Properties

Label 275.2.bm.b.7.2
Level $275$
Weight $2$
Character 275.7
Analytic conductor $2.196$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [275,2,Mod(7,275)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(275, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("275.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.bm (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.2
Character \(\chi\) \(=\) 275.7
Dual form 275.2.bm.b.118.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.482327 + 0.0763931i) q^{2} +(-0.517260 - 1.01518i) q^{3} +(-1.67531 + 0.544341i) q^{4} +(0.327041 + 0.450133i) q^{6} +(2.59854 + 1.32402i) q^{7} +(1.63669 - 0.833936i) q^{8} +(1.00032 - 1.37683i) q^{9} +O(q^{10})\) \(q+(-0.482327 + 0.0763931i) q^{2} +(-0.517260 - 1.01518i) q^{3} +(-1.67531 + 0.544341i) q^{4} +(0.327041 + 0.450133i) q^{6} +(2.59854 + 1.32402i) q^{7} +(1.63669 - 0.833936i) q^{8} +(1.00032 - 1.37683i) q^{9} +(-3.15977 - 1.00788i) q^{11} +(1.41917 + 1.41917i) q^{12} +(-0.457808 - 2.89049i) q^{13} +(-1.35449 - 0.440102i) q^{14} +(2.12449 - 1.54353i) q^{16} +(0.824113 - 5.20325i) q^{17} +(-0.377304 + 0.740500i) q^{18} +(1.26677 - 3.89873i) q^{19} -3.32285i q^{21} +(1.60104 + 0.244743i) q^{22} +(2.12046 - 2.12046i) q^{23} +(-1.69319 - 1.23017i) q^{24} +(0.441627 + 1.35919i) q^{26} +(-5.29116 - 0.838037i) q^{27} +(-5.07408 - 0.803656i) q^{28} +(0.817241 + 2.51521i) q^{29} +(5.45328 + 3.96204i) q^{31} +(-3.50456 + 3.50456i) q^{32} +(0.611244 + 3.72907i) q^{33} +2.57262i q^{34} +(-0.926389 + 2.85113i) q^{36} +(0.528116 - 1.03649i) q^{37} +(-0.313163 + 1.97724i) q^{38} +(-2.69755 + 1.95989i) q^{39} +(-3.38136 - 1.09867i) q^{41} +(0.253843 + 1.60270i) q^{42} +(5.07292 + 5.07292i) q^{43} +(5.84223 - 0.0314826i) q^{44} +(-0.860769 + 1.18475i) q^{46} +(3.28041 - 1.67145i) q^{47} +(-2.66588 - 1.35833i) q^{48} +(0.884888 + 1.21794i) q^{49} +(-5.70851 + 1.85481i) q^{51} +(2.34038 + 4.59325i) q^{52} +(1.45955 - 0.231169i) q^{53} +2.61609 q^{54} +5.35716 q^{56} +(-4.61316 + 0.730652i) q^{57} +(-0.586323 - 1.15072i) q^{58} +(-1.52672 + 0.496061i) q^{59} +(-4.07810 - 5.61302i) q^{61} +(-2.93294 - 1.49441i) q^{62} +(4.42234 - 2.25330i) q^{63} +(-1.66445 + 2.29092i) q^{64} +(-0.579695 - 1.75194i) q^{66} +(-1.31471 - 1.31471i) q^{67} +(1.45170 + 9.16564i) q^{68} +(-3.24948 - 1.05582i) q^{69} +(-2.32441 + 1.68878i) q^{71} +(0.489036 - 3.08765i) q^{72} +(-6.71992 + 13.1886i) q^{73} +(-0.175544 + 0.540270i) q^{74} +7.22113i q^{76} +(-6.87635 - 6.80264i) q^{77} +(1.15138 - 1.15138i) q^{78} +(12.3342 + 8.96129i) q^{79} +(0.308439 + 0.949277i) q^{81} +(1.71486 + 0.271606i) q^{82} +(-6.60041 - 1.04540i) q^{83} +(1.80876 + 5.56680i) q^{84} +(-2.83434 - 2.05927i) q^{86} +(2.13066 - 2.13066i) q^{87} +(-6.01208 + 0.985459i) q^{88} -11.1726i q^{89} +(2.63744 - 8.11720i) q^{91} +(-2.39818 + 4.70669i) q^{92} +(1.20142 - 7.58545i) q^{93} +(-1.45454 + 1.05679i) q^{94} +(5.37052 + 1.74499i) q^{96} +(1.57505 + 9.94447i) q^{97} +(-0.519848 - 0.519848i) q^{98} +(-4.54848 + 3.34226i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 10 q^{2} + 4 q^{3} - 20 q^{6} + 10 q^{8} - 24 q^{11} - 12 q^{12} + 10 q^{13} - 8 q^{16} + 10 q^{18} - 10 q^{22} + 24 q^{23} + 20 q^{26} + 16 q^{27} - 50 q^{28} - 28 q^{31} - 66 q^{33} + 24 q^{36} + 8 q^{37} - 10 q^{38} + 40 q^{41} + 10 q^{42} + 60 q^{46} + 28 q^{47} + 54 q^{48} + 20 q^{51} + 50 q^{52} + 24 q^{53} - 80 q^{56} - 30 q^{57} + 50 q^{58} - 60 q^{61} - 100 q^{62} + 30 q^{63} - 100 q^{66} + 8 q^{67} + 30 q^{68} + 24 q^{71} - 80 q^{72} - 50 q^{73} - 70 q^{77} - 60 q^{78} - 12 q^{81} + 10 q^{82} - 90 q^{83} + 100 q^{86} - 170 q^{88} + 20 q^{91} + 68 q^{92} + 8 q^{93} + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.482327 + 0.0763931i −0.341057 + 0.0540181i −0.324614 0.945847i \(-0.605234\pi\)
−0.0164432 + 0.999865i \(0.505234\pi\)
\(3\) −0.517260 1.01518i −0.298640 0.586114i 0.692114 0.721789i \(-0.256680\pi\)
−0.990753 + 0.135675i \(0.956680\pi\)
\(4\) −1.67531 + 0.544341i −0.837655 + 0.272170i
\(5\) 0 0
\(6\) 0.327041 + 0.450133i 0.133514 + 0.183766i
\(7\) 2.59854 + 1.32402i 0.982157 + 0.500434i 0.869891 0.493244i \(-0.164189\pi\)
0.112266 + 0.993678i \(0.464189\pi\)
\(8\) 1.63669 0.833936i 0.578658 0.294841i
\(9\) 1.00032 1.37683i 0.333442 0.458943i
\(10\) 0 0
\(11\) −3.15977 1.00788i −0.952708 0.303888i
\(12\) 1.41917 + 1.41917i 0.409680 + 0.409680i
\(13\) −0.457808 2.89049i −0.126973 0.801677i −0.966181 0.257866i \(-0.916981\pi\)
0.839208 0.543811i \(-0.183019\pi\)
\(14\) −1.35449 0.440102i −0.362004 0.117622i
\(15\) 0 0
\(16\) 2.12449 1.54353i 0.531123 0.385884i
\(17\) 0.824113 5.20325i 0.199877 1.26197i −0.659920 0.751336i \(-0.729410\pi\)
0.859797 0.510636i \(-0.170590\pi\)
\(18\) −0.377304 + 0.740500i −0.0889313 + 0.174538i
\(19\) 1.26677 3.89873i 0.290618 0.894429i −0.694041 0.719936i \(-0.744171\pi\)
0.984658 0.174494i \(-0.0558288\pi\)
\(20\) 0 0
\(21\) 3.32285i 0.725105i
\(22\) 1.60104 + 0.244743i 0.341343 + 0.0521795i
\(23\) 2.12046 2.12046i 0.442147 0.442147i −0.450586 0.892733i \(-0.648785\pi\)
0.892733 + 0.450586i \(0.148785\pi\)
\(24\) −1.69319 1.23017i −0.345621 0.251108i
\(25\) 0 0
\(26\) 0.441627 + 1.35919i 0.0866101 + 0.266558i
\(27\) −5.29116 0.838037i −1.01828 0.161280i
\(28\) −5.07408 0.803656i −0.958912 0.151877i
\(29\) 0.817241 + 2.51521i 0.151758 + 0.467063i 0.997818 0.0660248i \(-0.0210316\pi\)
−0.846060 + 0.533088i \(0.821032\pi\)
\(30\) 0 0
\(31\) 5.45328 + 3.96204i 0.979438 + 0.711603i 0.957583 0.288158i \(-0.0930429\pi\)
0.0218548 + 0.999761i \(0.493043\pi\)
\(32\) −3.50456 + 3.50456i −0.619524 + 0.619524i
\(33\) 0.611244 + 3.72907i 0.106404 + 0.649148i
\(34\) 2.57262i 0.441201i
\(35\) 0 0
\(36\) −0.926389 + 2.85113i −0.154398 + 0.475189i
\(37\) 0.528116 1.03649i 0.0868218 0.170397i −0.843513 0.537109i \(-0.819516\pi\)
0.930335 + 0.366712i \(0.119516\pi\)
\(38\) −0.313163 + 1.97724i −0.0508018 + 0.320750i
\(39\) −2.69755 + 1.95989i −0.431954 + 0.313833i
\(40\) 0 0
\(41\) −3.38136 1.09867i −0.528080 0.171584i 0.0328289 0.999461i \(-0.489548\pi\)
−0.560909 + 0.827877i \(0.689548\pi\)
\(42\) 0.253843 + 1.60270i 0.0391688 + 0.247302i
\(43\) 5.07292 + 5.07292i 0.773613 + 0.773613i 0.978736 0.205123i \(-0.0657595\pi\)
−0.205123 + 0.978736i \(0.565759\pi\)
\(44\) 5.84223 0.0314826i 0.880749 0.00474618i
\(45\) 0 0
\(46\) −0.860769 + 1.18475i −0.126913 + 0.174681i
\(47\) 3.28041 1.67145i 0.478497 0.243806i −0.198070 0.980188i \(-0.563467\pi\)
0.676566 + 0.736382i \(0.263467\pi\)
\(48\) −2.66588 1.35833i −0.384786 0.196058i
\(49\) 0.884888 + 1.21794i 0.126413 + 0.173992i
\(50\) 0 0
\(51\) −5.70851 + 1.85481i −0.799351 + 0.259725i
\(52\) 2.34038 + 4.59325i 0.324552 + 0.636970i
\(53\) 1.45955 0.231169i 0.200484 0.0317536i −0.0553847 0.998465i \(-0.517639\pi\)
0.255869 + 0.966712i \(0.417639\pi\)
\(54\) 2.61609 0.356005
\(55\) 0 0
\(56\) 5.35716 0.715881
\(57\) −4.61316 + 0.730652i −0.611028 + 0.0967773i
\(58\) −0.586323 1.15072i −0.0769879 0.151097i
\(59\) −1.52672 + 0.496061i −0.198762 + 0.0645817i −0.406706 0.913559i \(-0.633323\pi\)
0.207944 + 0.978141i \(0.433323\pi\)
\(60\) 0 0
\(61\) −4.07810 5.61302i −0.522147 0.718674i 0.463761 0.885960i \(-0.346500\pi\)
−0.985908 + 0.167286i \(0.946500\pi\)
\(62\) −2.93294 1.49441i −0.372483 0.189790i
\(63\) 4.42234 2.25330i 0.557163 0.283889i
\(64\) −1.66445 + 2.29092i −0.208056 + 0.286365i
\(65\) 0 0
\(66\) −0.579695 1.75194i −0.0713556 0.215649i
\(67\) −1.31471 1.31471i −0.160617 0.160617i 0.622223 0.782840i \(-0.286230\pi\)
−0.782840 + 0.622223i \(0.786230\pi\)
\(68\) 1.45170 + 9.16564i 0.176044 + 1.11150i
\(69\) −3.24948 1.05582i −0.391192 0.127106i
\(70\) 0 0
\(71\) −2.32441 + 1.68878i −0.275857 + 0.200422i −0.717108 0.696962i \(-0.754535\pi\)
0.441251 + 0.897384i \(0.354535\pi\)
\(72\) 0.489036 3.08765i 0.0576334 0.363883i
\(73\) −6.71992 + 13.1886i −0.786507 + 1.54361i 0.0519568 + 0.998649i \(0.483454\pi\)
−0.838464 + 0.544957i \(0.816546\pi\)
\(74\) −0.175544 + 0.540270i −0.0204066 + 0.0628051i
\(75\) 0 0
\(76\) 7.22113i 0.828321i
\(77\) −6.87635 6.80264i −0.783633 0.775232i
\(78\) 1.15138 1.15138i 0.130368 0.130368i
\(79\) 12.3342 + 8.96129i 1.38770 + 1.00822i 0.996113 + 0.0880839i \(0.0280744\pi\)
0.391589 + 0.920140i \(0.371926\pi\)
\(80\) 0 0
\(81\) 0.308439 + 0.949277i 0.0342710 + 0.105475i
\(82\) 1.71486 + 0.271606i 0.189374 + 0.0299939i
\(83\) −6.60041 1.04540i −0.724489 0.114748i −0.216711 0.976236i \(-0.569533\pi\)
−0.507778 + 0.861488i \(0.669533\pi\)
\(84\) 1.80876 + 5.56680i 0.197352 + 0.607388i
\(85\) 0 0
\(86\) −2.83434 2.05927i −0.305635 0.222057i
\(87\) 2.13066 2.13066i 0.228431 0.228431i
\(88\) −6.01208 + 0.985459i −0.640890 + 0.105050i
\(89\) 11.1726i 1.18429i −0.805830 0.592147i \(-0.798281\pi\)
0.805830 0.592147i \(-0.201719\pi\)
\(90\) 0 0
\(91\) 2.63744 8.11720i 0.276479 0.850914i
\(92\) −2.39818 + 4.70669i −0.250027 + 0.490706i
\(93\) 1.20142 7.58545i 0.124581 0.786575i
\(94\) −1.45454 + 1.05679i −0.150025 + 0.108999i
\(95\) 0 0
\(96\) 5.37052 + 1.74499i 0.548126 + 0.178097i
\(97\) 1.57505 + 9.94447i 0.159922 + 1.00971i 0.928873 + 0.370400i \(0.120779\pi\)
−0.768951 + 0.639308i \(0.779221\pi\)
\(98\) −0.519848 0.519848i −0.0525126 0.0525126i
\(99\) −4.54848 + 3.34226i −0.457140 + 0.335910i
\(100\) 0 0
\(101\) −1.12216 + 1.54452i −0.111659 + 0.153686i −0.861189 0.508285i \(-0.830280\pi\)
0.749530 + 0.661971i \(0.230280\pi\)
\(102\) 2.61167 1.33071i 0.258594 0.131760i
\(103\) 5.49869 + 2.80172i 0.541802 + 0.276062i 0.703399 0.710795i \(-0.251665\pi\)
−0.161597 + 0.986857i \(0.551665\pi\)
\(104\) −3.15977 4.34905i −0.309841 0.426459i
\(105\) 0 0
\(106\) −0.686319 + 0.222999i −0.0666612 + 0.0216595i
\(107\) −0.197726 0.388059i −0.0191149 0.0375151i 0.881252 0.472647i \(-0.156702\pi\)
−0.900367 + 0.435132i \(0.856702\pi\)
\(108\) 9.32051 1.47622i 0.896866 0.142050i
\(109\) −9.46672 −0.906748 −0.453374 0.891320i \(-0.649780\pi\)
−0.453374 + 0.891320i \(0.649780\pi\)
\(110\) 0 0
\(111\) −1.32539 −0.125801
\(112\) 7.56426 1.19806i 0.714755 0.113206i
\(113\) −9.20080 18.0576i −0.865538 1.69871i −0.701999 0.712178i \(-0.747709\pi\)
−0.163539 0.986537i \(-0.552291\pi\)
\(114\) 2.16923 0.704827i 0.203167 0.0660131i
\(115\) 0 0
\(116\) −2.73826 3.76890i −0.254241 0.349933i
\(117\) −4.43766 2.26110i −0.410262 0.209039i
\(118\) 0.698483 0.355895i 0.0643005 0.0327628i
\(119\) 9.03071 12.4297i 0.827844 1.13943i
\(120\) 0 0
\(121\) 8.96835 + 6.36935i 0.815305 + 0.579032i
\(122\) 2.39578 + 2.39578i 0.216903 + 0.216903i
\(123\) 0.633694 + 4.00099i 0.0571383 + 0.360757i
\(124\) −11.2926 3.66920i −1.01411 0.329504i
\(125\) 0 0
\(126\) −1.96088 + 1.42466i −0.174689 + 0.126919i
\(127\) −1.47513 + 9.31359i −0.130896 + 0.826447i 0.831644 + 0.555309i \(0.187400\pi\)
−0.962540 + 0.271138i \(0.912600\pi\)
\(128\) 5.12793 10.0641i 0.453249 0.889551i
\(129\) 2.52591 7.77394i 0.222394 0.684457i
\(130\) 0 0
\(131\) 7.51676i 0.656743i 0.944549 + 0.328371i \(0.106500\pi\)
−0.944549 + 0.328371i \(0.893500\pi\)
\(132\) −3.05391 5.91462i −0.265809 0.514802i
\(133\) 8.45377 8.45377i 0.733035 0.733035i
\(134\) 0.734554 + 0.533685i 0.0634558 + 0.0461034i
\(135\) 0 0
\(136\) −2.99035 9.20336i −0.256421 0.789182i
\(137\) 15.1801 + 2.40429i 1.29692 + 0.205413i 0.766458 0.642294i \(-0.222017\pi\)
0.530466 + 0.847706i \(0.322017\pi\)
\(138\) 1.64797 + 0.261013i 0.140285 + 0.0222189i
\(139\) 1.28625 + 3.95867i 0.109098 + 0.335770i 0.990670 0.136279i \(-0.0435145\pi\)
−0.881572 + 0.472049i \(0.843514\pi\)
\(140\) 0 0
\(141\) −3.39364 2.46563i −0.285796 0.207643i
\(142\) 0.992116 0.992116i 0.0832565 0.0832565i
\(143\) −1.46670 + 9.59470i −0.122651 + 0.802349i
\(144\) 4.46910i 0.372425i
\(145\) 0 0
\(146\) 2.23368 6.87457i 0.184861 0.568943i
\(147\) 0.778714 1.52831i 0.0642273 0.126053i
\(148\) −0.320556 + 2.02391i −0.0263495 + 0.166364i
\(149\) −14.5440 + 10.5669i −1.19149 + 0.865672i −0.993421 0.114516i \(-0.963468\pi\)
−0.198073 + 0.980187i \(0.563468\pi\)
\(150\) 0 0
\(151\) 16.9214 + 5.49808i 1.37704 + 0.447427i 0.901695 0.432372i \(-0.142323\pi\)
0.475345 + 0.879800i \(0.342323\pi\)
\(152\) −1.17797 7.43742i −0.0955461 0.603254i
\(153\) −6.33960 6.33960i −0.512526 0.512526i
\(154\) 3.83633 + 2.75579i 0.309140 + 0.222068i
\(155\) 0 0
\(156\) 3.45239 4.75181i 0.276413 0.380449i
\(157\) 19.1253 9.74483i 1.52636 0.777722i 0.528887 0.848693i \(-0.322610\pi\)
0.997478 + 0.0709708i \(0.0226097\pi\)
\(158\) −6.63368 3.38003i −0.527748 0.268901i
\(159\) −0.989642 1.36213i −0.0784837 0.108024i
\(160\) 0 0
\(161\) 8.31766 2.70257i 0.655524 0.212993i
\(162\) −0.221287 0.434300i −0.0173859 0.0341218i
\(163\) 10.2967 1.63083i 0.806497 0.127737i 0.260446 0.965488i \(-0.416130\pi\)
0.546051 + 0.837752i \(0.316130\pi\)
\(164\) 6.26288 0.489049
\(165\) 0 0
\(166\) 3.26342 0.253290
\(167\) −11.1538 + 1.76660i −0.863110 + 0.136703i −0.572267 0.820067i \(-0.693936\pi\)
−0.290843 + 0.956771i \(0.593936\pi\)
\(168\) −2.77104 5.43848i −0.213791 0.419588i
\(169\) 4.21842 1.37065i 0.324493 0.105434i
\(170\) 0 0
\(171\) −4.10070 5.64412i −0.313588 0.431617i
\(172\) −11.2601 5.73731i −0.858575 0.437466i
\(173\) 11.7632 5.99367i 0.894343 0.455691i 0.0544963 0.998514i \(-0.482645\pi\)
0.839847 + 0.542823i \(0.182645\pi\)
\(174\) −0.864909 + 1.19044i −0.0655686 + 0.0902474i
\(175\) 0 0
\(176\) −8.26862 + 2.73598i −0.623270 + 0.206233i
\(177\) 1.29330 + 1.29330i 0.0972104 + 0.0972104i
\(178\) 0.853510 + 5.38885i 0.0639733 + 0.403912i
\(179\) 2.11776 + 0.688100i 0.158288 + 0.0514310i 0.387089 0.922042i \(-0.373480\pi\)
−0.228801 + 0.973473i \(0.573480\pi\)
\(180\) 0 0
\(181\) −3.50687 + 2.54789i −0.260664 + 0.189383i −0.710440 0.703758i \(-0.751504\pi\)
0.449776 + 0.893141i \(0.351504\pi\)
\(182\) −0.652010 + 4.11663i −0.0483302 + 0.305145i
\(183\) −3.58879 + 7.04339i −0.265291 + 0.520663i
\(184\) 1.70221 5.23888i 0.125489 0.386215i
\(185\) 0 0
\(186\) 3.75045i 0.274996i
\(187\) −7.84826 + 15.6105i −0.573922 + 1.14155i
\(188\) −4.58586 + 4.58586i −0.334458 + 0.334458i
\(189\) −12.6397 9.18329i −0.919404 0.667986i
\(190\) 0 0
\(191\) −1.26010 3.87820i −0.0911779 0.280617i 0.895061 0.445944i \(-0.147132\pi\)
−0.986239 + 0.165327i \(0.947132\pi\)
\(192\) 3.18664 + 0.504715i 0.229976 + 0.0364247i
\(193\) −20.6434 3.26960i −1.48595 0.235351i −0.639899 0.768459i \(-0.721024\pi\)
−0.846047 + 0.533108i \(0.821024\pi\)
\(194\) −1.51938 4.67617i −0.109085 0.335729i
\(195\) 0 0
\(196\) −2.14544 1.55875i −0.153246 0.111339i
\(197\) 0.213782 0.213782i 0.0152313 0.0152313i −0.699450 0.714681i \(-0.746572\pi\)
0.714681 + 0.699450i \(0.246572\pi\)
\(198\) 1.93853 1.95954i 0.137765 0.139258i
\(199\) 11.0815i 0.785549i 0.919635 + 0.392775i \(0.128485\pi\)
−0.919635 + 0.392775i \(0.871515\pi\)
\(200\) 0 0
\(201\) −0.654619 + 2.01471i −0.0461733 + 0.142107i
\(202\) 0.423258 0.830691i 0.0297803 0.0584472i
\(203\) −1.20656 + 7.61793i −0.0846840 + 0.534674i
\(204\) 8.55387 6.21475i 0.598890 0.435119i
\(205\) 0 0
\(206\) −2.86620 0.931285i −0.199698 0.0648857i
\(207\) −0.798364 5.04067i −0.0554901 0.350351i
\(208\) −5.43417 5.43417i −0.376792 0.376792i
\(209\) −7.93217 + 11.0423i −0.548680 + 0.763815i
\(210\) 0 0
\(211\) −5.20512 + 7.16423i −0.358335 + 0.493206i −0.949684 0.313210i \(-0.898596\pi\)
0.591349 + 0.806416i \(0.298596\pi\)
\(212\) −2.31936 + 1.18177i −0.159294 + 0.0811644i
\(213\) 2.91674 + 1.48615i 0.199852 + 0.101830i
\(214\) 0.125014 + 0.172067i 0.00854576 + 0.0117622i
\(215\) 0 0
\(216\) −9.35886 + 3.04088i −0.636790 + 0.206906i
\(217\) 8.92474 + 17.5158i 0.605851 + 1.18905i
\(218\) 4.56606 0.723193i 0.309253 0.0489808i
\(219\) 16.8647 1.13961
\(220\) 0 0
\(221\) −15.4172 −1.03707
\(222\) 0.639273 0.101251i 0.0429052 0.00679551i
\(223\) 2.80667 + 5.50839i 0.187948 + 0.368869i 0.965683 0.259723i \(-0.0836313\pi\)
−0.777735 + 0.628593i \(0.783631\pi\)
\(224\) −13.7469 + 4.46662i −0.918500 + 0.298439i
\(225\) 0 0
\(226\) 5.81727 + 8.00679i 0.386959 + 0.532604i
\(227\) 2.95522 + 1.50576i 0.196145 + 0.0999406i 0.549304 0.835622i \(-0.314893\pi\)
−0.353160 + 0.935563i \(0.614893\pi\)
\(228\) 7.33074 3.73520i 0.485490 0.247370i
\(229\) 3.13876 4.32013i 0.207415 0.285482i −0.692618 0.721305i \(-0.743543\pi\)
0.900032 + 0.435823i \(0.143543\pi\)
\(230\) 0 0
\(231\) −3.34904 + 10.4995i −0.220350 + 0.690813i
\(232\) 3.43509 + 3.43509i 0.225525 + 0.225525i
\(233\) 0.691167 + 4.36386i 0.0452799 + 0.285886i 0.999930 0.0118446i \(-0.00377033\pi\)
−0.954650 + 0.297730i \(0.903770\pi\)
\(234\) 2.31314 + 0.751584i 0.151215 + 0.0491326i
\(235\) 0 0
\(236\) 2.28770 1.66211i 0.148917 0.108194i
\(237\) 2.71735 17.1567i 0.176511 1.11445i
\(238\) −3.40621 + 6.68507i −0.220792 + 0.433329i
\(239\) −3.23012 + 9.94128i −0.208939 + 0.643048i 0.790590 + 0.612346i \(0.209774\pi\)
−0.999529 + 0.0307017i \(0.990226\pi\)
\(240\) 0 0
\(241\) 27.8579i 1.79449i −0.441536 0.897243i \(-0.645566\pi\)
0.441536 0.897243i \(-0.354434\pi\)
\(242\) −4.81226 2.38699i −0.309344 0.153442i
\(243\) −10.5600 + 10.5600i −0.677425 + 0.677425i
\(244\) 9.88748 + 7.18367i 0.632981 + 0.459888i
\(245\) 0 0
\(246\) −0.611296 1.88138i −0.0389748 0.119952i
\(247\) −11.8492 1.87672i −0.753944 0.119413i
\(248\) 12.2294 + 1.93695i 0.776569 + 0.122996i
\(249\) 2.35285 + 7.24134i 0.149106 + 0.458901i
\(250\) 0 0
\(251\) 8.04670 + 5.84627i 0.507903 + 0.369013i 0.812028 0.583619i \(-0.198364\pi\)
−0.304124 + 0.952632i \(0.598364\pi\)
\(252\) −6.18223 + 6.18223i −0.389444 + 0.389444i
\(253\) −8.83737 + 4.56302i −0.555601 + 0.286874i
\(254\) 4.60489i 0.288936i
\(255\) 0 0
\(256\) 0.0455968 0.140332i 0.00284980 0.00877078i
\(257\) 1.92513 3.77828i 0.120086 0.235683i −0.823136 0.567844i \(-0.807778\pi\)
0.943223 + 0.332161i \(0.107778\pi\)
\(258\) −0.624438 + 3.94254i −0.0388758 + 0.245452i
\(259\) 2.74467 1.99412i 0.170545 0.123908i
\(260\) 0 0
\(261\) 4.28052 + 1.39083i 0.264958 + 0.0860899i
\(262\) −0.574229 3.62554i −0.0354760 0.223987i
\(263\) 16.1830 + 16.1830i 0.997884 + 0.997884i 0.999998 0.00211364i \(-0.000672793\pi\)
−0.00211364 + 0.999998i \(0.500673\pi\)
\(264\) 4.11022 + 5.59360i 0.252967 + 0.344262i
\(265\) 0 0
\(266\) −3.43167 + 4.72330i −0.210409 + 0.289604i
\(267\) −11.3422 + 5.77914i −0.694131 + 0.353677i
\(268\) 2.91819 + 1.48689i 0.178257 + 0.0908265i
\(269\) 13.4435 + 18.5034i 0.819666 + 1.12817i 0.989759 + 0.142745i \(0.0455930\pi\)
−0.170094 + 0.985428i \(0.554407\pi\)
\(270\) 0 0
\(271\) −1.32229 + 0.429640i −0.0803237 + 0.0260987i −0.348903 0.937159i \(-0.613446\pi\)
0.268580 + 0.963258i \(0.413446\pi\)
\(272\) −6.28057 12.3263i −0.380815 0.747392i
\(273\) −9.60465 + 1.52123i −0.581300 + 0.0920688i
\(274\) −7.50545 −0.453421
\(275\) 0 0
\(276\) 6.01861 0.362278
\(277\) −14.0803 + 2.23010i −0.846002 + 0.133994i −0.564363 0.825527i \(-0.690878\pi\)
−0.281639 + 0.959520i \(0.590878\pi\)
\(278\) −0.922808 1.81111i −0.0553464 0.108623i
\(279\) 10.9101 3.54491i 0.653171 0.212228i
\(280\) 0 0
\(281\) 14.9161 + 20.5302i 0.889818 + 1.22473i 0.973604 + 0.228246i \(0.0732990\pi\)
−0.0837853 + 0.996484i \(0.526701\pi\)
\(282\) 1.82520 + 0.929988i 0.108689 + 0.0553800i
\(283\) −6.60300 + 3.36440i −0.392508 + 0.199993i −0.639095 0.769128i \(-0.720691\pi\)
0.246587 + 0.969121i \(0.420691\pi\)
\(284\) 2.97484 4.09451i 0.176524 0.242964i
\(285\) 0 0
\(286\) −0.0255420 4.73983i −0.00151033 0.280272i
\(287\) −7.33195 7.33195i −0.432791 0.432791i
\(288\) 1.31948 + 8.33087i 0.0777511 + 0.490901i
\(289\) −10.2266 3.32284i −0.601567 0.195461i
\(290\) 0 0
\(291\) 9.28071 6.74283i 0.544045 0.395272i
\(292\) 4.07886 25.7529i 0.238697 1.50707i
\(293\) 6.66340 13.0777i 0.389280 0.764005i −0.610324 0.792152i \(-0.708961\pi\)
0.999604 + 0.0281472i \(0.00896072\pi\)
\(294\) −0.258843 + 0.796636i −0.0150960 + 0.0464607i
\(295\) 0 0
\(296\) 2.13682i 0.124200i
\(297\) 15.8742 + 7.98087i 0.921116 + 0.463097i
\(298\) 6.20775 6.20775i 0.359606 0.359606i
\(299\) −7.09994 5.15841i −0.410600 0.298318i
\(300\) 0 0
\(301\) 6.46553 + 19.8989i 0.372667 + 1.14695i
\(302\) −8.58165 1.35920i −0.493818 0.0782131i
\(303\) 2.14842 + 0.340276i 0.123423 + 0.0195483i
\(304\) −3.32657 10.2381i −0.190792 0.587197i
\(305\) 0 0
\(306\) 3.54206 + 2.57346i 0.202486 + 0.147115i
\(307\) −0.874954 + 0.874954i −0.0499363 + 0.0499363i −0.731634 0.681698i \(-0.761242\pi\)
0.681698 + 0.731634i \(0.261242\pi\)
\(308\) 15.2230 + 7.65344i 0.867409 + 0.436095i
\(309\) 7.03137i 0.400001i
\(310\) 0 0
\(311\) 4.37162 13.4545i 0.247892 0.762933i −0.747256 0.664537i \(-0.768629\pi\)
0.995147 0.0983958i \(-0.0313711\pi\)
\(312\) −2.78064 + 5.45732i −0.157423 + 0.308960i
\(313\) −0.115706 + 0.730542i −0.00654011 + 0.0412927i −0.990743 0.135754i \(-0.956654\pi\)
0.984202 + 0.177047i \(0.0566543\pi\)
\(314\) −8.48022 + 6.16124i −0.478566 + 0.347699i
\(315\) 0 0
\(316\) −25.5415 8.29895i −1.43682 0.466852i
\(317\) 2.66972 + 16.8560i 0.149947 + 0.946726i 0.941839 + 0.336065i \(0.109096\pi\)
−0.791892 + 0.610661i \(0.790904\pi\)
\(318\) 0.581389 + 0.581389i 0.0326027 + 0.0326027i
\(319\) −0.0472661 8.77118i −0.00264640 0.491092i
\(320\) 0 0
\(321\) −0.291674 + 0.401454i −0.0162796 + 0.0224070i
\(322\) −3.80538 + 1.93894i −0.212065 + 0.108053i
\(323\) −19.2421 9.80433i −1.07066 0.545527i
\(324\) −1.03346 1.42244i −0.0574145 0.0790243i
\(325\) 0 0
\(326\) −4.84178 + 1.57319i −0.268161 + 0.0871309i
\(327\) 4.89675 + 9.61042i 0.270791 + 0.531457i
\(328\) −6.45047 + 1.02165i −0.356168 + 0.0564114i
\(329\) 10.7373 0.591967
\(330\) 0 0
\(331\) −14.9189 −0.820016 −0.410008 0.912082i \(-0.634474\pi\)
−0.410008 + 0.912082i \(0.634474\pi\)
\(332\) 11.6268 1.84150i 0.638102 0.101065i
\(333\) −0.898777 1.76395i −0.0492527 0.0966638i
\(334\) 5.24485 1.70415i 0.286985 0.0932472i
\(335\) 0 0
\(336\) −5.12893 7.05937i −0.279806 0.385120i
\(337\) 8.40891 + 4.28455i 0.458062 + 0.233394i 0.667767 0.744370i \(-0.267250\pi\)
−0.209705 + 0.977765i \(0.567250\pi\)
\(338\) −1.92995 + 0.983358i −0.104975 + 0.0534876i
\(339\) −13.5725 + 18.6809i −0.737156 + 1.01461i
\(340\) 0 0
\(341\) −13.2379 18.0154i −0.716871 0.975589i
\(342\) 2.40905 + 2.40905i 0.130267 + 0.130267i
\(343\) −2.50676 15.8271i −0.135352 0.854581i
\(344\) 12.5333 + 4.07231i 0.675750 + 0.219564i
\(345\) 0 0
\(346\) −5.21586 + 3.78954i −0.280406 + 0.203727i
\(347\) −3.00971 + 19.0026i −0.161570 + 1.02011i 0.765012 + 0.644016i \(0.222733\pi\)
−0.926581 + 0.376094i \(0.877267\pi\)
\(348\) −2.40971 + 4.72933i −0.129174 + 0.253518i
\(349\) 4.59599 14.1450i 0.246018 0.757164i −0.749450 0.662061i \(-0.769682\pi\)
0.995467 0.0951031i \(-0.0303181\pi\)
\(350\) 0 0
\(351\) 15.6777i 0.836813i
\(352\) 14.6058 7.54143i 0.778491 0.401960i
\(353\) −1.78406 + 1.78406i −0.0949560 + 0.0949560i −0.752989 0.658033i \(-0.771389\pi\)
0.658033 + 0.752989i \(0.271389\pi\)
\(354\) −0.722594 0.524995i −0.0384054 0.0279032i
\(355\) 0 0
\(356\) 6.08171 + 18.7176i 0.322330 + 0.992029i
\(357\) −17.2896 2.73840i −0.915063 0.144932i
\(358\) −1.07402 0.170108i −0.0567636 0.00899047i
\(359\) −2.62416 8.07635i −0.138498 0.426253i 0.857620 0.514285i \(-0.171942\pi\)
−0.996118 + 0.0880312i \(0.971942\pi\)
\(360\) 0 0
\(361\) 1.77596 + 1.29031i 0.0934717 + 0.0679111i
\(362\) 1.49682 1.49682i 0.0786711 0.0786711i
\(363\) 1.82707 12.3991i 0.0958962 0.650783i
\(364\) 15.0345i 0.788021i
\(365\) 0 0
\(366\) 1.19290 3.67138i 0.0623541 0.191906i
\(367\) 9.63799 18.9156i 0.503099 0.987387i −0.490178 0.871622i \(-0.663068\pi\)
0.993277 0.115765i \(-0.0369318\pi\)
\(368\) 1.23190 7.77792i 0.0642173 0.405452i
\(369\) −4.89515 + 3.55653i −0.254831 + 0.185146i
\(370\) 0 0
\(371\) 4.09877 + 1.33177i 0.212797 + 0.0691420i
\(372\) 2.11633 + 13.3620i 0.109726 + 0.692786i
\(373\) 2.57445 + 2.57445i 0.133300 + 0.133300i 0.770609 0.637309i \(-0.219952\pi\)
−0.637309 + 0.770609i \(0.719952\pi\)
\(374\) 2.59290 8.12891i 0.134076 0.420336i
\(375\) 0 0
\(376\) 3.97513 5.47130i 0.205002 0.282161i
\(377\) 6.89604 3.51371i 0.355164 0.180965i
\(378\) 6.79802 + 3.46377i 0.349653 + 0.178157i
\(379\) −9.74713 13.4158i −0.500677 0.689122i 0.481636 0.876371i \(-0.340043\pi\)
−0.982312 + 0.187249i \(0.940043\pi\)
\(380\) 0 0
\(381\) 10.2180 3.32002i 0.523483 0.170090i
\(382\) 0.904051 + 1.77430i 0.0462553 + 0.0907810i
\(383\) −11.2007 + 1.77402i −0.572330 + 0.0906481i −0.435890 0.900000i \(-0.643566\pi\)
−0.136440 + 0.990648i \(0.543566\pi\)
\(384\) −12.8694 −0.656736
\(385\) 0 0
\(386\) 10.2067 0.519505
\(387\) 12.0591 1.90998i 0.612999 0.0970895i
\(388\) −8.05188 15.8027i −0.408772 0.802260i
\(389\) 0.777554 0.252643i 0.0394236 0.0128095i −0.289239 0.957257i \(-0.593402\pi\)
0.328662 + 0.944447i \(0.393402\pi\)
\(390\) 0 0
\(391\) −9.28580 12.7808i −0.469603 0.646353i
\(392\) 2.46398 + 1.25546i 0.124450 + 0.0634102i
\(393\) 7.63086 3.88812i 0.384926 0.196130i
\(394\) −0.0867814 + 0.119444i −0.00437198 + 0.00601752i
\(395\) 0 0
\(396\) 5.80078 8.07525i 0.291500 0.405796i
\(397\) −11.8504 11.8504i −0.594752 0.594752i 0.344159 0.938911i \(-0.388164\pi\)
−0.938911 + 0.344159i \(0.888164\pi\)
\(398\) −0.846553 5.34493i −0.0424339 0.267917i
\(399\) −12.9549 4.20930i −0.648555 0.210728i
\(400\) 0 0
\(401\) 23.0228 16.7270i 1.14970 0.835308i 0.161262 0.986912i \(-0.448444\pi\)
0.988441 + 0.151603i \(0.0484436\pi\)
\(402\) 0.161831 1.02176i 0.00807137 0.0509607i
\(403\) 8.95566 17.5765i 0.446113 0.875547i
\(404\) 1.03922 3.19839i 0.0517032 0.159126i
\(405\) 0 0
\(406\) 3.76651i 0.186929i
\(407\) −2.71338 + 2.74279i −0.134497 + 0.135955i
\(408\) −7.79627 + 7.79627i −0.385973 + 0.385973i
\(409\) 1.95998 + 1.42401i 0.0969146 + 0.0704126i 0.635187 0.772358i \(-0.280923\pi\)
−0.538273 + 0.842771i \(0.680923\pi\)
\(410\) 0 0
\(411\) −5.41127 16.6542i −0.266918 0.821490i
\(412\) −10.7371 1.70059i −0.528979 0.0837820i
\(413\) −4.62404 0.732376i −0.227534 0.0360379i
\(414\) 0.770145 + 2.37026i 0.0378506 + 0.116492i
\(415\) 0 0
\(416\) 11.7343 + 8.52546i 0.575321 + 0.417995i
\(417\) 3.35343 3.35343i 0.164218 0.164218i
\(418\) 2.98234 5.93199i 0.145871 0.290143i
\(419\) 16.4371i 0.803006i −0.915858 0.401503i \(-0.868488\pi\)
0.915858 0.401503i \(-0.131512\pi\)
\(420\) 0 0
\(421\) −3.85294 + 11.8581i −0.187781 + 0.577930i −0.999985 0.00544310i \(-0.998267\pi\)
0.812204 + 0.583373i \(0.198267\pi\)
\(422\) 1.96327 3.85314i 0.0955707 0.187568i
\(423\) 0.980171 6.18855i 0.0476575 0.300898i
\(424\) 2.19605 1.59552i 0.106649 0.0774853i
\(425\) 0 0
\(426\) −1.52036 0.493994i −0.0736615 0.0239341i
\(427\) −3.16534 19.9852i −0.153182 0.967151i
\(428\) 0.542488 + 0.542488i 0.0262222 + 0.0262222i
\(429\) 10.4990 3.47399i 0.506896 0.167726i
\(430\) 0 0
\(431\) −11.6588 + 16.0470i −0.561586 + 0.772957i −0.991527 0.129900i \(-0.958534\pi\)
0.429941 + 0.902857i \(0.358534\pi\)
\(432\) −12.5346 + 6.38668i −0.603070 + 0.307279i
\(433\) 25.5054 + 12.9956i 1.22571 + 0.624531i 0.942397 0.334496i \(-0.108566\pi\)
0.283314 + 0.959027i \(0.408566\pi\)
\(434\) −5.64273 7.76656i −0.270860 0.372807i
\(435\) 0 0
\(436\) 15.8597 5.15313i 0.759541 0.246790i
\(437\) −5.58097 10.9533i −0.266974 0.523966i
\(438\) −8.13431 + 1.28835i −0.388672 + 0.0615597i
\(439\) 3.12279 0.149043 0.0745214 0.997219i \(-0.476257\pi\)
0.0745214 + 0.997219i \(0.476257\pi\)
\(440\) 0 0
\(441\) 2.56208 0.122004
\(442\) 7.43613 1.17777i 0.353701 0.0560207i
\(443\) 14.4087 + 28.2787i 0.684579 + 1.34356i 0.927612 + 0.373545i \(0.121858\pi\)
−0.243033 + 0.970018i \(0.578142\pi\)
\(444\) 2.22044 0.721465i 0.105378 0.0342392i
\(445\) 0 0
\(446\) −1.77454 2.44244i −0.0840267 0.115653i
\(447\) 18.2503 + 9.29900i 0.863210 + 0.439827i
\(448\) −7.35837 + 3.74928i −0.347650 + 0.177137i
\(449\) −20.5693 + 28.3112i −0.970726 + 1.33609i −0.0290462 + 0.999578i \(0.509247\pi\)
−0.941679 + 0.336511i \(0.890753\pi\)
\(450\) 0 0
\(451\) 9.57702 + 6.87957i 0.450964 + 0.323946i
\(452\) 25.2437 + 25.2437i 1.18736 + 1.18736i
\(453\) −3.17119 20.0221i −0.148996 0.940722i
\(454\) −1.54041 0.500510i −0.0722951 0.0234901i
\(455\) 0 0
\(456\) −6.94099 + 5.04293i −0.325042 + 0.236157i
\(457\) −0.797826 + 5.03728i −0.0373207 + 0.235634i −0.999297 0.0375006i \(-0.988060\pi\)
0.961976 + 0.273134i \(0.0880604\pi\)
\(458\) −1.18388 + 2.32350i −0.0553191 + 0.108570i
\(459\) −8.72103 + 26.8406i −0.407063 + 1.25281i
\(460\) 0 0
\(461\) 12.4703i 0.580801i −0.956905 0.290400i \(-0.906211\pi\)
0.956905 0.290400i \(-0.0937885\pi\)
\(462\) 0.813245 5.32002i 0.0378356 0.247510i
\(463\) 19.2728 19.2728i 0.895684 0.895684i −0.0993669 0.995051i \(-0.531682\pi\)
0.995051 + 0.0993669i \(0.0316818\pi\)
\(464\) 5.61854 + 4.08211i 0.260834 + 0.189507i
\(465\) 0 0
\(466\) −0.666738 2.05201i −0.0308860 0.0950574i
\(467\) 39.2044 + 6.20937i 1.81416 + 0.287335i 0.968980 0.247141i \(-0.0794911\pi\)
0.845184 + 0.534476i \(0.179491\pi\)
\(468\) 8.66527 + 1.37244i 0.400552 + 0.0634412i
\(469\) −1.67562 5.15703i −0.0773730 0.238130i
\(470\) 0 0
\(471\) −19.7855 14.3750i −0.911667 0.662365i
\(472\) −2.08508 + 2.08508i −0.0959738 + 0.0959738i
\(473\) −10.9164 21.1422i −0.501936 0.972119i
\(474\) 8.48273i 0.389625i
\(475\) 0 0
\(476\) −8.36324 + 25.7394i −0.383328 + 1.17976i
\(477\) 1.14174 2.24079i 0.0522767 0.102599i
\(478\) 0.798528 5.04171i 0.0365238 0.230602i
\(479\) 30.9491 22.4858i 1.41410 1.02740i 0.421388 0.906880i \(-0.361543\pi\)
0.992711 0.120523i \(-0.0384570\pi\)
\(480\) 0 0
\(481\) −3.23773 1.05200i −0.147628 0.0479671i
\(482\) 2.12815 + 13.4366i 0.0969348 + 0.612022i
\(483\) −7.04599 7.04599i −0.320603 0.320603i
\(484\) −18.4919 5.78879i −0.840539 0.263127i
\(485\) 0 0
\(486\) 4.28667 5.90009i 0.194447 0.267634i
\(487\) −24.2169 + 12.3391i −1.09737 + 0.559139i −0.906384 0.422454i \(-0.861169\pi\)
−0.190987 + 0.981593i \(0.561169\pi\)
\(488\) −11.3555 5.78591i −0.514039 0.261916i
\(489\) −6.98164 9.60940i −0.315720 0.434552i
\(490\) 0 0
\(491\) 3.77748 1.22738i 0.170475 0.0553907i −0.222536 0.974925i \(-0.571433\pi\)
0.393011 + 0.919534i \(0.371433\pi\)
\(492\) −3.23954 6.35795i −0.146050 0.286638i
\(493\) 13.7608 2.17949i 0.619753 0.0981593i
\(494\) 5.85854 0.263588
\(495\) 0 0
\(496\) 17.7010 0.794798
\(497\) −8.27608 + 1.31080i −0.371233 + 0.0587975i
\(498\) −1.68803 3.31295i −0.0756426 0.148457i
\(499\) −6.11060 + 1.98546i −0.273548 + 0.0888812i −0.442579 0.896730i \(-0.645936\pi\)
0.169031 + 0.985611i \(0.445936\pi\)
\(500\) 0 0
\(501\) 7.56284 + 10.4094i 0.337883 + 0.465056i
\(502\) −4.32776 2.20510i −0.193157 0.0984186i
\(503\) −36.2878 + 18.4896i −1.61799 + 0.824409i −0.618747 + 0.785590i \(0.712360\pi\)
−0.999246 + 0.0388190i \(0.987640\pi\)
\(504\) 5.35890 7.37590i 0.238704 0.328549i
\(505\) 0 0
\(506\) 3.91392 2.87598i 0.173995 0.127853i
\(507\) −3.57347 3.57347i −0.158703 0.158703i
\(508\) −2.59847 16.4061i −0.115289 0.727904i
\(509\) 8.83124 + 2.86944i 0.391438 + 0.127186i 0.498122 0.867107i \(-0.334023\pi\)
−0.106684 + 0.994293i \(0.534023\pi\)
\(510\) 0 0
\(511\) −34.9240 + 25.3738i −1.54495 + 1.12247i
\(512\) −3.54520 + 22.3835i −0.156677 + 0.989220i
\(513\) −9.96998 + 19.5672i −0.440185 + 0.863912i
\(514\) −0.639909 + 1.96944i −0.0282252 + 0.0868681i
\(515\) 0 0
\(516\) 14.3987i 0.633868i
\(517\) −12.0500 + 1.97515i −0.529957 + 0.0868669i
\(518\) −1.17149 + 1.17149i −0.0514723 + 0.0514723i
\(519\) −12.1693 8.84152i −0.534173 0.388099i
\(520\) 0 0
\(521\) −4.57564 14.0824i −0.200462 0.616960i −0.999869 0.0161698i \(-0.994853\pi\)
0.799407 0.600790i \(-0.205147\pi\)
\(522\) −2.17086 0.343831i −0.0950160 0.0150491i
\(523\) 38.3651 + 6.07643i 1.67759 + 0.265704i 0.921390 0.388640i \(-0.127055\pi\)
0.756197 + 0.654344i \(0.227055\pi\)
\(524\) −4.09168 12.5929i −0.178746 0.550124i
\(525\) 0 0
\(526\) −9.04175 6.56922i −0.394239 0.286431i
\(527\) 25.1096 25.1096i 1.09379 1.09379i
\(528\) 7.05453 + 6.97891i 0.307009 + 0.303718i
\(529\) 14.0073i 0.609011i
\(530\) 0 0
\(531\) −0.844224 + 2.59825i −0.0366362 + 0.112755i
\(532\) −9.56095 + 18.7644i −0.414520 + 0.813541i
\(533\) −1.62768 + 10.2768i −0.0705027 + 0.445136i
\(534\) 5.02916 3.65390i 0.217633 0.158120i
\(535\) 0 0
\(536\) −3.24815 1.05539i −0.140299 0.0455859i
\(537\) −0.396884 2.50583i −0.0171268 0.108134i
\(538\) −7.89771 7.89771i −0.340495 0.340495i
\(539\) −1.56850 4.74029i −0.0675603 0.204179i
\(540\) 0 0
\(541\) 10.2392 14.0930i 0.440217 0.605907i −0.530043 0.847971i \(-0.677824\pi\)
0.970260 + 0.242064i \(0.0778243\pi\)
\(542\) 0.604957 0.308241i 0.0259851 0.0132401i
\(543\) 4.40053 + 2.24218i 0.188845 + 0.0962213i
\(544\) 15.3469 + 21.1232i 0.657994 + 0.905650i
\(545\) 0 0
\(546\) 4.51637 1.46746i 0.193283 0.0628014i
\(547\) −17.7994 34.9333i −0.761048 1.49364i −0.866478 0.499215i \(-0.833622\pi\)
0.105430 0.994427i \(-0.466378\pi\)
\(548\) −26.7401 + 4.23522i −1.14228 + 0.180920i
\(549\) −11.8076 −0.503936
\(550\) 0 0
\(551\) 10.8414 0.461858
\(552\) −6.19888 + 0.981807i −0.263842 + 0.0417885i
\(553\) 20.1859 + 39.6170i 0.858391 + 1.68469i
\(554\) 6.62094 2.15127i 0.281297 0.0913989i
\(555\) 0 0
\(556\) −4.30973 5.93184i −0.182773 0.251566i
\(557\) −32.7010 16.6620i −1.38558 0.705991i −0.407307 0.913291i \(-0.633532\pi\)
−0.978277 + 0.207301i \(0.933532\pi\)
\(558\) −4.99143 + 2.54326i −0.211304 + 0.107665i
\(559\) 12.3408 16.9856i 0.521959 0.718416i
\(560\) 0 0
\(561\) 19.9070 0.107275i 0.840475 0.00452915i
\(562\) −8.76280 8.76280i −0.369636 0.369636i
\(563\) 2.64077 + 16.6732i 0.111295 + 0.702690i 0.978732 + 0.205143i \(0.0657659\pi\)
−0.867437 + 0.497547i \(0.834234\pi\)
\(564\) 7.02754 + 2.28339i 0.295913 + 0.0961480i
\(565\) 0 0
\(566\) 2.92779 2.12716i 0.123064 0.0894114i
\(567\) −0.455374 + 2.87512i −0.0191239 + 0.120744i
\(568\) −2.39601 + 4.70243i −0.100534 + 0.197310i
\(569\) 0.818531 2.51918i 0.0343146 0.105609i −0.932432 0.361345i \(-0.882318\pi\)
0.966747 + 0.255736i \(0.0823176\pi\)
\(570\) 0 0
\(571\) 29.8675i 1.24992i 0.780658 + 0.624959i \(0.214884\pi\)
−0.780658 + 0.624959i \(0.785116\pi\)
\(572\) −2.76562 16.8725i −0.115636 0.705473i
\(573\) −3.28527 + 3.28527i −0.137244 + 0.137244i
\(574\) 4.09651 + 2.97629i 0.170985 + 0.124228i
\(575\) 0 0
\(576\) 1.48921 + 4.58332i 0.0620505 + 0.190972i
\(577\) 0.354477 + 0.0561437i 0.0147571 + 0.00233729i 0.163809 0.986492i \(-0.447622\pi\)
−0.149052 + 0.988829i \(0.547622\pi\)
\(578\) 5.18643 + 0.821450i 0.215727 + 0.0341678i
\(579\) 7.35878 + 22.6480i 0.305821 + 0.941219i
\(580\) 0 0
\(581\) −15.7673 11.4556i −0.654138 0.475259i
\(582\) −3.96123 + 3.96123i −0.164198 + 0.164198i
\(583\) −4.84483 0.740605i −0.200652 0.0306727i
\(584\) 27.1896i 1.12511i
\(585\) 0 0
\(586\) −2.21490 + 6.81675i −0.0914965 + 0.281597i
\(587\) −11.7343 + 23.0298i −0.484326 + 0.950543i 0.511501 + 0.859282i \(0.329090\pi\)
−0.995827 + 0.0912603i \(0.970910\pi\)
\(588\) −0.472664 + 2.98428i −0.0194923 + 0.123070i
\(589\) 22.3550 16.2418i 0.921121 0.669233i
\(590\) 0 0
\(591\) −0.327608 0.106446i −0.0134760 0.00437861i
\(592\) −0.477873 3.01717i −0.0196405 0.124005i
\(593\) −9.56872 9.56872i −0.392940 0.392940i 0.482794 0.875734i \(-0.339622\pi\)
−0.875734 + 0.482794i \(0.839622\pi\)
\(594\) −8.26626 2.63671i −0.339169 0.108185i
\(595\) 0 0
\(596\) 18.6138 25.6197i 0.762451 1.04942i
\(597\) 11.2497 5.73203i 0.460421 0.234596i
\(598\) 3.81856 + 1.94565i 0.156153 + 0.0795637i
\(599\) 6.65542 + 9.16040i 0.271933 + 0.374284i 0.923041 0.384701i \(-0.125696\pi\)
−0.651108 + 0.758985i \(0.725696\pi\)
\(600\) 0 0
\(601\) −15.6822 + 5.09545i −0.639689 + 0.207848i −0.610862 0.791737i \(-0.709177\pi\)
−0.0288267 + 0.999584i \(0.509177\pi\)
\(602\) −4.63864 9.10384i −0.189057 0.371045i
\(603\) −3.12526 + 0.494993i −0.127271 + 0.0201577i
\(604\) −31.3413 −1.27526
\(605\) 0 0
\(606\) −1.06223 −0.0431503
\(607\) −4.92298 + 0.779724i −0.199818 + 0.0316480i −0.255541 0.966798i \(-0.582254\pi\)
0.0557232 + 0.998446i \(0.482254\pi\)
\(608\) 9.22383 + 18.1028i 0.374076 + 0.734165i
\(609\) 8.35766 2.71557i 0.338670 0.110040i
\(610\) 0 0
\(611\) −6.33310 8.71677i −0.256210 0.352643i
\(612\) 14.0717 + 7.16989i 0.568814 + 0.289825i
\(613\) −16.2873 + 8.29879i −0.657837 + 0.335185i −0.750843 0.660481i \(-0.770352\pi\)
0.0930058 + 0.995666i \(0.470352\pi\)
\(614\) 0.355174 0.488855i 0.0143337 0.0197286i
\(615\) 0 0
\(616\) −16.9274 5.39938i −0.682025 0.217547i
\(617\) −15.4942 15.4942i −0.623773 0.623773i 0.322721 0.946494i \(-0.395402\pi\)
−0.946494 + 0.322721i \(0.895402\pi\)
\(618\) 0.537149 + 3.39142i 0.0216073 + 0.136423i
\(619\) 46.8070 + 15.2085i 1.88133 + 0.611282i 0.986219 + 0.165445i \(0.0529061\pi\)
0.895114 + 0.445837i \(0.147094\pi\)
\(620\) 0 0
\(621\) −12.9967 + 9.44269i −0.521541 + 0.378922i
\(622\) −1.08072 + 6.82342i −0.0433330 + 0.273594i
\(623\) 14.7928 29.0325i 0.592661 1.16316i
\(624\) −2.70578 + 8.32754i −0.108318 + 0.333368i
\(625\) 0 0
\(626\) 0.361199i 0.0144364i
\(627\) 15.3129 + 2.34082i 0.611540 + 0.0934832i
\(628\) −26.7363 + 26.7363i −1.06689 + 1.06689i
\(629\) −4.95787 3.60210i −0.197683 0.143625i
\(630\) 0 0
\(631\) −2.79731 8.60924i −0.111359 0.342729i 0.879811 0.475324i \(-0.157669\pi\)
−0.991170 + 0.132595i \(0.957669\pi\)
\(632\) 27.6604 + 4.38097i 1.10027 + 0.174266i
\(633\) 9.96538 + 1.57836i 0.396088 + 0.0627342i
\(634\) −2.57536 7.92615i −0.102281 0.314788i
\(635\) 0 0
\(636\) 2.39942 + 1.74328i 0.0951431 + 0.0691255i
\(637\) 3.11534 3.11534i 0.123434 0.123434i
\(638\) 0.692856 + 4.22697i 0.0274304 + 0.167347i
\(639\) 4.88965i 0.193432i
\(640\) 0 0
\(641\) −8.63030 + 26.5613i −0.340876 + 1.04911i 0.622878 + 0.782319i \(0.285963\pi\)
−0.963755 + 0.266791i \(0.914037\pi\)
\(642\) 0.110014 0.215914i 0.00434190 0.00852146i
\(643\) 1.50637 9.51085i 0.0594055 0.375071i −0.940018 0.341124i \(-0.889192\pi\)
0.999424 0.0339470i \(-0.0108078\pi\)
\(644\) −12.4635 + 9.05529i −0.491132 + 0.356828i
\(645\) 0 0
\(646\) 10.0300 + 3.25893i 0.394624 + 0.128221i
\(647\) −4.84185 30.5702i −0.190353 1.20184i −0.879028 0.476770i \(-0.841807\pi\)
0.688675 0.725070i \(-0.258193\pi\)
\(648\) 1.29645 + 1.29645i 0.0509296 + 0.0509296i
\(649\) 5.32406 0.0286903i 0.208988 0.00112619i
\(650\) 0 0
\(651\) 13.1653 18.1204i 0.515987 0.710195i
\(652\) −16.3624 + 8.33705i −0.640800 + 0.326504i
\(653\) 5.44440 + 2.77406i 0.213056 + 0.108557i 0.557262 0.830337i \(-0.311852\pi\)
−0.344206 + 0.938894i \(0.611852\pi\)
\(654\) −3.09601 4.26129i −0.121063 0.166630i
\(655\) 0 0
\(656\) −8.87952 + 2.88513i −0.346687 + 0.112645i
\(657\) 11.4363 + 22.4450i 0.446173 + 0.875665i
\(658\) −5.17890 + 0.820257i −0.201895 + 0.0319770i
\(659\) −12.0647 −0.469975 −0.234988 0.971998i \(-0.575505\pi\)
−0.234988 + 0.971998i \(0.575505\pi\)
\(660\) 0 0
\(661\) −29.6228 −1.15219 −0.576097 0.817382i \(-0.695425\pi\)
−0.576097 + 0.817382i \(0.695425\pi\)
\(662\) 7.19579 1.13970i 0.279672 0.0442957i
\(663\) 7.97469 + 15.6512i 0.309711 + 0.607843i
\(664\) −11.6746 + 3.79331i −0.453063 + 0.147209i
\(665\) 0 0
\(666\) 0.568258 + 0.782140i 0.0220196 + 0.0303073i
\(667\) 7.06635 + 3.60048i 0.273610 + 0.139411i
\(668\) 17.7245 9.03109i 0.685782 0.349423i
\(669\) 4.14023 5.69854i 0.160071 0.220318i
\(670\) 0 0
\(671\) 7.22862 + 21.8461i 0.279058 + 0.843361i
\(672\) 11.6451 + 11.6451i 0.449220 + 0.449220i
\(673\) −0.787773 4.97380i −0.0303664 0.191726i 0.967842 0.251559i \(-0.0809432\pi\)
−0.998208 + 0.0598329i \(0.980943\pi\)
\(674\) −4.38316 1.42417i −0.168833 0.0548571i
\(675\) 0 0
\(676\) −6.32105 + 4.59251i −0.243117 + 0.176635i
\(677\) −5.69516 + 35.9579i −0.218883 + 1.38197i 0.596297 + 0.802764i \(0.296638\pi\)
−0.815180 + 0.579208i \(0.803362\pi\)
\(678\) 5.11928 10.0472i 0.196605 0.385859i
\(679\) −9.07388 + 27.9265i −0.348223 + 1.07172i
\(680\) 0 0
\(681\) 3.77894i 0.144809i
\(682\) 7.76124 + 7.67804i 0.297193 + 0.294007i
\(683\) 8.07353 8.07353i 0.308925 0.308925i −0.535567 0.844492i \(-0.679902\pi\)
0.844492 + 0.535567i \(0.179902\pi\)
\(684\) 9.94226 + 7.22348i 0.380152 + 0.276197i
\(685\) 0 0
\(686\) 2.41816 + 7.44232i 0.0923257 + 0.284149i
\(687\) −6.00926 0.951773i −0.229267 0.0363124i
\(688\) 18.6076 + 2.94716i 0.709408 + 0.112359i
\(689\) −1.33638 4.11297i −0.0509122 0.156692i
\(690\) 0 0
\(691\) 9.61076 + 6.98263i 0.365611 + 0.265632i 0.755388 0.655277i \(-0.227448\pi\)
−0.389778 + 0.920909i \(0.627448\pi\)
\(692\) −16.4445 + 16.4445i −0.625125 + 0.625125i
\(693\) −16.2447 + 2.66271i −0.617083 + 0.101148i
\(694\) 9.39538i 0.356644i
\(695\) 0 0
\(696\) 1.71040 5.26407i 0.0648326 0.199534i
\(697\) −8.50329 + 16.6886i −0.322085 + 0.632127i
\(698\) −1.13619 + 7.17362i −0.0430054 + 0.271526i
\(699\) 4.07258 2.95891i 0.154039 0.111916i
\(700\) 0 0
\(701\) −25.2475 8.20342i −0.953586 0.309839i −0.209414 0.977827i \(-0.567156\pi\)
−0.744172 + 0.667988i \(0.767156\pi\)
\(702\) −1.19767 7.56177i −0.0452030 0.285401i
\(703\) −3.37197 3.37197i −0.127176 0.127176i
\(704\) 7.56826 5.56122i 0.285239 0.209596i
\(705\) 0 0
\(706\) 0.724212 0.996792i 0.0272561 0.0375148i
\(707\) −4.96097 + 2.52774i −0.186576 + 0.0950654i
\(708\) −2.87068 1.46268i −0.107887 0.0549710i
\(709\) −10.4984 14.4498i −0.394275 0.542673i 0.565021 0.825077i \(-0.308868\pi\)
−0.959296 + 0.282404i \(0.908868\pi\)
\(710\) 0 0
\(711\) 24.6763 8.01783i 0.925435 0.300692i
\(712\) −9.31723 18.2861i −0.349178 0.685301i
\(713\) 19.9648 3.16212i 0.747689 0.118422i
\(714\) 8.54844 0.319917
\(715\) 0 0
\(716\) −3.92246 −0.146589
\(717\) 11.7630 1.86307i 0.439297 0.0695778i
\(718\) 1.88268 + 3.69497i 0.0702611 + 0.137895i
\(719\) −31.1609 + 10.1248i −1.16211 + 0.377592i −0.825691 0.564122i \(-0.809215\pi\)
−0.336416 + 0.941714i \(0.609215\pi\)
\(720\) 0 0
\(721\) 10.5790 + 14.5608i 0.393984 + 0.542272i
\(722\) −0.955166 0.486681i −0.0355476 0.0181124i
\(723\) −28.2808 + 14.4098i −1.05177 + 0.535905i
\(724\) 4.48818 6.17744i 0.166802 0.229583i
\(725\) 0 0
\(726\) 0.0659608 + 6.12000i 0.00244803 + 0.227134i
\(727\) −0.964903 0.964903i −0.0357863 0.0357863i 0.688987 0.724773i \(-0.258056\pi\)
−0.724773 + 0.688987i \(0.758056\pi\)
\(728\) −2.45255 15.4848i −0.0908976 0.573905i
\(729\) 19.0304 + 6.18335i 0.704830 + 0.229013i
\(730\) 0 0
\(731\) 30.5763 22.2150i 1.13091 0.821651i
\(732\) 2.17832 13.7534i 0.0805131 0.508340i
\(733\) 5.35405 10.5079i 0.197756 0.388119i −0.770739 0.637151i \(-0.780113\pi\)
0.968495 + 0.249033i \(0.0801126\pi\)
\(734\) −3.20364 + 9.85979i −0.118249 + 0.363932i
\(735\) 0 0
\(736\) 14.8626i 0.547842i
\(737\) 2.82911 + 5.47925i 0.104212 + 0.201831i
\(738\) 2.08937 2.08937i 0.0769107 0.0769107i
\(739\) −34.8645 25.3305i −1.28251 0.931798i −0.282884 0.959154i \(-0.591291\pi\)
−0.999626 + 0.0273561i \(0.991291\pi\)
\(740\) 0 0
\(741\) 4.22388 + 12.9998i 0.155168 + 0.477558i
\(742\) −2.07868 0.329231i −0.0763109 0.0120865i
\(743\) −37.4472 5.93105i −1.37380 0.217589i −0.574494 0.818509i \(-0.694801\pi\)
−0.799309 + 0.600920i \(0.794801\pi\)
\(744\) −4.35943 13.4170i −0.159825 0.491889i
\(745\) 0 0
\(746\) −1.43840 1.04506i −0.0526636 0.0382623i
\(747\) −8.04189 + 8.04189i −0.294237 + 0.294237i
\(748\) 4.65085 30.4245i 0.170052 1.11243i
\(749\) 1.27018i 0.0464114i
\(750\) 0 0
\(751\) 10.7881 33.2025i 0.393665 1.21158i −0.536331 0.844008i \(-0.680190\pi\)
0.929996 0.367569i \(-0.119810\pi\)
\(752\) 4.38926 8.61441i 0.160060 0.314135i
\(753\) 1.77278 11.1929i 0.0646036 0.407891i
\(754\) −3.05772 + 2.22157i −0.111356 + 0.0809047i
\(755\) 0 0
\(756\) 26.1743 + 8.50454i 0.951950 + 0.309307i
\(757\) −5.39320 34.0513i −0.196019 1.23762i −0.867818 0.496883i \(-0.834478\pi\)
0.671798 0.740734i \(-0.265522\pi\)
\(758\) 5.72618 + 5.72618i 0.207984 + 0.207984i
\(759\) 9.20349 + 6.61125i 0.334065 + 0.239973i
\(760\) 0 0
\(761\) −8.17878 + 11.2571i −0.296481 + 0.408071i −0.931106 0.364750i \(-0.881155\pi\)
0.634625 + 0.772820i \(0.281155\pi\)
\(762\) −4.67478 + 2.38192i −0.169350 + 0.0862879i
\(763\) −24.5997 12.5342i −0.890568 0.453767i
\(764\) 4.22213 + 5.81126i 0.152751 + 0.210244i
\(765\) 0 0
\(766\) 5.26689 1.71132i 0.190300 0.0618323i
\(767\) 2.13280 + 4.18586i 0.0770110 + 0.151143i
\(768\) −0.166048 + 0.0262994i −0.00599174 + 0.000948998i
\(769\) 13.3273 0.480596 0.240298 0.970699i \(-0.422755\pi\)
0.240298 + 0.970699i \(0.422755\pi\)
\(770\) 0 0
\(771\) −4.83143 −0.174000
\(772\) 36.3639 5.75948i 1.30877 0.207288i
\(773\) 5.67471 + 11.1372i 0.204105 + 0.400579i 0.970256 0.242082i \(-0.0778304\pi\)
−0.766151 + 0.642661i \(0.777830\pi\)
\(774\) −5.67053 + 1.84247i −0.203823 + 0.0662261i
\(775\) 0 0
\(776\) 10.8709 + 14.9625i 0.390243 + 0.537124i
\(777\) −3.44409 1.75485i −0.123556 0.0629549i
\(778\) −0.355735 + 0.181256i −0.0127537 + 0.00649835i
\(779\) −8.56685 + 11.7913i −0.306939 + 0.422465i
\(780\) 0 0
\(781\) 9.04671 2.99345i 0.323717 0.107114i
\(782\) 5.45516 + 5.45516i 0.195076 + 0.195076i
\(783\) −2.21631 13.9933i −0.0792046 0.500078i
\(784\) 3.75988 + 1.22166i 0.134281 + 0.0436306i
\(785\) 0 0
\(786\) −3.38355 + 2.45829i −0.120687 + 0.0876843i
\(787\) −0.984406 + 6.21530i −0.0350903 + 0.221551i −0.999002 0.0446718i \(-0.985776\pi\)
0.963911 + 0.266223i \(0.0857758\pi\)
\(788\) −0.241781 + 0.474521i −0.00861308 + 0.0169041i
\(789\) 8.05781 24.7994i 0.286866 0.882882i
\(790\) 0 0
\(791\) 59.1055i 2.10155i
\(792\) −4.65723 + 9.26339i −0.165487 + 0.329160i
\(793\) −14.3574 + 14.3574i −0.509846 + 0.509846i
\(794\) 6.62104 + 4.81046i 0.234972 + 0.170717i
\(795\) 0 0
\(796\) −6.03213 18.5650i −0.213803 0.658019i
\(797\) 1.74680 + 0.276667i 0.0618750 + 0.00980003i 0.187295 0.982304i \(-0.440028\pi\)
−0.125420 + 0.992104i \(0.540028\pi\)
\(798\) 6.57006 + 1.04059i 0.232577 + 0.0368367i
\(799\) −5.99354 18.4462i −0.212036 0.652581i
\(800\) 0 0
\(801\) −15.3828 11.1762i −0.543523 0.394893i
\(802\) −9.82669 + 9.82669i −0.346992 + 0.346992i
\(803\) 34.5259 34.9001i 1.21839 1.23160i
\(804\) 3.73160i 0.131603i
\(805\) 0 0
\(806\) −2.97684 + 9.16176i −0.104855 + 0.322709i
\(807\) 11.8305 23.2186i 0.416453 0.817335i
\(808\) −0.548599 + 3.46372i −0.0192996 + 0.121853i
\(809\) −14.9294 + 10.8468i −0.524889 + 0.381354i −0.818443 0.574588i \(-0.805162\pi\)
0.293553 + 0.955943i \(0.405162\pi\)
\(810\) 0 0
\(811\) −12.4057 4.03086i −0.435624 0.141543i 0.0829918 0.996550i \(-0.473552\pi\)
−0.518616 + 0.855007i \(0.673552\pi\)
\(812\) −2.12539 13.4192i −0.0745865 0.470920i
\(813\) 1.12013 + 1.12013i 0.0392847 + 0.0392847i
\(814\) 1.09921 1.53020i 0.0385273 0.0536336i
\(815\) 0 0
\(816\) −9.26472 + 12.7518i −0.324330 + 0.446402i
\(817\) 26.2042 13.3517i 0.916768 0.467117i
\(818\) −1.05413 0.537108i −0.0368569 0.0187796i
\(819\) −8.53770 11.7511i −0.298331 0.410618i
\(820\) 0 0
\(821\) −24.7703 + 8.04835i −0.864489 + 0.280889i −0.707502 0.706711i \(-0.750178\pi\)
−0.156987 + 0.987601i \(0.550178\pi\)
\(822\) 3.88227 + 7.61938i 0.135410 + 0.265756i
\(823\) −4.96237 + 0.785962i −0.172977 + 0.0273969i −0.242322 0.970196i \(-0.577909\pi\)
0.0693449 + 0.997593i \(0.477909\pi\)
\(824\) 11.3361 0.394912
\(825\) 0 0
\(826\) 2.28625 0.0795488
\(827\) 12.0210 1.90393i 0.418010 0.0662062i 0.0561130 0.998424i \(-0.482129\pi\)
0.361897 + 0.932218i \(0.382129\pi\)
\(828\) 4.08135 + 8.01010i 0.141837 + 0.278370i
\(829\) 10.4727 3.40277i 0.363730 0.118183i −0.121449 0.992598i \(-0.538754\pi\)
0.485180 + 0.874415i \(0.338754\pi\)
\(830\) 0 0
\(831\) 9.54711 + 13.1405i 0.331185 + 0.455838i
\(832\) 7.38386 + 3.76227i 0.255989 + 0.130433i
\(833\) 7.06651 3.60057i 0.244840 0.124752i
\(834\) −1.36127 + 1.87363i −0.0471370 + 0.0648785i
\(835\) 0 0
\(836\) 7.27804 22.8171i 0.251716 0.789148i
\(837\) −25.5338 25.5338i −0.882578 0.882578i
\(838\) 1.25568 + 7.92807i 0.0433769 + 0.273871i
\(839\) −8.83685 2.87127i −0.305082 0.0991272i 0.152475 0.988307i \(-0.451276\pi\)
−0.457557 + 0.889180i \(0.651276\pi\)
\(840\) 0 0
\(841\) 17.8031 12.9347i 0.613900 0.446024i
\(842\) 0.952498 6.01384i 0.0328253 0.207251i
\(843\) 13.1264 25.7619i 0.452096 0.887288i
\(844\) 4.82040 14.8357i 0.165925 0.510665i
\(845\) 0 0
\(846\) 3.05979i 0.105198i
\(847\) 14.8715 + 28.4253i 0.510990 + 0.976706i
\(848\) 2.74398 2.74398i 0.0942286 0.0942286i
\(849\) 6.83093 + 4.96296i 0.234437 + 0.170328i
\(850\) 0 0
\(851\) −1.07798 3.31768i −0.0369527 0.113729i
\(852\) −5.69542 0.902066i −0.195122 0.0309043i
\(853\) 26.7133 + 4.23097i 0.914645 + 0.144866i 0.595978 0.803001i \(-0.296765\pi\)
0.318667 + 0.947867i \(0.396765\pi\)
\(854\) 3.05346 + 9.39759i 0.104487 + 0.321579i
\(855\) 0 0
\(856\) −0.647232 0.470242i −0.0221220 0.0160725i
\(857\) 33.1497 33.1497i 1.13237 1.13237i 0.142591 0.989782i \(-0.454457\pi\)
0.989782 0.142591i \(-0.0455432\pi\)
\(858\) −4.79856 + 2.47765i −0.163820 + 0.0845857i
\(859\) 47.2517i 1.61221i −0.591775 0.806103i \(-0.701573\pi\)
0.591775 0.806103i \(-0.298427\pi\)
\(860\) 0 0
\(861\) −3.65072 + 11.2358i −0.124416 + 0.382914i
\(862\) 4.39749 8.63057i 0.149779 0.293958i
\(863\) −2.43422 + 15.3690i −0.0828617 + 0.523168i 0.910988 + 0.412432i \(0.135321\pi\)
−0.993850 + 0.110736i \(0.964679\pi\)
\(864\) 21.4801 15.6062i 0.730768 0.530934i
\(865\) 0 0
\(866\) −13.2947 4.31972i −0.451773 0.146790i
\(867\) 1.91655 + 12.1006i 0.0650896 + 0.410959i
\(868\) −24.4863 24.4863i −0.831118 0.831118i
\(869\) −29.9413 40.7470i −1.01569 1.38225i
\(870\) 0 0
\(871\) −3.19826 + 4.40203i −0.108369 + 0.149157i
\(872\) −15.4941 + 7.89464i −0.524696 + 0.267346i
\(873\) 15.2674 + 7.77913i 0.516723 + 0.263284i
\(874\) 3.52861 + 4.85671i 0.119357 + 0.164281i
\(875\) 0 0
\(876\) −28.2536 + 9.18015i −0.954601 + 0.310169i
\(877\) 13.2254 + 25.9562i 0.446589 + 0.876480i 0.999077 + 0.0429592i \(0.0136785\pi\)
−0.552488 + 0.833521i \(0.686321\pi\)
\(878\) −1.50621 + 0.238560i −0.0508321 + 0.00805101i
\(879\) −16.7229 −0.564048
\(880\) 0 0
\(881\) 4.18815 0.141102 0.0705512 0.997508i \(-0.477524\pi\)
0.0705512 + 0.997508i \(0.477524\pi\)
\(882\) −1.23576 + 0.195725i −0.0416102 + 0.00659041i
\(883\) −20.7555 40.7349i −0.698477 1.37084i −0.918530 0.395351i \(-0.870623\pi\)
0.220053 0.975488i \(-0.429377\pi\)
\(884\) 25.8286 8.39221i 0.868709 0.282261i
\(885\) 0 0
\(886\) −9.11003 12.5389i −0.306057 0.421252i
\(887\) 30.7027 + 15.6438i 1.03090 + 0.525267i 0.885760 0.464144i \(-0.153638\pi\)
0.145136 + 0.989412i \(0.453638\pi\)
\(888\) −2.16926 + 1.10529i −0.0727955 + 0.0370912i
\(889\) −16.1646 + 22.2487i −0.542143 + 0.746196i
\(890\) 0 0
\(891\) −0.0178389 3.31037i −0.000597626 0.110902i
\(892\) −7.70048 7.70048i −0.257831 0.257831i
\(893\) −2.36100 14.9068i −0.0790078 0.498836i
\(894\) −9.51300 3.09096i −0.318162 0.103377i
\(895\) 0 0
\(896\) 26.6503 19.3626i 0.890323 0.646857i
\(897\) −1.56420 + 9.87594i −0.0522270 + 0.329748i
\(898\) 7.75836 15.2266i 0.258900 0.508119i
\(899\) −5.50871 + 16.9541i −0.183726 + 0.565450i
\(900\) 0 0
\(901\) 7.78489i 0.259352i
\(902\) −5.14481 2.58659i −0.171303 0.0861239i
\(903\) 16.8566 16.8566i 0.560951 0.560951i
\(904\) −30.1177 21.8818i −1.00170 0.727778i
\(905\) 0 0
\(906\) 3.05911 + 9.41497i 0.101632 + 0.312791i
\(907\) −38.0387 6.02474i −1.26306 0.200048i −0.511249 0.859433i \(-0.670817\pi\)
−0.751806 + 0.659384i \(0.770817\pi\)
\(908\) −5.77055 0.913965i −0.191502 0.0303310i
\(909\) 1.00402 + 3.09005i 0.0333012 + 0.102490i
\(910\) 0 0
\(911\) 29.8280 + 21.6713i 0.988244 + 0.718002i 0.959536 0.281586i \(-0.0908605\pi\)
0.0287085 + 0.999588i \(0.490861\pi\)
\(912\) −8.67283 + 8.67283i −0.287186 + 0.287186i
\(913\) 19.8022 + 9.95566i 0.655356 + 0.329484i
\(914\) 2.49056i 0.0823805i
\(915\) 0 0
\(916\) −2.90677 + 8.94611i −0.0960423 + 0.295588i
\(917\) −9.95237 + 19.5326i −0.328656 + 0.645024i
\(918\) 2.15595 13.6122i 0.0711571 0.449268i
\(919\) −24.5973 + 17.8710i −0.811392 + 0.589510i −0.914234 0.405187i \(-0.867206\pi\)
0.102842 + 0.994698i \(0.467206\pi\)
\(920\) 0 0
\(921\) 1.34081 + 0.435657i 0.0441813 + 0.0143554i
\(922\) 0.952647 + 6.01478i 0.0313738 + 0.198086i
\(923\) 5.94554 + 5.94554i 0.195700 + 0.195700i
\(924\) −0.104612 19.4129i −0.00344148 0.638636i
\(925\) 0 0
\(926\) −7.82350 + 10.7681i −0.257096 + 0.353862i
\(927\) 9.35797 4.76812i 0.307356 0.156606i
\(928\) −11.6788 5.95063i −0.383374 0.195339i
\(929\) 13.6936 + 18.8477i 0.449273 + 0.618372i 0.972241 0.233981i \(-0.0751752\pi\)
−0.522968 + 0.852352i \(0.675175\pi\)
\(930\) 0 0
\(931\) 5.86938 1.90708i 0.192361 0.0625020i
\(932\) −3.53335 6.93458i −0.115739 0.227150i
\(933\) −15.9199 + 2.52147i −0.521196 + 0.0825493i
\(934\) −19.3837 −0.634254
\(935\) 0 0
\(936\) −9.14869 −0.299034
\(937\) 7.94449 1.25828i 0.259535 0.0411063i −0.0253108 0.999680i \(-0.508058\pi\)
0.284846 + 0.958573i \(0.408058\pi\)
\(938\) 1.20216 + 2.35937i 0.0392519 + 0.0770362i
\(939\) 0.801481 0.260417i 0.0261553 0.00849838i
\(940\) 0 0
\(941\) 28.1490 + 38.7438i 0.917631 + 1.26301i 0.964493 + 0.264110i \(0.0850781\pi\)
−0.0468615 + 0.998901i \(0.514922\pi\)
\(942\) 10.6412 + 5.42198i 0.346710 + 0.176658i
\(943\) −9.49976 + 4.84037i −0.309355 + 0.157624i
\(944\) −2.47782 + 3.41042i −0.0806460 + 0.111000i
\(945\) 0 0
\(946\) 6.88039 + 9.36352i 0.223701 + 0.304434i
\(947\) −9.38618 9.38618i −0.305010 0.305010i 0.537960 0.842970i \(-0.319195\pi\)
−0.842970 + 0.537960i \(0.819195\pi\)
\(948\) 4.78668 + 30.2219i 0.155464 + 0.981563i
\(949\) 41.1978 + 13.3860i 1.33734 + 0.434528i
\(950\) 0 0
\(951\) 15.7309 11.4292i 0.510109 0.370616i
\(952\) 4.41491 27.8746i 0.143088 0.903422i
\(953\) −24.1733 + 47.4428i −0.783051 + 1.53682i 0.0595128 + 0.998228i \(0.481045\pi\)
−0.842564 + 0.538597i \(0.818955\pi\)
\(954\) −0.379511 + 1.16802i −0.0122871 + 0.0378159i
\(955\) 0 0
\(956\) 18.4130i 0.595519i
\(957\) −8.87987 + 4.58496i −0.287045 + 0.148211i
\(958\) −13.2098 + 13.2098i −0.426790 + 0.426790i
\(959\) 36.2628 + 26.3465i 1.17099 + 0.850772i
\(960\) 0 0
\(961\) 4.46097 + 13.7294i 0.143902 + 0.442885i
\(962\) 1.64201 + 0.260069i 0.0529405 + 0.00838495i
\(963\) −0.732081 0.115950i −0.0235910 0.00373644i
\(964\) 15.1642 + 46.6706i 0.488406 + 1.50316i
\(965\) 0 0
\(966\) 3.93674 + 2.86021i 0.126662 + 0.0920256i
\(967\) −38.6475 + 38.6475i −1.24282 + 1.24282i −0.283994 + 0.958826i \(0.591660\pi\)
−0.958826 + 0.283994i \(0.908340\pi\)
\(968\) 19.9901 + 2.94563i 0.642505 + 0.0946763i
\(969\) 24.6055i 0.790443i
\(970\) 0 0
\(971\) 2.55556 7.86521i 0.0820119 0.252407i −0.901640 0.432487i \(-0.857636\pi\)
0.983652 + 0.180081i \(0.0576360\pi\)
\(972\) 11.9430 23.4395i 0.383073 0.751823i
\(973\) −1.89900 + 11.9898i −0.0608790 + 0.384375i
\(974\) 10.7378 7.80149i 0.344062 0.249976i
\(975\) 0 0
\(976\) −17.3278 5.63014i −0.554649 0.180216i
\(977\) 8.56551 + 54.0805i 0.274035 + 1.73019i 0.613610 + 0.789610i \(0.289717\pi\)
−0.339575 + 0.940579i \(0.610283\pi\)
\(978\) 4.10153 + 4.10153i 0.131152 + 0.131152i
\(979\) −11.2607 + 35.3029i −0.359892 + 1.12829i
\(980\) 0 0
\(981\) −9.46980 + 13.0341i −0.302347 + 0.416145i
\(982\) −1.72822 + 0.880571i −0.0551496 + 0.0281001i
\(983\) −12.1525 6.19202i −0.387606 0.197495i 0.249318 0.968422i \(-0.419793\pi\)
−0.636924 + 0.770927i \(0.719793\pi\)
\(984\) 4.37373 + 6.01992i 0.139429 + 0.191908i
\(985\) 0 0
\(986\) −6.47069 + 2.10245i −0.206069 + 0.0669558i
\(987\) −5.55398 10.9003i −0.176785 0.346960i
\(988\) 20.8726 3.30589i 0.664045 0.105174i
\(989\) 21.5139 0.684102
\(990\) 0 0
\(991\) 6.43457 0.204401 0.102200 0.994764i \(-0.467412\pi\)
0.102200 + 0.994764i \(0.467412\pi\)
\(992\) −32.9965 + 5.22613i −1.04764 + 0.165930i
\(993\) 7.71694 + 15.1453i 0.244890 + 0.480623i
\(994\) 3.89164 1.26447i 0.123435 0.0401066i
\(995\) 0 0
\(996\) −7.88351 10.8507i −0.249799 0.343818i
\(997\) 18.9575 + 9.65934i 0.600391 + 0.305914i 0.727643 0.685956i \(-0.240616\pi\)
−0.127252 + 0.991870i \(0.540616\pi\)
\(998\) 2.79564 1.42445i 0.0884943 0.0450901i
\(999\) −3.66296 + 5.04163i −0.115891 + 0.159510i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.bm.b.7.2 32
5.2 odd 4 55.2.l.a.18.2 yes 32
5.3 odd 4 inner 275.2.bm.b.18.3 32
5.4 even 2 55.2.l.a.7.3 32
11.8 odd 10 inner 275.2.bm.b.107.3 32
15.2 even 4 495.2.bj.a.73.3 32
15.14 odd 2 495.2.bj.a.172.2 32
20.7 even 4 880.2.cm.a.513.3 32
20.19 odd 2 880.2.cm.a.337.2 32
55.2 even 20 605.2.m.c.578.3 32
55.4 even 10 605.2.m.c.112.3 32
55.7 even 20 605.2.m.d.233.2 32
55.8 even 20 inner 275.2.bm.b.118.2 32
55.9 even 10 605.2.m.d.457.2 32
55.14 even 10 605.2.m.e.602.3 32
55.17 even 20 605.2.e.b.483.8 32
55.19 odd 10 55.2.l.a.52.2 yes 32
55.24 odd 10 605.2.m.c.457.3 32
55.27 odd 20 605.2.e.b.483.9 32
55.29 odd 10 605.2.m.d.112.2 32
55.32 even 4 605.2.m.e.403.3 32
55.37 odd 20 605.2.m.c.233.3 32
55.39 odd 10 605.2.e.b.362.9 32
55.42 odd 20 605.2.m.d.578.2 32
55.47 odd 20 605.2.m.e.118.2 32
55.49 even 10 605.2.e.b.362.8 32
55.52 even 20 55.2.l.a.8.3 yes 32
55.54 odd 2 605.2.m.e.282.2 32
165.74 even 10 495.2.bj.a.217.3 32
165.107 odd 20 495.2.bj.a.118.2 32
220.19 even 10 880.2.cm.a.657.3 32
220.107 odd 20 880.2.cm.a.833.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.3 32 5.4 even 2
55.2.l.a.8.3 yes 32 55.52 even 20
55.2.l.a.18.2 yes 32 5.2 odd 4
55.2.l.a.52.2 yes 32 55.19 odd 10
275.2.bm.b.7.2 32 1.1 even 1 trivial
275.2.bm.b.18.3 32 5.3 odd 4 inner
275.2.bm.b.107.3 32 11.8 odd 10 inner
275.2.bm.b.118.2 32 55.8 even 20 inner
495.2.bj.a.73.3 32 15.2 even 4
495.2.bj.a.118.2 32 165.107 odd 20
495.2.bj.a.172.2 32 15.14 odd 2
495.2.bj.a.217.3 32 165.74 even 10
605.2.e.b.362.8 32 55.49 even 10
605.2.e.b.362.9 32 55.39 odd 10
605.2.e.b.483.8 32 55.17 even 20
605.2.e.b.483.9 32 55.27 odd 20
605.2.m.c.112.3 32 55.4 even 10
605.2.m.c.233.3 32 55.37 odd 20
605.2.m.c.457.3 32 55.24 odd 10
605.2.m.c.578.3 32 55.2 even 20
605.2.m.d.112.2 32 55.29 odd 10
605.2.m.d.233.2 32 55.7 even 20
605.2.m.d.457.2 32 55.9 even 10
605.2.m.d.578.2 32 55.42 odd 20
605.2.m.e.118.2 32 55.47 odd 20
605.2.m.e.282.2 32 55.54 odd 2
605.2.m.e.403.3 32 55.32 even 4
605.2.m.e.602.3 32 55.14 even 10
880.2.cm.a.337.2 32 20.19 odd 2
880.2.cm.a.513.3 32 20.7 even 4
880.2.cm.a.657.3 32 220.19 even 10
880.2.cm.a.833.2 32 220.107 odd 20