754\pi\)
−0.121449 + 0.992598i \(0.538754\pi\)
\(830\) 0 0
\(831\) 9.54711 13.1405i 0.331185 0.455838i
\(832\) 7.38386 3.76227i 0.255989 0.130433i
\(833\) 7.06651 + 3.60057i 0.244840 + 0.124752i
\(834\) −1.36127 1.87363i −0.0471370 0.0648785i
\(835\) 0 0
\(836\) 7.27804 + 22.8171i 0.251716 + 0.789148i
\(837\) −25.5338 + 25.5338i −0.882578 + 0.882578i
\(838\) 1.25568 7.92807i 0.0433769 0.273871i
\(839\) −8.83685 + 2.87127i −0.305082 + 0.0991272i −0.457557 0.889180i \(-0.651276\pi\)
0.152475 + 0.988307i \(0.451276\pi\)
\(840\) 0 0
\(841\) 17.8031 + 12.9347i 0.613900 + 0.446024i
\(842\) 0.952498 + 6.01384i 0.0328253 + 0.207251i
\(843\) 13.1264 + 25.7619i 0.452096 + 0.887288i
\(844\) 4.82040 + 14.8357i 0.165925 + 0.510665i
\(845\) 0 0
\(846\) 3.05979i 0.105198i
\(847\) 14.8715 28.4253i 0.510990 0.976706i
\(848\) 2.74398 + 2.74398i 0.0942286 + 0.0942286i
\(849\) 6.83093 4.96296i 0.234437 0.170328i
\(850\) 0 0
\(851\) −1.07798 + 3.31768i −0.0369527 + 0.113729i
\(852\) −5.69542 + 0.902066i −0.195122 + 0.0309043i
\(853\) 26.7133 4.23097i 0.914645 0.144866i 0.318667 0.947867i \(-0.396765\pi\)
0.595978 + 0.803001i \(0.296765\pi\)
\(854\) 3.05346 9.39759i 0.104487 0.321579i
\(855\) 0 0
\(856\) −0.647232 + 0.470242i −0.0221220 + 0.0160725i
\(857\) 33.1497 + 33.1497i 1.13237 + 1.13237i 0.989782 + 0.142591i \(0.0455432\pi\)
0.142591 + 0.989782i \(0.454457\pi\)
\(858\) −4.79856 2.47765i −0.163820 0.0845857i
\(859\) 47.2517i 1.61221i 0.591775 + 0.806103i \(0.298427\pi\)
−0.591775 + 0.806103i \(0.701573\pi\)
\(860\) 0 0
\(861\) −3.65072 11.2358i −0.124416 0.382914i
\(862\) 4.39749 + 8.63057i 0.149779 + 0.293958i
\(863\) −2.43422 15.3690i −0.0828617 0.523168i −0.993850 0.110736i \(-0.964679\pi\)
0.910988 0.412432i \(-0.135321\pi\)
\(864\) 21.4801 + 15.6062i 0.730768 + 0.530934i
\(865\) 0 0
\(866\) −13.2947 + 4.31972i −0.451773 + 0.146790i
\(867\) 1.91655 12.1006i 0.0650896 0.410959i
\(868\) −24.4863 + 24.4863i −0.831118 + 0.831118i
\(869\) −29.9413 + 40.7470i −1.01569 + 1.38225i
\(870\) 0 0
\(871\) −3.19826 4.40203i −0.108369 0.149157i
\(872\) −15.4941 7.89464i −0.524696 0.267346i
\(873\) 15.2674 7.77913i 0.516723 0.263284i
\(874\) 3.52861 4.85671i 0.119357 0.164281i
\(875\) 0 0
\(876\) −28.2536 9.18015i −0.954601 0.310169i
\(877\) 13.2254 25.9562i 0.446589 0.876480i −0.552488 0.833521i \(-0.686321\pi\)
0.999077 0.0429592i \(-0.0136785\pi\)
\(878\) −1.50621 0.238560i −0.0508321 0.00805101i
\(879\) −16.7229 −0.564048
\(880\) 0 0
\(881\) 4.18815 0.141102 0.0705512 0.997508i \(-0.477524\pi\)
0.0705512 + 0.997508i \(0.477524\pi\)
\(882\) −1.23576 0.195725i −0.0416102 0.00659041i
\(883\) −20.7555 + 40.7349i −0.698477 + 1.37084i 0.220053 + 0.975488i \(0.429377\pi\)
−0.918530 + 0.395351i \(0.870623\pi\)
\(884\) 25.8286 + 8.39221i 0.868709 + 0.282261i
\(885\) 0 0
\(886\) −9.11003 + 12.5389i −0.306057 + 0.421252i
\(887\) 30.7027 15.6438i 1.03090 0.525267i 0.145136 0.989412i \(-0.453638\pi\)
0.885760 + 0.464144i \(0.153638\pi\)
\(888\) −2.16926 1.10529i −0.0727955 0.0370912i
\(889\) −16.1646 22.2487i −0.542143 0.746196i
\(890\) 0 0
\(891\) −0.0178389 + 3.31037i −0.000597626 + 0.110902i
\(892\) −7.70048 + 7.70048i −0.257831 + 0.257831i
\(893\) −2.36100 + 14.9068i −0.0790078 + 0.498836i
\(894\) −9.51300 + 3.09096i −0.318162 + 0.103377i
\(895\) 0 0
\(896\) 26.6503 + 19.3626i 0.890323 + 0.646857i
\(897\) −1.56420 9.87594i −0.0522270 0.329748i
\(898\) 7.75836 + 15.2266i 0.258900 + 0.508119i
\(899\) −5.50871 16.9541i −0.183726 0.565450i
\(900\) 0 0
\(901\) 7.78489i 0.259352i
\(902\) −5.14481 + 2.58659i −0.171303 + 0.0861239i
\(903\) 16.8566 + 16.8566i 0.560951 + 0.560951i
\(904\) −30.1177 + 21.8818i −1.00170 + 0.727778i
\(905\) 0 0
\(906\) 3.05911 9.41497i 0.101632 0.312791i
\(907\) −38.0387 + 6.02474i −1.26306 + 0.200048i −0.751806 0.659384i \(-0.770817\pi\)
−0.511249 + 0.859433i \(0.670817\pi\)
\(908\) −5.77055 + 0.913965i −0.191502 + 0.0303310i
\(909\) 1.00402 3.09005i 0.0333012 0.102490i
\(910\) 0 0
\(911\) 29.8280 21.6713i 0.988244 0.718002i 0.0287085 0.999588i \(-0.490861\pi\)
0.959536 + 0.281586i \(0.0908605\pi\)
\(912\) −8.67283 8.67283i −0.287186 0.287186i
\(913\) 19.8022 9.95566i 0.655356 0.329484i
\(914\) 2.49056i 0.0823805i
\(915\) 0 0
\(916\) −2.90677 8.94611i −0.0960423 0.295588i
\(917\) −9.95237 19.5326i −0.328656 0.645024i
\(918\) 2.15595 + 13.6122i 0.0711571 + 0.449268i
\(919\) −24.5973 17.8710i −0.811392 0.589510i 0.102842 0.994698i \(-0.467206\pi\)
−0.914234 + 0.405187i \(0.867206\pi\)
\(920\) 0 0
\(921\) 1.34081 0.435657i 0.0441813 0.0143554i
\(922\) 0.952647 6.01478i 0.0313738 0.198086i
\(923\) 5.94554 5.94554i 0.195700 0.195700i
\(924\) −0.104612 + 19.4129i −0.00344148 + 0.638636i
\(925\) 0 0
\(926\) −7.82350 10.7681i −0.257096 0.353862i
\(927\) 9.35797 + 4.76812i 0.307356 + 0.156606i
\(928\) −11.6788 + 5.95063i −0.383374 + 0.195339i
\(929\) 13.6936 18.8477i 0.449273 0.618372i −0.522968 0.852352i \(-0.675175\pi\)
0.972241 + 0.233981i \(0.0751752\pi\)
\(930\) 0 0
\(931\) 5.86938 + 1.90708i 0.192361 + 0.0625020i
\(932\) −3.53335 + 6.93458i −0.115739 + 0.227150i
\(933\) −15.9199 2.52147i −0.521196 0.0825493i
\(934\) −19.3837 −0.634254
\(935\) 0 0
\(936\) −9.14869 −0.299034
\(937\) 7.94449 + 1.25828i 0.259535 + 0.0411063i 0.284846 0.958573i \(-0.408058\pi\)
−0.0253108 + 0.999680i \(0.508058\pi\)
\(938\) 1.20216 2.35937i 0.0392519 0.0770362i
\(939\) 0.801481 + 0.260417i 0.0261553 + 0.00849838i
\(940\) 0 0
\(941\) 28.1490 38.7438i 0.917631 1.26301i −0.0468615 0.998901i \(-0.514922\pi\)
0.964493 0.264110i \(-0.0850781\pi\)
\(942\) 10.6412 5.42198i 0.346710 0.176658i
\(943\) −9.49976 4.84037i −0.309355 0.157624i
\(944\) −2.47782 3.41042i −0.0806460 0.111000i
\(945\) 0 0
\(946\) 6.88039 9.36352i 0.223701 0.304434i
\(947\) −9.38618 + 9.38618i −0.305010 + 0.305010i −0.842970 0.537960i \(-0.819195\pi\)
0.537960 + 0.842970i \(0.319195\pi\)
\(948\) 4.78668 30.2219i 0.155464 0.981563i
\(949\) 41.1978 13.3860i 1.33734 0.434528i
\(950\) 0 0
\(951\) 15.7309 + 11.4292i 0.510109 + 0.370616i
\(952\) 4.41491 + 27.8746i 0.143088 + 0.903422i
\(953\) −24.1733 47.4428i −0.783051 1.53682i −0.842564 0.538597i \(-0.818955\pi\)
0.0595128 0.998228i \(-0.481045\pi\)
\(954\) −0.379511 1.16802i −0.0122871 0.0378159i
\(955\) 0 0
\(956\) 18.4130i 0.595519i
\(957\) −8.87987 4.58496i −0.287045 0.148211i
\(958\) −13.2098 13.2098i −0.426790 0.426790i
\(959\) 36.2628 26.3465i 1.17099 0.850772i
\(960\) 0 0
\(961\) 4.46097 13.7294i 0.143902 0.442885i
\(962\) 1.64201 0.260069i 0.0529405 0.00838495i
\(963\) −0.732081 + 0.115950i −0.0235910 + 0.00373644i
\(964\) 15.1642 46.6706i 0.488406 1.50316i
\(965\) 0 0
\(966\) 3.93674 2.86021i 0.126662 0.0920256i
\(967\) −38.6475 38.6475i −1.24282 1.24282i −0.958826 0.283994i \(-0.908340\pi\)
−0.283994 0.958826i \(-0.591660\pi\)
\(968\) 19.9901 2.94563i 0.642505 0.0946763i
\(969\) 24.6055i 0.790443i
\(970\) 0 0
\(971\) 2.55556 + 7.86521i 0.0820119 + 0.252407i 0.983652 0.180081i \(-0.0576360\pi\)
−0.901640 + 0.432487i \(0.857636\pi\)
\(972\) 11.9430 + 23.4395i 0.383073 + 0.751823i
\(973\) −1.89900 11.9898i −0.0608790 0.384375i
\(974\) 10.7378 + 7.80149i 0.344062 + 0.249976i
\(975\) 0 0
\(976\) −17.3278 + 5.63014i −0.554649 + 0.180216i
\(977\) 8.56551 54.0805i 0.274035 1.73019i −0.339575 0.940579i \(-0.610283\pi\)
0.613610 0.789610i \(-0.289717\pi\)
\(978\) 4.10153 4.10153i 0.131152 0.131152i
\(979\) −11.2607 35.3029i −0.359892 1.12829i
\(980\) 0 0
\(981\) −9.46980 13.0341i −0.302347 0.416145i
\(982\) −1.72822 0.880571i −0.0551496 0.0281001i
\(983\) −12.1525 + 6.19202i −0.387606 + 0.197495i −0.636924 0.770927i \(-0.719793\pi\)
0.249318 + 0.968422i \(0.419793\pi\)
\(984\) 4.37373 6.01992i 0.139429 0.191908i
\(985\) 0 0
\(986\) −6.47069 2.10245i −0.206069 0.0669558i
\(987\) −5.55398 + 10.9003i −0.176785 + 0.346960i
\(988\) 20.8726 + 3.30589i 0.664045 + 0.105174i
\(989\) 21.5139 0.684102
\(990\) 0 0
\(991\) 6.43457 0.204401 0.102200 0.994764i \(-0.467412\pi\)
0.102200 + 0.994764i \(0.467412\pi\)
\(992\) −32.9965 5.22613i −1.04764 0.165930i
\(993\) 7.71694 15.1453i 0.244890 0.480623i
\(994\) 3.89164 + 1.26447i 0.123435 + 0.0401066i
\(995\) 0 0
\(996\) −7.88351 + 10.8507i −0.249799 + 0.343818i
\(997\) 18.9575 9.65934i 0.600391 0.305914i −0.127252 0.991870i \(-0.540616\pi\)
0.727643 + 0.685956i \(0.240616\pi\)
\(998\) 2.79564 + 1.42445i 0.0884943 + 0.0450901i
\(999\) −3.66296 5.04163i −0.115891 0.159510i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.118.2 32
5.2 odd 4 inner 275.2.bm.b.107.3 32
5.3 odd 4 55.2.l.a.52.2 yes 32
5.4 even 2 55.2.l.a.8.3 yes 32
11.7 odd 10 inner 275.2.bm.b.18.3 32
15.8 even 4 495.2.bj.a.217.3 32
15.14 odd 2 495.2.bj.a.118.2 32
20.3 even 4 880.2.cm.a.657.3 32
20.19 odd 2 880.2.cm.a.833.2 32
55.3 odd 20 605.2.m.c.457.3 32
55.4 even 10 605.2.m.e.403.3 32
55.7 even 20 inner 275.2.bm.b.7.2 32
55.8 even 20 605.2.m.d.457.2 32
55.9 even 10 605.2.e.b.483.8 32
55.13 even 20 605.2.e.b.362.8 32
55.14 even 10 605.2.m.c.578.3 32
55.18 even 20 55.2.l.a.7.3 32
55.19 odd 10 605.2.m.d.578.2 32
55.24 odd 10 605.2.e.b.483.9 32
55.28 even 20 605.2.m.c.112.3 32
55.29 odd 10 55.2.l.a.18.2 yes 32
55.38 odd 20 605.2.m.d.112.2 32
55.39 odd 10 605.2.m.c.233.3 32
55.43 even 4 605.2.m.e.602.3 32
55.48 odd 20 605.2.m.e.282.2 32
55.49 even 10 605.2.m.d.233.2 32
55.53 odd 20 605.2.e.b.362.9 32
55.54 odd 2 605.2.m.e.118.2 32
165.29 even 10 495.2.bj.a.73.3 32
165.128 odd 20 495.2.bj.a.172.2 32
220.139 even 10 880.2.cm.a.513.3 32
220.183 odd 20 880.2.cm.a.337.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.3 32 55.18 even 20
55.2.l.a.8.3 yes 32 5.4 even 2
55.2.l.a.18.2 yes 32 55.29 odd 10
55.2.l.a.52.2 yes 32 5.3 odd 4
275.2.bm.b.7.2 32 55.7 even 20 inner
275.2.bm.b.18.3 32 11.7 odd 10 inner
275.2.bm.b.107.3 32 5.2 odd 4 inner
275.2.bm.b.118.2 32 1.1 even 1 trivial
495.2.bj.a.73.3 32 165.29 even 10
495.2.bj.a.118.2 32 15.14 odd 2
495.2.bj.a.172.2 32 165.128 odd 20
495.2.bj.a.217.3 32 15.8 even 4
605.2.e.b.362.8 32 55.13 even 20
605.2.e.b.362.9 32 55.53 odd 20
605.2.e.b.483.8 32 55.9 even 10
605.2.e.b.483.9 32 55.24 odd 10
605.2.m.c.112.3 32 55.28 even 20
605.2.m.c.233.3 32 55.39 odd 10
605.2.m.c.457.3 32 55.3 odd 20
605.2.m.c.578.3 32 55.14 even 10
605.2.m.d.112.2 32 55.38 odd 20
605.2.m.d.233.2 32 55.49 even 10
605.2.m.d.457.2 32 55.8 even 20
605.2.m.d.578.2 32 55.19 odd 10
605.2.m.e.118.2 32 55.54 odd 2
605.2.m.e.282.2 32 55.48 odd 20
605.2.m.e.403.3 32 55.4 even 10
605.2.m.e.602.3 32 55.43 even 4
880.2.cm.a.337.2 32 220.183 odd 20
880.2.cm.a.513.3 32 220.139 even 10
880.2.cm.a.657.3 32 20.3 even 4
880.2.cm.a.833.2 32 20.19 odd 2