Properties

Label 605.2.e.b.483.9
Level $605$
Weight $2$
Character 605.483
Analytic conductor $4.831$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [605,2,Mod(362,605)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(605, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("605.362");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 605 = 5 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 605.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.83094932229\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 483.9
Character \(\chi\) \(=\) 605.483
Dual form 605.2.e.b.362.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.345308 + 0.345308i) q^{2} +(-0.805651 - 0.805651i) q^{3} -1.76152i q^{4} +(-2.18158 + 0.490620i) q^{5} -0.556396i q^{6} +(2.06222 + 2.06222i) q^{7} +(1.29889 - 1.29889i) q^{8} -1.70185i q^{9} +(-0.922733 - 0.583903i) q^{10} +(-1.41917 + 1.41917i) q^{12} +(2.06936 - 2.06936i) q^{13} +1.42420i q^{14} +(2.15286 + 1.36232i) q^{15} -2.62602 q^{16} +(-3.72511 - 3.72511i) q^{17} +(0.587664 - 0.587664i) q^{18} -4.09936 q^{19} +(0.864239 + 3.84291i) q^{20} -3.32285i q^{21} +(-2.12046 - 2.12046i) q^{23} -2.09290 q^{24} +(4.51858 - 2.14065i) q^{25} +1.42913 q^{26} +(-3.78805 + 3.78805i) q^{27} +(3.63264 - 3.63264i) q^{28} -2.64465 q^{29} +(0.272979 + 1.21382i) q^{30} -6.74062 q^{31} +(-3.50456 - 3.50456i) q^{32} -2.57262i q^{34} +(-5.51065 - 3.48712i) q^{35} -2.99786 q^{36} +(0.822560 - 0.822560i) q^{37} +(-1.41554 - 1.41554i) q^{38} -3.33436 q^{39} +(-2.19636 + 3.47088i) q^{40} -3.55538i q^{41} +(1.14741 - 1.14741i) q^{42} +(5.07292 - 5.07292i) q^{43} +(0.834964 + 3.71273i) q^{45} -1.46443i q^{46} +(-2.60335 + 2.60335i) q^{47} +(2.11565 + 2.11565i) q^{48} +1.50546i q^{49} +(2.29949 + 0.821119i) q^{50} +6.00228i q^{51} +(-3.64523 - 3.64523i) q^{52} +(1.04492 + 1.04492i) q^{53} -2.61609 q^{54} +5.35716 q^{56} +(3.30266 + 3.30266i) q^{57} +(-0.913219 - 0.913219i) q^{58} -1.60529i q^{59} +(2.39977 - 3.79231i) q^{60} +6.93808i q^{61} +(-2.32759 - 2.32759i) q^{62} +(3.50959 - 3.50959i) q^{63} +2.83173i q^{64} +(-3.49920 + 5.52974i) q^{65} +(1.31471 - 1.31471i) q^{67} +(-6.56188 + 6.56188i) q^{68} +3.41671i q^{69} +(-0.698741 - 3.10701i) q^{70} +2.87313 q^{71} +(-2.21051 - 2.21051i) q^{72} +(10.4665 - 10.4665i) q^{73} +0.568074 q^{74} +(-5.36502 - 1.91578i) q^{75} +7.22113i q^{76} +(-1.15138 - 1.15138i) q^{78} +15.2459 q^{79} +(5.72887 - 1.28838i) q^{80} +0.998129 q^{81} +(1.22770 - 1.22770i) q^{82} +(4.72537 - 4.72537i) q^{83} -5.85328 q^{84} +(9.95425 + 6.29902i) q^{85} +3.50344 q^{86} +(2.13066 + 2.13066i) q^{87} +11.1726i q^{89} +(-0.993717 + 1.57036i) q^{90} +8.53493 q^{91} +(-3.73525 + 3.73525i) q^{92} +(5.43059 + 5.43059i) q^{93} -1.79791 q^{94} +(8.94309 - 2.01123i) q^{95} +5.64690i q^{96} +(7.11945 - 7.11945i) q^{97} +(-0.519848 + 0.519848i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{3} + 8 q^{5} + 12 q^{12} - 36 q^{15} - 8 q^{16} - 64 q^{20} - 24 q^{23} + 16 q^{25} - 16 q^{27} - 8 q^{31} + 24 q^{36} + 32 q^{37} - 40 q^{38} + 60 q^{42} - 28 q^{45} - 28 q^{47} + 56 q^{48}+ \cdots + 92 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/605\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(486\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.345308 + 0.345308i 0.244170 + 0.244170i 0.818573 0.574403i \(-0.194766\pi\)
−0.574403 + 0.818573i \(0.694766\pi\)
\(3\) −0.805651 0.805651i −0.465143 0.465143i 0.435194 0.900337i \(-0.356680\pi\)
−0.900337 + 0.435194i \(0.856680\pi\)
\(4\) 1.76152i 0.880762i
\(5\) −2.18158 + 0.490620i −0.975632 + 0.219412i
\(6\) 0.556396i 0.227148i
\(7\) 2.06222 + 2.06222i 0.779444 + 0.779444i 0.979736 0.200292i \(-0.0641891\pi\)
−0.200292 + 0.979736i \(0.564189\pi\)
\(8\) 1.29889 1.29889i 0.459225 0.459225i
\(9\) 1.70185i 0.567285i
\(10\) −0.922733 0.583903i −0.291794 0.184646i
\(11\) 0 0
\(12\) −1.41917 + 1.41917i −0.409680 + 0.409680i
\(13\) 2.06936 2.06936i 0.573937 0.573937i −0.359289 0.933226i \(-0.616981\pi\)
0.933226 + 0.359289i \(0.116981\pi\)
\(14\) 1.42420i 0.380633i
\(15\) 2.15286 + 1.36232i 0.555866 + 0.351750i
\(16\) −2.62602 −0.656504
\(17\) −3.72511 3.72511i −0.903473 0.903473i 0.0922622 0.995735i \(-0.470590\pi\)
−0.995735 + 0.0922622i \(0.970590\pi\)
\(18\) 0.587664 0.587664i 0.138514 0.138514i
\(19\) −4.09936 −0.940459 −0.470229 0.882544i \(-0.655829\pi\)
−0.470229 + 0.882544i \(0.655829\pi\)
\(20\) 0.864239 + 3.84291i 0.193250 + 0.859300i
\(21\) 3.32285i 0.725105i
\(22\) 0 0
\(23\) −2.12046 2.12046i −0.442147 0.442147i 0.450586 0.892733i \(-0.351215\pi\)
−0.892733 + 0.450586i \(0.851215\pi\)
\(24\) −2.09290 −0.427210
\(25\) 4.51858 2.14065i 0.903717 0.428131i
\(26\) 1.42913 0.280276
\(27\) −3.78805 + 3.78805i −0.729011 + 0.729011i
\(28\) 3.63264 3.63264i 0.686505 0.686505i
\(29\) −2.64465 −0.491099 −0.245549 0.969384i \(-0.578968\pi\)
−0.245549 + 0.969384i \(0.578968\pi\)
\(30\) 0.272979 + 1.21382i 0.0498389 + 0.221612i
\(31\) −6.74062 −1.21065 −0.605326 0.795978i \(-0.706957\pi\)
−0.605326 + 0.795978i \(0.706957\pi\)
\(32\) −3.50456 3.50456i −0.619524 0.619524i
\(33\) 0 0
\(34\) 2.57262i 0.441201i
\(35\) −5.51065 3.48712i −0.931470 0.589432i
\(36\) −2.99786 −0.499643
\(37\) 0.822560 0.822560i 0.135228 0.135228i −0.636253 0.771481i \(-0.719516\pi\)
0.771481 + 0.636253i \(0.219516\pi\)
\(38\) −1.41554 1.41554i −0.229632 0.229632i
\(39\) −3.33436 −0.533925
\(40\) −2.19636 + 3.47088i −0.347276 + 0.548795i
\(41\) 3.55538i 0.555257i −0.960689 0.277628i \(-0.910452\pi\)
0.960689 0.277628i \(-0.0895484\pi\)
\(42\) 1.14741 1.14741i 0.177049 0.177049i
\(43\) 5.07292 5.07292i 0.773613 0.773613i −0.205123 0.978736i \(-0.565759\pi\)
0.978736 + 0.205123i \(0.0657595\pi\)
\(44\) 0 0
\(45\) 0.834964 + 3.71273i 0.124469 + 0.553461i
\(46\) 1.46443i 0.215918i
\(47\) −2.60335 + 2.60335i −0.379737 + 0.379737i −0.871007 0.491270i \(-0.836533\pi\)
0.491270 + 0.871007i \(0.336533\pi\)
\(48\) 2.11565 + 2.11565i 0.305368 + 0.305368i
\(49\) 1.50546i 0.215066i
\(50\) 2.29949 + 0.821119i 0.325197 + 0.116124i
\(51\) 6.00228i 0.840487i
\(52\) −3.64523 3.64523i −0.505502 0.505502i
\(53\) 1.04492 + 1.04492i 0.143531 + 0.143531i 0.775221 0.631690i \(-0.217639\pi\)
−0.631690 + 0.775221i \(0.717639\pi\)
\(54\) −2.61609 −0.356005
\(55\) 0 0
\(56\) 5.35716 0.715881
\(57\) 3.30266 + 3.30266i 0.437447 + 0.437447i
\(58\) −0.913219 0.913219i −0.119912 0.119912i
\(59\) 1.60529i 0.208991i −0.994525 0.104495i \(-0.966677\pi\)
0.994525 0.104495i \(-0.0333227\pi\)
\(60\) 2.39977 3.79231i 0.309808 0.489586i
\(61\) 6.93808i 0.888330i 0.895945 + 0.444165i \(0.146500\pi\)
−0.895945 + 0.444165i \(0.853500\pi\)
\(62\) −2.32759 2.32759i −0.295605 0.295605i
\(63\) 3.50959 3.50959i 0.442167 0.442167i
\(64\) 2.83173i 0.353966i
\(65\) −3.49920 + 5.52974i −0.434023 + 0.685880i
\(66\) 0 0
\(67\) 1.31471 1.31471i 0.160617 0.160617i −0.622223 0.782840i \(-0.713770\pi\)
0.782840 + 0.622223i \(0.213770\pi\)
\(68\) −6.56188 + 6.56188i −0.795744 + 0.795744i
\(69\) 3.41671i 0.411323i
\(70\) −0.698741 3.10701i −0.0835155 0.371358i
\(71\) 2.87313 0.340978 0.170489 0.985360i \(-0.445465\pi\)
0.170489 + 0.985360i \(0.445465\pi\)
\(72\) −2.21051 2.21051i −0.260512 0.260512i
\(73\) 10.4665 10.4665i 1.22501 1.22501i 0.259186 0.965827i \(-0.416546\pi\)
0.965827 0.259186i \(-0.0834542\pi\)
\(74\) 0.568074 0.0660372
\(75\) −5.36502 1.91578i −0.619499 0.221215i
\(76\) 7.22113i 0.828321i
\(77\) 0 0
\(78\) −1.15138 1.15138i −0.130368 0.130368i
\(79\) 15.2459 1.71529 0.857647 0.514239i \(-0.171926\pi\)
0.857647 + 0.514239i \(0.171926\pi\)
\(80\) 5.72887 1.28838i 0.640507 0.144045i
\(81\) 0.998129 0.110903
\(82\) 1.22770 1.22770i 0.135577 0.135577i
\(83\) 4.72537 4.72537i 0.518677 0.518677i −0.398494 0.917171i \(-0.630467\pi\)
0.917171 + 0.398494i \(0.130467\pi\)
\(84\) −5.85328 −0.638645
\(85\) 9.95425 + 6.29902i 1.07969 + 0.683224i
\(86\) 3.50344 0.377786
\(87\) 2.13066 + 2.13066i 0.228431 + 0.228431i
\(88\) 0 0
\(89\) 11.1726i 1.18429i 0.805830 + 0.592147i \(0.201719\pi\)
−0.805830 + 0.592147i \(0.798281\pi\)
\(90\) −0.993717 + 1.57036i −0.104747 + 0.165530i
\(91\) 8.53493 0.894704
\(92\) −3.73525 + 3.73525i −0.389427 + 0.389427i
\(93\) 5.43059 + 5.43059i 0.563126 + 0.563126i
\(94\) −1.79791 −0.185441
\(95\) 8.94309 2.01123i 0.917542 0.206348i
\(96\) 5.64690i 0.576334i
\(97\) 7.11945 7.11945i 0.722871 0.722871i −0.246318 0.969189i \(-0.579221\pi\)
0.969189 + 0.246318i \(0.0792208\pi\)
\(98\) −0.519848 + 0.519848i −0.0525126 + 0.0525126i
\(99\) 0 0
\(100\) −3.77081 7.95960i −0.377081 0.795960i
\(101\) 1.90914i 0.189966i −0.995479 0.0949830i \(-0.969720\pi\)
0.995479 0.0949830i \(-0.0302797\pi\)
\(102\) −2.07264 + 2.07264i −0.205222 + 0.205222i
\(103\) −4.36378 4.36378i −0.429976 0.429976i 0.458644 0.888620i \(-0.348335\pi\)
−0.888620 + 0.458644i \(0.848335\pi\)
\(104\) 5.37572i 0.527133i
\(105\) 1.63026 + 7.24906i 0.159097 + 0.707436i
\(106\) 0.721639i 0.0700917i
\(107\) 0.307965 + 0.307965i 0.0297721 + 0.0297721i 0.721836 0.692064i \(-0.243298\pi\)
−0.692064 + 0.721836i \(0.743298\pi\)
\(108\) 6.67275 + 6.67275i 0.642085 + 0.642085i
\(109\) 9.46672 0.906748 0.453374 0.891320i \(-0.350220\pi\)
0.453374 + 0.891320i \(0.350220\pi\)
\(110\) 0 0
\(111\) −1.32539 −0.125801
\(112\) −5.41541 5.41541i −0.511708 0.511708i
\(113\) −14.3306 14.3306i −1.34811 1.34811i −0.887716 0.460391i \(-0.847709\pi\)
−0.460391 0.887716i \(-0.652291\pi\)
\(114\) 2.28087i 0.213623i
\(115\) 5.66631 + 3.58562i 0.528386 + 0.334361i
\(116\) 4.65861i 0.432541i
\(117\) −3.52175 3.52175i −0.325586 0.325586i
\(118\) 0.554319 0.554319i 0.0510292 0.0510292i
\(119\) 15.3640i 1.40841i
\(120\) 4.56582 1.02682i 0.416800 0.0937351i
\(121\) 0 0
\(122\) −2.39578 + 2.39578i −0.216903 + 0.216903i
\(123\) −2.86439 + 2.86439i −0.258274 + 0.258274i
\(124\) 11.8738i 1.06630i
\(125\) −8.80741 + 6.88691i −0.787758 + 0.615984i
\(126\) 2.42378 0.215928
\(127\) 6.66779 + 6.66779i 0.591671 + 0.591671i 0.938083 0.346412i \(-0.112600\pi\)
−0.346412 + 0.938083i \(0.612600\pi\)
\(128\) −7.98693 + 7.98693i −0.705952 + 0.705952i
\(129\) −8.17400 −0.719681
\(130\) −3.11777 + 0.701161i −0.273446 + 0.0614959i
\(131\) 7.51676i 0.656743i 0.944549 + 0.328371i \(0.106500\pi\)
−0.944549 + 0.328371i \(0.893500\pi\)
\(132\) 0 0
\(133\) −8.45377 8.45377i −0.733035 0.733035i
\(134\) 0.907959 0.0784357
\(135\) 6.40545 10.1224i 0.551293 0.871200i
\(136\) −9.67699 −0.829795
\(137\) 10.8678 10.8678i 0.928495 0.928495i −0.0691136 0.997609i \(-0.522017\pi\)
0.997609 + 0.0691136i \(0.0220171\pi\)
\(138\) −1.17982 + 1.17982i −0.100433 + 0.100433i
\(139\) −4.16239 −0.353049 −0.176525 0.984296i \(-0.556486\pi\)
−0.176525 + 0.984296i \(0.556486\pi\)
\(140\) −6.14265 + 9.70715i −0.519149 + 0.820404i
\(141\) 4.19477 0.353264
\(142\) 0.992116 + 0.992116i 0.0832565 + 0.0832565i
\(143\) 0 0
\(144\) 4.46910i 0.372425i
\(145\) 5.76951 1.29752i 0.479132 0.107753i
\(146\) 7.22835 0.598222
\(147\) 1.21288 1.21288i 0.100036 0.100036i
\(148\) −1.44896 1.44896i −0.119104 0.119104i
\(149\) −17.9774 −1.47277 −0.736384 0.676564i \(-0.763468\pi\)
−0.736384 + 0.676564i \(0.763468\pi\)
\(150\) −1.19105 2.51412i −0.0972488 0.205277i
\(151\) 17.7922i 1.44791i 0.689849 + 0.723953i \(0.257677\pi\)
−0.689849 + 0.723953i \(0.742323\pi\)
\(152\) −5.32460 + 5.32460i −0.431882 + 0.431882i
\(153\) −6.33960 + 6.33960i −0.512526 + 0.512526i
\(154\) 0 0
\(155\) 14.7052 3.30708i 1.18115 0.265631i
\(156\) 5.87356i 0.470261i
\(157\) −15.1779 + 15.1779i −1.21133 + 1.21133i −0.240741 + 0.970590i \(0.577390\pi\)
−0.970590 + 0.240741i \(0.922610\pi\)
\(158\) 5.26452 + 5.26452i 0.418823 + 0.418823i
\(159\) 1.68368i 0.133525i
\(160\) 9.36487 + 5.92607i 0.740358 + 0.468497i
\(161\) 8.74571i 0.689258i
\(162\) 0.344662 + 0.344662i 0.0270792 + 0.0270792i
\(163\) 7.37160 + 7.37160i 0.577388 + 0.577388i 0.934183 0.356795i \(-0.116130\pi\)
−0.356795 + 0.934183i \(0.616130\pi\)
\(164\) −6.26288 −0.489049
\(165\) 0 0
\(166\) 3.26342 0.253290
\(167\) 7.98527 + 7.98527i 0.617919 + 0.617919i 0.944997 0.327078i \(-0.106064\pi\)
−0.327078 + 0.944997i \(0.606064\pi\)
\(168\) −4.31600 4.31600i −0.332987 0.332987i
\(169\) 4.43550i 0.341193i
\(170\) 1.26218 + 5.61239i 0.0968048 + 0.430450i
\(171\) 6.97652i 0.533508i
\(172\) −8.93607 8.93607i −0.681369 0.681369i
\(173\) 9.33537 9.33537i 0.709755 0.709755i −0.256729 0.966483i \(-0.582645\pi\)
0.966483 + 0.256729i \(0.0826447\pi\)
\(174\) 1.47147i 0.111552i
\(175\) 13.7328 + 4.90381i 1.03810 + 0.370693i
\(176\) 0 0
\(177\) −1.29330 + 1.29330i −0.0972104 + 0.0972104i
\(178\) −3.85799 + 3.85799i −0.289169 + 0.289169i
\(179\) 2.22674i 0.166434i −0.996531 0.0832172i \(-0.973480\pi\)
0.996531 0.0832172i \(-0.0265195\pi\)
\(180\) 6.54007 1.47081i 0.487468 0.109628i
\(181\) 4.33473 0.322198 0.161099 0.986938i \(-0.448496\pi\)
0.161099 + 0.986938i \(0.448496\pi\)
\(182\) 2.94718 + 2.94718i 0.218460 + 0.218460i
\(183\) 5.58967 5.58967i 0.413200 0.413200i
\(184\) −5.50848 −0.406091
\(185\) −1.39092 + 2.19805i −0.102262 + 0.161604i
\(186\) 3.75045i 0.274996i
\(187\) 0 0
\(188\) 4.58586 + 4.58586i 0.334458 + 0.334458i
\(189\) −15.6236 −1.13645
\(190\) 3.78262 + 2.39363i 0.274420 + 0.173652i
\(191\) −4.07778 −0.295058 −0.147529 0.989058i \(-0.547132\pi\)
−0.147529 + 0.989058i \(0.547132\pi\)
\(192\) 2.28139 2.28139i 0.164645 0.164645i
\(193\) 14.7791 14.7791i 1.06382 1.06382i 0.0660005 0.997820i \(-0.478976\pi\)
0.997820 0.0660005i \(-0.0210239\pi\)
\(194\) 4.91681 0.353006
\(195\) 7.27418 1.63590i 0.520915 0.117149i
\(196\) 2.65191 0.189422
\(197\) 0.213782 + 0.213782i 0.0152313 + 0.0152313i 0.714681 0.699450i \(-0.246572\pi\)
−0.699450 + 0.714681i \(0.746572\pi\)
\(198\) 0 0
\(199\) 11.0815i 0.785549i −0.919635 0.392775i \(-0.871515\pi\)
0.919635 0.392775i \(-0.128485\pi\)
\(200\) 3.08866 8.64959i 0.218401 0.611618i
\(201\) −2.11839 −0.149420
\(202\) 0.659240 0.659240i 0.0463840 0.0463840i
\(203\) −5.45383 5.45383i −0.382784 0.382784i
\(204\) 10.5732 0.740269
\(205\) 1.74434 + 7.75634i 0.121830 + 0.541726i
\(206\) 3.01370i 0.209975i
\(207\) −3.60872 + 3.60872i −0.250824 + 0.250824i
\(208\) −5.43417 + 5.43417i −0.376792 + 0.376792i
\(209\) 0 0
\(210\) −1.94022 + 3.06610i −0.133888 + 0.211581i
\(211\) 8.85548i 0.609636i −0.952411 0.304818i \(-0.901404\pi\)
0.952411 0.304818i \(-0.0985957\pi\)
\(212\) 1.84065 1.84065i 0.126416 0.126416i
\(213\) −2.31474 2.31474i −0.158603 0.158603i
\(214\) 0.212686i 0.0145389i
\(215\) −8.57811 + 13.5559i −0.585022 + 0.924502i
\(216\) 9.84049i 0.669560i
\(217\) −13.9006 13.9006i −0.943635 0.943635i
\(218\) 3.26894 + 3.26894i 0.221400 + 0.221400i
\(219\) −16.8647 −1.13961
\(220\) 0 0
\(221\) −15.4172 −1.03707
\(222\) −0.457669 0.457669i −0.0307167 0.0307167i
\(223\) 4.37149 + 4.37149i 0.292736 + 0.292736i 0.838160 0.545424i \(-0.183631\pi\)
−0.545424 + 0.838160i \(0.683631\pi\)
\(224\) 14.4543i 0.965768i
\(225\) −3.64308 7.68997i −0.242872 0.512665i
\(226\) 9.89693i 0.658334i
\(227\) 2.34527 + 2.34527i 0.155661 + 0.155661i 0.780641 0.624980i \(-0.214893\pi\)
−0.624980 + 0.780641i \(0.714893\pi\)
\(228\) 5.81771 5.81771i 0.385287 0.385287i
\(229\) 5.33997i 0.352875i −0.984312 0.176438i \(-0.943543\pi\)
0.984312 0.176438i \(-0.0564574\pi\)
\(230\) 0.718477 + 3.19477i 0.0473750 + 0.210657i
\(231\) 0 0
\(232\) −3.43509 + 3.43509i −0.225525 + 0.225525i
\(233\) −3.12418 + 3.12418i −0.204672 + 0.204672i −0.801998 0.597326i \(-0.796230\pi\)
0.597326 + 0.801998i \(0.296230\pi\)
\(234\) 2.43218i 0.158996i
\(235\) 4.40215 6.95666i 0.287165 0.453802i
\(236\) −2.82775 −0.184071
\(237\) −12.2828 12.2828i −0.797856 0.797856i
\(238\) 5.30530 5.30530i 0.343892 0.343892i
\(239\) 10.4529 0.676141 0.338070 0.941121i \(-0.390226\pi\)
0.338070 + 0.941121i \(0.390226\pi\)
\(240\) −5.65345 3.57748i −0.364928 0.230926i
\(241\) 27.8579i 1.79449i −0.441536 0.897243i \(-0.645566\pi\)
0.441536 0.897243i \(-0.354434\pi\)
\(242\) 0 0
\(243\) 10.5600 + 10.5600i 0.677425 + 0.677425i
\(244\) 12.2216 0.782408
\(245\) −0.738609 3.28429i −0.0471880 0.209825i
\(246\) −1.97820 −0.126125
\(247\) −8.48306 + 8.48306i −0.539764 + 0.539764i
\(248\) −8.75530 + 8.75530i −0.555962 + 0.555962i
\(249\) −7.61399 −0.482517
\(250\) −5.41938 0.663162i −0.342752 0.0419421i
\(251\) −9.94627 −0.627803 −0.313901 0.949456i \(-0.601636\pi\)
−0.313901 + 0.949456i \(0.601636\pi\)
\(252\) −6.18223 6.18223i −0.389444 0.389444i
\(253\) 0 0
\(254\) 4.60489i 0.288936i
\(255\) −2.94484 13.0945i −0.184413 0.820006i
\(256\) 0.147554 0.00922214
\(257\) 2.99846 2.99846i 0.187039 0.187039i −0.607376 0.794415i \(-0.707778\pi\)
0.794415 + 0.607376i \(0.207778\pi\)
\(258\) −2.82255 2.82255i −0.175724 0.175724i
\(259\) 3.39259 0.210805
\(260\) 9.74078 + 6.16393i 0.604097 + 0.382271i
\(261\) 4.50081i 0.278593i
\(262\) −2.59560 + 2.59560i −0.160357 + 0.160357i
\(263\) 16.1830 16.1830i 0.997884 0.997884i −0.00211364 0.999998i \(-0.500673\pi\)
0.999998 + 0.00211364i \(0.000672793\pi\)
\(264\) 0 0
\(265\) −2.79223 1.76692i −0.171526 0.108541i
\(266\) 5.83831i 0.357970i
\(267\) 9.00122 9.00122i 0.550865 0.550865i
\(268\) −2.31589 2.31589i −0.141466 0.141466i
\(269\) 22.8715i 1.39450i 0.716829 + 0.697249i \(0.245593\pi\)
−0.716829 + 0.697249i \(0.754407\pi\)
\(270\) 5.70721 1.28351i 0.347330 0.0781117i
\(271\) 1.39034i 0.0844573i 0.999108 + 0.0422287i \(0.0134458\pi\)
−0.999108 + 0.0422287i \(0.986554\pi\)
\(272\) 9.78221 + 9.78221i 0.593134 + 0.593134i
\(273\) −6.87617 6.87617i −0.416165 0.416165i
\(274\) 7.50545 0.453421
\(275\) 0 0
\(276\) 6.01861 0.362278
\(277\) 10.0804 + 10.0804i 0.605671 + 0.605671i 0.941812 0.336141i \(-0.109122\pi\)
−0.336141 + 0.941812i \(0.609122\pi\)
\(278\) −1.43731 1.43731i −0.0862040 0.0862040i
\(279\) 11.4716i 0.686784i
\(280\) −11.6871 + 2.62833i −0.698437 + 0.157073i
\(281\) 25.3767i 1.51385i −0.653502 0.756925i \(-0.726701\pi\)
0.653502 0.756925i \(-0.273299\pi\)
\(282\) 1.44849 + 1.44849i 0.0862563 + 0.0862563i
\(283\) −5.24017 + 5.24017i −0.311496 + 0.311496i −0.845489 0.533993i \(-0.820691\pi\)
0.533993 + 0.845489i \(0.320691\pi\)
\(284\) 5.06109i 0.300321i
\(285\) −8.82536 5.58466i −0.522769 0.330807i
\(286\) 0 0
\(287\) 7.33195 7.33195i 0.432791 0.432791i
\(288\) −5.96424 + 5.96424i −0.351446 + 0.351446i
\(289\) 10.7529i 0.632525i
\(290\) 2.44030 + 1.54422i 0.143300 + 0.0906795i
\(291\) −11.4716 −0.672476
\(292\) −18.4370 18.4370i −1.07895 1.07895i
\(293\) −10.3785 + 10.3785i −0.606318 + 0.606318i −0.941982 0.335664i \(-0.891039\pi\)
0.335664 + 0.941982i \(0.391039\pi\)
\(294\) 0.837632 0.0488517
\(295\) 0.787586 + 3.50206i 0.0458550 + 0.203898i
\(296\) 2.13682i 0.124200i
\(297\) 0 0
\(298\) −6.20775 6.20775i −0.359606 0.359606i
\(299\) −8.77601 −0.507530
\(300\) −3.37470 + 9.45061i −0.194838 + 0.545631i
\(301\) 20.9229 1.20598
\(302\) −6.14378 + 6.14378i −0.353535 + 0.353535i
\(303\) −1.53810 + 1.53810i −0.0883613 + 0.0883613i
\(304\) 10.7650 0.617415
\(305\) −3.40396 15.1360i −0.194910 0.866684i
\(306\) −4.37823 −0.250287
\(307\) −0.874954 0.874954i −0.0499363 0.0499363i 0.681698 0.731634i \(-0.261242\pi\)
−0.731634 + 0.681698i \(0.761242\pi\)
\(308\) 0 0
\(309\) 7.03137i 0.400001i
\(310\) 6.21979 + 3.93587i 0.353260 + 0.223542i
\(311\) 14.1469 0.802195 0.401097 0.916035i \(-0.368629\pi\)
0.401097 + 0.916035i \(0.368629\pi\)
\(312\) −4.33095 + 4.33095i −0.245192 + 0.245192i
\(313\) −0.523010 0.523010i −0.0295623 0.0295623i 0.692171 0.721733i \(-0.256654\pi\)
−0.721733 + 0.692171i \(0.756654\pi\)
\(314\) −10.4821 −0.591540
\(315\) −5.93458 + 9.37833i −0.334376 + 0.528409i
\(316\) 26.8560i 1.51077i
\(317\) 12.0675 12.0675i 0.677781 0.677781i −0.281717 0.959498i \(-0.590904\pi\)
0.959498 + 0.281717i \(0.0909039\pi\)
\(318\) 0.581389 0.581389i 0.0326027 0.0326027i
\(319\) 0 0
\(320\) −1.38930 6.17765i −0.0776644 0.345341i
\(321\) 0.496225i 0.0276966i
\(322\) 3.01997 3.01997i 0.168296 0.168296i
\(323\) 15.2706 + 15.2706i 0.849679 + 0.849679i
\(324\) 1.75823i 0.0976793i
\(325\) 4.92079 13.7804i 0.272957 0.764397i
\(326\) 5.09095i 0.281962i
\(327\) −7.62687 7.62687i −0.421767 0.421767i
\(328\) −4.61803 4.61803i −0.254988 0.254988i
\(329\) −10.7373 −0.591967
\(330\) 0 0
\(331\) −14.9189 −0.820016 −0.410008 0.912082i \(-0.634474\pi\)
−0.410008 + 0.912082i \(0.634474\pi\)
\(332\) −8.32385 8.32385i −0.456831 0.456831i
\(333\) −1.39988 1.39988i −0.0767128 0.0767128i
\(334\) 5.51476i 0.301754i
\(335\) −2.22312 + 3.51316i −0.121462 + 0.191945i
\(336\) 8.72586i 0.476035i
\(337\) 6.67335 + 6.67335i 0.363520 + 0.363520i 0.865107 0.501587i \(-0.167250\pi\)
−0.501587 + 0.865107i \(0.667250\pi\)
\(338\) −1.53162 + 1.53162i −0.0833089 + 0.0833089i
\(339\) 23.0909i 1.25412i
\(340\) 11.0959 17.5346i 0.601758 0.950950i
\(341\) 0 0
\(342\) −2.40905 + 2.40905i −0.130267 + 0.130267i
\(343\) 11.3309 11.3309i 0.611812 0.611812i
\(344\) 13.1783i 0.710525i
\(345\) −1.67630 7.45382i −0.0902492 0.401300i
\(346\) 6.44716 0.346601
\(347\) 13.6043 + 13.6043i 0.730319 + 0.730319i 0.970683 0.240364i \(-0.0772668\pi\)
−0.240364 + 0.970683i \(0.577267\pi\)
\(348\) 3.75321 3.75321i 0.201193 0.201193i
\(349\) −14.8729 −0.796130 −0.398065 0.917357i \(-0.630318\pi\)
−0.398065 + 0.917357i \(0.630318\pi\)
\(350\) 3.04872 + 6.43537i 0.162961 + 0.343985i
\(351\) 15.6777i 0.836813i
\(352\) 0 0
\(353\) 1.78406 + 1.78406i 0.0949560 + 0.0949560i 0.752989 0.658033i \(-0.228611\pi\)
−0.658033 + 0.752989i \(0.728611\pi\)
\(354\) −0.893175 −0.0474717
\(355\) −6.26797 + 1.40962i −0.332669 + 0.0748146i
\(356\) 19.6808 1.04308
\(357\) −12.3780 + 12.3780i −0.655113 + 0.655113i
\(358\) 0.768911 0.768911i 0.0406382 0.0406382i
\(359\) 8.49197 0.448189 0.224095 0.974567i \(-0.428058\pi\)
0.224095 + 0.974567i \(0.428058\pi\)
\(360\) 5.90693 + 3.73789i 0.311323 + 0.197004i
\(361\) −2.19521 −0.115537
\(362\) 1.49682 + 1.49682i 0.0786711 + 0.0786711i
\(363\) 0 0
\(364\) 15.0345i 0.788021i
\(365\) −17.6985 + 27.9686i −0.926380 + 1.46395i
\(366\) 3.86032 0.201782
\(367\) 15.0115 15.0115i 0.783595 0.783595i −0.196841 0.980435i \(-0.563068\pi\)
0.980435 + 0.196841i \(0.0630682\pi\)
\(368\) 5.56838 + 5.56838i 0.290272 + 0.290272i
\(369\) −6.05073 −0.314989
\(370\) −1.23930 + 0.278708i −0.0644281 + 0.0144894i
\(371\) 4.30970i 0.223748i
\(372\) 9.56611 9.56611i 0.495980 0.495980i
\(373\) 2.57445 2.57445i 0.133300 0.133300i −0.637309 0.770609i \(-0.719952\pi\)
0.770609 + 0.637309i \(0.219952\pi\)
\(374\) 0 0
\(375\) 12.6441 + 1.54725i 0.652940 + 0.0798995i
\(376\) 6.76290i 0.348770i
\(377\) −5.47273 + 5.47273i −0.281860 + 0.281860i
\(378\) −5.39494 5.39494i −0.277486 0.277486i
\(379\) 16.5828i 0.851802i −0.904770 0.425901i \(-0.859957\pi\)
0.904770 0.425901i \(-0.140043\pi\)
\(380\) −3.54283 15.7535i −0.181743 0.808136i
\(381\) 10.7438i 0.550423i
\(382\) −1.40809 1.40809i −0.0720442 0.0720442i
\(383\) −8.01883 8.01883i −0.409743 0.409743i 0.471906 0.881649i \(-0.343566\pi\)
−0.881649 + 0.471906i \(0.843566\pi\)
\(384\) 12.8694 0.656736
\(385\) 0 0
\(386\) 10.2067 0.519505
\(387\) −8.63337 8.63337i −0.438859 0.438859i
\(388\) −12.5411 12.5411i −0.636677 0.636677i
\(389\) 0.817569i 0.0414524i 0.999785 + 0.0207262i \(0.00659783\pi\)
−0.999785 + 0.0207262i \(0.993402\pi\)
\(390\) 3.07672 + 1.94694i 0.155796 + 0.0985872i
\(391\) 15.7979i 0.798936i
\(392\) 1.95542 + 1.95542i 0.0987637 + 0.0987637i
\(393\) 6.05588 6.05588i 0.305479 0.305479i
\(394\) 0.147641i 0.00743806i
\(395\) −33.2601 + 7.47992i −1.67350 + 0.376356i
\(396\) 0 0
\(397\) 11.8504 11.8504i 0.594752 0.594752i −0.344159 0.938911i \(-0.611836\pi\)
0.938911 + 0.344159i \(0.111836\pi\)
\(398\) 3.82654 3.82654i 0.191807 0.191807i
\(399\) 13.6216i 0.681932i
\(400\) −11.8659 + 5.62139i −0.593294 + 0.281070i
\(401\) −28.4577 −1.42111 −0.710556 0.703641i \(-0.751556\pi\)
−0.710556 + 0.703641i \(0.751556\pi\)
\(402\) −0.731498 0.731498i −0.0364838 0.0364838i
\(403\) −13.9488 + 13.9488i −0.694838 + 0.694838i
\(404\) −3.36299 −0.167315
\(405\) −2.17750 + 0.489702i −0.108201 + 0.0243335i
\(406\) 3.76651i 0.186929i
\(407\) 0 0
\(408\) 7.79627 + 7.79627i 0.385973 + 0.385973i
\(409\) 2.42266 0.119793 0.0598965 0.998205i \(-0.480923\pi\)
0.0598965 + 0.998205i \(0.480923\pi\)
\(410\) −2.07599 + 3.28066i −0.102526 + 0.162020i
\(411\) −17.5112 −0.863765
\(412\) −7.68691 + 7.68691i −0.378707 + 0.378707i
\(413\) 3.31045 3.31045i 0.162896 0.162896i
\(414\) −2.49224 −0.122487
\(415\) −7.99041 + 12.6271i −0.392234 + 0.619841i
\(416\) −14.5044 −0.711135
\(417\) 3.35343 + 3.35343i 0.164218 + 0.164218i
\(418\) 0 0
\(419\) 16.4371i 0.803006i 0.915858 + 0.401503i \(0.131512\pi\)
−0.915858 + 0.401503i \(0.868488\pi\)
\(420\) 12.7694 2.87174i 0.623083 0.140126i
\(421\) −12.4684 −0.607671 −0.303836 0.952724i \(-0.598267\pi\)
−0.303836 + 0.952724i \(0.598267\pi\)
\(422\) 3.05787 3.05787i 0.148855 0.148855i
\(423\) 4.43052 + 4.43052i 0.215419 + 0.215419i
\(424\) 2.71446 0.131826
\(425\) −24.8064 8.85806i −1.20329 0.429679i
\(426\) 1.59860i 0.0774523i
\(427\) −14.3078 + 14.3078i −0.692404 + 0.692404i
\(428\) 0.542488 0.542488i 0.0262222 0.0262222i
\(429\) 0 0
\(430\) −7.64304 + 1.71886i −0.368580 + 0.0828907i
\(431\) 19.8352i 0.955428i −0.878515 0.477714i \(-0.841466\pi\)
0.878515 0.477714i \(-0.158534\pi\)
\(432\) 9.94749 9.94749i 0.478599 0.478599i
\(433\) −20.2412 20.2412i −0.972730 0.972730i 0.0269080 0.999638i \(-0.491434\pi\)
−0.999638 + 0.0269080i \(0.991434\pi\)
\(434\) 9.59999i 0.460814i
\(435\) −5.69356 3.60287i −0.272985 0.172744i
\(436\) 16.6759i 0.798629i
\(437\) 8.69256 + 8.69256i 0.415821 + 0.415821i
\(438\) −5.82352 5.82352i −0.278259 0.278259i
\(439\) −3.12279 −0.149043 −0.0745214 0.997219i \(-0.523743\pi\)
−0.0745214 + 0.997219i \(0.523743\pi\)
\(440\) 0 0
\(441\) 2.56208 0.122004
\(442\) −5.32368 5.32368i −0.253222 0.253222i
\(443\) 22.4421 + 22.4421i 1.06626 + 1.06626i 0.997643 + 0.0686143i \(0.0218578\pi\)
0.0686143 + 0.997643i \(0.478142\pi\)
\(444\) 2.33471i 0.110800i
\(445\) −5.48150 24.3739i −0.259848 1.15544i
\(446\) 3.01902i 0.142955i
\(447\) 14.4835 + 14.4835i 0.685047 + 0.685047i
\(448\) −5.83964 + 5.83964i −0.275897 + 0.275897i
\(449\) 34.9946i 1.65150i 0.564038 + 0.825749i \(0.309247\pi\)
−0.564038 + 0.825749i \(0.690753\pi\)
\(450\) 1.39743 3.91340i 0.0658753 0.184479i
\(451\) 0 0
\(452\) −25.2437 + 25.2437i −1.18736 + 1.18736i
\(453\) 14.3343 14.3343i 0.673483 0.673483i
\(454\) 1.61968i 0.0760155i
\(455\) −18.6196 + 4.18741i −0.872902 + 0.196309i
\(456\) 8.57954 0.401774
\(457\) 3.60629 + 3.60629i 0.168695 + 0.168695i 0.786406 0.617710i \(-0.211940\pi\)
−0.617710 + 0.786406i \(0.711940\pi\)
\(458\) 1.84394 1.84394i 0.0861615 0.0861615i
\(459\) 28.2218 1.31728
\(460\) 6.31616 9.98134i 0.294493 0.465382i
\(461\) 12.4703i 0.580801i −0.956905 0.290400i \(-0.906211\pi\)
0.956905 0.290400i \(-0.0937885\pi\)
\(462\) 0 0
\(463\) −19.2728 19.2728i −0.895684 0.895684i 0.0993669 0.995051i \(-0.468318\pi\)
−0.995051 + 0.0993669i \(0.968318\pi\)
\(464\) 6.94489 0.322409
\(465\) −14.5116 9.18291i −0.672960 0.425847i
\(466\) −2.15761 −0.0999493
\(467\) 28.0672 28.0672i 1.29880 1.29880i 0.369611 0.929187i \(-0.379491\pi\)
0.929187 0.369611i \(-0.120509\pi\)
\(468\) −6.20365 + 6.20365i −0.286764 + 0.286764i
\(469\) 5.42242 0.250384
\(470\) 3.92229 0.882092i 0.180922 0.0406879i
\(471\) 24.4562 1.12688
\(472\) −2.08508 2.08508i −0.0959738 0.0959738i
\(473\) 0 0
\(474\) 8.48273i 0.389625i
\(475\) −18.5233 + 8.77532i −0.849908 + 0.402639i
\(476\) −27.0640 −1.24048
\(477\) 1.77830 1.77830i 0.0814228 0.0814228i
\(478\) 3.60947 + 3.60947i 0.165093 + 0.165093i
\(479\) 38.2551 1.74792 0.873961 0.485996i \(-0.161543\pi\)
0.873961 + 0.485996i \(0.161543\pi\)
\(480\) −2.77048 12.3192i −0.126454 0.562290i
\(481\) 3.40435i 0.155225i
\(482\) 9.61957 9.61957i 0.438159 0.438159i
\(483\) −7.04599 + 7.04599i −0.320603 + 0.320603i
\(484\) 0 0
\(485\) −12.0387 + 19.0246i −0.546650 + 0.863863i
\(486\) 7.29292i 0.330813i
\(487\) 19.2186 19.2186i 0.870879 0.870879i −0.121690 0.992568i \(-0.538831\pi\)
0.992568 + 0.121690i \(0.0388312\pi\)
\(488\) 9.01177 + 9.01177i 0.407944 + 0.407944i
\(489\) 11.8779i 0.537136i
\(490\) 0.879043 1.38914i 0.0397111 0.0627549i
\(491\) 3.97187i 0.179248i −0.995976 0.0896241i \(-0.971433\pi\)
0.995976 0.0896241i \(-0.0285666\pi\)
\(492\) 5.04570 + 5.04570i 0.227478 + 0.227478i
\(493\) 9.85161 + 9.85161i 0.443694 + 0.443694i
\(494\) −5.85854 −0.263588
\(495\) 0 0
\(496\) 17.7010 0.794798
\(497\) 5.92502 + 5.92502i 0.265773 + 0.265773i
\(498\) −2.62917 2.62917i −0.117816 0.117816i
\(499\) 6.42507i 0.287626i −0.989605 0.143813i \(-0.954064\pi\)
0.989605 0.143813i \(-0.0459363\pi\)
\(500\) 12.1315 + 15.5145i 0.542536 + 0.693828i
\(501\) 12.8667i 0.574841i
\(502\) −3.43453 3.43453i −0.153291 0.153291i
\(503\) −28.7982 + 28.7982i −1.28405 + 1.28405i −0.345703 + 0.938344i \(0.612360\pi\)
−0.938344 + 0.345703i \(0.887640\pi\)
\(504\) 9.11711i 0.406108i
\(505\) 0.936660 + 4.16493i 0.0416808 + 0.185337i
\(506\) 0 0
\(507\) 3.57347 3.57347i 0.158703 0.158703i
\(508\) 11.7455 11.7455i 0.521121 0.521121i
\(509\) 9.28571i 0.411582i −0.978596 0.205791i \(-0.934023\pi\)
0.978596 0.205791i \(-0.0659767\pi\)
\(510\) 3.50475 5.53850i 0.155193 0.245249i
\(511\) 43.1684 1.90966
\(512\) 16.0248 + 16.0248i 0.708203 + 0.708203i
\(513\) 15.5286 15.5286i 0.685605 0.685605i
\(514\) 2.07079 0.0913386
\(515\) 11.6609 + 7.37899i 0.513841 + 0.325157i
\(516\) 14.3987i 0.633868i
\(517\) 0 0
\(518\) 1.17149 + 1.17149i 0.0514723 + 0.0514723i
\(519\) −15.0421 −0.660274
\(520\) 2.63744 + 11.7276i 0.115659 + 0.514288i
\(521\) −14.8071 −0.648710 −0.324355 0.945935i \(-0.605147\pi\)
−0.324355 + 0.945935i \(0.605147\pi\)
\(522\) −1.55417 + 1.55417i −0.0680240 + 0.0680240i
\(523\) −27.4664 + 27.4664i −1.20102 + 1.20102i −0.227163 + 0.973857i \(0.572945\pi\)
−0.973857 + 0.227163i \(0.927055\pi\)
\(524\) 13.2410 0.578434
\(525\) −7.11307 15.0146i −0.310440 0.655290i
\(526\) 11.1762 0.487306
\(527\) 25.1096 + 25.1096i 1.09379 + 1.09379i
\(528\) 0 0
\(529\) 14.0073i 0.609011i
\(530\) −0.354050 1.57431i −0.0153790 0.0683838i
\(531\) −2.73197 −0.118557
\(532\) −14.8915 + 14.8915i −0.645629 + 0.645629i
\(533\) −7.35735 7.35735i −0.318682 0.318682i
\(534\) 6.21639 0.269009
\(535\) −0.822945 0.520757i −0.0355790 0.0225143i
\(536\) 3.41531i 0.147519i
\(537\) −1.79397 + 1.79397i −0.0774157 + 0.0774157i
\(538\) −7.89771 + 7.89771i −0.340495 + 0.340495i
\(539\) 0 0
\(540\) −17.8309 11.2833i −0.767320 0.485558i
\(541\) 17.4199i 0.748942i 0.927239 + 0.374471i \(0.122176\pi\)
−0.927239 + 0.374471i \(0.877824\pi\)
\(542\) −0.480097 + 0.480097i −0.0206219 + 0.0206219i
\(543\) −3.49228 3.49228i −0.149868 0.149868i
\(544\) 26.1097i 1.11945i
\(545\) −20.6524 + 4.64456i −0.884652 + 0.198951i
\(546\) 4.74880i 0.203230i
\(547\) 27.7232 + 27.7232i 1.18536 + 1.18536i 0.978336 + 0.207025i \(0.0663781\pi\)
0.207025 + 0.978336i \(0.433622\pi\)
\(548\) −19.1438 19.1438i −0.817783 0.817783i
\(549\) 11.8076 0.503936
\(550\) 0 0
\(551\) 10.8414 0.461858
\(552\) 4.43791 + 4.43791i 0.188890 + 0.188890i
\(553\) 31.4402 + 31.4402i 1.33698 + 1.33698i
\(554\) 6.96167i 0.295773i
\(555\) 2.89145 0.650264i 0.122735 0.0276022i
\(556\) 7.33215i 0.310953i
\(557\) −25.9516 25.9516i −1.09961 1.09961i −0.994456 0.105150i \(-0.966468\pi\)
−0.105150 0.994456i \(-0.533532\pi\)
\(558\) −3.96122 + 3.96122i −0.167692 + 0.167692i
\(559\) 20.9954i 0.888010i
\(560\) 14.4711 + 9.15725i 0.611514 + 0.386964i
\(561\) 0 0
\(562\) 8.76280 8.76280i 0.369636 0.369636i
\(563\) −11.9367 + 11.9367i −0.503071 + 0.503071i −0.912391 0.409320i \(-0.865766\pi\)
0.409320 + 0.912391i \(0.365766\pi\)
\(564\) 7.38920i 0.311141i
\(565\) 38.2942 + 24.2324i 1.61105 + 1.01947i
\(566\) −3.61895 −0.152116
\(567\) 2.05836 + 2.05836i 0.0864428 + 0.0864428i
\(568\) 3.73187 3.73187i 0.156586 0.156586i
\(569\) −2.64882 −0.111044 −0.0555222 0.998457i \(-0.517682\pi\)
−0.0555222 + 0.998457i \(0.517682\pi\)
\(570\) −1.11904 4.97590i −0.0468714 0.208417i
\(571\) 29.8675i 1.24992i 0.780658 + 0.624959i \(0.214884\pi\)
−0.780658 + 0.624959i \(0.785116\pi\)
\(572\) 0 0
\(573\) 3.28527 + 3.28527i 0.137244 + 0.137244i
\(574\) 5.06357 0.211349
\(575\) −14.1207 5.04232i −0.588873 0.210279i
\(576\) 4.81919 0.200800
\(577\) 0.253778 0.253778i 0.0105649 0.0105649i −0.701805 0.712370i \(-0.747622\pi\)
0.712370 + 0.701805i \(0.247622\pi\)
\(578\) −3.71307 + 3.71307i −0.154444 + 0.154444i
\(579\) −23.8135 −0.989656
\(580\) −2.28561 10.1631i −0.0949047 0.422001i
\(581\) 19.4895 0.808559
\(582\) −3.96123 3.96123i −0.164198 0.164198i
\(583\) 0 0
\(584\) 27.1896i 1.12511i
\(585\) 9.41082 + 5.95514i 0.389089 + 0.246215i
\(586\) −7.16755 −0.296089
\(587\) −18.2766 + 18.2766i −0.754355 + 0.754355i −0.975289 0.220934i \(-0.929090\pi\)
0.220934 + 0.975289i \(0.429090\pi\)
\(588\) −2.13651 2.13651i −0.0881082 0.0881082i
\(589\) 27.6323 1.13857
\(590\) −0.937331 + 1.48125i −0.0385893 + 0.0609821i
\(591\) 0.344467i 0.0141695i
\(592\) −2.16006 + 2.16006i −0.0887778 + 0.0887778i
\(593\) −9.56872 + 9.56872i −0.392940 + 0.392940i −0.875734 0.482794i \(-0.839622\pi\)
0.482794 + 0.875734i \(0.339622\pi\)
\(594\) 0 0
\(595\) 7.53787 + 33.5177i 0.309022 + 1.37409i
\(596\) 31.6677i 1.29716i
\(597\) −8.92784 + 8.92784i −0.365392 + 0.365392i
\(598\) −3.03043 3.03043i −0.123923 0.123923i
\(599\) 11.3229i 0.462640i 0.972878 + 0.231320i \(0.0743045\pi\)
−0.972878 + 0.231320i \(0.925696\pi\)
\(600\) −9.45692 + 4.48016i −0.386077 + 0.182902i
\(601\) 16.4892i 0.672609i 0.941753 + 0.336304i \(0.109177\pi\)
−0.941753 + 0.336304i \(0.890823\pi\)
\(602\) 7.22485 + 7.22485i 0.294463 + 0.294463i
\(603\) −2.23744 2.23744i −0.0911157 0.0911157i
\(604\) 31.3413 1.27526
\(605\) 0 0
\(606\) −1.06223 −0.0431503
\(607\) 3.52447 + 3.52447i 0.143054 + 0.143054i 0.775007 0.631953i \(-0.217746\pi\)
−0.631953 + 0.775007i \(0.717746\pi\)
\(608\) 14.3665 + 14.3665i 0.582637 + 0.582637i
\(609\) 8.78777i 0.356098i
\(610\) 4.05116 6.40199i 0.164027 0.259209i
\(611\) 10.7745i 0.435890i
\(612\) 11.1674 + 11.1674i 0.451414 + 0.451414i
\(613\) −12.9257 + 12.9257i −0.522063 + 0.522063i −0.918194 0.396131i \(-0.870352\pi\)
0.396131 + 0.918194i \(0.370352\pi\)
\(614\) 0.604258i 0.0243859i
\(615\) 4.84357 7.65423i 0.195312 0.308648i
\(616\) 0 0
\(617\) 15.4942 15.4942i 0.623773 0.623773i −0.322721 0.946494i \(-0.604598\pi\)
0.946494 + 0.322721i \(0.104598\pi\)
\(618\) −2.42799 + 2.42799i −0.0976681 + 0.0976681i
\(619\) 49.2158i 1.97815i −0.147411 0.989075i \(-0.547094\pi\)
0.147411 0.989075i \(-0.452906\pi\)
\(620\) −5.82551 25.9036i −0.233958 1.04031i
\(621\) 16.0649 0.644661
\(622\) 4.88503 + 4.88503i 0.195872 + 0.195872i
\(623\) −23.0403 + 23.0403i −0.923091 + 0.923091i
\(624\) 8.75609 0.350524
\(625\) 15.8352 19.3454i 0.633408 0.773818i
\(626\) 0.361199i 0.0144364i
\(627\) 0 0
\(628\) 26.7363 + 26.7363i 1.06689 + 1.06689i
\(629\) −6.12826 −0.244350
\(630\) −5.28767 + 1.18915i −0.210666 + 0.0473771i
\(631\) −9.05229 −0.360366 −0.180183 0.983633i \(-0.557669\pi\)
−0.180183 + 0.983633i \(0.557669\pi\)
\(632\) 19.8026 19.8026i 0.787706 0.787706i
\(633\) −7.13442 + 7.13442i −0.283568 + 0.283568i
\(634\) 8.33404 0.330987
\(635\) −17.8177 11.2750i −0.707073 0.447434i
\(636\) −2.96584 −0.117603
\(637\) 3.11534 + 3.11534i 0.123434 + 0.123434i
\(638\) 0 0
\(639\) 4.88965i 0.193432i
\(640\) 13.5056 21.3427i 0.533855 0.843644i
\(641\) −27.9282 −1.10310 −0.551549 0.834142i \(-0.685963\pi\)
−0.551549 + 0.834142i \(0.685963\pi\)
\(642\) 0.171351 0.171351i 0.00676267 0.00676267i
\(643\) 6.80902 + 6.80902i 0.268522 + 0.268522i 0.828504 0.559983i \(-0.189192\pi\)
−0.559983 + 0.828504i \(0.689192\pi\)
\(644\) −15.4058 −0.607073
\(645\) 17.8322 4.01033i 0.702144 0.157907i
\(646\) 10.5461i 0.414932i
\(647\) −21.8859 + 21.8859i −0.860423 + 0.860423i −0.991387 0.130965i \(-0.958193\pi\)
0.130965 + 0.991387i \(0.458193\pi\)
\(648\) 1.29645 1.29645i 0.0509296 0.0509296i
\(649\) 0 0
\(650\) 6.45766 3.05928i 0.253290 0.119995i
\(651\) 22.3981i 0.877850i
\(652\) 12.9853 12.9853i 0.508542 0.508542i
\(653\) −4.32070 4.32070i −0.169082 0.169082i 0.617494 0.786576i \(-0.288148\pi\)
−0.786576 + 0.617494i \(0.788148\pi\)
\(654\) 5.26724i 0.205965i
\(655\) −3.68787 16.3984i −0.144097 0.640739i
\(656\) 9.33648i 0.364528i
\(657\) −17.8125 17.8125i −0.694931 0.694931i
\(658\) −3.70768 3.70768i −0.144541 0.144541i
\(659\) 12.0647 0.469975 0.234988 0.971998i \(-0.424495\pi\)
0.234988 + 0.971998i \(0.424495\pi\)
\(660\) 0 0
\(661\) −29.6228 −1.15219 −0.576097 0.817382i \(-0.695425\pi\)
−0.576097 + 0.817382i \(0.695425\pi\)
\(662\) −5.15162 5.15162i −0.200223 0.200223i
\(663\) 12.4209 + 12.4209i 0.482387 + 0.482387i
\(664\) 12.2754i 0.476379i
\(665\) 22.5902 + 14.2950i 0.876009 + 0.554336i
\(666\) 0.966779i 0.0374619i
\(667\) 5.60788 + 5.60788i 0.217138 + 0.217138i
\(668\) 14.0663 14.0663i 0.544240 0.544240i
\(669\) 7.04378i 0.272328i
\(670\) −1.98079 + 0.445463i −0.0765244 + 0.0172097i
\(671\) 0 0
\(672\) −11.6451 + 11.6451i −0.449220 + 0.449220i
\(673\) 3.56085 3.56085i 0.137261 0.137261i −0.635138 0.772399i \(-0.719057\pi\)
0.772399 + 0.635138i \(0.219057\pi\)
\(674\) 4.60872i 0.177521i
\(675\) −9.00773 + 25.2255i −0.346708 + 0.970931i
\(676\) 7.81325 0.300510
\(677\) 25.7430 + 25.7430i 0.989383 + 0.989383i 0.999944 0.0105611i \(-0.00336178\pi\)
−0.0105611 + 0.999944i \(0.503362\pi\)
\(678\) −7.97347 + 7.97347i −0.306219 + 0.306219i
\(679\) 29.3637 1.12687
\(680\) 21.1111 4.74772i 0.809575 0.182067i
\(681\) 3.77894i 0.144809i
\(682\) 0 0
\(683\) −8.07353 8.07353i −0.308925 0.308925i 0.535567 0.844492i \(-0.320098\pi\)
−0.844492 + 0.535567i \(0.820098\pi\)
\(684\) 12.2893 0.469894
\(685\) −18.3769 + 29.0408i −0.702147 + 1.10959i
\(686\) 7.82532 0.298772
\(687\) −4.30215 + 4.30215i −0.164137 + 0.164137i
\(688\) −13.3216 + 13.3216i −0.507880 + 0.507880i
\(689\) 4.32463 0.164755
\(690\) 1.99502 3.15271i 0.0759493 0.120022i
\(691\) −11.8796 −0.451920 −0.225960 0.974137i \(-0.572552\pi\)
−0.225960 + 0.974137i \(0.572552\pi\)
\(692\) −16.4445 16.4445i −0.625125 0.625125i
\(693\) 0 0
\(694\) 9.39538i 0.356644i
\(695\) 9.08059 2.04215i 0.344446 0.0774632i
\(696\) 5.53497 0.209803
\(697\) −13.2442 + 13.2442i −0.501659 + 0.501659i
\(698\) −5.13574 5.13574i −0.194391 0.194391i
\(699\) 5.03399 0.190403
\(700\) 8.63817 24.1906i 0.326492 0.914320i
\(701\) 26.5468i 1.00266i −0.865256 0.501330i \(-0.832844\pi\)
0.865256 0.501330i \(-0.167156\pi\)
\(702\) −5.41363 + 5.41363i −0.204324 + 0.204324i
\(703\) −3.37197 + 3.37197i −0.127176 + 0.127176i
\(704\) 0 0
\(705\) −9.15124 + 2.05804i −0.344655 + 0.0775102i
\(706\) 1.23210i 0.0463708i
\(707\) 3.93705 3.93705i 0.148068 0.148068i
\(708\) 2.27818 + 2.27818i 0.0856193 + 0.0856193i
\(709\) 17.8609i 0.670781i −0.942079 0.335390i \(-0.891132\pi\)
0.942079 0.335390i \(-0.108868\pi\)
\(710\) −2.65113 1.67763i −0.0994952 0.0629603i
\(711\) 25.9462i 0.973060i
\(712\) 14.5119 + 14.5119i 0.543858 + 0.543858i
\(713\) 14.2933 + 14.2933i 0.535286 + 0.535286i
\(714\) −8.54844 −0.319917
\(715\) 0 0
\(716\) −3.92246 −0.146589
\(717\) −8.42137 8.42137i −0.314502 0.314502i
\(718\) 2.93235 + 2.93235i 0.109434 + 0.109434i
\(719\) 32.7646i 1.22191i −0.791665 0.610956i \(-0.790785\pi\)
0.791665 0.610956i \(-0.209215\pi\)
\(720\) −2.19263 9.74970i −0.0817144 0.363350i
\(721\) 17.9981i 0.670285i
\(722\) −0.758024 0.758024i −0.0282107 0.0282107i
\(723\) −22.4438 + 22.4438i −0.834692 + 0.834692i
\(724\) 7.63574i 0.283780i
\(725\) −11.9501 + 5.66127i −0.443814 + 0.210254i
\(726\) 0 0
\(727\) 0.964903 0.964903i 0.0357863 0.0357863i −0.688987 0.724773i \(-0.741944\pi\)
0.724773 + 0.688987i \(0.241944\pi\)
\(728\) 11.0859 11.0859i 0.410871 0.410871i
\(729\) 20.0097i 0.741102i
\(730\) −15.7692 + 3.54637i −0.583645 + 0.131257i
\(731\) −37.7944 −1.39788
\(732\) −9.84634 9.84634i −0.363931 0.363931i
\(733\) −8.33913 + 8.33913i −0.308013 + 0.308013i −0.844138 0.536125i \(-0.819887\pi\)
0.536125 + 0.844138i \(0.319887\pi\)
\(734\) 10.3672 0.382660
\(735\) −2.05093 + 3.24105i −0.0756495 + 0.119548i
\(736\) 14.8626i 0.547842i
\(737\) 0 0
\(738\) −2.08937 2.08937i −0.0769107 0.0769107i
\(739\) −43.0948 −1.58527 −0.792635 0.609697i \(-0.791291\pi\)
−0.792635 + 0.609697i \(0.791291\pi\)
\(740\) 3.87191 + 2.45013i 0.142334 + 0.0900687i
\(741\) 13.6688 0.502135
\(742\) −1.48817 + 1.48817i −0.0546326 + 0.0546326i
\(743\) 26.8092 26.8092i 0.983534 0.983534i −0.0163324 0.999867i \(-0.505199\pi\)
0.999867 + 0.0163324i \(0.00519900\pi\)
\(744\) 14.1074 0.517203
\(745\) 39.2192 8.82008i 1.43688 0.323143i
\(746\) 1.77796 0.0650958
\(747\) −8.04189 8.04189i −0.294237 0.294237i
\(748\) 0 0
\(749\) 1.27018i 0.0464114i
\(750\) 3.83185 + 4.90040i 0.139919 + 0.178937i
\(751\) 34.9112 1.27393 0.636963 0.770894i \(-0.280190\pi\)
0.636963 + 0.770894i \(0.280190\pi\)
\(752\) 6.83643 6.83643i 0.249299 0.249299i
\(753\) 8.01322 + 8.01322i 0.292018 + 0.292018i
\(754\) −3.77956 −0.137643
\(755\) −8.72919 38.8150i −0.317688 1.41262i
\(756\) 27.5213i 1.00094i
\(757\) −24.3781 + 24.3781i −0.886036 + 0.886036i −0.994140 0.108104i \(-0.965522\pi\)
0.108104 + 0.994140i \(0.465522\pi\)
\(758\) 5.72618 5.72618i 0.207984 0.207984i
\(759\) 0 0
\(760\) 9.00370 14.2284i 0.326598 0.516119i
\(761\) 13.9146i 0.504403i −0.967675 0.252201i \(-0.918845\pi\)
0.967675 0.252201i \(-0.0811546\pi\)
\(762\) 3.70993 3.70993i 0.134397 0.134397i
\(763\) 19.5224 + 19.5224i 0.706759 + 0.706759i
\(764\) 7.18311i 0.259876i
\(765\) 10.7200 16.9407i 0.387583 0.612491i
\(766\) 5.53793i 0.200094i
\(767\) −3.32192 3.32192i −0.119947 0.119947i
\(768\) −0.118877 0.118877i −0.00428961 0.00428961i
\(769\) −13.3273 −0.480596 −0.240298 0.970699i \(-0.577245\pi\)
−0.240298 + 0.970699i \(0.577245\pi\)
\(770\) 0 0
\(771\) −4.83143 −0.174000
\(772\) −26.0337 26.0337i −0.936973 0.936973i
\(773\) 8.83857 + 8.83857i 0.317901 + 0.317901i 0.847961 0.530059i \(-0.177830\pi\)
−0.530059 + 0.847961i \(0.677830\pi\)
\(774\) 5.96235i 0.214312i
\(775\) −30.4581 + 14.4293i −1.09409 + 0.518317i
\(776\) 18.4947i 0.663921i
\(777\) −2.73324 2.73324i −0.0980546 0.0980546i
\(778\) −0.282313 + 0.282313i −0.0101214 + 0.0101214i
\(779\) 14.5748i 0.522196i
\(780\) −2.88168 12.8136i −0.103181 0.458802i
\(781\) 0 0
\(782\) −5.45516 + 5.45516i −0.195076 + 0.195076i
\(783\) 10.0181 10.0181i 0.358016 0.358016i
\(784\) 3.95337i 0.141192i
\(785\) 25.6653 40.5584i 0.916033 1.44759i
\(786\) 4.18229 0.149177
\(787\) 4.44966 + 4.44966i 0.158613 + 0.158613i 0.781952 0.623339i \(-0.214224\pi\)
−0.623339 + 0.781952i \(0.714224\pi\)
\(788\) 0.376582 0.376582i 0.0134152 0.0134152i
\(789\) −26.0756 −0.928317
\(790\) −14.0679 8.90210i −0.500512 0.316722i
\(791\) 59.1055i 2.10155i
\(792\) 0 0
\(793\) 14.3574 + 14.3574i 0.509846 + 0.509846i
\(794\) 8.18405 0.290441
\(795\) 0.826047 + 3.67308i 0.0292969 + 0.130271i
\(796\) −19.5204 −0.691882
\(797\) 1.25057 1.25057i 0.0442976 0.0442976i −0.684611 0.728909i \(-0.740028\pi\)
0.728909 + 0.684611i \(0.240028\pi\)
\(798\) −4.70364 + 4.70364i −0.166507 + 0.166507i
\(799\) 19.3955 0.686164
\(800\) −23.3377 8.33359i −0.825111 0.294637i
\(801\) 19.0141 0.671832
\(802\) −9.82669 9.82669i −0.346992 0.346992i
\(803\) 0 0
\(804\) 3.73160i 0.131603i
\(805\) 4.29082 + 19.0795i 0.151231 + 0.672463i
\(806\) −9.63325 −0.339317
\(807\) 18.4264 18.4264i 0.648641 0.648641i
\(808\) −2.47975 2.47975i −0.0872372 0.0872372i
\(809\) −18.4537 −0.648799 −0.324399 0.945920i \(-0.605162\pi\)
−0.324399 + 0.945920i \(0.605162\pi\)
\(810\) −0.921006 0.582810i −0.0323609 0.0204779i
\(811\) 13.0441i 0.458042i −0.973421 0.229021i \(-0.926448\pi\)
0.973421 0.229021i \(-0.0735525\pi\)
\(812\) −9.60706 + 9.60706i −0.337142 + 0.337142i
\(813\) 1.12013 1.12013i 0.0392847 0.0392847i
\(814\) 0 0
\(815\) −19.6984 12.4651i −0.690004 0.436633i
\(816\) 15.7621i 0.551783i
\(817\) −20.7958 + 20.7958i −0.727551 + 0.727551i
\(818\) 0.836566 + 0.836566i 0.0292498 + 0.0292498i
\(819\) 14.5252i 0.507552i
\(820\) 13.6630 3.07270i 0.477132 0.107303i
\(821\) 26.0450i 0.908977i 0.890753 + 0.454489i \(0.150178\pi\)
−0.890753 + 0.454489i \(0.849822\pi\)
\(822\) −6.04677 6.04677i −0.210905 0.210905i
\(823\) −3.55266 3.55266i −0.123838 0.123838i 0.642472 0.766310i \(-0.277909\pi\)
−0.766310 + 0.642472i \(0.777909\pi\)
\(824\) −11.3361 −0.394912
\(825\) 0 0
\(826\) 2.28625 0.0795488
\(827\) −8.60606 8.60606i −0.299262 0.299262i 0.541463 0.840725i \(-0.317871\pi\)
−0.840725 + 0.541463i \(0.817871\pi\)
\(828\) 6.35685 + 6.35685i 0.220916 + 0.220916i
\(829\) 11.0116i 0.382449i 0.981546 + 0.191224i \(0.0612458\pi\)
−0.981546 + 0.191224i \(0.938754\pi\)
\(830\) −7.11941 + 1.60110i −0.247118 + 0.0555749i
\(831\) 16.2425i 0.563446i
\(832\) 5.85987 + 5.85987i 0.203154 + 0.203154i
\(833\) 5.60801 5.60801i 0.194306 0.194306i
\(834\) 2.31594i 0.0801943i
\(835\) −21.3382 13.5028i −0.738440 0.467283i
\(836\) 0 0
\(837\) 25.5338 25.5338i 0.882578 0.882578i
\(838\) −5.67587 + 5.67587i −0.196070 + 0.196070i
\(839\) 9.29162i 0.320782i 0.987054 + 0.160391i \(0.0512756\pi\)
−0.987054 + 0.160391i \(0.948724\pi\)
\(840\) 11.5332 + 7.29819i 0.397934 + 0.251811i
\(841\) −22.0058 −0.758822
\(842\) −4.30543 4.30543i −0.148375 0.148375i
\(843\) −20.4448 + 20.4448i −0.704156 + 0.704156i
\(844\) −15.5991 −0.536945
\(845\) −2.17615 9.67641i −0.0748617 0.332879i
\(846\) 3.05979i 0.105198i
\(847\) 0 0
\(848\) −2.74398 2.74398i −0.0942286 0.0942286i
\(849\) 8.44349 0.289780
\(850\) −5.50710 11.6246i −0.188892 0.398721i
\(851\) −3.48842 −0.119582
\(852\) −4.07747 + 4.07747i −0.139692 + 0.139692i
\(853\) −19.1246 + 19.1246i −0.654813 + 0.654813i −0.954148 0.299335i \(-0.903235\pi\)
0.299335 + 0.954148i \(0.403235\pi\)
\(854\) −9.88121 −0.338128
\(855\) −3.42282 15.2198i −0.117058 0.520508i
\(856\) 0.800023 0.0273442
\(857\) 33.1497 + 33.1497i 1.13237 + 1.13237i 0.989782 + 0.142591i \(0.0455432\pi\)
0.142591 + 0.989782i \(0.454457\pi\)
\(858\) 0 0
\(859\) 47.2517i 1.61221i 0.591775 + 0.806103i \(0.298427\pi\)
−0.591775 + 0.806103i \(0.701573\pi\)
\(860\) 23.8790 + 15.1105i 0.814266 + 0.515265i
\(861\) −11.8140 −0.402619
\(862\) 6.84926 6.84926i 0.233287 0.233287i
\(863\) −11.0030 11.0030i −0.374547 0.374547i 0.494583 0.869130i \(-0.335321\pi\)
−0.869130 + 0.494583i \(0.835321\pi\)
\(864\) 26.5509 0.903279
\(865\) −15.7857 + 24.9460i −0.536731 + 0.848188i
\(866\) 13.9789i 0.475023i
\(867\) 8.66310 8.66310i 0.294214 0.294214i
\(868\) −24.4863 + 24.4863i −0.831118 + 0.831118i
\(869\) 0 0
\(870\) −0.721933 3.21013i −0.0244758 0.108834i
\(871\) 5.44121i 0.184368i
\(872\) 12.2962 12.2962i 0.416401 0.416401i
\(873\) −12.1163 12.1163i −0.410074 0.410074i
\(874\) 6.00322i 0.203062i
\(875\) −32.3651 3.96047i −1.09414 0.133888i
\(876\) 29.7076i 1.00373i
\(877\) −20.5990 20.5990i −0.695579 0.695579i 0.267875 0.963454i \(-0.413679\pi\)
−0.963454 + 0.267875i \(0.913679\pi\)
\(878\) −1.07833 1.07833i −0.0363918 0.0363918i
\(879\) 16.7229 0.564048
\(880\) 0 0
\(881\) 4.18815 0.141102 0.0705512 0.997508i \(-0.477524\pi\)
0.0705512 + 0.997508i \(0.477524\pi\)
\(882\) 0.884706 + 0.884706i 0.0297896 + 0.0297896i
\(883\) −32.3274 32.3274i −1.08790 1.08790i −0.995744 0.0921598i \(-0.970623\pi\)
−0.0921598 0.995744i \(-0.529377\pi\)
\(884\) 27.1578i 0.913414i
\(885\) 2.18692 3.45596i 0.0735125 0.116171i
\(886\) 15.4989i 0.520696i
\(887\) 24.3658 + 24.3658i 0.818123 + 0.818123i 0.985836 0.167713i \(-0.0536381\pi\)
−0.167713 + 0.985836i \(0.553638\pi\)
\(888\) −1.72153 + 1.72153i −0.0577709 + 0.0577709i
\(889\) 27.5008i 0.922349i
\(890\) 6.52371 10.3093i 0.218675 0.345569i
\(891\) 0 0
\(892\) 7.70048 7.70048i 0.257831 0.257831i
\(893\) 10.6721 10.6721i 0.357127 0.357127i
\(894\) 10.0026i 0.334536i
\(895\) 1.09248 + 4.85781i 0.0365177 + 0.162379i
\(896\) −32.9415 −1.10050
\(897\) 7.07040 + 7.07040i 0.236074 + 0.236074i
\(898\) −12.0839 + 12.0839i −0.403246 + 0.403246i
\(899\) 17.8266 0.594550
\(900\) −13.5461 + 6.41737i −0.451536 + 0.213912i
\(901\) 7.78489i 0.259352i
\(902\) 0 0
\(903\) −16.8566 16.8566i −0.560951 0.560951i
\(904\) −37.2276 −1.23817
\(905\) −9.45657 + 2.12671i −0.314347 + 0.0706941i
\(906\) 9.89948 0.328888
\(907\) −27.2327 + 27.2327i −0.904248 + 0.904248i −0.995800 0.0915526i \(-0.970817\pi\)
0.0915526 + 0.995800i \(0.470817\pi\)
\(908\) 4.13125 4.13125i 0.137100 0.137100i
\(909\) −3.24907 −0.107765
\(910\) −7.87546 4.98357i −0.261069 0.165204i
\(911\) −36.8694 −1.22154 −0.610769 0.791809i \(-0.709139\pi\)
−0.610769 + 0.791809i \(0.709139\pi\)
\(912\) −8.67283 8.67283i −0.287186 0.287186i
\(913\) 0 0
\(914\) 2.49056i 0.0823805i
\(915\) −9.45191 + 14.9367i −0.312470 + 0.493792i
\(916\) −9.40649 −0.310799
\(917\) −15.5012 + 15.5012i −0.511894 + 0.511894i
\(918\) 9.74523 + 9.74523i 0.321641 + 0.321641i
\(919\) −30.4040 −1.00294 −0.501468 0.865176i \(-0.667206\pi\)
−0.501468 + 0.865176i \(0.667206\pi\)
\(920\) 12.0172 2.70257i 0.396195 0.0891011i
\(921\) 1.40981i 0.0464550i
\(922\) 4.30611 4.30611i 0.141814 0.141814i
\(923\) 5.94554 5.94554i 0.195700 0.195700i
\(924\) 0 0
\(925\) 1.95599 5.47762i 0.0643126 0.180103i
\(926\) 13.3101i 0.437398i
\(927\) −7.42653 + 7.42653i −0.243919 + 0.243919i
\(928\) 9.26832 + 9.26832i 0.304247 + 0.304247i
\(929\) 23.2970i 0.764350i 0.924090 + 0.382175i \(0.124825\pi\)
−0.924090 + 0.382175i \(0.875175\pi\)
\(930\) −1.84005 8.18191i −0.0603375 0.268295i
\(931\) 6.17144i 0.202261i
\(932\) 5.50332 + 5.50332i 0.180267 + 0.180267i
\(933\) −11.3974 11.3974i −0.373135 0.373135i
\(934\) 19.3837 0.634254
\(935\) 0 0
\(936\) −9.14869 −0.299034
\(937\) −5.68763 5.68763i −0.185807 0.185807i 0.608074 0.793881i \(-0.291942\pi\)
−0.793881 + 0.608074i \(0.791942\pi\)
\(938\) 1.87241 + 1.87241i 0.0611363 + 0.0611363i
\(939\) 0.842727i 0.0275013i
\(940\) −12.2543 7.75450i −0.399692 0.252924i
\(941\) 47.8899i 1.56117i −0.625051 0.780584i \(-0.714922\pi\)
0.625051 0.780584i \(-0.285078\pi\)
\(942\) 8.44493 + 8.44493i 0.275151 + 0.275151i
\(943\) −7.53905 + 7.53905i −0.245505 + 0.245505i
\(944\) 4.21551i 0.137203i
\(945\) 34.0840 7.66523i 1.10875 0.249350i
\(946\) 0 0
\(947\) 9.38618 9.38618i 0.305010 0.305010i −0.537960 0.842970i \(-0.680805\pi\)
0.842970 + 0.537960i \(0.180805\pi\)
\(948\) −21.6365 + 21.6365i −0.702721 + 0.702721i
\(949\) 43.3180i 1.40616i
\(950\) −9.42645 3.36607i −0.305834 0.109210i
\(951\) −19.4444 −0.630529
\(952\) −19.9560 19.9560i −0.646779 0.646779i
\(953\) 37.6508 37.6508i 1.21963 1.21963i 0.251869 0.967761i \(-0.418955\pi\)
0.967761 0.251869i \(-0.0810453\pi\)
\(954\) 1.22812 0.0397620
\(955\) 8.89601 2.00064i 0.287868 0.0647392i
\(956\) 18.4130i 0.595519i
\(957\) 0 0
\(958\) 13.2098 + 13.2098i 0.426790 + 0.426790i
\(959\) 44.8233 1.44742
\(960\) −3.85773 + 6.09632i −0.124508 + 0.196758i
\(961\) 14.4360 0.465677
\(962\) 1.17555 1.17555i 0.0379012 0.0379012i
\(963\) 0.524112 0.524112i 0.0168893 0.0168893i
\(964\) −49.0724 −1.58052
\(965\) −24.9908 + 39.4926i −0.804482 + 1.27131i
\(966\) −4.86607 −0.156563
\(967\) −38.6475 38.6475i −1.24282 1.24282i −0.958826 0.283994i \(-0.908340\pi\)
−0.283994 0.958826i \(-0.591660\pi\)
\(968\) 0 0
\(969\) 24.6055i 0.790443i
\(970\) −10.7264 + 2.41229i −0.344405 + 0.0774538i
\(971\) 8.26997 0.265396 0.132698 0.991157i \(-0.457636\pi\)
0.132698 + 0.991157i \(0.457636\pi\)
\(972\) 18.6017 18.6017i 0.596650 0.596650i
\(973\) −8.58374 8.58374i −0.275182 0.275182i
\(974\) 13.2727 0.425285
\(975\) −15.0666 + 7.13771i −0.482517 + 0.228590i
\(976\) 18.2195i 0.583193i
\(977\) 38.7174 38.7174i 1.23868 1.23868i 0.278137 0.960541i \(-0.410283\pi\)
0.960541 0.278137i \(-0.0897169\pi\)
\(978\) 4.10153 4.10153i 0.131152 0.131152i
\(979\) 0 0
\(980\) −5.78535 + 1.30108i −0.184806 + 0.0415614i
\(981\) 16.1110i 0.514384i
\(982\) 1.37152 1.37152i 0.0437670 0.0437670i
\(983\) 9.64430 + 9.64430i 0.307606 + 0.307606i 0.843980 0.536375i \(-0.180207\pi\)
−0.536375 + 0.843980i \(0.680207\pi\)
\(984\) 7.44103i 0.237211i
\(985\) −0.571268 0.361497i −0.0182021 0.0115182i
\(986\) 6.80369i 0.216673i
\(987\) 8.65053 + 8.65053i 0.275349 + 0.275349i
\(988\) 14.9431 + 14.9431i 0.475404 + 0.475404i
\(989\) −21.5139 −0.684102
\(990\) 0 0
\(991\) 6.43457 0.204401 0.102200 0.994764i \(-0.467412\pi\)
0.102200 + 0.994764i \(0.467412\pi\)
\(992\) 23.6229 + 23.6229i 0.750027 + 0.750027i
\(993\) 12.0194 + 12.0194i 0.381425 + 0.381425i
\(994\) 4.09191i 0.129788i
\(995\) 5.43682 + 24.1753i 0.172359 + 0.766407i
\(996\) 13.4122i 0.424983i
\(997\) 15.0448 + 15.0448i 0.476473 + 0.476473i 0.904002 0.427529i \(-0.140616\pi\)
−0.427529 + 0.904002i \(0.640616\pi\)
\(998\) 2.21863 2.21863i 0.0702295 0.0702295i
\(999\) 6.23180i 0.197165i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 605.2.e.b.483.9 32
5.2 odd 4 inner 605.2.e.b.362.8 32
11.2 odd 10 605.2.m.e.403.3 32
11.3 even 5 605.2.m.c.233.3 32
11.4 even 5 605.2.m.d.578.2 32
11.5 even 5 605.2.m.e.118.2 32
11.6 odd 10 55.2.l.a.8.3 yes 32
11.7 odd 10 605.2.m.c.578.3 32
11.8 odd 10 605.2.m.d.233.2 32
11.9 even 5 55.2.l.a.18.2 yes 32
11.10 odd 2 inner 605.2.e.b.483.8 32
33.17 even 10 495.2.bj.a.118.2 32
33.20 odd 10 495.2.bj.a.73.3 32
44.31 odd 10 880.2.cm.a.513.3 32
44.39 even 10 880.2.cm.a.833.2 32
55.2 even 20 605.2.m.e.282.2 32
55.7 even 20 605.2.m.c.457.3 32
55.9 even 10 275.2.bm.b.18.3 32
55.17 even 20 55.2.l.a.52.2 yes 32
55.27 odd 20 605.2.m.e.602.3 32
55.28 even 20 275.2.bm.b.107.3 32
55.32 even 4 inner 605.2.e.b.362.9 32
55.37 odd 20 605.2.m.d.457.2 32
55.39 odd 10 275.2.bm.b.118.2 32
55.42 odd 20 55.2.l.a.7.3 32
55.47 odd 20 605.2.m.c.112.3 32
55.52 even 20 605.2.m.d.112.2 32
55.53 odd 20 275.2.bm.b.7.2 32
165.17 odd 20 495.2.bj.a.217.3 32
165.152 even 20 495.2.bj.a.172.2 32
220.127 odd 20 880.2.cm.a.657.3 32
220.207 even 20 880.2.cm.a.337.2 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.3 32 55.42 odd 20
55.2.l.a.8.3 yes 32 11.6 odd 10
55.2.l.a.18.2 yes 32 11.9 even 5
55.2.l.a.52.2 yes 32 55.17 even 20
275.2.bm.b.7.2 32 55.53 odd 20
275.2.bm.b.18.3 32 55.9 even 10
275.2.bm.b.107.3 32 55.28 even 20
275.2.bm.b.118.2 32 55.39 odd 10
495.2.bj.a.73.3 32 33.20 odd 10
495.2.bj.a.118.2 32 33.17 even 10
495.2.bj.a.172.2 32 165.152 even 20
495.2.bj.a.217.3 32 165.17 odd 20
605.2.e.b.362.8 32 5.2 odd 4 inner
605.2.e.b.362.9 32 55.32 even 4 inner
605.2.e.b.483.8 32 11.10 odd 2 inner
605.2.e.b.483.9 32 1.1 even 1 trivial
605.2.m.c.112.3 32 55.47 odd 20
605.2.m.c.233.3 32 11.3 even 5
605.2.m.c.457.3 32 55.7 even 20
605.2.m.c.578.3 32 11.7 odd 10
605.2.m.d.112.2 32 55.52 even 20
605.2.m.d.233.2 32 11.8 odd 10
605.2.m.d.457.2 32 55.37 odd 20
605.2.m.d.578.2 32 11.4 even 5
605.2.m.e.118.2 32 11.5 even 5
605.2.m.e.282.2 32 55.2 even 20
605.2.m.e.403.3 32 11.2 odd 10
605.2.m.e.602.3 32 55.27 odd 20
880.2.cm.a.337.2 32 220.207 even 20
880.2.cm.a.513.3 32 44.31 odd 10
880.2.cm.a.657.3 32 220.127 odd 20
880.2.cm.a.833.2 32 44.39 even 10