Properties

Label 325.2.c.g.51.4
Level $325$
Weight $2$
Character 325.51
Analytic conductor $2.595$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(51,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.51");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5089536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 16x^{2} - 24x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 51.4
Root \(-1.33641 + 1.33641i\) of defining polynomial
Character \(\chi\) \(=\) 325.51
Dual form 325.2.c.g.51.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.571993i q^{2} +0.428007 q^{3} +1.67282 q^{4} +0.244817i q^{6} +2.67282i q^{7} +2.10083i q^{8} -2.81681 q^{9} +5.10083i q^{11} +0.715980 q^{12} +(1.57199 - 3.24482i) q^{13} -1.52884 q^{14} +2.14399 q^{16} +5.34565 q^{17} -1.61120i q^{18} -6.24482i q^{19} +1.14399i q^{21} -2.91764 q^{22} -2.42801 q^{23} +0.899170i q^{24} +(1.85601 + 0.899170i) q^{26} -2.48963 q^{27} +4.47116i q^{28} +2.67282 q^{29} +0.244817i q^{31} +5.42801i q^{32} +2.18319i q^{33} +3.05767i q^{34} -4.71203 q^{36} -3.32718i q^{37} +3.57199 q^{38} +(0.672824 - 1.38880i) q^{39} -6.48963i q^{41} -0.654353 q^{42} -10.9176 q^{43} +8.53279i q^{44} -1.38880i q^{46} -2.67282i q^{47} +0.917641 q^{48} -0.143987 q^{49} +2.28797 q^{51} +(2.62967 - 5.42801i) q^{52} +4.20166 q^{53} -1.42405i q^{54} -5.61515 q^{56} -2.67282i q^{57} +1.52884i q^{58} -0.899170i q^{59} -5.81681 q^{61} -0.140034 q^{62} -7.52884i q^{63} +1.18319 q^{64} -1.24877 q^{66} +2.18319i q^{67} +8.94233 q^{68} -1.03920 q^{69} -6.24482i q^{71} -5.91764i q^{72} -10.9608i q^{73} +1.90312 q^{74} -10.4465i q^{76} -13.6336 q^{77} +(0.794386 + 0.384851i) q^{78} -3.63362 q^{79} +7.38485 q^{81} +3.71203 q^{82} +9.81681i q^{83} +1.91369i q^{84} -6.24482i q^{86} +1.14399 q^{87} -10.7160 q^{88} +7.63362i q^{89} +(8.67282 + 4.20166i) q^{91} -4.06163 q^{92} +0.104783i q^{93} +1.52884 q^{94} +2.32322i q^{96} -11.3456i q^{97} -0.0823593i q^{98} -14.3681i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{3} - 10 q^{4} + 6 q^{9} + 8 q^{13} + 8 q^{14} + 10 q^{16} - 8 q^{17} + 24 q^{22} - 16 q^{23} + 14 q^{26} + 28 q^{27} - 4 q^{29} - 34 q^{36} + 20 q^{38} - 16 q^{39} - 44 q^{42} - 24 q^{43} - 36 q^{48}+ \cdots - 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/325\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(301\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.571993i 0.404460i 0.979338 + 0.202230i \(0.0648189\pi\)
−0.979338 + 0.202230i \(0.935181\pi\)
\(3\) 0.428007 0.247110 0.123555 0.992338i \(-0.460570\pi\)
0.123555 + 0.992338i \(0.460570\pi\)
\(4\) 1.67282 0.836412
\(5\) 0 0
\(6\) 0.244817i 0.0999461i
\(7\) 2.67282i 1.01023i 0.863051 + 0.505116i \(0.168550\pi\)
−0.863051 + 0.505116i \(0.831450\pi\)
\(8\) 2.10083i 0.742756i
\(9\) −2.81681 −0.938937
\(10\) 0 0
\(11\) 5.10083i 1.53796i 0.639274 + 0.768979i \(0.279235\pi\)
−0.639274 + 0.768979i \(0.720765\pi\)
\(12\) 0.715980 0.206686
\(13\) 1.57199 3.24482i 0.435992 0.899950i
\(14\) −1.52884 −0.408599
\(15\) 0 0
\(16\) 2.14399 0.535997
\(17\) 5.34565 1.29651 0.648255 0.761423i \(-0.275499\pi\)
0.648255 + 0.761423i \(0.275499\pi\)
\(18\) 1.61120i 0.379763i
\(19\) 6.24482i 1.43266i −0.697762 0.716330i \(-0.745821\pi\)
0.697762 0.716330i \(-0.254179\pi\)
\(20\) 0 0
\(21\) 1.14399i 0.249638i
\(22\) −2.91764 −0.622043
\(23\) −2.42801 −0.506274 −0.253137 0.967430i \(-0.581462\pi\)
−0.253137 + 0.967430i \(0.581462\pi\)
\(24\) 0.899170i 0.183542i
\(25\) 0 0
\(26\) 1.85601 + 0.899170i 0.363994 + 0.176342i
\(27\) −2.48963 −0.479130
\(28\) 4.47116i 0.844970i
\(29\) 2.67282 0.496331 0.248165 0.968718i \(-0.420172\pi\)
0.248165 + 0.968718i \(0.420172\pi\)
\(30\) 0 0
\(31\) 0.244817i 0.0439704i 0.999758 + 0.0219852i \(0.00699867\pi\)
−0.999758 + 0.0219852i \(0.993001\pi\)
\(32\) 5.42801i 0.959545i
\(33\) 2.18319i 0.380045i
\(34\) 3.05767i 0.524387i
\(35\) 0 0
\(36\) −4.71203 −0.785338
\(37\) 3.32718i 0.546984i −0.961874 0.273492i \(-0.911821\pi\)
0.961874 0.273492i \(-0.0881788\pi\)
\(38\) 3.57199 0.579454
\(39\) 0.672824 1.38880i 0.107738 0.222387i
\(40\) 0 0
\(41\) 6.48963i 1.01351i −0.862090 0.506755i \(-0.830845\pi\)
0.862090 0.506755i \(-0.169155\pi\)
\(42\) −0.654353 −0.100969
\(43\) −10.9176 −1.66492 −0.832462 0.554082i \(-0.813070\pi\)
−0.832462 + 0.554082i \(0.813070\pi\)
\(44\) 8.53279i 1.28637i
\(45\) 0 0
\(46\) 1.38880i 0.204768i
\(47\) 2.67282i 0.389871i −0.980816 0.194936i \(-0.937550\pi\)
0.980816 0.194936i \(-0.0624498\pi\)
\(48\) 0.917641 0.132450
\(49\) −0.143987 −0.0205695
\(50\) 0 0
\(51\) 2.28797 0.320380
\(52\) 2.62967 5.42801i 0.364669 0.752729i
\(53\) 4.20166 0.577143 0.288571 0.957458i \(-0.406820\pi\)
0.288571 + 0.957458i \(0.406820\pi\)
\(54\) 1.42405i 0.193789i
\(55\) 0 0
\(56\) −5.61515 −0.750356
\(57\) 2.67282i 0.354024i
\(58\) 1.52884i 0.200746i
\(59\) 0.899170i 0.117062i −0.998286 0.0585310i \(-0.981358\pi\)
0.998286 0.0585310i \(-0.0186416\pi\)
\(60\) 0 0
\(61\) −5.81681 −0.744766 −0.372383 0.928079i \(-0.621459\pi\)
−0.372383 + 0.928079i \(0.621459\pi\)
\(62\) −0.140034 −0.0177843
\(63\) 7.52884i 0.948544i
\(64\) 1.18319 0.147899
\(65\) 0 0
\(66\) −1.24877 −0.153713
\(67\) 2.18319i 0.266719i 0.991068 + 0.133360i \(0.0425765\pi\)
−0.991068 + 0.133360i \(0.957423\pi\)
\(68\) 8.94233 1.08442
\(69\) −1.03920 −0.125105
\(70\) 0 0
\(71\) 6.24482i 0.741123i −0.928808 0.370562i \(-0.879165\pi\)
0.928808 0.370562i \(-0.120835\pi\)
\(72\) 5.91764i 0.697401i
\(73\) 10.9608i 1.28286i −0.767180 0.641432i \(-0.778341\pi\)
0.767180 0.641432i \(-0.221659\pi\)
\(74\) 1.90312 0.221233
\(75\) 0 0
\(76\) 10.4465i 1.19829i
\(77\) −13.6336 −1.55370
\(78\) 0.794386 + 0.384851i 0.0899465 + 0.0435758i
\(79\) −3.63362 −0.408814 −0.204407 0.978886i \(-0.565527\pi\)
−0.204407 + 0.978886i \(0.565527\pi\)
\(80\) 0 0
\(81\) 7.38485 0.820539
\(82\) 3.71203 0.409925
\(83\) 9.81681i 1.07753i 0.842455 + 0.538767i \(0.181110\pi\)
−0.842455 + 0.538767i \(0.818890\pi\)
\(84\) 1.91369i 0.208800i
\(85\) 0 0
\(86\) 6.24482i 0.673396i
\(87\) 1.14399 0.122648
\(88\) −10.7160 −1.14233
\(89\) 7.63362i 0.809162i 0.914502 + 0.404581i \(0.132583\pi\)
−0.914502 + 0.404581i \(0.867417\pi\)
\(90\) 0 0
\(91\) 8.67282 + 4.20166i 0.909159 + 0.440454i
\(92\) −4.06163 −0.423454
\(93\) 0.104783i 0.0108655i
\(94\) 1.52884 0.157688
\(95\) 0 0
\(96\) 2.32322i 0.237113i
\(97\) 11.3456i 1.15198i −0.817458 0.575988i \(-0.804617\pi\)
0.817458 0.575988i \(-0.195383\pi\)
\(98\) 0.0823593i 0.00831955i
\(99\) 14.3681i 1.44405i
\(100\) 0 0
\(101\) −10.8560 −1.08021 −0.540107 0.841596i \(-0.681616\pi\)
−0.540107 + 0.841596i \(0.681616\pi\)
\(102\) 1.30871i 0.129581i
\(103\) 10.6297 1.04737 0.523686 0.851911i \(-0.324556\pi\)
0.523686 + 0.851911i \(0.324556\pi\)
\(104\) 6.81681 + 3.30249i 0.668443 + 0.323836i
\(105\) 0 0
\(106\) 2.40332i 0.233431i
\(107\) −0.140034 −0.0135376 −0.00676878 0.999977i \(-0.502155\pi\)
−0.00676878 + 0.999977i \(0.502155\pi\)
\(108\) −4.16472 −0.400750
\(109\) 9.05767i 0.867568i −0.901017 0.433784i \(-0.857178\pi\)
0.901017 0.433784i \(-0.142822\pi\)
\(110\) 0 0
\(111\) 1.42405i 0.135165i
\(112\) 5.73050i 0.541481i
\(113\) −12.9793 −1.22099 −0.610493 0.792021i \(-0.709029\pi\)
−0.610493 + 0.792021i \(0.709029\pi\)
\(114\) 1.52884 0.143189
\(115\) 0 0
\(116\) 4.47116 0.415137
\(117\) −4.42801 + 9.14003i −0.409369 + 0.844996i
\(118\) 0.514319 0.0473469
\(119\) 14.2880i 1.30978i
\(120\) 0 0
\(121\) −15.0185 −1.36532
\(122\) 3.32718i 0.301228i
\(123\) 2.77761i 0.250448i
\(124\) 0.409536i 0.0367774i
\(125\) 0 0
\(126\) 4.30644 0.383649
\(127\) 12.0616 1.07030 0.535148 0.844758i \(-0.320256\pi\)
0.535148 + 0.844758i \(0.320256\pi\)
\(128\) 11.5328i 1.01936i
\(129\) −4.67282 −0.411419
\(130\) 0 0
\(131\) 7.63362 0.666953 0.333476 0.942758i \(-0.391778\pi\)
0.333476 + 0.942758i \(0.391778\pi\)
\(132\) 3.65209i 0.317874i
\(133\) 16.6913 1.44732
\(134\) −1.24877 −0.107877
\(135\) 0 0
\(136\) 11.2303i 0.962990i
\(137\) 3.43196i 0.293212i 0.989195 + 0.146606i \(0.0468350\pi\)
−0.989195 + 0.146606i \(0.953165\pi\)
\(138\) 0.594417i 0.0506002i
\(139\) −0.942326 −0.0799270 −0.0399635 0.999201i \(-0.512724\pi\)
−0.0399635 + 0.999201i \(0.512724\pi\)
\(140\) 0 0
\(141\) 1.14399i 0.0963410i
\(142\) 3.57199 0.299755
\(143\) 16.5513 + 8.01847i 1.38409 + 0.670538i
\(144\) −6.03920 −0.503267
\(145\) 0 0
\(146\) 6.26950 0.518868
\(147\) −0.0616272 −0.00508293
\(148\) 5.56578i 0.457504i
\(149\) 11.3456i 0.929472i 0.885449 + 0.464736i \(0.153851\pi\)
−0.885449 + 0.464736i \(0.846149\pi\)
\(150\) 0 0
\(151\) 21.0224i 1.71078i 0.517984 + 0.855390i \(0.326683\pi\)
−0.517984 + 0.855390i \(0.673317\pi\)
\(152\) 13.1193 1.06412
\(153\) −15.0577 −1.21734
\(154\) 7.79834i 0.628408i
\(155\) 0 0
\(156\) 1.12552 2.32322i 0.0901134 0.186007i
\(157\) 9.83528 0.784941 0.392470 0.919765i \(-0.371621\pi\)
0.392470 + 0.919765i \(0.371621\pi\)
\(158\) 2.07841i 0.165349i
\(159\) 1.79834 0.142618
\(160\) 0 0
\(161\) 6.48963i 0.511455i
\(162\) 4.22408i 0.331875i
\(163\) 12.3849i 0.970056i −0.874499 0.485028i \(-0.838809\pi\)
0.874499 0.485028i \(-0.161191\pi\)
\(164\) 10.8560i 0.847712i
\(165\) 0 0
\(166\) −5.61515 −0.435820
\(167\) 8.50811i 0.658377i 0.944264 + 0.329188i \(0.106775\pi\)
−0.944264 + 0.329188i \(0.893225\pi\)
\(168\) −2.40332 −0.185420
\(169\) −8.05767 10.2017i −0.619821 0.784743i
\(170\) 0 0
\(171\) 17.5905i 1.34518i
\(172\) −18.2633 −1.39256
\(173\) −21.5473 −1.63821 −0.819106 0.573643i \(-0.805530\pi\)
−0.819106 + 0.573643i \(0.805530\pi\)
\(174\) 0.654353i 0.0496063i
\(175\) 0 0
\(176\) 10.9361i 0.824340i
\(177\) 0.384851i 0.0289271i
\(178\) −4.36638 −0.327274
\(179\) −2.56804 −0.191944 −0.0959722 0.995384i \(-0.530596\pi\)
−0.0959722 + 0.995384i \(0.530596\pi\)
\(180\) 0 0
\(181\) 13.7305 1.02058 0.510290 0.860002i \(-0.329538\pi\)
0.510290 + 0.860002i \(0.329538\pi\)
\(182\) −2.40332 + 4.96080i −0.178146 + 0.367719i
\(183\) −2.48963 −0.184039
\(184\) 5.10083i 0.376038i
\(185\) 0 0
\(186\) −0.0599353 −0.00439467
\(187\) 27.2672i 1.99398i
\(188\) 4.47116i 0.326093i
\(189\) 6.65435i 0.484033i
\(190\) 0 0
\(191\) −10.6913 −0.773595 −0.386797 0.922165i \(-0.626419\pi\)
−0.386797 + 0.922165i \(0.626419\pi\)
\(192\) 0.506413 0.0365472
\(193\) 19.2593i 1.38632i 0.720785 + 0.693159i \(0.243781\pi\)
−0.720785 + 0.693159i \(0.756219\pi\)
\(194\) 6.48963 0.465929
\(195\) 0 0
\(196\) −0.240864 −0.0172046
\(197\) 17.1809i 1.22409i −0.790823 0.612045i \(-0.790347\pi\)
0.790823 0.612045i \(-0.209653\pi\)
\(198\) 8.21844 0.584059
\(199\) −11.5473 −0.818567 −0.409283 0.912407i \(-0.634221\pi\)
−0.409283 + 0.912407i \(0.634221\pi\)
\(200\) 0 0
\(201\) 0.934420i 0.0659089i
\(202\) 6.20957i 0.436904i
\(203\) 7.14399i 0.501410i
\(204\) 3.82738 0.267970
\(205\) 0 0
\(206\) 6.08010i 0.423621i
\(207\) 6.83923 0.475360
\(208\) 3.37033 6.95684i 0.233691 0.482370i
\(209\) 31.8538 2.20337
\(210\) 0 0
\(211\) 24.1233 1.66071 0.830357 0.557232i \(-0.188137\pi\)
0.830357 + 0.557232i \(0.188137\pi\)
\(212\) 7.02864 0.482729
\(213\) 2.67282i 0.183139i
\(214\) 0.0800983i 0.00547541i
\(215\) 0 0
\(216\) 5.23030i 0.355877i
\(217\) −0.654353 −0.0444203
\(218\) 5.18093 0.350897
\(219\) 4.69129i 0.317008i
\(220\) 0 0
\(221\) 8.40332 17.3456i 0.565269 1.16679i
\(222\) 0.814549 0.0546690
\(223\) 5.73050i 0.383743i 0.981420 + 0.191871i \(0.0614556\pi\)
−0.981420 + 0.191871i \(0.938544\pi\)
\(224\) −14.5081 −0.969364
\(225\) 0 0
\(226\) 7.42405i 0.493841i
\(227\) 2.95289i 0.195990i 0.995187 + 0.0979951i \(0.0312430\pi\)
−0.995187 + 0.0979951i \(0.968757\pi\)
\(228\) 4.47116i 0.296110i
\(229\) 25.2593i 1.66918i 0.550869 + 0.834592i \(0.314297\pi\)
−0.550869 + 0.834592i \(0.685703\pi\)
\(230\) 0 0
\(231\) −5.83528 −0.383933
\(232\) 5.61515i 0.368653i
\(233\) 23.3456 1.52942 0.764712 0.644372i \(-0.222881\pi\)
0.764712 + 0.644372i \(0.222881\pi\)
\(234\) −5.22804 2.53279i −0.341768 0.165574i
\(235\) 0 0
\(236\) 1.50415i 0.0979120i
\(237\) −1.55521 −0.101022
\(238\) −8.17262 −0.529753
\(239\) 3.79213i 0.245292i 0.992450 + 0.122646i \(0.0391380\pi\)
−0.992450 + 0.122646i \(0.960862\pi\)
\(240\) 0 0
\(241\) 3.43196i 0.221072i −0.993872 0.110536i \(-0.964743\pi\)
0.993872 0.110536i \(-0.0352567\pi\)
\(242\) 8.59046i 0.552216i
\(243\) 10.6297 0.681893
\(244\) −9.73050 −0.622931
\(245\) 0 0
\(246\) 1.58877 0.101296
\(247\) −20.2633 9.81681i −1.28932 0.624629i
\(248\) −0.514319 −0.0326593
\(249\) 4.20166i 0.266269i
\(250\) 0 0
\(251\) −25.4689 −1.60758 −0.803791 0.594911i \(-0.797187\pi\)
−0.803791 + 0.594911i \(0.797187\pi\)
\(252\) 12.5944i 0.793374i
\(253\) 12.3849i 0.778629i
\(254\) 6.89917i 0.432892i
\(255\) 0 0
\(256\) −4.23030 −0.264394
\(257\) −9.26724 −0.578075 −0.289037 0.957318i \(-0.593335\pi\)
−0.289037 + 0.957318i \(0.593335\pi\)
\(258\) 2.67282i 0.166403i
\(259\) 8.89296 0.552581
\(260\) 0 0
\(261\) −7.52884 −0.466023
\(262\) 4.36638i 0.269756i
\(263\) 8.14794 0.502423 0.251212 0.967932i \(-0.419171\pi\)
0.251212 + 0.967932i \(0.419171\pi\)
\(264\) −4.58651 −0.282280
\(265\) 0 0
\(266\) 9.54731i 0.585383i
\(267\) 3.26724i 0.199952i
\(268\) 3.65209i 0.223087i
\(269\) 1.14399 0.0697501 0.0348750 0.999392i \(-0.488897\pi\)
0.0348750 + 0.999392i \(0.488897\pi\)
\(270\) 0 0
\(271\) 3.18714i 0.193605i −0.995304 0.0968026i \(-0.969138\pi\)
0.995304 0.0968026i \(-0.0308615\pi\)
\(272\) 11.4610 0.694925
\(273\) 3.71203 + 1.79834i 0.224662 + 0.108840i
\(274\) −1.96306 −0.118593
\(275\) 0 0
\(276\) −1.73840 −0.104640
\(277\) −7.62571 −0.458185 −0.229092 0.973405i \(-0.573576\pi\)
−0.229092 + 0.973405i \(0.573576\pi\)
\(278\) 0.539004i 0.0323273i
\(279\) 0.689603i 0.0412854i
\(280\) 0 0
\(281\) 20.2386i 1.20733i −0.797237 0.603667i \(-0.793706\pi\)
0.797237 0.603667i \(-0.206294\pi\)
\(282\) 0.654353 0.0389661
\(283\) −19.8969 −1.18275 −0.591374 0.806397i \(-0.701414\pi\)
−0.591374 + 0.806397i \(0.701414\pi\)
\(284\) 10.4465i 0.619884i
\(285\) 0 0
\(286\) −4.58651 + 9.46721i −0.271206 + 0.559808i
\(287\) 17.3456 1.02388
\(288\) 15.2897i 0.900952i
\(289\) 11.5759 0.680938
\(290\) 0 0
\(291\) 4.85601i 0.284665i
\(292\) 18.3355i 1.07300i
\(293\) 26.0185i 1.52002i 0.649914 + 0.760008i \(0.274805\pi\)
−0.649914 + 0.760008i \(0.725195\pi\)
\(294\) 0.0352503i 0.00205584i
\(295\) 0 0
\(296\) 6.98983 0.406276
\(297\) 12.6992i 0.736882i
\(298\) −6.48963 −0.375934
\(299\) −3.81681 + 7.87844i −0.220732 + 0.455622i
\(300\) 0 0
\(301\) 29.1809i 1.68196i
\(302\) −12.0247 −0.691943
\(303\) −4.64645 −0.266931
\(304\) 13.3888i 0.767901i
\(305\) 0 0
\(306\) 8.61289i 0.492366i
\(307\) 2.39276i 0.136562i 0.997666 + 0.0682809i \(0.0217514\pi\)
−0.997666 + 0.0682809i \(0.978249\pi\)
\(308\) −22.8066 −1.29953
\(309\) 4.54957 0.258816
\(310\) 0 0
\(311\) 3.54731 0.201149 0.100575 0.994930i \(-0.467932\pi\)
0.100575 + 0.994930i \(0.467932\pi\)
\(312\) 2.91764 + 1.41349i 0.165179 + 0.0800230i
\(313\) −4.97927 −0.281445 −0.140722 0.990049i \(-0.544943\pi\)
−0.140722 + 0.990049i \(0.544943\pi\)
\(314\) 5.62571i 0.317477i
\(315\) 0 0
\(316\) −6.07841 −0.341937
\(317\) 18.5944i 1.04437i −0.852833 0.522183i \(-0.825118\pi\)
0.852833 0.522183i \(-0.174882\pi\)
\(318\) 1.02864i 0.0576831i
\(319\) 13.6336i 0.763336i
\(320\) 0 0
\(321\) −0.0599353 −0.00334526
\(322\) 3.71203 0.206863
\(323\) 33.3826i 1.85746i
\(324\) 12.3536 0.686309
\(325\) 0 0
\(326\) 7.08405 0.392349
\(327\) 3.87675i 0.214385i
\(328\) 13.6336 0.752791
\(329\) 7.14399 0.393861
\(330\) 0 0
\(331\) 5.91990i 0.325387i −0.986677 0.162694i \(-0.947982\pi\)
0.986677 0.162694i \(-0.0520182\pi\)
\(332\) 16.4218i 0.901263i
\(333\) 9.37202i 0.513584i
\(334\) −4.86658 −0.266287
\(335\) 0 0
\(336\) 2.45269i 0.133805i
\(337\) −13.9216 −0.758358 −0.379179 0.925323i \(-0.623793\pi\)
−0.379179 + 0.925323i \(0.623793\pi\)
\(338\) 5.83528 4.60894i 0.317397 0.250693i
\(339\) −5.55521 −0.301718
\(340\) 0 0
\(341\) −1.24877 −0.0676247
\(342\) −10.0616 −0.544070
\(343\) 18.3249i 0.989452i
\(344\) 22.9361i 1.23663i
\(345\) 0 0
\(346\) 12.3249i 0.662592i
\(347\) −7.65831 −0.411119 −0.205560 0.978645i \(-0.565901\pi\)
−0.205560 + 0.978645i \(0.565901\pi\)
\(348\) 1.91369 0.102584
\(349\) 11.1809i 0.598501i 0.954175 + 0.299251i \(0.0967367\pi\)
−0.954175 + 0.299251i \(0.903263\pi\)
\(350\) 0 0
\(351\) −3.91369 + 8.07841i −0.208897 + 0.431193i
\(352\) −27.6873 −1.47574
\(353\) 9.65209i 0.513729i −0.966447 0.256864i \(-0.917311\pi\)
0.966447 0.256864i \(-0.0826894\pi\)
\(354\) 0.220132 0.0116999
\(355\) 0 0
\(356\) 12.7697i 0.676793i
\(357\) 6.11535i 0.323659i
\(358\) 1.46890i 0.0776339i
\(359\) 9.51206i 0.502027i 0.967984 + 0.251014i \(0.0807639\pi\)
−0.967984 + 0.251014i \(0.919236\pi\)
\(360\) 0 0
\(361\) −19.9977 −1.05251
\(362\) 7.85375i 0.412784i
\(363\) −6.42801 −0.337383
\(364\) 14.5081 + 7.02864i 0.760431 + 0.368401i
\(365\) 0 0
\(366\) 1.42405i 0.0744365i
\(367\) 17.0040 0.887599 0.443800 0.896126i \(-0.353630\pi\)
0.443800 + 0.896126i \(0.353630\pi\)
\(368\) −5.20561 −0.271361
\(369\) 18.2801i 0.951622i
\(370\) 0 0
\(371\) 11.2303i 0.583048i
\(372\) 0.175284i 0.00908805i
\(373\) 1.83528 0.0950273 0.0475136 0.998871i \(-0.484870\pi\)
0.0475136 + 0.998871i \(0.484870\pi\)
\(374\) −15.5967 −0.806485
\(375\) 0 0
\(376\) 5.61515 0.289579
\(377\) 4.20166 8.67282i 0.216397 0.446673i
\(378\) 3.80624 0.195772
\(379\) 32.3681i 1.66264i −0.555797 0.831318i \(-0.687587\pi\)
0.555797 0.831318i \(-0.312413\pi\)
\(380\) 0 0
\(381\) 5.16246 0.264481
\(382\) 6.11535i 0.312888i
\(383\) 28.1417i 1.43798i 0.695023 + 0.718988i \(0.255394\pi\)
−0.695023 + 0.718988i \(0.744606\pi\)
\(384\) 4.93611i 0.251895i
\(385\) 0 0
\(386\) −11.0162 −0.560710
\(387\) 30.7529 1.56326
\(388\) 18.9793i 0.963526i
\(389\) −31.9585 −1.62036 −0.810181 0.586180i \(-0.800631\pi\)
−0.810181 + 0.586180i \(0.800631\pi\)
\(390\) 0 0
\(391\) −12.9793 −0.656390
\(392\) 0.302491i 0.0152781i
\(393\) 3.26724 0.164811
\(394\) 9.82738 0.495096
\(395\) 0 0
\(396\) 24.0353i 1.20782i
\(397\) 12.7098i 0.637885i −0.947774 0.318942i \(-0.896672\pi\)
0.947774 0.318942i \(-0.103328\pi\)
\(398\) 6.60498i 0.331078i
\(399\) 7.14399 0.357647
\(400\) 0 0
\(401\) 0.979268i 0.0489023i −0.999701 0.0244512i \(-0.992216\pi\)
0.999701 0.0244512i \(-0.00778382\pi\)
\(402\) −0.534482 −0.0266575
\(403\) 0.794386 + 0.384851i 0.0395712 + 0.0191708i
\(404\) −18.1602 −0.903504
\(405\) 0 0
\(406\) −4.08631 −0.202800
\(407\) 16.9714 0.841239
\(408\) 4.80664i 0.237964i
\(409\) 7.79834i 0.385603i 0.981238 + 0.192802i \(0.0617574\pi\)
−0.981238 + 0.192802i \(0.938243\pi\)
\(410\) 0 0
\(411\) 1.46890i 0.0724556i
\(412\) 17.7816 0.876035
\(413\) 2.40332 0.118260
\(414\) 3.91200i 0.192264i
\(415\) 0 0
\(416\) 17.6129 + 8.53279i 0.863543 + 0.418354i
\(417\) −0.403322 −0.0197508
\(418\) 18.2201i 0.891176i
\(419\) 10.2017 0.498384 0.249192 0.968454i \(-0.419835\pi\)
0.249192 + 0.968454i \(0.419835\pi\)
\(420\) 0 0
\(421\) 31.1888i 1.52005i 0.649893 + 0.760025i \(0.274814\pi\)
−0.649893 + 0.760025i \(0.725186\pi\)
\(422\) 13.7983i 0.671693i
\(423\) 7.52884i 0.366065i
\(424\) 8.82698i 0.428676i
\(425\) 0 0
\(426\) 1.52884 0.0740724
\(427\) 15.5473i 0.752387i
\(428\) −0.234252 −0.0113230
\(429\) 7.08405 + 3.43196i 0.342021 + 0.165697i
\(430\) 0 0
\(431\) 22.9361i 1.10479i 0.833581 + 0.552397i \(0.186287\pi\)
−0.833581 + 0.552397i \(0.813713\pi\)
\(432\) −5.33774 −0.256812
\(433\) 16.2880 0.782750 0.391375 0.920231i \(-0.372000\pi\)
0.391375 + 0.920231i \(0.372000\pi\)
\(434\) 0.374285i 0.0179663i
\(435\) 0 0
\(436\) 15.1519i 0.725644i
\(437\) 15.1625i 0.725319i
\(438\) 2.68339 0.128217
\(439\) 23.7569 1.13385 0.566927 0.823768i \(-0.308132\pi\)
0.566927 + 0.823768i \(0.308132\pi\)
\(440\) 0 0
\(441\) 0.405583 0.0193135
\(442\) 9.92159 + 4.80664i 0.471922 + 0.228629i
\(443\) 2.75292 0.130795 0.0653976 0.997859i \(-0.479168\pi\)
0.0653976 + 0.997859i \(0.479168\pi\)
\(444\) 2.38219i 0.113054i
\(445\) 0 0
\(446\) −3.27781 −0.155209
\(447\) 4.85601i 0.229682i
\(448\) 3.16246i 0.149412i
\(449\) 27.1025i 1.27905i −0.768772 0.639524i \(-0.779132\pi\)
0.768772 0.639524i \(-0.220868\pi\)
\(450\) 0 0
\(451\) 33.1025 1.55874
\(452\) −21.7120 −1.02125
\(453\) 8.99774i 0.422751i
\(454\) −1.68903 −0.0792703
\(455\) 0 0
\(456\) 5.61515 0.262953
\(457\) 40.1523i 1.87824i 0.343583 + 0.939122i \(0.388359\pi\)
−0.343583 + 0.939122i \(0.611641\pi\)
\(458\) −14.4482 −0.675119
\(459\) −13.3087 −0.621197
\(460\) 0 0
\(461\) 2.00791i 0.0935175i −0.998906 0.0467587i \(-0.985111\pi\)
0.998906 0.0467587i \(-0.0148892\pi\)
\(462\) 3.33774i 0.155286i
\(463\) 2.67282i 0.124217i −0.998069 0.0621083i \(-0.980218\pi\)
0.998069 0.0621083i \(-0.0197824\pi\)
\(464\) 5.73050 0.266032
\(465\) 0 0
\(466\) 13.3536i 0.618591i
\(467\) −31.8890 −1.47565 −0.737824 0.674994i \(-0.764146\pi\)
−0.737824 + 0.674994i \(0.764146\pi\)
\(468\) −7.40727 + 15.2897i −0.342401 + 0.706765i
\(469\) −5.83528 −0.269448
\(470\) 0 0
\(471\) 4.20957 0.193967
\(472\) 1.88900 0.0869484
\(473\) 55.6890i 2.56058i
\(474\) 0.889572i 0.0408594i
\(475\) 0 0
\(476\) 23.9013i 1.09551i
\(477\) −11.8353 −0.541900
\(478\) −2.16907 −0.0992110
\(479\) 6.73445i 0.307705i −0.988094 0.153852i \(-0.950832\pi\)
0.988094 0.153852i \(-0.0491680\pi\)
\(480\) 0 0
\(481\) −10.7961 5.23030i −0.492259 0.238481i
\(482\) 1.96306 0.0894148
\(483\) 2.77761i 0.126385i
\(484\) −25.1233 −1.14197
\(485\) 0 0
\(486\) 6.08010i 0.275799i
\(487\) 39.6521i 1.79681i 0.439170 + 0.898404i \(0.355273\pi\)
−0.439170 + 0.898404i \(0.644727\pi\)
\(488\) 12.2201i 0.553179i
\(489\) 5.30080i 0.239710i
\(490\) 0 0
\(491\) 31.0946 1.40328 0.701640 0.712531i \(-0.252451\pi\)
0.701640 + 0.712531i \(0.252451\pi\)
\(492\) 4.64645i 0.209478i
\(493\) 14.2880 0.643498
\(494\) 5.61515 11.5905i 0.252638 0.521480i
\(495\) 0 0
\(496\) 0.524884i 0.0235680i
\(497\) 16.6913 0.748707
\(498\) −2.40332 −0.107695
\(499\) 13.1087i 0.586828i −0.955986 0.293414i \(-0.905209\pi\)
0.955986 0.293414i \(-0.0947914\pi\)
\(500\) 0 0
\(501\) 3.64153i 0.162691i
\(502\) 14.5680i 0.650203i
\(503\) 8.59273 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(504\) 15.8168 0.704537
\(505\) 0 0
\(506\) 7.08405 0.314924
\(507\) −3.44874 4.36638i −0.153164 0.193918i
\(508\) 20.1770 0.895209
\(509\) 29.8353i 1.32243i −0.750198 0.661213i \(-0.770042\pi\)
0.750198 0.661213i \(-0.229958\pi\)
\(510\) 0 0
\(511\) 29.2963 1.29599
\(512\) 20.6459i 0.912428i
\(513\) 15.5473i 0.686430i
\(514\) 5.30080i 0.233808i
\(515\) 0 0
\(516\) −7.81681 −0.344116
\(517\) 13.6336 0.599606
\(518\) 5.08671i 0.223497i
\(519\) −9.22239 −0.404818
\(520\) 0 0
\(521\) 10.0969 0.442352 0.221176 0.975234i \(-0.429010\pi\)
0.221176 + 0.975234i \(0.429010\pi\)
\(522\) 4.30644i 0.188488i
\(523\) −16.1479 −0.706100 −0.353050 0.935604i \(-0.614855\pi\)
−0.353050 + 0.935604i \(0.614855\pi\)
\(524\) 12.7697 0.557847
\(525\) 0 0
\(526\) 4.66057i 0.203210i
\(527\) 1.30871i 0.0570081i
\(528\) 4.68073i 0.203703i
\(529\) −17.1048 −0.743686
\(530\) 0 0
\(531\) 2.53279i 0.109914i
\(532\) 27.9216 1.21055
\(533\) −21.0577 10.2017i −0.912109 0.441883i
\(534\) −1.86884 −0.0808726
\(535\) 0 0
\(536\) −4.58651 −0.198107
\(537\) −1.09914 −0.0474313
\(538\) 0.654353i 0.0282111i
\(539\) 0.734451i 0.0316350i
\(540\) 0 0
\(541\) 26.7776i 1.15126i 0.817711 + 0.575630i \(0.195243\pi\)
−0.817711 + 0.575630i \(0.804757\pi\)
\(542\) 1.82302 0.0783056
\(543\) 5.87675 0.252195
\(544\) 29.0162i 1.24406i
\(545\) 0 0
\(546\) −1.02864 + 2.12325i −0.0440216 + 0.0908669i
\(547\) −12.3865 −0.529610 −0.264805 0.964302i \(-0.585308\pi\)
−0.264805 + 0.964302i \(0.585308\pi\)
\(548\) 5.74106i 0.245246i
\(549\) 16.3849 0.699288
\(550\) 0 0
\(551\) 16.6913i 0.711073i
\(552\) 2.18319i 0.0929227i
\(553\) 9.71203i 0.412997i
\(554\) 4.36186i 0.185318i
\(555\) 0 0
\(556\) −1.57634 −0.0668519
\(557\) 10.4218i 0.441586i −0.975321 0.220793i \(-0.929136\pi\)
0.975321 0.220793i \(-0.0708644\pi\)
\(558\) 0.394448 0.0166983
\(559\) −17.1625 + 35.4257i −0.725895 + 1.49835i
\(560\) 0 0
\(561\) 11.6706i 0.492732i
\(562\) 11.5763 0.488319
\(563\) −9.78156 −0.412244 −0.206122 0.978526i \(-0.566084\pi\)
−0.206122 + 0.978526i \(0.566084\pi\)
\(564\) 1.91369i 0.0805808i
\(565\) 0 0
\(566\) 11.3809i 0.478375i
\(567\) 19.7384i 0.828935i
\(568\) 13.1193 0.550474
\(569\) −30.2201 −1.26689 −0.633447 0.773786i \(-0.718361\pi\)
−0.633447 + 0.773786i \(0.718361\pi\)
\(570\) 0 0
\(571\) −39.8643 −1.66827 −0.834135 0.551561i \(-0.814033\pi\)
−0.834135 + 0.551561i \(0.814033\pi\)
\(572\) 27.6873 + 13.4135i 1.15767 + 0.560846i
\(573\) −4.57595 −0.191163
\(574\) 9.92159i 0.414119i
\(575\) 0 0
\(576\) −3.33282 −0.138868
\(577\) 8.46326i 0.352330i −0.984361 0.176165i \(-0.943631\pi\)
0.984361 0.176165i \(-0.0563692\pi\)
\(578\) 6.62136i 0.275412i
\(579\) 8.24313i 0.342573i
\(580\) 0 0
\(581\) −26.2386 −1.08856
\(582\) 2.77761 0.115136
\(583\) 21.4320i 0.887621i
\(584\) 23.0268 0.952855
\(585\) 0 0
\(586\) −14.8824 −0.614786
\(587\) 9.32718i 0.384974i −0.981300 0.192487i \(-0.938345\pi\)
0.981300 0.192487i \(-0.0616553\pi\)
\(588\) −0.103091 −0.00425142
\(589\) 1.52884 0.0629946
\(590\) 0 0
\(591\) 7.35355i 0.302485i
\(592\) 7.13342i 0.293182i
\(593\) 8.07841i 0.331740i 0.986148 + 0.165870i \(0.0530433\pi\)
−0.986148 + 0.165870i \(0.946957\pi\)
\(594\) 7.26386 0.298040
\(595\) 0 0
\(596\) 18.9793i 0.777421i
\(597\) −4.94233 −0.202276
\(598\) −4.50641 2.18319i −0.184281 0.0892773i
\(599\) 19.1440 0.782202 0.391101 0.920348i \(-0.372094\pi\)
0.391101 + 0.920348i \(0.372094\pi\)
\(600\) 0 0
\(601\) −4.28797 −0.174910 −0.0874550 0.996168i \(-0.527873\pi\)
−0.0874550 + 0.996168i \(0.527873\pi\)
\(602\) 16.6913 0.680286
\(603\) 6.14963i 0.250432i
\(604\) 35.1668i 1.43092i
\(605\) 0 0
\(606\) 2.65774i 0.107963i
\(607\) −29.2426 −1.18692 −0.593459 0.804864i \(-0.702238\pi\)
−0.593459 + 0.804864i \(0.702238\pi\)
\(608\) 33.8969 1.37470
\(609\) 3.05767i 0.123903i
\(610\) 0 0
\(611\) −8.67282 4.20166i −0.350865 0.169981i
\(612\) −25.1888 −1.01820
\(613\) 1.42405i 0.0575170i 0.999586 + 0.0287585i \(0.00915538\pi\)
−0.999586 + 0.0287585i \(0.990845\pi\)
\(614\) −1.36864 −0.0552338
\(615\) 0 0
\(616\) 28.6419i 1.15402i
\(617\) 46.5266i 1.87309i −0.350548 0.936545i \(-0.614005\pi\)
0.350548 0.936545i \(-0.385995\pi\)
\(618\) 2.60232i 0.104681i
\(619\) 34.2818i 1.37790i −0.724809 0.688950i \(-0.758072\pi\)
0.724809 0.688950i \(-0.241928\pi\)
\(620\) 0 0
\(621\) 6.04485 0.242571
\(622\) 2.02904i 0.0813569i
\(623\) −20.4033 −0.817442
\(624\) 1.44252 2.97758i 0.0577472 0.119198i
\(625\) 0 0
\(626\) 2.84811i 0.113833i
\(627\) 13.6336 0.544474
\(628\) 16.4527 0.656534
\(629\) 17.7859i 0.709171i
\(630\) 0 0
\(631\) 2.32322i 0.0924861i 0.998930 + 0.0462430i \(0.0147249\pi\)
−0.998930 + 0.0462430i \(0.985275\pi\)
\(632\) 7.63362i 0.303649i
\(633\) 10.3249 0.410379
\(634\) 10.6359 0.422405
\(635\) 0 0
\(636\) 3.00830 0.119287
\(637\) −0.226346 + 0.467210i −0.00896815 + 0.0185115i
\(638\) −7.79834 −0.308739
\(639\) 17.5905i 0.695868i
\(640\) 0 0
\(641\) 28.1312 1.11111 0.555557 0.831478i \(-0.312505\pi\)
0.555557 + 0.831478i \(0.312505\pi\)
\(642\) 0.0342826i 0.00135303i
\(643\) 14.1338i 0.557383i −0.960381 0.278692i \(-0.910099\pi\)
0.960381 0.278692i \(-0.0899008\pi\)
\(644\) 10.8560i 0.427787i
\(645\) 0 0
\(646\) 19.0946 0.751268
\(647\) −45.8969 −1.80439 −0.902197 0.431325i \(-0.858046\pi\)
−0.902197 + 0.431325i \(0.858046\pi\)
\(648\) 15.5143i 0.609460i
\(649\) 4.58651 0.180036
\(650\) 0 0
\(651\) −0.280067 −0.0109767
\(652\) 20.7177i 0.811367i
\(653\) −50.4482 −1.97419 −0.987095 0.160137i \(-0.948806\pi\)
−0.987095 + 0.160137i \(0.948806\pi\)
\(654\) 2.21747 0.0867100
\(655\) 0 0
\(656\) 13.9137i 0.543238i
\(657\) 30.8745i 1.20453i
\(658\) 4.08631i 0.159301i
\(659\) −45.8722 −1.78693 −0.893464 0.449135i \(-0.851732\pi\)
−0.893464 + 0.449135i \(0.851732\pi\)
\(660\) 0 0
\(661\) 25.8432i 1.00518i −0.864524 0.502592i \(-0.832380\pi\)
0.864524 0.502592i \(-0.167620\pi\)
\(662\) 3.38614 0.131606
\(663\) 3.59668 7.42405i 0.139683 0.288326i
\(664\) −20.6235 −0.800345
\(665\) 0 0
\(666\) −5.36073 −0.207724
\(667\) −6.48963 −0.251280
\(668\) 14.2326i 0.550674i
\(669\) 2.45269i 0.0948265i
\(670\) 0 0
\(671\) 29.6706i 1.14542i
\(672\) −6.20957 −0.239539
\(673\) 4.97927 0.191937 0.0959683 0.995384i \(-0.469405\pi\)
0.0959683 + 0.995384i \(0.469405\pi\)
\(674\) 7.96306i 0.306726i
\(675\) 0 0
\(676\) −13.4791 17.0656i −0.518426 0.656368i
\(677\) 35.8353 1.37726 0.688631 0.725112i \(-0.258212\pi\)
0.688631 + 0.725112i \(0.258212\pi\)
\(678\) 3.17755i 0.122033i
\(679\) 30.3249 1.16376
\(680\) 0 0
\(681\) 1.26386i 0.0484311i
\(682\) 0.714288i 0.0273515i
\(683\) 40.4712i 1.54859i −0.632827 0.774293i \(-0.718106\pi\)
0.632827 0.774293i \(-0.281894\pi\)
\(684\) 29.4257i 1.12512i
\(685\) 0 0
\(686\) −10.4817 −0.400194
\(687\) 10.8112i 0.412472i
\(688\) −23.4073 −0.892394
\(689\) 6.60498 13.6336i 0.251630 0.519400i
\(690\) 0 0
\(691\) 12.2448i 0.465815i −0.972499 0.232907i \(-0.925176\pi\)
0.972499 0.232907i \(-0.0748239\pi\)
\(692\) −36.0448 −1.37022
\(693\) 38.4033 1.45882
\(694\) 4.38050i 0.166281i
\(695\) 0 0
\(696\) 2.40332i 0.0910977i
\(697\) 34.6913i 1.31403i
\(698\) −6.39542 −0.242070
\(699\) 9.99209 0.377936
\(700\) 0 0
\(701\) −11.8353 −0.447012 −0.223506 0.974703i \(-0.571750\pi\)
−0.223506 + 0.974703i \(0.571750\pi\)
\(702\) −4.62079 2.23860i −0.174401 0.0844906i
\(703\) −20.7776 −0.783642
\(704\) 6.03525i 0.227462i
\(705\) 0 0
\(706\) 5.52093 0.207783
\(707\) 29.0162i 1.09127i
\(708\) 0.643787i 0.0241950i
\(709\) 6.37429i 0.239391i 0.992811 + 0.119696i \(0.0381919\pi\)
−0.992811 + 0.119696i \(0.961808\pi\)
\(710\) 0 0
\(711\) 10.2352 0.383851
\(712\) −16.0369 −0.601010
\(713\) 0.594417i 0.0222611i
\(714\) −3.49794 −0.130907
\(715\) 0 0
\(716\) −4.29588 −0.160545
\(717\) 1.62306i 0.0606141i
\(718\) −5.44083 −0.203050
\(719\) 34.9009 1.30158 0.650791 0.759257i \(-0.274437\pi\)
0.650791 + 0.759257i \(0.274437\pi\)
\(720\) 0 0
\(721\) 28.4112i 1.05809i
\(722\) 11.4386i 0.425700i
\(723\) 1.46890i 0.0546290i
\(724\) 22.9687 0.853625
\(725\) 0 0
\(726\) 3.67678i 0.136458i
\(727\) 19.8106 0.734734 0.367367 0.930076i \(-0.380259\pi\)
0.367367 + 0.930076i \(0.380259\pi\)
\(728\) −8.82698 + 18.2201i −0.327150 + 0.675283i
\(729\) −17.6050 −0.652036
\(730\) 0 0
\(731\) −58.3619 −2.15859
\(732\) −4.16472 −0.153932
\(733\) 12.6050i 0.465576i 0.972528 + 0.232788i \(0.0747848\pi\)
−0.972528 + 0.232788i \(0.925215\pi\)
\(734\) 9.72615i 0.358999i
\(735\) 0 0
\(736\) 13.1792i 0.485793i
\(737\) −11.1361 −0.410203
\(738\) −10.4561 −0.384893
\(739\) 37.1747i 1.36749i −0.729719 0.683747i \(-0.760349\pi\)
0.729719 0.683747i \(-0.239651\pi\)
\(740\) 0 0
\(741\) −8.67282 4.20166i −0.318604 0.154352i
\(742\) −6.42366 −0.235820
\(743\) 27.9322i 1.02473i −0.858767 0.512366i \(-0.828769\pi\)
0.858767 0.512366i \(-0.171231\pi\)
\(744\) −0.220132 −0.00807043
\(745\) 0 0
\(746\) 1.04977i 0.0384348i
\(747\) 27.6521i 1.01174i
\(748\) 45.6133i 1.66779i
\(749\) 0.374285i 0.0136761i
\(750\) 0 0
\(751\) 13.6257 0.497209 0.248605 0.968605i \(-0.420028\pi\)
0.248605 + 0.968605i \(0.420028\pi\)
\(752\) 5.73050i 0.208970i
\(753\) −10.9009 −0.397249
\(754\) 4.96080 + 2.40332i 0.180662 + 0.0875238i
\(755\) 0 0
\(756\) 11.1316i 0.404851i
\(757\) 30.8560 1.12148 0.560740 0.827992i \(-0.310517\pi\)
0.560740 + 0.827992i \(0.310517\pi\)
\(758\) 18.5143 0.672470
\(759\) 5.30080i 0.192407i
\(760\) 0 0
\(761\) 17.0162i 0.616837i 0.951251 + 0.308419i \(0.0997997\pi\)
−0.951251 + 0.308419i \(0.900200\pi\)
\(762\) 2.95289i 0.106972i
\(763\) 24.2096 0.876445
\(764\) −17.8847 −0.647044
\(765\) 0 0
\(766\) −16.0969 −0.581604
\(767\) −2.91764 1.41349i −0.105350 0.0510381i
\(768\) −1.81060 −0.0653343
\(769\) 29.0162i 1.04635i 0.852225 + 0.523176i \(0.175253\pi\)
−0.852225 + 0.523176i \(0.824747\pi\)
\(770\) 0 0
\(771\) −3.96644 −0.142848
\(772\) 32.2175i 1.15953i
\(773\) 40.5160i 1.45726i −0.684908 0.728630i \(-0.740158\pi\)
0.684908 0.728630i \(-0.259842\pi\)
\(774\) 17.5905i 0.632276i
\(775\) 0 0
\(776\) 23.8353 0.855637
\(777\) 3.80624 0.136548
\(778\) 18.2801i 0.655372i
\(779\) −40.5266 −1.45202
\(780\) 0 0
\(781\) 31.8538 1.13982
\(782\) 7.42405i 0.265484i
\(783\) −6.65435 −0.237807
\(784\) −0.308705 −0.0110252
\(785\) 0 0
\(786\) 1.86884i 0.0666593i
\(787\) 34.0264i 1.21291i −0.795118 0.606455i \(-0.792591\pi\)
0.795118 0.606455i \(-0.207409\pi\)
\(788\) 28.7407i 1.02384i
\(789\) 3.48737 0.124154
\(790\) 0 0
\(791\) 34.6913i 1.23348i
\(792\) 30.1849 1.07257
\(793\) −9.14399 + 18.8745i −0.324712 + 0.670253i
\(794\) 7.26990 0.257999
\(795\) 0 0
\(796\) −19.3166 −0.684659
\(797\) −14.7776 −0.523450 −0.261725 0.965143i \(-0.584291\pi\)
−0.261725 + 0.965143i \(0.584291\pi\)
\(798\) 4.08631i 0.144654i
\(799\) 14.2880i 0.505472i
\(800\) 0 0
\(801\) 21.5025i 0.759752i
\(802\) 0.560135 0.0197790
\(803\) 55.9092 1.97299
\(804\) 1.56312i 0.0551270i
\(805\) 0 0
\(806\) −0.220132 + 0.454384i −0.00775382 + 0.0160050i
\(807\) 0.489634 0.0172359
\(808\) 22.8066i 0.802335i
\(809\) −36.0554 −1.26764 −0.633820 0.773480i \(-0.718514\pi\)
−0.633820 + 0.773480i \(0.718514\pi\)
\(810\) 0 0
\(811\) 5.31040i 0.186473i 0.995644 + 0.0932366i \(0.0297213\pi\)
−0.995644 + 0.0932366i \(0.970279\pi\)
\(812\) 11.9506i 0.419385i
\(813\) 1.36412i 0.0478417i
\(814\) 9.70750i 0.340248i
\(815\) 0 0
\(816\) 4.90538 0.171723
\(817\) 68.1787i 2.38527i
\(818\) −4.46060 −0.155961
\(819\) −24.4297 11.8353i −0.853643 0.413558i
\(820\) 0 0
\(821\) 13.6336i 0.475817i 0.971288 + 0.237908i \(0.0764618\pi\)
−0.971288 + 0.237908i \(0.923538\pi\)
\(822\) −0.840202 −0.0293054
\(823\) 39.6459 1.38197 0.690984 0.722870i \(-0.257177\pi\)
0.690984 + 0.722870i \(0.257177\pi\)
\(824\) 22.3311i 0.777942i
\(825\) 0 0
\(826\) 1.37468i 0.0478314i
\(827\) 23.8952i 0.830918i 0.909612 + 0.415459i \(0.136379\pi\)
−0.909612 + 0.415459i \(0.863621\pi\)
\(828\) 11.4408 0.397596
\(829\) 27.3562 0.950121 0.475060 0.879953i \(-0.342426\pi\)
0.475060 + 0.879953i \(0.342426\pi\)
\(830\) 0 0
\(831\) −3.26386 −0.113222
\(832\) 1.85997 3.83923i 0.0644827 0.133101i
\(833\) −0.769701 −0.0266686
\(834\) 0.230697i 0.00798839i
\(835\) 0 0
\(836\) 53.2857 1.84292
\(837\) 0.609505i 0.0210676i
\(838\) 5.83528i 0.201576i
\(839\) 29.5411i 1.01987i 0.860212 + 0.509936i \(0.170331\pi\)
−0.860212 + 0.509936i \(0.829669\pi\)
\(840\) 0 0
\(841\) −21.8560 −0.753656
\(842\) −17.8398 −0.614800
\(843\) 8.66226i 0.298344i
\(844\) 40.3540 1.38904
\(845\) 0 0
\(846\) −4.30644 −0.148059
\(847\) 40.1417i 1.37929i
\(848\) 9.00830 0.309346
\(849\) −8.51601 −0.292269
\(850\) 0 0
\(851\) 8.07841i 0.276924i
\(852\) 4.47116i 0.153180i
\(853\) 5.61515i 0.192259i 0.995369 + 0.0961295i \(0.0306463\pi\)
−0.995369 + 0.0961295i \(0.969354\pi\)
\(854\) 8.89296 0.304311
\(855\) 0 0
\(856\) 0.294187i 0.0100551i
\(857\) −39.9216 −1.36370 −0.681848 0.731494i \(-0.738823\pi\)
−0.681848 + 0.731494i \(0.738823\pi\)
\(858\) −1.96306 + 4.05203i −0.0670177 + 0.138334i
\(859\) 28.6498 0.977520 0.488760 0.872418i \(-0.337449\pi\)
0.488760 + 0.872418i \(0.337449\pi\)
\(860\) 0 0
\(861\) 7.42405 0.253011
\(862\) −13.1193 −0.446845
\(863\) 38.5530i 1.31236i 0.754605 + 0.656179i \(0.227828\pi\)
−0.754605 + 0.656179i \(0.772172\pi\)
\(864\) 13.5137i 0.459747i
\(865\) 0 0
\(866\) 9.31661i 0.316591i
\(867\) 4.95458 0.168266
\(868\) −1.09462 −0.0371537
\(869\) 18.5345i 0.628739i
\(870\) 0 0
\(871\) 7.08405 + 3.43196i 0.240034 + 0.116288i
\(872\) 19.0286 0.644391
\(873\) 31.9585i 1.08163i
\(874\) −8.67282 −0.293363
\(875\) 0 0
\(876\) 7.84771i 0.265150i
\(877\) 27.3826i 0.924644i 0.886712 + 0.462322i \(0.152984\pi\)
−0.886712 + 0.462322i \(0.847016\pi\)
\(878\) 13.5888i 0.458599i
\(879\) 11.1361i 0.375611i
\(880\) 0 0
\(881\) 25.0841 0.845103 0.422552 0.906339i \(-0.361135\pi\)
0.422552 + 0.906339i \(0.361135\pi\)
\(882\) 0.231991i 0.00781153i
\(883\) −50.5513 −1.70119 −0.850593 0.525825i \(-0.823757\pi\)
−0.850593 + 0.525825i \(0.823757\pi\)
\(884\) 14.0573 29.0162i 0.472797 0.975921i
\(885\) 0 0
\(886\) 1.57465i 0.0529015i
\(887\) 19.6583 0.660061 0.330031 0.943970i \(-0.392941\pi\)
0.330031 + 0.943970i \(0.392941\pi\)
\(888\) 2.99170 0.100395
\(889\) 32.2386i 1.08125i
\(890\) 0 0
\(891\) 37.6689i 1.26195i
\(892\) 9.58611i 0.320967i
\(893\) −16.6913 −0.558553
\(894\) −2.77761 −0.0928971
\(895\) 0 0
\(896\) −30.8251 −1.02979
\(897\) −1.63362 + 3.37202i −0.0545450 + 0.112589i
\(898\) 15.5025 0.517324
\(899\) 0.654353i 0.0218239i
\(900\) 0 0
\(901\) 22.4606 0.748271
\(902\) 18.9344i 0.630447i
\(903\) 12.4896i 0.415629i
\(904\) 27.2672i 0.906895i
\(905\) 0 0
\(906\) −5.14665 −0.170986
\(907\) 22.0537 0.732282 0.366141 0.930559i \(-0.380679\pi\)
0.366141 + 0.930559i \(0.380679\pi\)
\(908\) 4.93967i 0.163929i
\(909\) 30.5793 1.01425
\(910\) 0 0
\(911\) −14.0079 −0.464103 −0.232051 0.972704i \(-0.574544\pi\)
−0.232051 + 0.972704i \(0.574544\pi\)
\(912\) 5.73050i 0.189756i
\(913\) −50.0739 −1.65720
\(914\) −22.9668 −0.759676
\(915\) 0 0
\(916\) 42.2544i 1.39613i
\(917\) 20.4033i 0.673777i
\(918\) 7.61249i 0.251250i
\(919\) 21.8353 0.720279 0.360140 0.932898i \(-0.382729\pi\)
0.360140 + 0.932898i \(0.382729\pi\)
\(920\) 0 0
\(921\) 1.02412i 0.0337458i
\(922\) 1.14851 0.0378241
\(923\) −20.2633 9.81681i −0.666974 0.323124i
\(924\) −9.76140 −0.321126
\(925\) 0 0
\(926\) 1.52884 0.0502407
\(927\) −29.9418 −0.983416
\(928\) 14.5081i 0.476252i
\(929\) 15.2224i 0.499431i −0.968319 0.249715i \(-0.919663\pi\)
0.968319 0.249715i \(-0.0803370\pi\)
\(930\) 0 0
\(931\) 0.899170i 0.0294691i
\(932\) 39.0532 1.27923
\(933\) 1.51827 0.0497060
\(934\) 18.2403i 0.596841i
\(935\) 0 0
\(936\) −19.2017 9.30249i −0.627626 0.304061i
\(937\) 25.4610 0.831774 0.415887 0.909416i \(-0.363471\pi\)
0.415887 + 0.909416i \(0.363471\pi\)
\(938\) 3.33774i 0.108981i
\(939\) −2.13116 −0.0695478
\(940\) 0 0
\(941\) 24.9299i 0.812691i 0.913719 + 0.406346i \(0.133197\pi\)
−0.913719 + 0.406346i \(0.866803\pi\)
\(942\) 2.40784i 0.0784518i
\(943\) 15.7569i 0.513114i
\(944\) 1.92781i 0.0627448i
\(945\) 0 0
\(946\) 31.8538 1.03565
\(947\) 16.6807i 0.542051i −0.962572 0.271025i \(-0.912637\pi\)
0.962572 0.271025i \(-0.0873628\pi\)
\(948\) −2.60160 −0.0844960
\(949\) −35.5658 17.2303i −1.15451 0.559319i
\(950\) 0 0
\(951\) 7.95854i 0.258073i
\(952\) −30.0166 −0.972844
\(953\) 27.1730 0.880221 0.440110 0.897944i \(-0.354939\pi\)
0.440110 + 0.897944i \(0.354939\pi\)
\(954\) 6.76970i 0.219177i
\(955\) 0 0
\(956\) 6.34356i 0.205165i
\(957\) 5.83528i 0.188628i
\(958\) 3.85206 0.124454
\(959\) −9.17302 −0.296212
\(960\) 0 0
\(961\) 30.9401 0.998067
\(962\) 2.99170 6.17528i 0.0964561 0.199099i
\(963\) 0.394448 0.0127109
\(964\) 5.74106i 0.184907i
\(965\) 0 0
\(966\) 1.58877 0.0511179
\(967\) 6.75914i 0.217359i −0.994077 0.108680i \(-0.965338\pi\)
0.994077 0.108680i \(-0.0346622\pi\)
\(968\) 31.5513i 1.01410i
\(969\) 14.2880i 0.458996i
\(970\) 0 0
\(971\) 46.6419 1.49681 0.748405 0.663242i \(-0.230820\pi\)
0.748405 + 0.663242i \(0.230820\pi\)
\(972\) 17.7816 0.570344
\(973\) 2.51867i 0.0807449i
\(974\) −22.6807 −0.726737
\(975\) 0 0
\(976\) −12.4712 −0.399192
\(977\) 52.7467i 1.68752i 0.536723 + 0.843758i \(0.319662\pi\)
−0.536723 + 0.843758i \(0.680338\pi\)
\(978\) 3.03202 0.0969534
\(979\) −38.9378 −1.24446
\(980\) 0 0
\(981\) 25.5137i 0.814591i
\(982\) 17.7859i 0.567571i
\(983\) 20.9977i 0.669724i 0.942267 + 0.334862i \(0.108690\pi\)
−0.942267 + 0.334862i \(0.891310\pi\)
\(984\) 5.83528 0.186022
\(985\) 0 0
\(986\) 8.17262i 0.260269i
\(987\) 3.05767 0.0973268
\(988\) −33.8969 16.4218i −1.07840 0.522447i
\(989\) 26.5081 0.842909
\(990\) 0 0
\(991\) −32.3170 −1.02658 −0.513292 0.858214i \(-0.671574\pi\)
−0.513292 + 0.858214i \(0.671574\pi\)
\(992\) −1.32887 −0.0421916
\(993\) 2.53376i 0.0804064i
\(994\) 9.54731i 0.302822i
\(995\) 0 0
\(996\) 7.02864i 0.222711i
\(997\) 21.3905 0.677444 0.338722 0.940887i \(-0.390005\pi\)
0.338722 + 0.940887i \(0.390005\pi\)
\(998\) 7.49811 0.237348
\(999\) 8.28345i 0.262077i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.c.g.51.4 6
5.2 odd 4 325.2.d.e.324.3 6
5.3 odd 4 325.2.d.f.324.4 6
5.4 even 2 65.2.c.a.51.3 6
13.5 odd 4 4225.2.a.be.1.2 3
13.8 odd 4 4225.2.a.bc.1.2 3
13.12 even 2 inner 325.2.c.g.51.3 6
15.14 odd 2 585.2.b.g.181.4 6
20.19 odd 2 1040.2.k.d.961.4 6
65.4 even 6 845.2.m.h.361.4 12
65.9 even 6 845.2.m.h.361.3 12
65.12 odd 4 325.2.d.f.324.3 6
65.19 odd 12 845.2.e.k.146.2 6
65.24 odd 12 845.2.e.i.191.2 6
65.29 even 6 845.2.m.h.316.4 12
65.34 odd 4 845.2.a.k.1.2 3
65.38 odd 4 325.2.d.e.324.4 6
65.44 odd 4 845.2.a.i.1.2 3
65.49 even 6 845.2.m.h.316.3 12
65.54 odd 12 845.2.e.k.191.2 6
65.59 odd 12 845.2.e.i.146.2 6
65.64 even 2 65.2.c.a.51.4 yes 6
195.44 even 4 7605.2.a.cc.1.2 3
195.164 even 4 7605.2.a.bs.1.2 3
195.194 odd 2 585.2.b.g.181.3 6
260.259 odd 2 1040.2.k.d.961.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.c.a.51.3 6 5.4 even 2
65.2.c.a.51.4 yes 6 65.64 even 2
325.2.c.g.51.3 6 13.12 even 2 inner
325.2.c.g.51.4 6 1.1 even 1 trivial
325.2.d.e.324.3 6 5.2 odd 4
325.2.d.e.324.4 6 65.38 odd 4
325.2.d.f.324.3 6 65.12 odd 4
325.2.d.f.324.4 6 5.3 odd 4
585.2.b.g.181.3 6 195.194 odd 2
585.2.b.g.181.4 6 15.14 odd 2
845.2.a.i.1.2 3 65.44 odd 4
845.2.a.k.1.2 3 65.34 odd 4
845.2.e.i.146.2 6 65.59 odd 12
845.2.e.i.191.2 6 65.24 odd 12
845.2.e.k.146.2 6 65.19 odd 12
845.2.e.k.191.2 6 65.54 odd 12
845.2.m.h.316.3 12 65.49 even 6
845.2.m.h.316.4 12 65.29 even 6
845.2.m.h.361.3 12 65.9 even 6
845.2.m.h.361.4 12 65.4 even 6
1040.2.k.d.961.3 6 260.259 odd 2
1040.2.k.d.961.4 6 20.19 odd 2
4225.2.a.bc.1.2 3 13.8 odd 4
4225.2.a.be.1.2 3 13.5 odd 4
7605.2.a.bs.1.2 3 195.164 even 4
7605.2.a.cc.1.2 3 195.44 even 4