Properties

Label 495.2.bj.a.217.3
Level $495$
Weight $2$
Character 495.217
Analytic conductor $3.953$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [495,2,Mod(28,495)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(495, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([0, 15, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("495.28");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 495 = 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 495.bj (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.95259490005\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 55)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 217.3
Character \(\chi\) \(=\) 495.217
Dual form 495.2.bj.a.73.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0763931 - 0.482327i) q^{2} +(1.67531 + 0.544341i) q^{4} +(-1.47656 - 1.67922i) q^{5} +(-1.32402 - 2.59854i) q^{7} +(0.833936 - 1.63669i) q^{8} +O(q^{10})\) \(q+(0.0763931 - 0.482327i) q^{2} +(1.67531 + 0.544341i) q^{4} +(-1.47656 - 1.67922i) q^{5} +(-1.32402 - 2.59854i) q^{7} +(0.833936 - 1.63669i) q^{8} +(-0.922733 + 0.583903i) q^{10} +(3.15977 - 1.00788i) q^{11} +(-2.89049 - 0.457808i) q^{13} +(-1.35449 + 0.440102i) q^{14} +(2.12449 + 1.54353i) q^{16} +(-5.20325 + 0.824113i) q^{17} +(-1.26677 - 3.89873i) q^{19} +(-1.55962 - 3.61696i) q^{20} +(-0.244743 - 1.60104i) q^{22} +(2.12046 - 2.12046i) q^{23} +(-0.639563 + 4.95893i) q^{25} +(-0.441627 + 1.35919i) q^{26} +(-0.803656 - 5.07408i) q^{28} +(0.817241 - 2.51521i) q^{29} +(5.45328 - 3.96204i) q^{31} +(3.50456 - 3.50456i) q^{32} +2.57262i q^{34} +(-2.40853 + 6.06022i) q^{35} +(1.03649 - 0.528116i) q^{37} +(-1.97724 + 0.313163i) q^{38} +(-3.97972 + 1.01630i) q^{40} +(3.38136 - 1.09867i) q^{41} +(5.07292 + 5.07292i) q^{43} +(5.84223 + 0.0314826i) q^{44} +(-0.860769 - 1.18475i) q^{46} +(-1.67145 + 3.28041i) q^{47} +(-0.884888 + 1.21794i) q^{49} +(2.34297 + 0.687307i) q^{50} +(-4.59325 - 2.34038i) q^{52} +(0.231169 - 1.45955i) q^{53} +(-6.35804 - 3.81777i) q^{55} -5.35716 q^{56} +(-1.15072 - 0.586323i) q^{58} +(-1.52672 - 0.496061i) q^{59} +(-4.07810 + 5.61302i) q^{61} +(-1.49441 - 2.93294i) q^{62} +(1.66445 + 2.29092i) q^{64} +(3.49920 + 5.52974i) q^{65} +(1.31471 + 1.31471i) q^{67} +(-9.16564 - 1.45170i) q^{68} +(2.73902 + 1.62466i) q^{70} +(2.32441 + 1.68878i) q^{71} +(13.1886 - 6.71992i) q^{73} +(-0.175544 - 0.540270i) q^{74} -7.22113i q^{76} +(-6.80264 - 6.87635i) q^{77} +(-12.3342 + 8.96129i) q^{79} +(-0.544999 - 5.84661i) q^{80} +(-0.271606 - 1.71486i) q^{82} +(1.04540 + 6.60041i) q^{83} +(9.06675 + 7.52055i) q^{85} +(2.83434 - 2.05927i) q^{86} +(0.985459 - 6.01208i) q^{88} +11.1726i q^{89} +(2.63744 + 8.11720i) q^{91} +(4.70669 - 2.39818i) q^{92} +(1.45454 + 1.05679i) q^{94} +(-4.67636 + 7.88388i) q^{95} +(-9.94447 - 1.57505i) q^{97} +(0.519848 + 0.519848i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 10 q^{2} + 2 q^{5} + 10 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 32 q + 10 q^{2} + 2 q^{5} + 10 q^{8} + 24 q^{11} - 10 q^{13} - 8 q^{16} - 16 q^{20} + 10 q^{22} + 24 q^{23} + 16 q^{25} - 20 q^{26} + 50 q^{28} - 28 q^{31} + 10 q^{35} - 8 q^{37} - 10 q^{38} - 50 q^{40} - 40 q^{41} + 60 q^{46} + 28 q^{47} + 50 q^{50} - 50 q^{52} + 24 q^{53} - 64 q^{55} + 80 q^{56} - 50 q^{58} - 60 q^{61} - 100 q^{62} - 8 q^{67} + 30 q^{68} + 30 q^{70} - 24 q^{71} + 50 q^{73} - 70 q^{77} - 98 q^{80} - 10 q^{82} - 90 q^{83} + 30 q^{85} - 100 q^{86} + 170 q^{88} + 20 q^{91} + 68 q^{92} + 40 q^{95} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/495\mathbb{Z}\right)^\times\).

\(n\) \(46\) \(56\) \(397\)
\(\chi(n)\) \(e\left(\frac{3}{10}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0763931 0.482327i 0.0540181 0.341057i −0.945847 0.324614i \(-0.894766\pi\)
0.999865 0.0164432i \(-0.00523428\pi\)
\(3\) 0 0
\(4\) 1.67531 + 0.544341i 0.837655 + 0.272170i
\(5\) −1.47656 1.67922i −0.660336 0.750970i
\(6\) 0 0
\(7\) −1.32402 2.59854i −0.500434 0.982157i −0.993678 0.112266i \(-0.964189\pi\)
0.493244 0.869891i \(-0.335811\pi\)
\(8\) 0.833936 1.63669i 0.294841 0.578658i
\(9\) 0 0
\(10\) −0.922733 + 0.583903i −0.291794 + 0.184646i
\(11\) 3.15977 1.00788i 0.952708 0.303888i
\(12\) 0 0
\(13\) −2.89049 0.457808i −0.801677 0.126973i −0.257866 0.966181i \(-0.583019\pi\)
−0.543811 + 0.839208i \(0.683019\pi\)
\(14\) −1.35449 + 0.440102i −0.362004 + 0.117622i
\(15\) 0 0
\(16\) 2.12449 + 1.54353i 0.531123 + 0.385884i
\(17\) −5.20325 + 0.824113i −1.26197 + 0.199877i −0.751336 0.659920i \(-0.770590\pi\)
−0.510636 + 0.859797i \(0.670590\pi\)
\(18\) 0 0
\(19\) −1.26677 3.89873i −0.290618 0.894429i −0.984658 0.174494i \(-0.944171\pi\)
0.694041 0.719936i \(-0.255829\pi\)
\(20\) −1.55962 3.61696i −0.348742 0.808778i
\(21\) 0 0
\(22\) −0.244743 1.60104i −0.0521795 0.341343i
\(23\) 2.12046 2.12046i 0.442147 0.442147i −0.450586 0.892733i \(-0.648785\pi\)
0.892733 + 0.450586i \(0.148785\pi\)
\(24\) 0 0
\(25\) −0.639563 + 4.95893i −0.127913 + 0.991785i
\(26\) −0.441627 + 1.35919i −0.0866101 + 0.266558i
\(27\) 0 0
\(28\) −0.803656 5.07408i −0.151877 0.958912i
\(29\) 0.817241 2.51521i 0.151758 0.467063i −0.846060 0.533088i \(-0.821032\pi\)
0.997818 + 0.0660248i \(0.0210316\pi\)
\(30\) 0 0
\(31\) 5.45328 3.96204i 0.979438 0.711603i 0.0218548 0.999761i \(-0.493043\pi\)
0.957583 + 0.288158i \(0.0930429\pi\)
\(32\) 3.50456 3.50456i 0.619524 0.619524i
\(33\) 0 0
\(34\) 2.57262i 0.441201i
\(35\) −2.40853 + 6.06022i −0.407116 + 1.02436i
\(36\) 0 0
\(37\) 1.03649 0.528116i 0.170397 0.0868218i −0.366712 0.930335i \(-0.619516\pi\)
0.537109 + 0.843513i \(0.319516\pi\)
\(38\) −1.97724 + 0.313163i −0.320750 + 0.0508018i
\(39\) 0 0
\(40\) −3.97972 + 1.01630i −0.629249 + 0.160692i
\(41\) 3.38136 1.09867i 0.528080 0.171584i −0.0328289 0.999461i \(-0.510452\pi\)
0.560909 + 0.827877i \(0.310452\pi\)
\(42\) 0 0
\(43\) 5.07292 + 5.07292i 0.773613 + 0.773613i 0.978736 0.205123i \(-0.0657595\pi\)
−0.205123 + 0.978736i \(0.565759\pi\)
\(44\) 5.84223 + 0.0314826i 0.880749 + 0.00474618i
\(45\) 0 0
\(46\) −0.860769 1.18475i −0.126913 0.174681i
\(47\) −1.67145 + 3.28041i −0.243806 + 0.478497i −0.980188 0.198070i \(-0.936533\pi\)
0.736382 + 0.676566i \(0.236533\pi\)
\(48\) 0 0
\(49\) −0.884888 + 1.21794i −0.126413 + 0.173992i
\(50\) 2.34297 + 0.687307i 0.331346 + 0.0971998i
\(51\) 0 0
\(52\) −4.59325 2.34038i −0.636970 0.324552i
\(53\) 0.231169 1.45955i 0.0317536 0.200484i −0.966712 0.255869i \(-0.917639\pi\)
0.998465 + 0.0553847i \(0.0176385\pi\)
\(54\) 0 0
\(55\) −6.35804 3.81777i −0.857318 0.514787i
\(56\) −5.35716 −0.715881
\(57\) 0 0
\(58\) −1.15072 0.586323i −0.151097 0.0769879i
\(59\) −1.52672 0.496061i −0.198762 0.0645817i 0.207944 0.978141i \(-0.433323\pi\)
−0.406706 + 0.913559i \(0.633323\pi\)
\(60\) 0 0
\(61\) −4.07810 + 5.61302i −0.522147 + 0.718674i −0.985908 0.167286i \(-0.946500\pi\)
0.463761 + 0.885960i \(0.346500\pi\)
\(62\) −1.49441 2.93294i −0.189790 0.372483i
\(63\) 0 0
\(64\) 1.66445 + 2.29092i 0.208056 + 0.286365i
\(65\) 3.49920 + 5.52974i 0.434023 + 0.685880i
\(66\) 0 0
\(67\) 1.31471 + 1.31471i 0.160617 + 0.160617i 0.782840 0.622223i \(-0.213770\pi\)
−0.622223 + 0.782840i \(0.713770\pi\)
\(68\) −9.16564 1.45170i −1.11150 0.176044i
\(69\) 0 0
\(70\) 2.73902 + 1.62466i 0.327375 + 0.194184i
\(71\) 2.32441 + 1.68878i 0.275857 + 0.200422i 0.717108 0.696962i \(-0.245465\pi\)
−0.441251 + 0.897384i \(0.645465\pi\)
\(72\) 0 0
\(73\) 13.1886 6.71992i 1.54361 0.786507i 0.544957 0.838464i \(-0.316546\pi\)
0.998649 + 0.0519568i \(0.0165458\pi\)
\(74\) −0.175544 0.540270i −0.0204066 0.0628051i
\(75\) 0 0
\(76\) 7.22113i 0.828321i
\(77\) −6.80264 6.87635i −0.775232 0.783633i
\(78\) 0 0
\(79\) −12.3342 + 8.96129i −1.38770 + 1.00822i −0.391589 + 0.920140i \(0.628074\pi\)
−0.996113 + 0.0880839i \(0.971926\pi\)
\(80\) −0.544999 5.84661i −0.0609327 0.653671i
\(81\) 0 0
\(82\) −0.271606 1.71486i −0.0299939 0.189374i
\(83\) 1.04540 + 6.60041i 0.114748 + 0.724489i 0.976236 + 0.216711i \(0.0695329\pi\)
−0.861488 + 0.507778i \(0.830467\pi\)
\(84\) 0 0
\(85\) 9.06675 + 7.52055i 0.983427 + 0.815718i
\(86\) 2.83434 2.05927i 0.305635 0.222057i
\(87\) 0 0
\(88\) 0.985459 6.01208i 0.105050 0.640890i
\(89\) 11.1726i 1.18429i 0.805830 + 0.592147i \(0.201719\pi\)
−0.805830 + 0.592147i \(0.798281\pi\)
\(90\) 0 0
\(91\) 2.63744 + 8.11720i 0.276479 + 0.850914i
\(92\) 4.70669 2.39818i 0.490706 0.250027i
\(93\) 0 0
\(94\) 1.45454 + 1.05679i 0.150025 + 0.108999i
\(95\) −4.67636 + 7.88388i −0.479784 + 0.808869i
\(96\) 0 0
\(97\) −9.94447 1.57505i −1.00971 0.159922i −0.370400 0.928873i \(-0.620779\pi\)
−0.639308 + 0.768951i \(0.720779\pi\)
\(98\) 0.519848 + 0.519848i 0.0525126 + 0.0525126i
\(99\) 0 0
\(100\) −3.77081 + 7.95960i −0.377081 + 0.795960i
\(101\) 1.12216 + 1.54452i 0.111659 + 0.153686i 0.861189 0.508285i \(-0.169720\pi\)
−0.749530 + 0.661971i \(0.769720\pi\)
\(102\) 0 0
\(103\) 2.80172 + 5.49869i 0.276062 + 0.541802i 0.986857 0.161597i \(-0.0516646\pi\)
−0.710795 + 0.703399i \(0.751665\pi\)
\(104\) −3.15977 + 4.34905i −0.309841 + 0.426459i
\(105\) 0 0
\(106\) −0.686319 0.222999i −0.0666612 0.0216595i
\(107\) −0.388059 0.197726i −0.0375151 0.0191149i 0.435132 0.900367i \(-0.356702\pi\)
−0.472647 + 0.881252i \(0.656702\pi\)
\(108\) 0 0
\(109\) 9.46672 0.906748 0.453374 0.891320i \(-0.350220\pi\)
0.453374 + 0.891320i \(0.350220\pi\)
\(110\) −2.32712 + 2.77501i −0.221882 + 0.264586i
\(111\) 0 0
\(112\) 1.19806 7.56426i 0.113206 0.714755i
\(113\) 18.0576 + 9.20080i 1.69871 + 0.865538i 0.986537 + 0.163539i \(0.0522910\pi\)
0.712178 + 0.701999i \(0.247709\pi\)
\(114\) 0 0
\(115\) −6.69171 0.429742i −0.624006 0.0400737i
\(116\) 2.73826 3.76890i 0.254241 0.349933i
\(117\) 0 0
\(118\) −0.355895 + 0.698483i −0.0327628 + 0.0643005i
\(119\) 9.03071 + 12.4297i 0.827844 + 1.13943i
\(120\) 0 0
\(121\) 8.96835 6.36935i 0.815305 0.579032i
\(122\) 2.39578 + 2.39578i 0.216903 + 0.216903i
\(123\) 0 0
\(124\) 11.2926 3.66920i 1.01411 0.329504i
\(125\) 9.27148 6.24817i 0.829267 0.558853i
\(126\) 0 0
\(127\) −9.31359 + 1.47513i −0.826447 + 0.130896i −0.555309 0.831644i \(-0.687400\pi\)
−0.271138 + 0.962540i \(0.587400\pi\)
\(128\) 10.0641 5.12793i 0.889551 0.453249i
\(129\) 0 0
\(130\) 2.93446 1.26533i 0.257369 0.110977i
\(131\) 7.51676i 0.656743i 0.944549 + 0.328371i \(0.106500\pi\)
−0.944549 + 0.328371i \(0.893500\pi\)
\(132\) 0 0
\(133\) −8.45377 + 8.45377i −0.733035 + 0.733035i
\(134\) 0.734554 0.533685i 0.0634558 0.0461034i
\(135\) 0 0
\(136\) −2.99035 + 9.20336i −0.256421 + 0.789182i
\(137\) 2.40429 + 15.1801i 0.205413 + 1.29692i 0.847706 + 0.530466i \(0.177983\pi\)
−0.642294 + 0.766458i \(0.722017\pi\)
\(138\) 0 0
\(139\) −1.28625 + 3.95867i −0.109098 + 0.335770i −0.990670 0.136279i \(-0.956486\pi\)
0.881572 + 0.472049i \(0.156486\pi\)
\(140\) −7.33386 + 8.84168i −0.619824 + 0.747259i
\(141\) 0 0
\(142\) 0.992116 0.992116i 0.0832565 0.0832565i
\(143\) −9.59470 + 1.46670i −0.802349 + 0.122651i
\(144\) 0 0
\(145\) −5.43029 + 2.34152i −0.450961 + 0.194453i
\(146\) −2.23368 6.87457i −0.184861 0.568943i
\(147\) 0 0
\(148\) 2.02391 0.320556i 0.166364 0.0263495i
\(149\) −14.5440 10.5669i −1.19149 0.865672i −0.198073 0.980187i \(-0.563468\pi\)
−0.993421 + 0.114516i \(0.963468\pi\)
\(150\) 0 0
\(151\) 16.9214 5.49808i 1.37704 0.447427i 0.475345 0.879800i \(-0.342323\pi\)
0.901695 + 0.432372i \(0.142323\pi\)
\(152\) −7.43742 1.17797i −0.603254 0.0955461i
\(153\) 0 0
\(154\) −3.83633 + 2.75579i −0.309140 + 0.222068i
\(155\) −14.7052 3.30708i −1.18115 0.265631i
\(156\) 0 0
\(157\) 9.74483 19.1253i 0.777722 1.52636i −0.0709708 0.997478i \(-0.522610\pi\)
0.848693 0.528887i \(-0.177390\pi\)
\(158\) 3.38003 + 6.63368i 0.268901 + 0.527748i
\(159\) 0 0
\(160\) −11.0596 0.710248i −0.874338 0.0561500i
\(161\) −8.31766 2.70257i −0.655524 0.212993i
\(162\) 0 0
\(163\) −1.63083 + 10.2967i −0.127737 + 0.806497i 0.837752 + 0.546051i \(0.183870\pi\)
−0.965488 + 0.260446i \(0.916130\pi\)
\(164\) 6.26288 0.489049
\(165\) 0 0
\(166\) 3.26342 0.253290
\(167\) 1.76660 11.1538i 0.136703 0.863110i −0.820067 0.572267i \(-0.806064\pi\)
0.956771 0.290843i \(-0.0939359\pi\)
\(168\) 0 0
\(169\) −4.21842 1.37065i −0.324493 0.105434i
\(170\) 4.32000 3.79862i 0.331329 0.291341i
\(171\) 0 0
\(172\) 5.73731 + 11.2601i 0.437466 + 0.858575i
\(173\) 5.99367 11.7632i 0.455691 0.894343i −0.542823 0.839847i \(-0.682645\pi\)
0.998514 0.0544963i \(-0.0173553\pi\)
\(174\) 0 0
\(175\) 13.7328 4.90381i 1.03810 0.370693i
\(176\) 8.26862 + 2.73598i 0.623270 + 0.206233i
\(177\) 0 0
\(178\) 5.38885 + 0.853510i 0.403912 + 0.0639733i
\(179\) 2.11776 0.688100i 0.158288 0.0514310i −0.228801 0.973473i \(-0.573480\pi\)
0.387089 + 0.922042i \(0.373480\pi\)
\(180\) 0 0
\(181\) −3.50687 2.54789i −0.260664 0.189383i 0.449776 0.893141i \(-0.351504\pi\)
−0.710440 + 0.703758i \(0.751504\pi\)
\(182\) 4.11663 0.652010i 0.305145 0.0483302i
\(183\) 0 0
\(184\) −1.70221 5.23888i −0.125489 0.386215i
\(185\) −2.41725 0.960696i −0.177720 0.0706318i
\(186\) 0 0
\(187\) −15.6105 + 7.84826i −1.14155 + 0.573922i
\(188\) −4.58586 + 4.58586i −0.334458 + 0.334458i
\(189\) 0 0
\(190\) 3.44537 + 2.85781i 0.249953 + 0.207327i
\(191\) 1.26010 3.87820i 0.0911779 0.280617i −0.895061 0.445944i \(-0.852868\pi\)
0.986239 + 0.165327i \(0.0528680\pi\)
\(192\) 0 0
\(193\) −3.26960 20.6434i −0.235351 1.48595i −0.768459 0.639899i \(-0.778976\pi\)
0.533108 0.846047i \(-0.321024\pi\)
\(194\) −1.51938 + 4.67617i −0.109085 + 0.335729i
\(195\) 0 0
\(196\) −2.14544 + 1.55875i −0.153246 + 0.111339i
\(197\) −0.213782 + 0.213782i −0.0152313 + 0.0152313i −0.714681 0.699450i \(-0.753428\pi\)
0.699450 + 0.714681i \(0.253428\pi\)
\(198\) 0 0
\(199\) 11.0815i 0.785549i 0.919635 + 0.392775i \(0.128485\pi\)
−0.919635 + 0.392775i \(0.871515\pi\)
\(200\) 7.58288 + 5.18219i 0.536190 + 0.366436i
\(201\) 0 0
\(202\) 0.830691 0.423258i 0.0584472 0.0297803i
\(203\) −7.61793 + 1.20656i −0.534674 + 0.0846840i
\(204\) 0 0
\(205\) −6.83769 4.05581i −0.477565 0.283270i
\(206\) 2.86620 0.931285i 0.199698 0.0648857i
\(207\) 0 0
\(208\) −5.43417 5.43417i −0.376792 0.376792i
\(209\) −7.93217 11.0423i −0.548680 0.763815i
\(210\) 0 0
\(211\) −5.20512 7.16423i −0.358335 0.493206i 0.591349 0.806416i \(-0.298596\pi\)
−0.949684 + 0.313210i \(0.898596\pi\)
\(212\) 1.18177 2.31936i 0.0811644 0.159294i
\(213\) 0 0
\(214\) −0.125014 + 0.172067i −0.00854576 + 0.0117622i
\(215\) 1.02810 16.0090i 0.0701158 1.09181i
\(216\) 0 0
\(217\) −17.5158 8.92474i −1.18905 0.605851i
\(218\) 0.723193 4.56606i 0.0489808 0.309253i
\(219\) 0 0
\(220\) −8.57352 9.85688i −0.578026 0.664551i
\(221\) 15.4172 1.03707
\(222\) 0 0
\(223\) 5.50839 + 2.80667i 0.368869 + 0.187948i 0.628593 0.777735i \(-0.283631\pi\)
−0.259723 + 0.965683i \(0.583631\pi\)
\(224\) −13.7469 4.46662i −0.918500 0.298439i
\(225\) 0 0
\(226\) 5.81727 8.00679i 0.386959 0.532604i
\(227\) 1.50576 + 2.95522i 0.0999406 + 0.196145i 0.935563 0.353160i \(-0.114893\pi\)
−0.835622 + 0.549304i \(0.814893\pi\)
\(228\) 0 0
\(229\) −3.13876 4.32013i −0.207415 0.285482i 0.692618 0.721305i \(-0.256457\pi\)
−0.900032 + 0.435823i \(0.856457\pi\)
\(230\) −0.718477 + 3.19477i −0.0473750 + 0.210657i
\(231\) 0 0
\(232\) −3.43509 3.43509i −0.225525 0.225525i
\(233\) −4.36386 0.691167i −0.285886 0.0452799i 0.0118446 0.999930i \(-0.496230\pi\)
−0.297730 + 0.954650i \(0.596230\pi\)
\(234\) 0 0
\(235\) 7.97652 2.03697i 0.520331 0.132877i
\(236\) −2.28770 1.66211i −0.148917 0.108194i
\(237\) 0 0
\(238\) 6.68507 3.40621i 0.433329 0.220792i
\(239\) −3.23012 9.94128i −0.208939 0.643048i −0.999529 0.0307017i \(-0.990226\pi\)
0.790590 0.612346i \(-0.209774\pi\)
\(240\) 0 0
\(241\) 27.8579i 1.79449i 0.441536 + 0.897243i \(0.354434\pi\)
−0.441536 + 0.897243i \(0.645566\pi\)
\(242\) −2.38699 4.81226i −0.153442 0.309344i
\(243\) 0 0
\(244\) −9.88748 + 7.18367i −0.632981 + 0.459888i
\(245\) 3.35178 0.312441i 0.214138 0.0199611i
\(246\) 0 0
\(247\) 1.87672 + 11.8492i 0.119413 + 0.753944i
\(248\) −1.93695 12.2294i −0.122996 0.776569i
\(249\) 0 0
\(250\) −2.30538 4.94921i −0.145805 0.313015i
\(251\) −8.04670 + 5.84627i −0.507903 + 0.369013i −0.812028 0.583619i \(-0.801636\pi\)
0.304124 + 0.952632i \(0.401636\pi\)
\(252\) 0 0
\(253\) 4.56302 8.83737i 0.286874 0.555601i
\(254\) 4.60489i 0.288936i
\(255\) 0 0
\(256\) 0.0455968 + 0.140332i 0.00284980 + 0.00877078i
\(257\) −3.77828 + 1.92513i −0.235683 + 0.120086i −0.567844 0.823136i \(-0.692222\pi\)
0.332161 + 0.943223i \(0.392222\pi\)
\(258\) 0 0
\(259\) −2.74467 1.99412i −0.170545 0.123908i
\(260\) 2.85218 + 11.1688i 0.176885 + 0.692659i
\(261\) 0 0
\(262\) 3.62554 + 0.574229i 0.223987 + 0.0354760i
\(263\) −16.1830 16.1830i −0.997884 0.997884i 0.00211364 0.999998i \(-0.499327\pi\)
−0.999998 + 0.00211364i \(0.999327\pi\)
\(264\) 0 0
\(265\) −2.79223 + 1.76692i −0.171526 + 0.108541i
\(266\) 3.43167 + 4.72330i 0.210409 + 0.289604i
\(267\) 0 0
\(268\) 1.48689 + 2.91819i 0.0908265 + 0.178257i
\(269\) 13.4435 18.5034i 0.819666 1.12817i −0.170094 0.985428i \(-0.554407\pi\)
0.989759 0.142745i \(-0.0455930\pi\)
\(270\) 0 0
\(271\) −1.32229 0.429640i −0.0803237 0.0260987i 0.268580 0.963258i \(-0.413446\pi\)
−0.348903 + 0.937159i \(0.613446\pi\)
\(272\) −12.3263 6.28057i −0.747392 0.380815i
\(273\) 0 0
\(274\) 7.50545 0.453421
\(275\) 2.97713 + 16.3137i 0.179528 + 0.983753i
\(276\) 0 0
\(277\) −2.23010 + 14.0803i −0.133994 + 0.846002i 0.825527 + 0.564363i \(0.190878\pi\)
−0.959520 + 0.281639i \(0.909122\pi\)
\(278\) 1.81111 + 0.922808i 0.108623 + 0.0553464i
\(279\) 0 0
\(280\) 7.91015 + 8.99586i 0.472722 + 0.537605i
\(281\) −14.9161 + 20.5302i −0.889818 + 1.22473i 0.0837853 + 0.996484i \(0.473299\pi\)
−0.973604 + 0.228246i \(0.926701\pi\)
\(282\) 0 0
\(283\) 3.36440 6.60300i 0.199993 0.392508i −0.769128 0.639095i \(-0.779309\pi\)
0.969121 + 0.246587i \(0.0793092\pi\)
\(284\) 2.97484 + 4.09451i 0.176524 + 0.242964i
\(285\) 0 0
\(286\) −0.0255420 + 4.73983i −0.00151033 + 0.280272i
\(287\) −7.33195 7.33195i −0.432791 0.432791i
\(288\) 0 0
\(289\) 10.2266 3.32284i 0.601567 0.195461i
\(290\) 0.714542 + 2.79806i 0.0419594 + 0.164307i
\(291\) 0 0
\(292\) 25.7529 4.07886i 1.50707 0.238697i
\(293\) 13.0777 6.66340i 0.764005 0.389280i −0.0281472 0.999604i \(-0.508961\pi\)
0.792152 + 0.610324i \(0.208961\pi\)
\(294\) 0 0
\(295\) 1.42129 + 3.29616i 0.0827507 + 0.191910i
\(296\) 2.13682i 0.124200i
\(297\) 0 0
\(298\) −6.20775 + 6.20775i −0.359606 + 0.359606i
\(299\) −7.09994 + 5.15841i −0.410600 + 0.298318i
\(300\) 0 0
\(301\) 6.46553 19.8989i 0.372667 1.14695i
\(302\) −1.35920 8.58165i −0.0782131 0.493818i
\(303\) 0 0
\(304\) 3.32657 10.2381i 0.190792 0.587197i
\(305\) 15.4471 1.43992i 0.884496 0.0824494i
\(306\) 0 0
\(307\) −0.874954 + 0.874954i −0.0499363 + 0.0499363i −0.731634 0.681698i \(-0.761242\pi\)
0.681698 + 0.731634i \(0.261242\pi\)
\(308\) −7.65344 15.2230i −0.436095 0.867409i
\(309\) 0 0
\(310\) −2.71847 + 6.84008i −0.154399 + 0.388491i
\(311\) −4.37162 13.4545i −0.247892 0.762933i −0.995147 0.0983958i \(-0.968629\pi\)
0.747256 0.664537i \(-0.231371\pi\)
\(312\) 0 0
\(313\) 0.730542 0.115706i 0.0412927 0.00654011i −0.135754 0.990743i \(-0.543346\pi\)
0.177047 + 0.984202i \(0.443346\pi\)
\(314\) −8.48022 6.16124i −0.478566 0.347699i
\(315\) 0 0
\(316\) −25.5415 + 8.29895i −1.43682 + 0.466852i
\(317\) 16.8560 + 2.66972i 0.946726 + 0.149947i 0.610661 0.791892i \(-0.290904\pi\)
0.336065 + 0.941839i \(0.390904\pi\)
\(318\) 0 0
\(319\) 0.0472661 8.77118i 0.00264640 0.491092i
\(320\) 1.38930 6.17765i 0.0776644 0.345341i
\(321\) 0 0
\(322\) −1.93894 + 3.80538i −0.108053 + 0.212065i
\(323\) 9.80433 + 19.2421i 0.545527 + 1.07066i
\(324\) 0 0
\(325\) 4.11888 14.0409i 0.228475 0.778850i
\(326\) 4.84178 + 1.57319i 0.268161 + 0.0871309i
\(327\) 0 0
\(328\) 1.02165 6.45047i 0.0564114 0.356168i
\(329\) 10.7373 0.591967
\(330\) 0 0
\(331\) −14.9189 −0.820016 −0.410008 0.912082i \(-0.634474\pi\)
−0.410008 + 0.912082i \(0.634474\pi\)
\(332\) −1.84150 + 11.6268i −0.101065 + 0.638102i
\(333\) 0 0
\(334\) −5.24485 1.70415i −0.286985 0.0932472i
\(335\) 0.266444 4.14893i 0.0145574 0.226680i
\(336\) 0 0
\(337\) −4.28455 8.40891i −0.233394 0.458062i 0.744370 0.667767i \(-0.232750\pi\)
−0.977765 + 0.209705i \(0.932750\pi\)
\(338\) −0.983358 + 1.92995i −0.0534876 + 0.104975i
\(339\) 0 0
\(340\) 11.0959 + 17.5346i 0.601758 + 0.950950i
\(341\) 13.2379 18.0154i 0.716871 0.975589i
\(342\) 0 0
\(343\) −15.8271 2.50676i −0.854581 0.135352i
\(344\) 12.5333 4.07231i 0.675750 0.219564i
\(345\) 0 0
\(346\) −5.21586 3.78954i −0.280406 0.203727i
\(347\) 19.0026 3.00971i 1.02011 0.161570i 0.376094 0.926581i \(-0.377267\pi\)
0.644016 + 0.765012i \(0.277267\pi\)
\(348\) 0 0
\(349\) −4.59599 14.1450i −0.246018 0.757164i −0.995467 0.0951031i \(-0.969682\pi\)
0.749450 0.662061i \(-0.230318\pi\)
\(350\) −1.31615 6.99831i −0.0703511 0.374075i
\(351\) 0 0
\(352\) 7.54143 14.6058i 0.401960 0.778491i
\(353\) −1.78406 + 1.78406i −0.0949560 + 0.0949560i −0.752989 0.658033i \(-0.771389\pi\)
0.658033 + 0.752989i \(0.271389\pi\)
\(354\) 0 0
\(355\) −0.596284 6.39679i −0.0316475 0.339506i
\(356\) −6.08171 + 18.7176i −0.322330 + 0.992029i
\(357\) 0 0
\(358\) −0.170108 1.07402i −0.00899047 0.0567636i
\(359\) −2.62416 + 8.07635i −0.138498 + 0.426253i −0.996118 0.0880312i \(-0.971942\pi\)
0.857620 + 0.514285i \(0.171942\pi\)
\(360\) 0 0
\(361\) 1.77596 1.29031i 0.0934717 0.0679111i
\(362\) −1.49682 + 1.49682i −0.0786711 + 0.0786711i
\(363\) 0 0
\(364\) 15.0345i 0.788021i
\(365\) −30.7579 12.2242i −1.60994 0.639844i
\(366\) 0 0
\(367\) 18.9156 9.63799i 0.987387 0.503099i 0.115765 0.993277i \(-0.463068\pi\)
0.871622 + 0.490178i \(0.163068\pi\)
\(368\) 7.77792 1.23190i 0.405452 0.0642173i
\(369\) 0 0
\(370\) −0.648032 + 1.09252i −0.0336896 + 0.0567973i
\(371\) −4.09877 + 1.33177i −0.212797 + 0.0691420i
\(372\) 0 0
\(373\) 2.57445 + 2.57445i 0.133300 + 0.133300i 0.770609 0.637309i \(-0.219952\pi\)
−0.637309 + 0.770609i \(0.719952\pi\)
\(374\) 2.59290 + 8.12891i 0.134076 + 0.420336i
\(375\) 0 0
\(376\) 3.97513 + 5.47130i 0.205002 + 0.282161i
\(377\) −3.51371 + 6.89604i −0.180965 + 0.355164i
\(378\) 0 0
\(379\) 9.74713 13.4158i 0.500677 0.689122i −0.481636 0.876371i \(-0.659957\pi\)
0.982312 + 0.187249i \(0.0599572\pi\)
\(380\) −12.1259 + 10.6624i −0.622044 + 0.546970i
\(381\) 0 0
\(382\) −1.77430 0.904051i −0.0907810 0.0462553i
\(383\) −1.77402 + 11.2007i −0.0906481 + 0.572330i 0.900000 + 0.435890i \(0.143566\pi\)
−0.990648 + 0.136440i \(0.956434\pi\)
\(384\) 0 0
\(385\) −1.50243 + 21.5764i −0.0765710 + 1.09964i
\(386\) −10.2067 −0.519505
\(387\) 0 0
\(388\) −15.8027 8.05188i −0.802260 0.408772i
\(389\) 0.777554 + 0.252643i 0.0394236 + 0.0128095i 0.328662 0.944447i \(-0.393402\pi\)
−0.289239 + 0.957257i \(0.593402\pi\)
\(390\) 0 0
\(391\) −9.28580 + 12.7808i −0.469603 + 0.646353i
\(392\) 1.25546 + 2.46398i 0.0634102 + 0.124450i
\(393\) 0 0
\(394\) 0.0867814 + 0.119444i 0.00437198 + 0.00601752i
\(395\) 33.2601 + 7.47992i 1.67350 + 0.376356i
\(396\) 0 0
\(397\) 11.8504 + 11.8504i 0.594752 + 0.594752i 0.938911 0.344159i \(-0.111836\pi\)
−0.344159 + 0.938911i \(0.611836\pi\)
\(398\) 5.34493 + 0.846553i 0.267917 + 0.0424339i
\(399\) 0 0
\(400\) −9.01302 + 9.54802i −0.450651 + 0.477401i
\(401\) −23.0228 16.7270i −1.14970 0.835308i −0.161262 0.986912i \(-0.551556\pi\)
−0.988441 + 0.151603i \(0.951556\pi\)
\(402\) 0 0
\(403\) −17.5765 + 8.95566i −0.875547 + 0.446113i
\(404\) 1.03922 + 3.19839i 0.0517032 + 0.159126i
\(405\) 0 0
\(406\) 3.76651i 0.186929i
\(407\) 2.74279 2.71338i 0.135955 0.134497i
\(408\) 0 0
\(409\) −1.95998 + 1.42401i −0.0969146 + 0.0704126i −0.635187 0.772358i \(-0.719077\pi\)
0.538273 + 0.842771i \(0.319077\pi\)
\(410\) −2.47858 + 2.98817i −0.122408 + 0.147575i
\(411\) 0 0
\(412\) 1.70059 + 10.7371i 0.0837820 + 0.528979i
\(413\) 0.732376 + 4.62404i 0.0360379 + 0.227534i
\(414\) 0 0
\(415\) 9.53994 11.5013i 0.468297 0.564578i
\(416\) −11.7343 + 8.52546i −0.575321 + 0.417995i
\(417\) 0 0
\(418\) −5.93199 + 2.98234i −0.290143 + 0.145871i
\(419\) 16.4371i 0.803006i 0.915858 + 0.401503i \(0.131512\pi\)
−0.915858 + 0.401503i \(0.868488\pi\)
\(420\) 0 0
\(421\) −3.85294 11.8581i −0.187781 0.577930i 0.812204 0.583373i \(-0.198267\pi\)
−0.999985 + 0.00544310i \(0.998267\pi\)
\(422\) −3.85314 + 1.96327i −0.187568 + 0.0955707i
\(423\) 0 0
\(424\) −2.19605 1.59552i −0.106649 0.0774853i
\(425\) −0.758915 26.3296i −0.0368128 1.27717i
\(426\) 0 0
\(427\) 19.9852 + 3.16534i 0.967151 + 0.153182i
\(428\) −0.542488 0.542488i −0.0262222 0.0262222i
\(429\) 0 0
\(430\) −7.64304 1.71886i −0.368580 0.0828907i
\(431\) 11.6588 + 16.0470i 0.561586 + 0.772957i 0.991527 0.129900i \(-0.0414655\pi\)
−0.429941 + 0.902857i \(0.641466\pi\)
\(432\) 0 0
\(433\) 12.9956 + 25.5054i 0.624531 + 1.22571i 0.959027 + 0.283314i \(0.0914339\pi\)
−0.334496 + 0.942397i \(0.608566\pi\)
\(434\) −5.64273 + 7.76656i −0.270860 + 0.372807i
\(435\) 0 0
\(436\) 15.8597 + 5.15313i 0.759541 + 0.246790i
\(437\) −10.9533 5.58097i −0.523966 0.266974i
\(438\) 0 0
\(439\) −3.12279 −0.149043 −0.0745214 0.997219i \(-0.523743\pi\)
−0.0745214 + 0.997219i \(0.523743\pi\)
\(440\) −11.5507 + 7.22238i −0.550658 + 0.344313i
\(441\) 0 0
\(442\) 1.17777 7.43613i 0.0560207 0.353701i
\(443\) −28.2787 14.4087i −1.34356 0.684579i −0.373545 0.927612i \(-0.621858\pi\)
−0.970018 + 0.243033i \(0.921858\pi\)
\(444\) 0 0
\(445\) 18.7613 16.4970i 0.889369 0.782032i
\(446\) 1.77454 2.44244i 0.0840267 0.115653i
\(447\) 0 0
\(448\) 3.74928 7.35837i 0.177137 0.347650i
\(449\) −20.5693 28.3112i −0.970726 1.33609i −0.941679 0.336511i \(-0.890753\pi\)
−0.0290462 0.999578i \(-0.509247\pi\)
\(450\) 0 0
\(451\) 9.57702 6.87957i 0.450964 0.323946i
\(452\) 25.2437 + 25.2437i 1.18736 + 1.18736i
\(453\) 0 0
\(454\) 1.54041 0.500510i 0.0722951 0.0234901i
\(455\) 9.73624 16.4143i 0.456442 0.769516i
\(456\) 0 0
\(457\) −5.03728 + 0.797826i −0.235634 + 0.0373207i −0.273134 0.961976i \(-0.588060\pi\)
0.0375006 + 0.999297i \(0.488060\pi\)
\(458\) −2.32350 + 1.18388i −0.108570 + 0.0553191i
\(459\) 0 0
\(460\) −10.9768 4.36253i −0.511794 0.203404i
\(461\) 12.4703i 0.580801i −0.956905 0.290400i \(-0.906211\pi\)
0.956905 0.290400i \(-0.0937885\pi\)
\(462\) 0 0
\(463\) −19.2728 + 19.2728i −0.895684 + 0.895684i −0.995051 0.0993669i \(-0.968318\pi\)
0.0993669 + 0.995051i \(0.468318\pi\)
\(464\) 5.61854 4.08211i 0.260834 0.189507i
\(465\) 0 0
\(466\) −0.666738 + 2.05201i −0.0308860 + 0.0950574i
\(467\) 6.20937 + 39.2044i 0.287335 + 1.81416i 0.534476 + 0.845184i \(0.320509\pi\)
−0.247141 + 0.968980i \(0.579491\pi\)
\(468\) 0 0
\(469\) 1.67562 5.15703i 0.0773730 0.238130i
\(470\) −0.373136 4.00290i −0.0172115 0.184640i
\(471\) 0 0
\(472\) −2.08508 + 2.08508i −0.0959738 + 0.0959738i
\(473\) 21.1422 + 10.9164i 0.972119 + 0.501936i
\(474\) 0 0
\(475\) 20.1437 3.78836i 0.924256 0.173822i
\(476\) 8.36324 + 25.7394i 0.383328 + 1.17976i
\(477\) 0 0
\(478\) −5.04171 + 0.798528i −0.230602 + 0.0365238i
\(479\) 30.9491 + 22.4858i 1.41410 + 1.02740i 0.992711 + 0.120523i \(0.0384570\pi\)
0.421388 + 0.906880i \(0.361543\pi\)
\(480\) 0 0
\(481\) −3.23773 + 1.05200i −0.147628 + 0.0479671i
\(482\) 13.4366 + 2.12815i 0.612022 + 0.0969348i
\(483\) 0 0
\(484\) 18.4919 5.78879i 0.840539 0.263127i
\(485\) 12.0387 + 19.0246i 0.546650 + 0.863863i
\(486\) 0 0
\(487\) −12.3391 + 24.2169i −0.559139 + 1.09737i 0.422454 + 0.906384i \(0.361169\pi\)
−0.981593 + 0.190987i \(0.938831\pi\)
\(488\) 5.78591 + 11.3555i 0.261916 + 0.514039i
\(489\) 0 0
\(490\) 0.105355 1.64053i 0.00475944 0.0741114i
\(491\) −3.77748 1.22738i −0.170475 0.0553907i 0.222536 0.974925i \(-0.428567\pi\)
−0.393011 + 0.919534i \(0.628567\pi\)
\(492\) 0 0
\(493\) −2.17949 + 13.7608i −0.0981593 + 0.619753i
\(494\) 5.85854 0.263588
\(495\) 0 0
\(496\) 17.7010 0.794798
\(497\) 1.31080 8.27608i 0.0587975 0.371233i
\(498\) 0 0
\(499\) 6.11060 + 1.98546i 0.273548 + 0.0888812i 0.442579 0.896730i \(-0.354064\pi\)
−0.169031 + 0.985611i \(0.554064\pi\)
\(500\) 18.9337 5.42077i 0.846742 0.242424i
\(501\) 0 0
\(502\) 2.20510 + 4.32776i 0.0984186 + 0.193157i
\(503\) −18.4896 + 36.2878i −0.824409 + 1.61799i −0.0388190 + 0.999246i \(0.512360\pi\)
−0.785590 + 0.618747i \(0.787640\pi\)
\(504\) 0 0
\(505\) 0.936660 4.16493i 0.0416808 0.185337i
\(506\) −3.91392 2.87598i −0.173995 0.127853i
\(507\) 0 0
\(508\) −16.4061 2.59847i −0.727904 0.115289i
\(509\) 8.83124 2.86944i 0.391438 0.127186i −0.106684 0.994293i \(-0.534023\pi\)
0.498122 + 0.867107i \(0.334023\pi\)
\(510\) 0 0
\(511\) −34.9240 25.3738i −1.54495 1.12247i
\(512\) 22.3835 3.54520i 0.989220 0.156677i
\(513\) 0 0
\(514\) 0.639909 + 1.96944i 0.0282252 + 0.0868681i
\(515\) 5.09661 12.8238i 0.224584 0.565086i
\(516\) 0 0
\(517\) −1.97515 + 12.0500i −0.0868669 + 0.529957i
\(518\) −1.17149 + 1.17149i −0.0514723 + 0.0514723i
\(519\) 0 0
\(520\) 11.9686 1.11567i 0.524857 0.0489252i
\(521\) 4.57564 14.0824i 0.200462 0.616960i −0.799407 0.600790i \(-0.794853\pi\)
0.999869 0.0161698i \(-0.00514724\pi\)
\(522\) 0 0
\(523\) 6.07643 + 38.3651i 0.265704 + 1.67759i 0.654344 + 0.756197i \(0.272945\pi\)
−0.388640 + 0.921390i \(0.627055\pi\)
\(524\) −4.09168 + 12.5929i −0.178746 + 0.550124i
\(525\) 0 0
\(526\) −9.04175 + 6.56922i −0.394239 + 0.286431i
\(527\) −25.1096 + 25.1096i −1.09379 + 1.09379i
\(528\) 0 0
\(529\) 14.0073i 0.609011i
\(530\) 0.638925 + 1.48175i 0.0277531 + 0.0643632i
\(531\) 0 0
\(532\) −18.7644 + 9.56095i −0.813541 + 0.414520i
\(533\) −10.2768 + 1.62768i −0.445136 + 0.0705027i
\(534\) 0 0
\(535\) 0.240966 + 0.943590i 0.0104178 + 0.0407950i
\(536\) 3.24815 1.05539i 0.140299 0.0455859i
\(537\) 0 0
\(538\) −7.89771 7.89771i −0.340495 0.340495i
\(539\) −1.56850 + 4.74029i −0.0675603 + 0.204179i
\(540\) 0 0
\(541\) 10.2392 + 14.0930i 0.440217 + 0.605907i 0.970260 0.242064i \(-0.0778243\pi\)
−0.530043 + 0.847971i \(0.677824\pi\)
\(542\) −0.308241 + 0.604957i −0.0132401 + 0.0259851i
\(543\) 0 0
\(544\) −15.3469 + 21.1232i −0.657994 + 0.905650i
\(545\) −13.9781 15.8967i −0.598758 0.680940i
\(546\) 0 0
\(547\) 34.9333 + 17.7994i 1.49364 + 0.761048i 0.994427 0.105430i \(-0.0336219\pi\)
0.499215 + 0.866478i \(0.333622\pi\)
\(548\) −4.23522 + 26.7401i −0.180920 + 1.14228i
\(549\) 0 0
\(550\) 8.09597 0.189699i 0.345213 0.00808877i
\(551\) −10.8414 −0.461858
\(552\) 0 0
\(553\) 39.6170 + 20.1859i 1.68469 + 0.858391i
\(554\) 6.62094 + 2.15127i 0.281297 + 0.0913989i
\(555\) 0 0
\(556\) −4.30973 + 5.93184i −0.182773 + 0.251566i
\(557\) −16.6620 32.7010i −0.705991 1.38558i −0.913291 0.407307i \(-0.866468\pi\)
0.207301 0.978277i \(-0.433532\pi\)
\(558\) 0 0
\(559\) −12.3408 16.9856i −0.521959 0.718416i
\(560\) −14.4711 + 9.15725i −0.611514 + 0.386964i
\(561\) 0 0
\(562\) 8.76280 + 8.76280i 0.369636 + 0.369636i
\(563\) −16.6732 2.64077i −0.702690 0.111295i −0.205143 0.978732i \(-0.565766\pi\)
−0.497547 + 0.867437i \(0.665766\pi\)
\(564\) 0 0
\(565\) −11.2129 43.9082i −0.471729 1.84723i
\(566\) −2.92779 2.12716i −0.123064 0.0894114i
\(567\) 0 0
\(568\) 4.70243 2.39601i 0.197310 0.100534i
\(569\) 0.818531 + 2.51918i 0.0343146 + 0.105609i 0.966747 0.255736i \(-0.0823176\pi\)
−0.932432 + 0.361345i \(0.882318\pi\)
\(570\) 0 0
\(571\) 29.8675i 1.24992i −0.780658 0.624959i \(-0.785116\pi\)
0.780658 0.624959i \(-0.214884\pi\)
\(572\) −16.8725 2.76562i −0.705473 0.115636i
\(573\) 0 0
\(574\) −4.09651 + 2.97629i −0.170985 + 0.124228i
\(575\) 9.15906 + 11.8714i 0.381959 + 0.495072i
\(576\) 0 0
\(577\) −0.0561437 0.354477i −0.00233729 0.0147571i 0.986492 0.163809i \(-0.0523780\pi\)
−0.988829 + 0.149052i \(0.952378\pi\)
\(578\) −0.821450 5.18643i −0.0341678 0.215727i
\(579\) 0 0
\(580\) −10.3720 + 0.966840i −0.430674 + 0.0401458i
\(581\) 15.7673 11.4556i 0.654138 0.475259i
\(582\) 0 0
\(583\) −0.740605 4.84483i −0.0306727 0.200652i
\(584\) 27.1896i 1.12511i
\(585\) 0 0
\(586\) −2.21490 6.81675i −0.0914965 0.281597i
\(587\) 23.0298 11.7343i 0.950543 0.484326i 0.0912603 0.995827i \(-0.470910\pi\)
0.859282 + 0.511501i \(0.170910\pi\)
\(588\) 0 0
\(589\) −22.3550 16.2418i −0.921121 0.669233i
\(590\) 1.69840 0.433723i 0.0699222 0.0178561i
\(591\) 0 0
\(592\) 3.01717 + 0.477873i 0.124005 + 0.0196405i
\(593\) 9.56872 + 9.56872i 0.392940 + 0.392940i 0.875734 0.482794i \(-0.160378\pi\)
−0.482794 + 0.875734i \(0.660378\pi\)
\(594\) 0 0
\(595\) 7.53787 33.5177i 0.309022 1.37409i
\(596\) −18.6138 25.6197i −0.762451 1.04942i
\(597\) 0 0
\(598\) 1.94565 + 3.81856i 0.0795637 + 0.156153i
\(599\) 6.65542 9.16040i 0.271933 0.374284i −0.651108 0.758985i \(-0.725696\pi\)
0.923041 + 0.384701i \(0.125696\pi\)
\(600\) 0 0
\(601\) −15.6822 5.09545i −0.639689 0.207848i −0.0288267 0.999584i \(-0.509177\pi\)
−0.610862 + 0.791737i \(0.709177\pi\)
\(602\) −9.10384 4.63864i −0.371045 0.189057i
\(603\) 0 0
\(604\) 31.3413 1.27526
\(605\) −23.9378 5.65513i −0.973211 0.229914i
\(606\) 0 0
\(607\) −0.779724 + 4.92298i −0.0316480 + 0.199818i −0.998446 0.0557232i \(-0.982254\pi\)
0.966798 + 0.255541i \(0.0822535\pi\)
\(608\) −18.1028 9.22383i −0.734165 0.374076i
\(609\) 0 0
\(610\) 0.485538 7.56053i 0.0196589 0.306117i
\(611\) 6.33310 8.71677i 0.256210 0.352643i
\(612\) 0 0
\(613\) 8.29879 16.2873i 0.335185 0.657837i −0.660481 0.750843i \(-0.729648\pi\)
0.995666 + 0.0930058i \(0.0296475\pi\)
\(614\) 0.355174 + 0.488855i 0.0143337 + 0.0197286i
\(615\) 0 0
\(616\) −16.9274 + 5.39938i −0.682025 + 0.217547i
\(617\) −15.4942 15.4942i −0.623773 0.623773i 0.322721 0.946494i \(-0.395402\pi\)
−0.946494 + 0.322721i \(0.895402\pi\)
\(618\) 0 0
\(619\) −46.8070 + 15.2085i −1.88133 + 0.611282i −0.895114 + 0.445837i \(0.852906\pi\)
−0.986219 + 0.165445i \(0.947094\pi\)
\(620\) −22.8356 13.5450i −0.917099 0.543982i
\(621\) 0 0
\(622\) −6.82342 + 1.08072i −0.273594 + 0.0433330i
\(623\) 29.0325 14.7928i 1.16316 0.592661i
\(624\) 0 0
\(625\) −24.1819 6.34309i −0.967277 0.253724i
\(626\) 0.361199i 0.0144364i
\(627\) 0 0
\(628\) 26.7363 26.7363i 1.06689 1.06689i
\(629\) −4.95787 + 3.60210i −0.197683 + 0.143625i
\(630\) 0 0
\(631\) −2.79731 + 8.60924i −0.111359 + 0.342729i −0.991170 0.132595i \(-0.957669\pi\)
0.879811 + 0.475324i \(0.157669\pi\)
\(632\) 4.38097 + 27.6604i 0.174266 + 1.10027i
\(633\) 0 0
\(634\) 2.57536 7.92615i 0.102281 0.314788i
\(635\) 16.2291 + 13.4615i 0.644032 + 0.534202i
\(636\) 0 0
\(637\) 3.11534 3.11534i 0.123434 0.123434i
\(638\) −4.22697 0.692856i −0.167347 0.0274304i
\(639\) 0 0
\(640\) −23.4712 9.32821i −0.927779 0.368730i
\(641\) 8.63030 + 26.5613i 0.340876 + 1.04911i 0.963755 + 0.266791i \(0.0859632\pi\)
−0.622878 + 0.782319i \(0.714037\pi\)
\(642\) 0 0
\(643\) −9.51085 + 1.50637i −0.375071 + 0.0594055i −0.341124 0.940018i \(-0.610808\pi\)
−0.0339470 + 0.999424i \(0.510808\pi\)
\(644\) −12.4635 9.05529i −0.491132 0.356828i
\(645\) 0 0
\(646\) 10.0300 3.25893i 0.394624 0.128221i
\(647\) −30.5702 4.84185i −1.20184 0.190353i −0.476770 0.879028i \(-0.658193\pi\)
−0.725070 + 0.688675i \(0.758193\pi\)
\(648\) 0 0
\(649\) −5.32406 0.0286903i −0.208988 0.00112619i
\(650\) −6.45766 3.05928i −0.253290 0.119995i
\(651\) 0 0
\(652\) −8.33705 + 16.3624i −0.326504 + 0.640800i
\(653\) −2.77406 5.44440i −0.108557 0.213056i 0.830337 0.557262i \(-0.188148\pi\)
−0.938894 + 0.344206i \(0.888148\pi\)
\(654\) 0 0
\(655\) 12.6223 11.0989i 0.493194 0.433671i
\(656\) 8.87952 + 2.88513i 0.346687 + 0.112645i
\(657\) 0 0
\(658\) 0.820257 5.17890i 0.0319770 0.201895i
\(659\) −12.0647 −0.469975 −0.234988 0.971998i \(-0.575505\pi\)
−0.234988 + 0.971998i \(0.575505\pi\)
\(660\) 0 0
\(661\) −29.6228 −1.15219 −0.576097 0.817382i \(-0.695425\pi\)
−0.576097 + 0.817382i \(0.695425\pi\)
\(662\) −1.13970 + 7.19579i −0.0442957 + 0.279672i
\(663\) 0 0
\(664\) 11.6746 + 3.79331i 0.453063 + 0.147209i
\(665\) 26.6782 + 1.71328i 1.03454 + 0.0664380i
\(666\) 0 0
\(667\) −3.60048 7.06635i −0.139411 0.273610i
\(668\) 9.03109 17.7245i 0.349423 0.685782i
\(669\) 0 0
\(670\) −1.98079 0.445463i −0.0765244 0.0172097i
\(671\) −7.22862 + 21.8461i −0.279058 + 0.843361i
\(672\) 0 0
\(673\) −4.97380 0.787773i −0.191726 0.0303664i 0.0598329 0.998208i \(-0.480943\pi\)
−0.251559 + 0.967842i \(0.580943\pi\)
\(674\) −4.38316 + 1.42417i −0.168833 + 0.0548571i
\(675\) 0 0
\(676\) −6.32105 4.59251i −0.243117 0.176635i
\(677\) 35.9579 5.69516i 1.38197 0.218883i 0.579208 0.815180i \(-0.303362\pi\)
0.802764 + 0.596297i \(0.203362\pi\)
\(678\) 0 0
\(679\) 9.07388 + 27.9265i 0.348223 + 1.07172i
\(680\) 19.8699 8.56782i 0.761976 0.328561i
\(681\) 0 0
\(682\) −7.67804 7.76124i −0.294007 0.297193i
\(683\) 8.07353 8.07353i 0.308925 0.308925i −0.535567 0.844492i \(-0.679902\pi\)
0.844492 + 0.535567i \(0.179902\pi\)
\(684\) 0 0
\(685\) 21.9407 26.4516i 0.838310 1.01066i
\(686\) −2.41816 + 7.44232i −0.0923257 + 0.284149i
\(687\) 0 0
\(688\) 2.94716 + 18.6076i 0.112359 + 0.709408i
\(689\) −1.33638 + 4.11297i −0.0509122 + 0.156692i
\(690\) 0 0
\(691\) 9.61076 6.98263i 0.365611 0.265632i −0.389778 0.920909i \(-0.627448\pi\)
0.755388 + 0.655277i \(0.227448\pi\)
\(692\) 16.4445 16.4445i 0.625125 0.625125i
\(693\) 0 0
\(694\) 9.39538i 0.356644i
\(695\) 8.54670 3.68530i 0.324195 0.139791i
\(696\) 0 0
\(697\) −16.6886 + 8.50329i −0.632127 + 0.322085i
\(698\) −7.17362 + 1.13619i −0.271526 + 0.0430054i
\(699\) 0 0
\(700\) 25.6760 0.740076i 0.970461 0.0279722i
\(701\) 25.2475 8.20342i 0.953586 0.309839i 0.209414 0.977827i \(-0.432844\pi\)
0.744172 + 0.667988i \(0.232844\pi\)
\(702\) 0 0
\(703\) −3.37197 3.37197i −0.127176 0.127176i
\(704\) 7.56826 + 5.56122i 0.285239 + 0.209596i
\(705\) 0 0
\(706\) 0.724212 + 0.996792i 0.0272561 + 0.0375148i
\(707\) 2.52774 4.96097i 0.0950654 0.186576i
\(708\) 0 0
\(709\) 10.4984 14.4498i 0.394275 0.542673i −0.565021 0.825077i \(-0.691132\pi\)
0.959296 + 0.282404i \(0.0911318\pi\)
\(710\) −3.13090 0.201066i −0.117500 0.00754589i
\(711\) 0 0
\(712\) 18.2861 + 9.31723i 0.685301 + 0.349178i
\(713\) 3.16212 19.9648i 0.118422 0.747689i
\(714\) 0 0
\(715\) 16.6300 + 13.9460i 0.621927 + 0.521549i
\(716\) 3.92246 0.146589
\(717\) 0 0
\(718\) 3.69497 + 1.88268i 0.137895 + 0.0702611i
\(719\) −31.1609 10.1248i −1.16211 0.377592i −0.336416 0.941714i \(-0.609215\pi\)
−0.825691 + 0.564122i \(0.809215\pi\)
\(720\) 0 0
\(721\) 10.5790 14.5608i 0.393984 0.542272i
\(722\) −0.486681 0.955166i −0.0181124 0.0355476i
\(723\) 0 0
\(724\) −4.48818 6.17744i −0.166802 0.229583i
\(725\) 11.9501 + 5.66127i 0.443814 + 0.210254i
\(726\) 0 0
\(727\) 0.964903 + 0.964903i 0.0357863 + 0.0357863i 0.724773 0.688987i \(-0.241944\pi\)
−0.688987 + 0.724773i \(0.741944\pi\)
\(728\) 15.4848 + 2.45255i 0.573905 + 0.0908976i
\(729\) 0 0
\(730\) −8.24576 + 13.9015i −0.305189 + 0.514519i
\(731\) −30.5763 22.2150i −1.13091 0.821651i
\(732\) 0 0
\(733\) −10.5079 + 5.35405i −0.388119 + 0.197756i −0.637151 0.770739i \(-0.719887\pi\)
0.249033 + 0.968495i \(0.419887\pi\)
\(734\) −3.20364 9.85979i −0.118249 0.363932i
\(735\) 0 0
\(736\) 14.8626i 0.547842i
\(737\) 5.47925 + 2.82911i 0.201831 + 0.104212i
\(738\) 0 0
\(739\) 34.8645 25.3305i 1.28251 0.931798i 0.282884 0.959154i \(-0.408709\pi\)
0.999626 + 0.0273561i \(0.00870880\pi\)
\(740\) −3.52670 2.92527i −0.129644 0.107535i
\(741\) 0 0
\(742\) 0.329231 + 2.07868i 0.0120865 + 0.0763109i
\(743\) 5.93105 + 37.4472i 0.217589 + 1.37380i 0.818509 + 0.574494i \(0.194801\pi\)
−0.600920 + 0.799309i \(0.705199\pi\)
\(744\) 0 0
\(745\) 3.73100 + 40.0252i 0.136693 + 1.46641i
\(746\) 1.43840 1.04506i 0.0526636 0.0382623i
\(747\) 0 0
\(748\) −30.4245 + 4.65085i −1.11243 + 0.170052i
\(749\) 1.27018i 0.0464114i
\(750\) 0 0
\(751\) 10.7881 + 33.2025i 0.393665 + 1.21158i 0.929996 + 0.367569i \(0.119810\pi\)
−0.536331 + 0.844008i \(0.680190\pi\)
\(752\) −8.61441 + 4.38926i −0.314135 + 0.160060i
\(753\) 0 0
\(754\) 3.05772 + 2.22157i 0.111356 + 0.0809047i
\(755\) −34.2178 20.2965i −1.24531 0.738664i
\(756\) 0 0
\(757\) 34.0513 + 5.39320i 1.23762 + 0.196019i 0.740734 0.671798i \(-0.234478\pi\)
0.496883 + 0.867818i \(0.334478\pi\)
\(758\) −5.72618 5.72618i −0.207984 0.207984i
\(759\) 0 0
\(760\) 9.00370 + 14.2284i 0.326598 + 0.516119i
\(761\) 8.17878 + 11.2571i 0.296481 + 0.408071i 0.931106 0.364750i \(-0.118845\pi\)
−0.634625 + 0.772820i \(0.718845\pi\)
\(762\) 0 0
\(763\) −12.5342 24.5997i −0.453767 0.890568i
\(764\) 4.22213 5.81126i 0.152751 0.210244i
\(765\) 0 0
\(766\) 5.26689 + 1.71132i 0.190300 + 0.0618323i
\(767\) 4.18586 + 2.13280i 0.151143 + 0.0770110i
\(768\) 0 0
\(769\) −13.3273 −0.480596 −0.240298 0.970699i \(-0.577245\pi\)
−0.240298 + 0.970699i \(0.577245\pi\)
\(770\) 10.2921 + 2.37296i 0.370903 + 0.0855154i
\(771\) 0 0
\(772\) 5.75948 36.3639i 0.207288 1.30877i
\(773\) −11.1372 5.67471i −0.400579 0.204105i 0.242082 0.970256i \(-0.422170\pi\)
−0.642661 + 0.766151i \(0.722170\pi\)
\(774\) 0 0
\(775\) 16.1597 + 29.5764i 0.580475 + 1.06241i
\(776\) −10.8709 + 14.9625i −0.390243 + 0.537124i
\(777\) 0 0
\(778\) 0.181256 0.355735i 0.00649835 0.0127537i
\(779\) −8.56685 11.7913i −0.306939 0.422465i
\(780\) 0 0
\(781\) 9.04671 + 2.99345i 0.323717 + 0.107114i
\(782\) 5.45516 + 5.45516i 0.195076 + 0.195076i
\(783\) 0 0
\(784\) −3.75988 + 1.22166i −0.134281 + 0.0436306i
\(785\) −46.5044 + 11.8759i −1.65981 + 0.423868i
\(786\) 0 0
\(787\) −6.21530 + 0.984406i −0.221551 + 0.0350903i −0.266223 0.963911i \(-0.585776\pi\)
0.0446718 + 0.999002i \(0.485776\pi\)
\(788\) −0.474521 + 0.241781i −0.0169041 + 0.00861308i
\(789\) 0 0
\(790\) 6.14861 15.4708i 0.218758 0.550427i
\(791\) 59.1055i 2.10155i
\(792\) 0 0
\(793\) 14.3574 14.3574i 0.509846 0.509846i
\(794\) 6.62104 4.81046i 0.234972 0.170717i
\(795\) 0 0
\(796\) −6.03213 + 18.5650i −0.213803 + 0.658019i
\(797\) 0.276667 + 1.74680i 0.00980003 + 0.0618750i 0.992104 0.125420i \(-0.0400279\pi\)
−0.982304 + 0.187295i \(0.940028\pi\)
\(798\) 0 0
\(799\) 5.99354 18.4462i 0.212036 0.652581i
\(800\) 15.1375 + 19.6202i 0.535190 + 0.693680i
\(801\) 0 0
\(802\) −9.82669 + 9.82669i −0.346992 + 0.346992i
\(803\) 34.9001 34.5259i 1.23160 1.21839i
\(804\) 0 0
\(805\) 7.74328 + 17.9577i 0.272915 + 0.632925i
\(806\) 2.97684 + 9.16176i 0.104855 + 0.322709i
\(807\) 0 0
\(808\) 3.46372 0.548599i 0.121853 0.0192996i
\(809\) −14.9294 10.8468i −0.524889 0.381354i 0.293553 0.955943i \(-0.405162\pi\)
−0.818443 + 0.574588i \(0.805162\pi\)
\(810\) 0 0
\(811\) −12.4057 + 4.03086i −0.435624 + 0.141543i −0.518616 0.855007i \(-0.673552\pi\)
0.0829918 + 0.996550i \(0.473552\pi\)
\(812\) −13.4192 2.12539i −0.470920 0.0745865i
\(813\) 0 0
\(814\) −1.09921 1.53020i −0.0385273 0.0536336i
\(815\) 19.6984 12.4651i 0.690004 0.436633i
\(816\) 0 0
\(817\) 13.3517 26.2042i 0.467117 0.916768i
\(818\) 0.537108 + 1.05413i 0.0187796 + 0.0368569i
\(819\) 0 0
\(820\) −9.24750 10.5168i −0.322937 0.367261i
\(821\) 24.7703 + 8.04835i 0.864489 + 0.280889i 0.707502 0.706711i \(-0.249822\pi\)
0.156987 + 0.987601i \(0.449822\pi\)
\(822\) 0 0
\(823\) 0.785962 4.96237i 0.0273969 0.172977i −0.970196 0.242322i \(-0.922091\pi\)
0.997593 + 0.0693449i \(0.0220909\pi\)
\(824\) 11.3361 0.394912
\(825\) 0 0
\(826\) 2.28625 0.0795488
\(827\) −1.90393 + 12.0210i −0.0662062 + 0.418010i 0.932218 + 0.361897i \(0.117871\pi\)
−0.998424 + 0.0561130i \(0.982129\pi\)
\(828\) 0 0
\(829\) −10.4727 3.40277i −0.363730 0.118183i 0.121449 0.992598i \(-0.461246\pi\)
−0.485180 + 0.874415i \(0.661246\pi\)
\(830\) −4.81862 5.48000i −0.167257 0.190213i
\(831\) 0 0
\(832\) −3.76227 7.38386i −0.130433 0.255989i
\(833\) 3.60057 7.06651i 0.124752 0.244840i
\(834\) 0 0
\(835\) −21.3382 + 13.5028i −0.738440 + 0.467283i
\(836\) −7.27804 22.8171i −0.251716 0.789148i
\(837\) 0 0
\(838\) 7.92807 + 1.25568i 0.273871 + 0.0433769i
\(839\) −8.83685 + 2.87127i −0.305082 + 0.0991272i −0.457557 0.889180i \(-0.651276\pi\)
0.152475 + 0.988307i \(0.451276\pi\)
\(840\) 0 0
\(841\) 17.8031 + 12.9347i 0.613900 + 0.446024i
\(842\) −6.01384 + 0.952498i −0.207251 + 0.0328253i
\(843\) 0 0
\(844\) −4.82040 14.8357i −0.165925 0.510665i
\(845\) 3.92711 + 9.10749i 0.135097 + 0.313307i
\(846\) 0 0
\(847\) −28.4253 14.8715i −0.976706 0.510990i
\(848\) 2.74398 2.74398i 0.0942286 0.0942286i
\(849\) 0 0
\(850\) −12.7575 1.64535i −0.437577 0.0564352i
\(851\) 1.07798 3.31768i 0.0369527 0.113729i
\(852\) 0 0
\(853\) 4.23097 + 26.7133i 0.144866 + 0.914645i 0.947867 + 0.318667i \(0.103235\pi\)
−0.803001 + 0.595978i \(0.796765\pi\)
\(854\) 3.05346 9.39759i 0.104487 0.321579i
\(855\) 0 0
\(856\) −0.647232 + 0.470242i −0.0221220 + 0.0160725i
\(857\) −33.1497 + 33.1497i −1.13237 + 1.13237i −0.142591 + 0.989782i \(0.545543\pi\)
−0.989782 + 0.142591i \(0.954457\pi\)
\(858\) 0 0
\(859\) 47.2517i 1.61221i −0.591775 0.806103i \(-0.701573\pi\)
0.591775 0.806103i \(-0.298427\pi\)
\(860\) 10.4367 26.2604i 0.355890 0.895472i
\(861\) 0 0
\(862\) 8.63057 4.39749i 0.293958 0.149779i
\(863\) −15.3690 + 2.43422i −0.523168 + 0.0828617i −0.412432 0.910988i \(-0.635321\pi\)
−0.110736 + 0.993850i \(0.535321\pi\)
\(864\) 0 0
\(865\) −28.6031 + 7.30440i −0.972534 + 0.248357i
\(866\) 13.2947 4.31972i 0.451773 0.146790i
\(867\) 0 0
\(868\) −24.4863 24.4863i −0.831118 0.831118i
\(869\) −29.9413 + 40.7470i −1.01569 + 1.38225i
\(870\) 0 0
\(871\) −3.19826 4.40203i −0.108369 0.149157i
\(872\) 7.89464 15.4941i 0.267346 0.524696i
\(873\) 0 0
\(874\) −3.52861 + 4.85671i −0.119357 + 0.164281i
\(875\) −28.5118 15.8196i −0.963875 0.534801i
\(876\) 0 0
\(877\) −25.9562 13.2254i −0.876480 0.446589i −0.0429592 0.999077i \(-0.513679\pi\)
−0.833521 + 0.552488i \(0.813679\pi\)
\(878\) −0.238560 + 1.50621i −0.00805101 + 0.0508321i
\(879\) 0 0
\(880\) −7.61476 17.9247i −0.256693 0.604240i
\(881\) −4.18815 −0.141102 −0.0705512 0.997508i \(-0.522476\pi\)
−0.0705512 + 0.997508i \(0.522476\pi\)
\(882\) 0 0
\(883\) −40.7349 20.7555i −1.37084 0.698477i −0.395351 0.918530i \(-0.629377\pi\)
−0.975488 + 0.220053i \(0.929377\pi\)
\(884\) 25.8286 + 8.39221i 0.868709 + 0.282261i
\(885\) 0 0
\(886\) −9.11003 + 12.5389i −0.306057 + 0.421252i
\(887\) 15.6438 + 30.7027i 0.525267 + 1.03090i 0.989412 + 0.145136i \(0.0463619\pi\)
−0.464144 + 0.885760i \(0.653638\pi\)
\(888\) 0 0
\(889\) 16.1646 + 22.2487i 0.542143 + 0.746196i
\(890\) −6.52371 10.3093i −0.218675 0.345569i
\(891\) 0 0
\(892\) 7.70048 + 7.70048i 0.257831 + 0.257831i
\(893\) 14.9068 + 2.36100i 0.498836 + 0.0790078i
\(894\) 0 0
\(895\) −4.28246 2.54016i −0.143147 0.0849081i
\(896\) −26.6503 19.3626i −0.890323 0.646857i
\(897\) 0 0
\(898\) −15.2266 + 7.75836i −0.508119 + 0.258900i
\(899\) −5.50871 16.9541i −0.183726 0.565450i
\(900\) 0 0
\(901\) 7.78489i 0.259352i
\(902\) −2.58659 5.14481i −0.0861239 0.171303i
\(903\) 0 0
\(904\) 30.1177 21.8818i 1.00170 0.727778i
\(905\) 0.899623 + 9.65092i 0.0299045 + 0.320807i
\(906\) 0 0
\(907\) 6.02474 + 38.0387i 0.200048 + 1.26306i 0.859433 + 0.511249i \(0.170817\pi\)
−0.659384 + 0.751806i \(0.729183\pi\)
\(908\) 0.913965 + 5.77055i 0.0303310 + 0.191502i
\(909\) 0 0
\(910\) −7.17330 5.95000i −0.237793 0.197241i
\(911\) −29.8280 + 21.6713i −0.988244 + 0.718002i −0.959536 0.281586i \(-0.909139\pi\)
−0.0287085 + 0.999588i \(0.509139\pi\)
\(912\) 0 0
\(913\) 9.95566 + 19.8022i 0.329484 + 0.655356i
\(914\) 2.49056i 0.0823805i
\(915\) 0 0
\(916\) −2.90677 8.94611i −0.0960423 0.295588i
\(917\) 19.5326 9.95237i 0.645024 0.328656i
\(918\) 0 0
\(919\) 24.5973 + 17.8710i 0.811392 + 0.589510i 0.914234 0.405187i \(-0.132794\pi\)
−0.102842 + 0.994698i \(0.532794\pi\)
\(920\) −6.28381 + 10.5939i −0.207171 + 0.349270i
\(921\) 0 0
\(922\) −6.01478 0.952647i −0.198086 0.0313738i
\(923\) −5.94554 5.94554i −0.195700 0.195700i
\(924\) 0 0
\(925\) 1.95599 + 5.47762i 0.0643126 + 0.180103i
\(926\) 7.82350 + 10.7681i 0.257096 + 0.353862i
\(927\) 0 0
\(928\) −5.95063 11.6788i −0.195339 0.383374i
\(929\) 13.6936 18.8477i 0.449273 0.618372i −0.522968 0.852352i \(-0.675175\pi\)
0.972241 + 0.233981i \(0.0751752\pi\)
\(930\) 0 0
\(931\) 5.86938 + 1.90708i 0.192361 + 0.0625020i
\(932\) −6.93458 3.53335i −0.227150 0.115739i
\(933\) 0 0
\(934\) 19.3837 0.634254
\(935\) 36.2287 + 14.6250i 1.18481 + 0.478290i
\(936\) 0 0
\(937\) 1.25828 7.94449i 0.0411063 0.259535i −0.958573 0.284846i \(-0.908058\pi\)
0.999680 + 0.0253108i \(0.00805753\pi\)
\(938\) −2.35937 1.20216i −0.0770362 0.0392519i
\(939\) 0 0
\(940\) 14.4719 + 0.929389i 0.472023 + 0.0303133i
\(941\) −28.1490 + 38.7438i −0.917631 + 1.26301i 0.0468615 + 0.998901i \(0.485078\pi\)
−0.964493 + 0.264110i \(0.914922\pi\)
\(942\) 0 0
\(943\) 4.84037 9.49976i 0.157624 0.309355i
\(944\) −2.47782 3.41042i −0.0806460 0.111000i
\(945\) 0 0
\(946\) 6.88039 9.36352i 0.223701 0.304434i
\(947\) −9.38618 9.38618i −0.305010 0.305010i 0.537960 0.842970i \(-0.319195\pi\)
−0.842970 + 0.537960i \(0.819195\pi\)
\(948\) 0 0
\(949\) −41.1978 + 13.3860i −1.33734 + 0.434528i
\(950\) −0.288388 10.0053i −0.00935654 0.324613i
\(951\) 0 0
\(952\) 27.8746 4.41491i 0.903422 0.143088i
\(953\) −47.4428 + 24.1733i −1.53682 + 0.783051i −0.998228 0.0595128i \(-0.981045\pi\)
−0.538597 + 0.842564i \(0.681045\pi\)
\(954\) 0 0
\(955\) −8.37297 + 3.61039i −0.270943 + 0.116829i
\(956\) 18.4130i 0.595519i
\(957\) 0 0
\(958\) 13.2098 13.2098i 0.426790 0.426790i
\(959\) 36.2628 26.3465i 1.17099 0.850772i
\(960\) 0 0
\(961\) 4.46097 13.7294i 0.143902 0.442885i
\(962\) 0.260069 + 1.64201i 0.00838495 + 0.0529405i
\(963\) 0 0
\(964\) −15.1642 + 46.6706i −0.488406 + 1.50316i
\(965\) −29.8371 + 35.9716i −0.960491 + 1.15797i
\(966\) 0 0
\(967\) −38.6475 + 38.6475i −1.24282 + 1.24282i −0.283994 + 0.958826i \(0.591660\pi\)
−0.958826 + 0.283994i \(0.908340\pi\)
\(968\) −2.94563 19.9901i −0.0946763 0.642505i
\(969\) 0 0
\(970\) 10.0958 4.35325i 0.324155 0.139774i
\(971\) −2.55556 7.86521i −0.0820119 0.252407i 0.901640 0.432487i \(-0.142364\pi\)
−0.983652 + 0.180081i \(0.942364\pi\)
\(972\) 0 0
\(973\) 11.9898 1.89900i 0.384375 0.0608790i
\(974\) 10.7378 + 7.80149i 0.344062 + 0.249976i
\(975\) 0 0
\(976\) −17.3278 + 5.63014i −0.554649 + 0.180216i
\(977\) 54.0805 + 8.56551i 1.73019 + 0.274035i 0.940579 0.339575i \(-0.110283\pi\)
0.789610 + 0.613610i \(0.210283\pi\)
\(978\) 0 0
\(979\) 11.2607 + 35.3029i 0.359892 + 1.12829i
\(980\) 5.78535 + 1.30108i 0.184806 + 0.0415614i
\(981\) 0 0
\(982\) −0.880571 + 1.72822i −0.0281001 + 0.0551496i
\(983\) 6.19202 + 12.1525i 0.197495 + 0.387606i 0.968422 0.249318i \(-0.0802065\pi\)
−0.770927 + 0.636924i \(0.780207\pi\)
\(984\) 0 0
\(985\) 0.674648 + 0.0433259i 0.0214961 + 0.00138048i
\(986\) 6.47069 + 2.10245i 0.206069 + 0.0669558i
\(987\) 0 0
\(988\) −3.30589 + 20.8726i −0.105174 + 0.664045i
\(989\) 21.5139 0.684102
\(990\) 0 0
\(991\) 6.43457 0.204401 0.102200 0.994764i \(-0.467412\pi\)
0.102200 + 0.994764i \(0.467412\pi\)
\(992\) 5.22613 32.9965i 0.165930 1.04764i
\(993\) 0 0
\(994\) −3.89164 1.26447i −0.123435 0.0401066i
\(995\) 18.6083 16.3625i 0.589924 0.518726i
\(996\) 0 0
\(997\) −9.65934 18.9575i −0.305914 0.600391i 0.685956 0.727643i \(-0.259384\pi\)
−0.991870 + 0.127252i \(0.959384\pi\)
\(998\) 1.42445 2.79564i 0.0450901 0.0884943i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 495.2.bj.a.217.3 32
3.2 odd 2 55.2.l.a.52.2 yes 32
5.3 odd 4 inner 495.2.bj.a.118.2 32
11.7 odd 10 inner 495.2.bj.a.172.2 32
12.11 even 2 880.2.cm.a.657.3 32
15.2 even 4 275.2.bm.b.118.2 32
15.8 even 4 55.2.l.a.8.3 yes 32
15.14 odd 2 275.2.bm.b.107.3 32
33.2 even 10 605.2.e.b.362.8 32
33.5 odd 10 605.2.m.d.112.2 32
33.8 even 10 605.2.m.d.457.2 32
33.14 odd 10 605.2.m.c.457.3 32
33.17 even 10 605.2.m.c.112.3 32
33.20 odd 10 605.2.e.b.362.9 32
33.26 odd 10 605.2.m.e.282.2 32
33.29 even 10 55.2.l.a.7.3 32
33.32 even 2 605.2.m.e.602.3 32
55.18 even 20 inner 495.2.bj.a.73.3 32
60.23 odd 4 880.2.cm.a.833.2 32
132.95 odd 10 880.2.cm.a.337.2 32
165.8 odd 20 605.2.m.d.578.2 32
165.29 even 10 275.2.bm.b.7.2 32
165.38 even 20 605.2.m.d.233.2 32
165.53 even 20 605.2.e.b.483.8 32
165.62 odd 20 275.2.bm.b.18.3 32
165.68 odd 20 605.2.e.b.483.9 32
165.83 odd 20 605.2.m.c.233.3 32
165.98 odd 4 605.2.m.e.118.2 32
165.113 even 20 605.2.m.c.578.3 32
165.128 odd 20 55.2.l.a.18.2 yes 32
165.158 even 20 605.2.m.e.403.3 32
660.623 even 20 880.2.cm.a.513.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.2.l.a.7.3 32 33.29 even 10
55.2.l.a.8.3 yes 32 15.8 even 4
55.2.l.a.18.2 yes 32 165.128 odd 20
55.2.l.a.52.2 yes 32 3.2 odd 2
275.2.bm.b.7.2 32 165.29 even 10
275.2.bm.b.18.3 32 165.62 odd 20
275.2.bm.b.107.3 32 15.14 odd 2
275.2.bm.b.118.2 32 15.2 even 4
495.2.bj.a.73.3 32 55.18 even 20 inner
495.2.bj.a.118.2 32 5.3 odd 4 inner
495.2.bj.a.172.2 32 11.7 odd 10 inner
495.2.bj.a.217.3 32 1.1 even 1 trivial
605.2.e.b.362.8 32 33.2 even 10
605.2.e.b.362.9 32 33.20 odd 10
605.2.e.b.483.8 32 165.53 even 20
605.2.e.b.483.9 32 165.68 odd 20
605.2.m.c.112.3 32 33.17 even 10
605.2.m.c.233.3 32 165.83 odd 20
605.2.m.c.457.3 32 33.14 odd 10
605.2.m.c.578.3 32 165.113 even 20
605.2.m.d.112.2 32 33.5 odd 10
605.2.m.d.233.2 32 165.38 even 20
605.2.m.d.457.2 32 33.8 even 10
605.2.m.d.578.2 32 165.8 odd 20
605.2.m.e.118.2 32 165.98 odd 4
605.2.m.e.282.2 32 33.26 odd 10
605.2.m.e.403.3 32 165.158 even 20
605.2.m.e.602.3 32 33.32 even 2
880.2.cm.a.337.2 32 132.95 odd 10
880.2.cm.a.513.3 32 660.623 even 20
880.2.cm.a.657.3 32 12.11 even 2
880.2.cm.a.833.2 32 60.23 odd 4