Properties

Label 845.2.e.k.191.2
Level $845$
Weight $2$
Character 845.191
Analytic conductor $6.747$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(146,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.146");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.954288.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 2x^{4} + 3x^{3} - 6x^{2} - 9x + 27 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 191.2
Root \(-1.62241 + 0.606458i\) of defining polynomial
Character \(\chi\) \(=\) 845.191
Dual form 845.2.e.k.146.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.285997 - 0.495361i) q^{2} +(0.214003 - 0.370665i) q^{3} +(0.836412 + 1.44871i) q^{4} +1.00000 q^{5} +(-0.122408 - 0.212018i) q^{6} +(-1.33641 - 2.31473i) q^{7} +2.10083 q^{8} +(1.40841 + 2.43943i) q^{9} +(0.285997 - 0.495361i) q^{10} +(2.55042 - 4.41745i) q^{11} +0.715980 q^{12} -1.52884 q^{14} +(0.214003 - 0.370665i) q^{15} +(-1.07199 + 1.85675i) q^{16} +(-2.67282 - 4.62947i) q^{17} +1.61120 q^{18} +(3.12241 + 5.40817i) q^{19} +(0.836412 + 1.44871i) q^{20} -1.14399 q^{21} +(-1.45882 - 2.52675i) q^{22} +(1.21400 - 2.10272i) q^{23} +(0.449585 - 0.778704i) q^{24} +1.00000 q^{25} +2.48963 q^{27} +(2.23558 - 3.87214i) q^{28} +(-1.33641 + 2.31473i) q^{29} +(-0.122408 - 0.212018i) q^{30} +0.244817 q^{31} +(2.71400 + 4.70079i) q^{32} +(-1.09159 - 1.89070i) q^{33} -3.05767 q^{34} +(-1.33641 - 2.31473i) q^{35} +(-2.35601 + 4.08074i) q^{36} +(1.66359 - 2.88142i) q^{37} +3.57199 q^{38} +2.10083 q^{40} +(3.24482 - 5.62019i) q^{41} +(-0.327176 + 0.566686i) q^{42} +(5.45882 + 9.45495i) q^{43} +8.53279 q^{44} +(1.40841 + 2.43943i) q^{45} +(-0.694402 - 1.20274i) q^{46} -2.67282 q^{47} +(0.458820 + 0.794700i) q^{48} +(-0.0719933 + 0.124696i) q^{49} +(0.285997 - 0.495361i) q^{50} -2.28797 q^{51} -4.20166 q^{53} +(0.712027 - 1.23327i) q^{54} +(2.55042 - 4.41745i) q^{55} +(-2.80757 - 4.86286i) q^{56} +2.67282 q^{57} +(0.764419 + 1.32401i) q^{58} +(-0.449585 - 0.778704i) q^{59} +0.715980 q^{60} +(2.90841 + 5.03751i) q^{61} +(0.0700168 - 0.121273i) q^{62} +(3.76442 - 6.52016i) q^{63} -1.18319 q^{64} -1.24877 q^{66} +(1.09159 - 1.89070i) q^{67} +(4.47116 - 7.74428i) q^{68} +(-0.519602 - 0.899976i) q^{69} -1.52884 q^{70} +(3.12241 + 5.40817i) q^{71} +(2.95882 + 5.12483i) q^{72} -10.9608 q^{73} +(-0.951561 - 1.64815i) q^{74} +(0.214003 - 0.370665i) q^{75} +(-5.22324 + 9.04692i) q^{76} -13.6336 q^{77} -3.63362 q^{79} +(-1.07199 + 1.85675i) q^{80} +(-3.69243 + 6.39547i) q^{81} +(-1.85601 - 3.21471i) q^{82} -9.81681 q^{83} +(-0.956844 - 1.65730i) q^{84} +(-2.67282 - 4.62947i) q^{85} +6.24482 q^{86} +(0.571993 + 0.990721i) q^{87} +(5.35799 - 9.28031i) q^{88} +(3.81681 - 6.61091i) q^{89} +1.61120 q^{90} +4.06163 q^{92} +(0.0523917 - 0.0907450i) q^{93} +(-0.764419 + 1.32401i) q^{94} +(3.12241 + 5.40817i) q^{95} +2.32322 q^{96} +(-5.67282 - 9.82562i) q^{97} +(0.0411797 + 0.0713253i) q^{98} +14.3681 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + 2 q^{3} - 5 q^{4} + 6 q^{5} + 10 q^{6} + 2 q^{7} - 6 q^{8} - 3 q^{9} + q^{10} + 6 q^{11} + 8 q^{14} + 2 q^{15} - 5 q^{16} + 4 q^{17} + 34 q^{18} + 8 q^{19} - 5 q^{20} - 4 q^{21} + 12 q^{22}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.285997 0.495361i 0.202230 0.350273i −0.747017 0.664805i \(-0.768514\pi\)
0.949247 + 0.314533i \(0.101848\pi\)
\(3\) 0.214003 0.370665i 0.123555 0.214003i −0.797612 0.603171i \(-0.793904\pi\)
0.921167 + 0.389167i \(0.127237\pi\)
\(4\) 0.836412 + 1.44871i 0.418206 + 0.724354i
\(5\) 1.00000 0.447214
\(6\) −0.122408 0.212018i −0.0499731 0.0865559i
\(7\) −1.33641 2.31473i −0.505116 0.874887i −0.999982 0.00591779i \(-0.998116\pi\)
0.494866 0.868969i \(-0.335217\pi\)
\(8\) 2.10083 0.742756
\(9\) 1.40841 + 2.43943i 0.469468 + 0.813143i
\(10\) 0.285997 0.495361i 0.0904401 0.156647i
\(11\) 2.55042 4.41745i 0.768979 1.33191i −0.169138 0.985592i \(-0.554098\pi\)
0.938117 0.346319i \(-0.112568\pi\)
\(12\) 0.715980 0.206686
\(13\) 0 0
\(14\) −1.52884 −0.408599
\(15\) 0.214003 0.370665i 0.0552554 0.0957052i
\(16\) −1.07199 + 1.85675i −0.267998 + 0.464187i
\(17\) −2.67282 4.62947i −0.648255 1.12281i −0.983539 0.180694i \(-0.942166\pi\)
0.335284 0.942117i \(-0.391168\pi\)
\(18\) 1.61120 0.379763
\(19\) 3.12241 + 5.40817i 0.716330 + 1.24072i 0.962444 + 0.271479i \(0.0875126\pi\)
−0.246115 + 0.969241i \(0.579154\pi\)
\(20\) 0.836412 + 1.44871i 0.187027 + 0.323941i
\(21\) −1.14399 −0.249638
\(22\) −1.45882 2.52675i −0.311022 0.538705i
\(23\) 1.21400 2.10272i 0.253137 0.438446i −0.711251 0.702938i \(-0.751871\pi\)
0.964388 + 0.264492i \(0.0852043\pi\)
\(24\) 0.449585 0.778704i 0.0917711 0.158952i
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 2.48963 0.479130
\(28\) 2.23558 3.87214i 0.422485 0.731766i
\(29\) −1.33641 + 2.31473i −0.248165 + 0.429835i −0.963017 0.269441i \(-0.913161\pi\)
0.714851 + 0.699276i \(0.246494\pi\)
\(30\) −0.122408 0.212018i −0.0223486 0.0387090i
\(31\) 0.244817 0.0439704 0.0219852 0.999758i \(-0.493001\pi\)
0.0219852 + 0.999758i \(0.493001\pi\)
\(32\) 2.71400 + 4.70079i 0.479773 + 0.830990i
\(33\) −1.09159 1.89070i −0.190022 0.329128i
\(34\) −3.05767 −0.524387
\(35\) −1.33641 2.31473i −0.225895 0.391261i
\(36\) −2.35601 + 4.08074i −0.392669 + 0.680123i
\(37\) 1.66359 2.88142i 0.273492 0.473702i −0.696261 0.717788i \(-0.745155\pi\)
0.969754 + 0.244086i \(0.0784879\pi\)
\(38\) 3.57199 0.579454
\(39\) 0 0
\(40\) 2.10083 0.332170
\(41\) 3.24482 5.62019i 0.506755 0.877726i −0.493214 0.869908i \(-0.664178\pi\)
0.999969 0.00781796i \(-0.00248856\pi\)
\(42\) −0.327176 + 0.566686i −0.0504844 + 0.0874415i
\(43\) 5.45882 + 9.45495i 0.832462 + 1.44187i 0.896080 + 0.443893i \(0.146403\pi\)
−0.0636177 + 0.997974i \(0.520264\pi\)
\(44\) 8.53279 1.28637
\(45\) 1.40841 + 2.43943i 0.209953 + 0.363649i
\(46\) −0.694402 1.20274i −0.102384 0.177334i
\(47\) −2.67282 −0.389871 −0.194936 0.980816i \(-0.562450\pi\)
−0.194936 + 0.980816i \(0.562450\pi\)
\(48\) 0.458820 + 0.794700i 0.0662250 + 0.114705i
\(49\) −0.0719933 + 0.124696i −0.0102848 + 0.0178137i
\(50\) 0.285997 0.495361i 0.0404460 0.0700546i
\(51\) −2.28797 −0.320380
\(52\) 0 0
\(53\) −4.20166 −0.577143 −0.288571 0.957458i \(-0.593180\pi\)
−0.288571 + 0.957458i \(0.593180\pi\)
\(54\) 0.712027 1.23327i 0.0968946 0.167826i
\(55\) 2.55042 4.41745i 0.343898 0.595649i
\(56\) −2.80757 4.86286i −0.375178 0.649827i
\(57\) 2.67282 0.354024
\(58\) 0.764419 + 1.32401i 0.100373 + 0.173851i
\(59\) −0.449585 0.778704i −0.0585310 0.101379i 0.835275 0.549832i \(-0.185308\pi\)
−0.893806 + 0.448454i \(0.851975\pi\)
\(60\) 0.715980 0.0924326
\(61\) 2.90841 + 5.03751i 0.372383 + 0.644986i 0.989932 0.141546i \(-0.0452074\pi\)
−0.617549 + 0.786533i \(0.711874\pi\)
\(62\) 0.0700168 0.121273i 0.00889215 0.0154016i
\(63\) 3.76442 6.52016i 0.474272 0.821463i
\(64\) −1.18319 −0.147899
\(65\) 0 0
\(66\) −1.24877 −0.153713
\(67\) 1.09159 1.89070i 0.133360 0.230985i −0.791610 0.611027i \(-0.790757\pi\)
0.924970 + 0.380041i \(0.124090\pi\)
\(68\) 4.47116 7.74428i 0.542208 0.939132i
\(69\) −0.519602 0.899976i −0.0625527 0.108344i
\(70\) −1.52884 −0.182731
\(71\) 3.12241 + 5.40817i 0.370562 + 0.641832i 0.989652 0.143488i \(-0.0458319\pi\)
−0.619090 + 0.785320i \(0.712499\pi\)
\(72\) 2.95882 + 5.12483i 0.348700 + 0.603967i
\(73\) −10.9608 −1.28286 −0.641432 0.767180i \(-0.721659\pi\)
−0.641432 + 0.767180i \(0.721659\pi\)
\(74\) −0.951561 1.64815i −0.110617 0.191594i
\(75\) 0.214003 0.370665i 0.0247110 0.0428007i
\(76\) −5.22324 + 9.04692i −0.599147 + 1.03775i
\(77\) −13.6336 −1.55370
\(78\) 0 0
\(79\) −3.63362 −0.408814 −0.204407 0.978886i \(-0.565527\pi\)
−0.204407 + 0.978886i \(0.565527\pi\)
\(80\) −1.07199 + 1.85675i −0.119852 + 0.207591i
\(81\) −3.69243 + 6.39547i −0.410269 + 0.710608i
\(82\) −1.85601 3.21471i −0.204962 0.355005i
\(83\) −9.81681 −1.07753 −0.538767 0.842455i \(-0.681110\pi\)
−0.538767 + 0.842455i \(0.681110\pi\)
\(84\) −0.956844 1.65730i −0.104400 0.180826i
\(85\) −2.67282 4.62947i −0.289908 0.502136i
\(86\) 6.24482 0.673396
\(87\) 0.571993 + 0.990721i 0.0613241 + 0.106216i
\(88\) 5.35799 9.28031i 0.571164 0.989284i
\(89\) 3.81681 6.61091i 0.404581 0.700755i −0.589692 0.807629i \(-0.700751\pi\)
0.994273 + 0.106874i \(0.0340840\pi\)
\(90\) 1.61120 0.169835
\(91\) 0 0
\(92\) 4.06163 0.423454
\(93\) 0.0523917 0.0907450i 0.00543276 0.00940982i
\(94\) −0.764419 + 1.32401i −0.0788438 + 0.136561i
\(95\) 3.12241 + 5.40817i 0.320352 + 0.554867i
\(96\) 2.32322 0.237113
\(97\) −5.67282 9.82562i −0.575988 0.997640i −0.995934 0.0900911i \(-0.971284\pi\)
0.419946 0.907549i \(-0.362049\pi\)
\(98\) 0.0411797 + 0.0713253i 0.00415977 + 0.00720494i
\(99\) 14.3681 1.44405
\(100\) 0.836412 + 1.44871i 0.0836412 + 0.144871i
\(101\) −5.42801 + 9.40158i −0.540107 + 0.935493i 0.458790 + 0.888544i \(0.348283\pi\)
−0.998897 + 0.0469480i \(0.985050\pi\)
\(102\) −0.654353 + 1.13337i −0.0647906 + 0.112221i
\(103\) 10.6297 1.04737 0.523686 0.851911i \(-0.324556\pi\)
0.523686 + 0.851911i \(0.324556\pi\)
\(104\) 0 0
\(105\) −1.14399 −0.111642
\(106\) −1.20166 + 2.08134i −0.116716 + 0.202157i
\(107\) −0.0700168 + 0.121273i −0.00676878 + 0.0117239i −0.869390 0.494127i \(-0.835488\pi\)
0.862621 + 0.505850i \(0.168821\pi\)
\(108\) 2.08236 + 3.60675i 0.200375 + 0.347060i
\(109\) −9.05767 −0.867568 −0.433784 0.901017i \(-0.642822\pi\)
−0.433784 + 0.901017i \(0.642822\pi\)
\(110\) −1.45882 2.52675i −0.139093 0.240916i
\(111\) −0.712027 1.23327i −0.0675826 0.117057i
\(112\) 5.73050 0.541481
\(113\) −6.48963 11.2404i −0.610493 1.05741i −0.991157 0.132692i \(-0.957638\pi\)
0.380664 0.924713i \(-0.375695\pi\)
\(114\) 0.764419 1.32401i 0.0715944 0.124005i
\(115\) 1.21400 2.10272i 0.113206 0.196079i
\(116\) −4.47116 −0.415137
\(117\) 0 0
\(118\) −0.514319 −0.0473469
\(119\) −7.14399 + 12.3737i −0.654888 + 1.13430i
\(120\) 0.449585 0.778704i 0.0410413 0.0710856i
\(121\) −7.50924 13.0064i −0.682658 1.18240i
\(122\) 3.32718 0.301228
\(123\) −1.38880 2.40548i −0.125224 0.216895i
\(124\) 0.204768 + 0.354668i 0.0183887 + 0.0318501i
\(125\) 1.00000 0.0894427
\(126\) −2.15322 3.72949i −0.191824 0.332249i
\(127\) −6.03081 + 10.4457i −0.535148 + 0.926904i 0.464008 + 0.885831i \(0.346411\pi\)
−0.999156 + 0.0410728i \(0.986922\pi\)
\(128\) −5.76640 + 9.98769i −0.509682 + 0.882795i
\(129\) 4.67282 0.411419
\(130\) 0 0
\(131\) 7.63362 0.666953 0.333476 0.942758i \(-0.391778\pi\)
0.333476 + 0.942758i \(0.391778\pi\)
\(132\) 1.82605 3.16280i 0.158937 0.275287i
\(133\) 8.34565 14.4551i 0.723659 1.25341i
\(134\) −0.624385 1.08147i −0.0539386 0.0934245i
\(135\) 2.48963 0.214274
\(136\) −5.61515 9.72572i −0.481495 0.833974i
\(137\) −1.71598 2.97216i −0.146606 0.253929i 0.783365 0.621562i \(-0.213502\pi\)
−0.929971 + 0.367633i \(0.880168\pi\)
\(138\) −0.594417 −0.0506002
\(139\) 0.471163 + 0.816078i 0.0399635 + 0.0692188i 0.885315 0.464991i \(-0.153942\pi\)
−0.845352 + 0.534210i \(0.820609\pi\)
\(140\) 2.23558 3.87214i 0.188941 0.327256i
\(141\) −0.571993 + 0.990721i −0.0481705 + 0.0834338i
\(142\) 3.57199 0.299755
\(143\) 0 0
\(144\) −6.03920 −0.503267
\(145\) −1.33641 + 2.31473i −0.110983 + 0.192228i
\(146\) −3.13475 + 5.42955i −0.259434 + 0.449353i
\(147\) 0.0308136 + 0.0533707i 0.00254146 + 0.00440194i
\(148\) 5.56578 0.457504
\(149\) −5.67282 9.82562i −0.464736 0.804946i 0.534454 0.845198i \(-0.320517\pi\)
−0.999190 + 0.0402517i \(0.987184\pi\)
\(150\) −0.122408 0.212018i −0.00999461 0.0173112i
\(151\) −21.0224 −1.71078 −0.855390 0.517984i \(-0.826683\pi\)
−0.855390 + 0.517984i \(0.826683\pi\)
\(152\) 6.55965 + 11.3616i 0.532058 + 0.921551i
\(153\) 7.52884 13.0403i 0.608670 1.05425i
\(154\) −3.89917 + 6.75356i −0.314204 + 0.544217i
\(155\) 0.244817 0.0196642
\(156\) 0 0
\(157\) −9.83528 −0.784941 −0.392470 0.919765i \(-0.628379\pi\)
−0.392470 + 0.919765i \(0.628379\pi\)
\(158\) −1.03920 + 1.79995i −0.0826746 + 0.143197i
\(159\) −0.899170 + 1.55741i −0.0713088 + 0.123510i
\(160\) 2.71400 + 4.70079i 0.214561 + 0.371630i
\(161\) −6.48963 −0.511455
\(162\) 2.11204 + 3.65816i 0.165938 + 0.287413i
\(163\) 6.19243 + 10.7256i 0.485028 + 0.840093i 0.999852 0.0172025i \(-0.00547601\pi\)
−0.514824 + 0.857296i \(0.672143\pi\)
\(164\) 10.8560 0.847712
\(165\) −1.09159 1.89070i −0.0849805 0.147191i
\(166\) −2.80757 + 4.86286i −0.217910 + 0.377431i
\(167\) −4.25405 + 7.36824i −0.329188 + 0.570171i −0.982351 0.187047i \(-0.940108\pi\)
0.653163 + 0.757218i \(0.273442\pi\)
\(168\) −2.40332 −0.185420
\(169\) 0 0
\(170\) −3.05767 −0.234513
\(171\) −8.79523 + 15.2338i −0.672588 + 1.16496i
\(172\) −9.13164 + 15.8165i −0.696281 + 1.20599i
\(173\) 10.7737 + 18.6605i 0.819106 + 1.41873i 0.906342 + 0.422545i \(0.138863\pi\)
−0.0872361 + 0.996188i \(0.527803\pi\)
\(174\) 0.654353 0.0496063
\(175\) −1.33641 2.31473i −0.101023 0.174977i
\(176\) 5.46806 + 9.47095i 0.412170 + 0.713900i
\(177\) −0.384851 −0.0289271
\(178\) −2.18319 3.78140i −0.163637 0.283428i
\(179\) −1.28402 + 2.22399i −0.0959722 + 0.166229i −0.910014 0.414578i \(-0.863929\pi\)
0.814042 + 0.580806i \(0.197263\pi\)
\(180\) −2.35601 + 4.08074i −0.175607 + 0.304160i
\(181\) −13.7305 −1.02058 −0.510290 0.860002i \(-0.670462\pi\)
−0.510290 + 0.860002i \(0.670462\pi\)
\(182\) 0 0
\(183\) 2.48963 0.184039
\(184\) 2.55042 4.41745i 0.188019 0.325659i
\(185\) 1.66359 2.88142i 0.122309 0.211846i
\(186\) −0.0299677 0.0519055i −0.00219734 0.00380590i
\(187\) −27.2672 −1.99398
\(188\) −2.23558 3.87214i −0.163047 0.282405i
\(189\) −3.32718 5.76284i −0.242016 0.419185i
\(190\) 3.57199 0.259140
\(191\) 5.34565 + 9.25893i 0.386797 + 0.669953i 0.992017 0.126106i \(-0.0402479\pi\)
−0.605219 + 0.796059i \(0.706915\pi\)
\(192\) −0.253207 + 0.438567i −0.0182736 + 0.0316508i
\(193\) −9.62967 + 16.6791i −0.693159 + 1.20059i 0.277639 + 0.960686i \(0.410448\pi\)
−0.970797 + 0.239900i \(0.922885\pi\)
\(194\) −6.48963 −0.465929
\(195\) 0 0
\(196\) −0.240864 −0.0172046
\(197\) −8.59046 + 14.8791i −0.612045 + 1.06009i 0.378850 + 0.925458i \(0.376320\pi\)
−0.990895 + 0.134635i \(0.957014\pi\)
\(198\) 4.10922 7.11738i 0.292030 0.505810i
\(199\) −5.77365 10.0003i −0.409283 0.708900i 0.585526 0.810654i \(-0.300888\pi\)
−0.994810 + 0.101754i \(0.967555\pi\)
\(200\) 2.10083 0.148551
\(201\) −0.467210 0.809231i −0.0329544 0.0570788i
\(202\) 3.10478 + 5.37764i 0.218452 + 0.378370i
\(203\) 7.14399 0.501410
\(204\) −1.91369 3.31460i −0.133985 0.232069i
\(205\) 3.24482 5.62019i 0.226628 0.392531i
\(206\) 3.04005 5.26552i 0.211810 0.366866i
\(207\) 6.83923 0.475360
\(208\) 0 0
\(209\) 31.8538 2.20337
\(210\) −0.327176 + 0.566686i −0.0225773 + 0.0391050i
\(211\) −12.0616 + 20.8914i −0.830357 + 1.43822i 0.0673990 + 0.997726i \(0.478530\pi\)
−0.897756 + 0.440494i \(0.854803\pi\)
\(212\) −3.51432 6.08698i −0.241364 0.418055i
\(213\) 2.67282 0.183139
\(214\) 0.0400492 + 0.0693672i 0.00273770 + 0.00474184i
\(215\) 5.45882 + 9.45495i 0.372288 + 0.644823i
\(216\) 5.23030 0.355877
\(217\) −0.327176 0.566686i −0.0222102 0.0384692i
\(218\) −2.59046 + 4.48682i −0.175448 + 0.303886i
\(219\) −2.34565 + 4.06278i −0.158504 + 0.274537i
\(220\) 8.53279 0.575281
\(221\) 0 0
\(222\) −0.814549 −0.0546690
\(223\) 2.86525 4.96276i 0.191871 0.332331i −0.753999 0.656875i \(-0.771878\pi\)
0.945870 + 0.324545i \(0.105211\pi\)
\(224\) 7.25405 12.5644i 0.484682 0.839493i
\(225\) 1.40841 + 2.43943i 0.0938937 + 0.162629i
\(226\) −7.42405 −0.493841
\(227\) 1.47645 + 2.55728i 0.0979951 + 0.169733i 0.910855 0.412727i \(-0.135424\pi\)
−0.812860 + 0.582460i \(0.802090\pi\)
\(228\) 2.23558 + 3.87214i 0.148055 + 0.256439i
\(229\) −25.2593 −1.66918 −0.834592 0.550869i \(-0.814297\pi\)
−0.834592 + 0.550869i \(0.814297\pi\)
\(230\) −0.694402 1.20274i −0.0457875 0.0793063i
\(231\) −2.91764 + 5.05350i −0.191967 + 0.332496i
\(232\) −2.80757 + 4.86286i −0.184326 + 0.319263i
\(233\) 23.3456 1.52942 0.764712 0.644372i \(-0.222881\pi\)
0.764712 + 0.644372i \(0.222881\pi\)
\(234\) 0 0
\(235\) −2.67282 −0.174356
\(236\) 0.752076 1.30263i 0.0489560 0.0847942i
\(237\) −0.777607 + 1.34685i −0.0505110 + 0.0874876i
\(238\) 4.08631 + 7.07770i 0.264876 + 0.458779i
\(239\) 3.79213 0.245292 0.122646 0.992450i \(-0.460862\pi\)
0.122646 + 0.992450i \(0.460862\pi\)
\(240\) 0.458820 + 0.794700i 0.0296167 + 0.0512977i
\(241\) −1.71598 2.97216i −0.110536 0.191454i 0.805451 0.592663i \(-0.201923\pi\)
−0.915986 + 0.401209i \(0.868590\pi\)
\(242\) −8.59046 −0.552216
\(243\) 5.31483 + 9.20556i 0.340947 + 0.590537i
\(244\) −4.86525 + 8.42686i −0.311466 + 0.539474i
\(245\) −0.0719933 + 0.124696i −0.00459948 + 0.00796654i
\(246\) −1.58877 −0.101296
\(247\) 0 0
\(248\) 0.514319 0.0326593
\(249\) −2.10083 + 3.63875i −0.133135 + 0.230596i
\(250\) 0.285997 0.495361i 0.0180880 0.0313294i
\(251\) −12.7345 22.0567i −0.803791 1.39221i −0.917104 0.398648i \(-0.869479\pi\)
0.113313 0.993559i \(-0.463854\pi\)
\(252\) 12.5944 0.793374
\(253\) −6.19243 10.7256i −0.389314 0.674312i
\(254\) 3.44958 + 5.97486i 0.216446 + 0.374896i
\(255\) −2.28797 −0.143278
\(256\) 2.11515 + 3.66355i 0.132197 + 0.228972i
\(257\) 4.63362 8.02567i 0.289037 0.500627i −0.684543 0.728973i \(-0.739998\pi\)
0.973580 + 0.228345i \(0.0733315\pi\)
\(258\) 1.33641 2.31473i 0.0832014 0.144109i
\(259\) −8.89296 −0.552581
\(260\) 0 0
\(261\) −7.52884 −0.466023
\(262\) 2.18319 3.78140i 0.134878 0.233615i
\(263\) 4.07397 7.05632i 0.251212 0.435111i −0.712648 0.701522i \(-0.752504\pi\)
0.963860 + 0.266410i \(0.0858376\pi\)
\(264\) −2.29326 3.97204i −0.141140 0.244462i
\(265\) −4.20166 −0.258106
\(266\) −4.77365 8.26821i −0.292692 0.506957i
\(267\) −1.63362 2.82951i −0.0999759 0.173163i
\(268\) 3.65209 0.223087
\(269\) −0.571993 0.990721i −0.0348750 0.0604053i 0.848061 0.529899i \(-0.177770\pi\)
−0.882936 + 0.469493i \(0.844437\pi\)
\(270\) 0.712027 1.23327i 0.0433326 0.0750542i
\(271\) −1.59357 + 2.76015i −0.0968026 + 0.167667i −0.910359 0.413818i \(-0.864195\pi\)
0.813557 + 0.581485i \(0.197528\pi\)
\(272\) 11.4610 0.694925
\(273\) 0 0
\(274\) −1.96306 −0.118593
\(275\) 2.55042 4.41745i 0.153796 0.266382i
\(276\) 0.869202 1.50550i 0.0523198 0.0906206i
\(277\) 3.81286 + 6.60406i 0.229092 + 0.396800i 0.957539 0.288303i \(-0.0930909\pi\)
−0.728447 + 0.685102i \(0.759758\pi\)
\(278\) 0.539004 0.0323273
\(279\) 0.344801 + 0.597214i 0.0206427 + 0.0357542i
\(280\) −2.80757 4.86286i −0.167785 0.290612i
\(281\) 20.2386 1.20733 0.603667 0.797237i \(-0.293706\pi\)
0.603667 + 0.797237i \(0.293706\pi\)
\(282\) 0.327176 + 0.566686i 0.0194831 + 0.0337457i
\(283\) 9.94845 17.2312i 0.591374 1.02429i −0.402673 0.915344i \(-0.631919\pi\)
0.994048 0.108946i \(-0.0347477\pi\)
\(284\) −5.22324 + 9.04692i −0.309942 + 0.536836i
\(285\) 2.67282 0.158324
\(286\) 0 0
\(287\) −17.3456 −1.02388
\(288\) −7.64483 + 13.2412i −0.450476 + 0.780247i
\(289\) −5.78797 + 10.0251i −0.340469 + 0.589710i
\(290\) 0.764419 + 1.32401i 0.0448882 + 0.0777487i
\(291\) −4.85601 −0.284665
\(292\) −9.16774 15.8790i −0.536501 0.929248i
\(293\) −13.0092 22.5327i −0.760008 1.31637i −0.942846 0.333229i \(-0.891862\pi\)
0.182838 0.983143i \(-0.441472\pi\)
\(294\) 0.0352503 0.00205584
\(295\) −0.449585 0.778704i −0.0261758 0.0453379i
\(296\) 3.49492 6.05337i 0.203138 0.351845i
\(297\) 6.34960 10.9978i 0.368441 0.638159i
\(298\) −6.48963 −0.375934
\(299\) 0 0
\(300\) 0.715980 0.0413371
\(301\) 14.5905 25.2714i 0.840980 1.45662i
\(302\) −6.01234 + 10.4137i −0.345971 + 0.599240i
\(303\) 2.32322 + 4.02394i 0.133466 + 0.231169i
\(304\) −13.3888 −0.767901
\(305\) 2.90841 + 5.03751i 0.166535 + 0.288447i
\(306\) −4.30644 7.45898i −0.246183 0.426402i
\(307\) 2.39276 0.136562 0.0682809 0.997666i \(-0.478249\pi\)
0.0682809 + 0.997666i \(0.478249\pi\)
\(308\) −11.4033 19.7511i −0.649765 1.12543i
\(309\) 2.27478 3.94004i 0.129408 0.224141i
\(310\) 0.0700168 0.121273i 0.00397669 0.00688783i
\(311\) −3.54731 −0.201149 −0.100575 0.994930i \(-0.532068\pi\)
−0.100575 + 0.994930i \(0.532068\pi\)
\(312\) 0 0
\(313\) 4.97927 0.281445 0.140722 0.990049i \(-0.455057\pi\)
0.140722 + 0.990049i \(0.455057\pi\)
\(314\) −2.81286 + 4.87201i −0.158739 + 0.274944i
\(315\) 3.76442 6.52016i 0.212101 0.367370i
\(316\) −3.03920 5.26405i −0.170969 0.296126i
\(317\) 18.5944 1.04437 0.522183 0.852833i \(-0.325118\pi\)
0.522183 + 0.852833i \(0.325118\pi\)
\(318\) 0.514319 + 0.890827i 0.0288416 + 0.0499551i
\(319\) 6.81681 + 11.8071i 0.381668 + 0.661069i
\(320\) −1.18319 −0.0661423
\(321\) 0.0299677 + 0.0519055i 0.00167263 + 0.00289708i
\(322\) −1.85601 + 3.21471i −0.103432 + 0.179149i
\(323\) 16.6913 28.9102i 0.928728 1.60860i
\(324\) −12.3536 −0.686309
\(325\) 0 0
\(326\) 7.08405 0.392349
\(327\) −1.93837 + 3.35736i −0.107192 + 0.185662i
\(328\) 6.81681 11.8071i 0.376395 0.651936i
\(329\) 3.57199 + 6.18687i 0.196930 + 0.341093i
\(330\) −1.24877 −0.0687425
\(331\) 2.95995 + 5.12679i 0.162694 + 0.281794i 0.935834 0.352442i \(-0.114648\pi\)
−0.773140 + 0.634235i \(0.781315\pi\)
\(332\) −8.21090 14.2217i −0.450631 0.780517i
\(333\) 9.37202 0.513584
\(334\) 2.43329 + 4.21458i 0.133144 + 0.230612i
\(335\) 1.09159 1.89070i 0.0596402 0.103300i
\(336\) 1.22635 2.12409i 0.0669027 0.115879i
\(337\) −13.9216 −0.758358 −0.379179 0.925323i \(-0.623793\pi\)
−0.379179 + 0.925323i \(0.623793\pi\)
\(338\) 0 0
\(339\) −5.55521 −0.301718
\(340\) 4.47116 7.74428i 0.242483 0.419993i
\(341\) 0.624385 1.08147i 0.0338123 0.0585647i
\(342\) 5.03081 + 8.71362i 0.272035 + 0.471179i
\(343\) −18.3249 −0.989452
\(344\) 11.4681 + 19.8633i 0.618316 + 1.07095i
\(345\) −0.519602 0.899976i −0.0279744 0.0484531i
\(346\) 12.3249 0.662592
\(347\) −3.82915 6.63229i −0.205560 0.356040i 0.744751 0.667342i \(-0.232568\pi\)
−0.950311 + 0.311302i \(0.899235\pi\)
\(348\) −0.956844 + 1.65730i −0.0512922 + 0.0888407i
\(349\) 5.59046 9.68297i 0.299251 0.518317i −0.676714 0.736246i \(-0.736597\pi\)
0.975965 + 0.217929i \(0.0699300\pi\)
\(350\) −1.52884 −0.0817198
\(351\) 0 0
\(352\) 27.6873 1.47574
\(353\) −4.82605 + 8.35896i −0.256864 + 0.444902i −0.965400 0.260773i \(-0.916023\pi\)
0.708536 + 0.705675i \(0.249356\pi\)
\(354\) −0.110066 + 0.190640i −0.00584994 + 0.0101324i
\(355\) 3.12241 + 5.40817i 0.165720 + 0.287036i
\(356\) 12.7697 0.676793
\(357\) 3.05767 + 5.29605i 0.161829 + 0.280297i
\(358\) 0.734451 + 1.27211i 0.0388169 + 0.0672329i
\(359\) −9.51206 −0.502027 −0.251014 0.967984i \(-0.580764\pi\)
−0.251014 + 0.967984i \(0.580764\pi\)
\(360\) 2.95882 + 5.12483i 0.155944 + 0.270102i
\(361\) −9.99887 + 17.3185i −0.526256 + 0.911503i
\(362\) −3.92688 + 6.80155i −0.206392 + 0.357481i
\(363\) −6.42801 −0.337383
\(364\) 0 0
\(365\) −10.9608 −0.573714
\(366\) 0.712027 1.23327i 0.0372182 0.0644639i
\(367\) 8.50198 14.7259i 0.443800 0.768683i −0.554168 0.832405i \(-0.686964\pi\)
0.997968 + 0.0637213i \(0.0202969\pi\)
\(368\) 2.60281 + 4.50819i 0.135681 + 0.235006i
\(369\) 18.2801 0.951622
\(370\) −0.951561 1.64815i −0.0494693 0.0856834i
\(371\) 5.61515 + 9.72572i 0.291524 + 0.504934i
\(372\) 0.175284 0.00908805
\(373\) 0.917641 + 1.58940i 0.0475136 + 0.0822960i 0.888804 0.458287i \(-0.151537\pi\)
−0.841290 + 0.540583i \(0.818204\pi\)
\(374\) −7.79834 + 13.5071i −0.403243 + 0.698437i
\(375\) 0.214003 0.370665i 0.0110511 0.0191410i
\(376\) −5.61515 −0.289579
\(377\) 0 0
\(378\) −3.80624 −0.195772
\(379\) 16.1840 28.0316i 0.831318 1.43989i −0.0656752 0.997841i \(-0.520920\pi\)
0.896993 0.442044i \(-0.145747\pi\)
\(380\) −5.22324 + 9.04692i −0.267947 + 0.464097i
\(381\) 2.58123 + 4.47082i 0.132240 + 0.229047i
\(382\) 6.11535 0.312888
\(383\) 14.0709 + 24.3714i 0.718988 + 1.24532i 0.961401 + 0.275150i \(0.0887275\pi\)
−0.242414 + 0.970173i \(0.577939\pi\)
\(384\) 2.46806 + 4.27480i 0.125947 + 0.218147i
\(385\) −13.6336 −0.694834
\(386\) 5.50811 + 9.54032i 0.280355 + 0.485589i
\(387\) −15.3765 + 26.6328i −0.781629 + 1.35382i
\(388\) 9.48963 16.4365i 0.481763 0.834438i
\(389\) 31.9585 1.62036 0.810181 0.586180i \(-0.199369\pi\)
0.810181 + 0.586180i \(0.199369\pi\)
\(390\) 0 0
\(391\) −12.9793 −0.656390
\(392\) −0.151246 + 0.261965i −0.00763906 + 0.0132312i
\(393\) 1.63362 2.82951i 0.0824053 0.142730i
\(394\) 4.91369 + 8.51076i 0.247548 + 0.428766i
\(395\) −3.63362 −0.182827
\(396\) 12.0176 + 20.8151i 0.603908 + 1.04600i
\(397\) 6.35488 + 11.0070i 0.318942 + 0.552424i 0.980268 0.197675i \(-0.0633390\pi\)
−0.661325 + 0.750099i \(0.730006\pi\)
\(398\) −6.60498 −0.331078
\(399\) −3.57199 6.18687i −0.178823 0.309731i
\(400\) −1.07199 + 1.85675i −0.0535997 + 0.0928373i
\(401\) −0.489634 + 0.848071i −0.0244512 + 0.0423506i −0.877992 0.478675i \(-0.841117\pi\)
0.853541 + 0.521026i \(0.174450\pi\)
\(402\) −0.534482 −0.0266575
\(403\) 0 0
\(404\) −18.1602 −0.903504
\(405\) −3.69243 + 6.39547i −0.183478 + 0.317793i
\(406\) 2.04316 3.53885i 0.101400 0.175630i
\(407\) −8.48568 14.6976i −0.420620 0.728535i
\(408\) −4.80664 −0.237964
\(409\) −3.89917 6.75356i −0.192802 0.333942i 0.753376 0.657590i \(-0.228424\pi\)
−0.946178 + 0.323648i \(0.895091\pi\)
\(410\) −1.85601 3.21471i −0.0916620 0.158763i
\(411\) −1.46890 −0.0724556
\(412\) 8.89078 + 15.3993i 0.438017 + 0.758668i
\(413\) −1.20166 + 2.08134i −0.0591299 + 0.102416i
\(414\) 1.95600 3.38789i 0.0961321 0.166506i
\(415\) −9.81681 −0.481888
\(416\) 0 0
\(417\) 0.403322 0.0197508
\(418\) 9.11007 15.7791i 0.445588 0.771781i
\(419\) −5.10083 + 8.83490i −0.249192 + 0.431613i −0.963302 0.268421i \(-0.913498\pi\)
0.714110 + 0.700034i \(0.246832\pi\)
\(420\) −0.956844 1.65730i −0.0466892 0.0808681i
\(421\) 31.1888 1.52005 0.760025 0.649893i \(-0.225186\pi\)
0.760025 + 0.649893i \(0.225186\pi\)
\(422\) 6.89917 + 11.9497i 0.335846 + 0.581703i
\(423\) −3.76442 6.52016i −0.183032 0.317021i
\(424\) −8.82698 −0.428676
\(425\) −2.67282 4.62947i −0.129651 0.224562i
\(426\) 0.764419 1.32401i 0.0370362 0.0641486i
\(427\) 7.77365 13.4644i 0.376193 0.651586i
\(428\) −0.234252 −0.0113230
\(429\) 0 0
\(430\) 6.24482 0.301152
\(431\) −11.4681 + 19.8633i −0.552397 + 0.956779i 0.445704 + 0.895180i \(0.352953\pi\)
−0.998101 + 0.0615990i \(0.980380\pi\)
\(432\) −2.66887 + 4.62262i −0.128406 + 0.222406i
\(433\) −8.14399 14.1058i −0.391375 0.677881i 0.601256 0.799056i \(-0.294667\pi\)
−0.992631 + 0.121175i \(0.961334\pi\)
\(434\) −0.374285 −0.0179663
\(435\) 0.571993 + 0.990721i 0.0274250 + 0.0475015i
\(436\) −7.57595 13.1219i −0.362822 0.628426i
\(437\) 15.1625 0.725319
\(438\) 1.34169 + 2.32388i 0.0641086 + 0.111039i
\(439\) 11.8784 20.5741i 0.566927 0.981946i −0.429941 0.902857i \(-0.641466\pi\)
0.996868 0.0790890i \(-0.0252011\pi\)
\(440\) 5.35799 9.28031i 0.255432 0.442421i
\(441\) −0.405583 −0.0193135
\(442\) 0 0
\(443\) −2.75292 −0.130795 −0.0653976 0.997859i \(-0.520832\pi\)
−0.0653976 + 0.997859i \(0.520832\pi\)
\(444\) 1.19110 2.06304i 0.0565269 0.0979074i
\(445\) 3.81681 6.61091i 0.180934 0.313387i
\(446\) −1.63890 2.83866i −0.0776043 0.134415i
\(447\) −4.85601 −0.229682
\(448\) 1.58123 + 2.73877i 0.0747060 + 0.129395i
\(449\) −13.5513 23.4715i −0.639524 1.10769i −0.985537 0.169458i \(-0.945798\pi\)
0.346014 0.938229i \(-0.387535\pi\)
\(450\) 1.61120 0.0759525
\(451\) −16.5513 28.6676i −0.779368 1.34991i
\(452\) 10.8560 18.8032i 0.510624 0.884427i
\(453\) −4.49887 + 7.79227i −0.211375 + 0.366113i
\(454\) 1.68903 0.0792703
\(455\) 0 0
\(456\) 5.61515 0.262953
\(457\) 20.0761 34.7729i 0.939122 1.62661i 0.172010 0.985095i \(-0.444974\pi\)
0.767112 0.641513i \(-0.221693\pi\)
\(458\) −7.22408 + 12.5125i −0.337559 + 0.584670i
\(459\) −6.65435 11.5257i −0.310599 0.537973i
\(460\) 4.06163 0.189374
\(461\) 1.00395 + 1.73890i 0.0467587 + 0.0809885i 0.888458 0.458959i \(-0.151777\pi\)
−0.841699 + 0.539947i \(0.818444\pi\)
\(462\) 1.66887 + 2.89057i 0.0776429 + 0.134481i
\(463\) −2.67282 −0.124217 −0.0621083 0.998069i \(-0.519782\pi\)
−0.0621083 + 0.998069i \(0.519782\pi\)
\(464\) −2.86525 4.96276i −0.133016 0.230390i
\(465\) 0.0523917 0.0907450i 0.00242960 0.00420820i
\(466\) 6.67678 11.5645i 0.309296 0.535716i
\(467\) −31.8890 −1.47565 −0.737824 0.674994i \(-0.764146\pi\)
−0.737824 + 0.674994i \(0.764146\pi\)
\(468\) 0 0
\(469\) −5.83528 −0.269448
\(470\) −0.764419 + 1.32401i −0.0352600 + 0.0610721i
\(471\) −2.10478 + 3.64559i −0.0969833 + 0.167980i
\(472\) −0.944501 1.63592i −0.0434742 0.0752995i
\(473\) 55.6890 2.56058
\(474\) 0.444786 + 0.770392i 0.0204297 + 0.0353853i
\(475\) 3.12241 + 5.40817i 0.143266 + 0.248144i
\(476\) −23.9013 −1.09551
\(477\) −5.91764 10.2497i −0.270950 0.469299i
\(478\) 1.08454 1.87847i 0.0496055 0.0859192i
\(479\) −3.36723 + 5.83221i −0.153852 + 0.266480i −0.932641 0.360807i \(-0.882501\pi\)
0.778788 + 0.627287i \(0.215835\pi\)
\(480\) 2.32322 0.106040
\(481\) 0 0
\(482\) −1.96306 −0.0894148
\(483\) −1.38880 + 2.40548i −0.0631927 + 0.109453i
\(484\) 12.5616 21.7574i 0.570983 0.988972i
\(485\) −5.67282 9.82562i −0.257590 0.446158i
\(486\) 6.08010 0.275799
\(487\) 19.8260 + 34.3397i 0.898404 + 1.55608i 0.829534 + 0.558456i \(0.188606\pi\)
0.0688694 + 0.997626i \(0.478061\pi\)
\(488\) 6.11007 + 10.5829i 0.276590 + 0.479067i
\(489\) 5.30080 0.239710
\(490\) 0.0411797 + 0.0713253i 0.00186031 + 0.00322215i
\(491\) 15.5473 26.9287i 0.701640 1.21528i −0.266250 0.963904i \(-0.585785\pi\)
0.967890 0.251373i \(-0.0808819\pi\)
\(492\) 2.32322 4.02394i 0.104739 0.181413i
\(493\) 14.2880 0.643498
\(494\) 0 0
\(495\) 14.3681 0.645797
\(496\) −0.262442 + 0.454563i −0.0117840 + 0.0204105i
\(497\) 8.34565 14.4551i 0.374353 0.648399i
\(498\) 1.20166 + 2.08134i 0.0538477 + 0.0932670i
\(499\) −13.1087 −0.586828 −0.293414 0.955986i \(-0.594791\pi\)
−0.293414 + 0.955986i \(0.594791\pi\)
\(500\) 0.836412 + 1.44871i 0.0374055 + 0.0647882i
\(501\) 1.82076 + 3.15365i 0.0813457 + 0.140895i
\(502\) −14.5680 −0.650203
\(503\) 4.29636 + 7.44152i 0.191565 + 0.331801i 0.945769 0.324839i \(-0.105310\pi\)
−0.754204 + 0.656640i \(0.771977\pi\)
\(504\) 7.90841 13.6978i 0.352268 0.610147i
\(505\) −5.42801 + 9.40158i −0.241543 + 0.418365i
\(506\) −7.08405 −0.314924
\(507\) 0 0
\(508\) −20.1770 −0.895209
\(509\) 14.9176 25.8381i 0.661213 1.14525i −0.319084 0.947726i \(-0.603375\pi\)
0.980297 0.197528i \(-0.0632913\pi\)
\(510\) −0.654353 + 1.13337i −0.0289752 + 0.0501866i
\(511\) 14.6481 + 25.3713i 0.647996 + 1.12236i
\(512\) −20.6459 −0.912428
\(513\) 7.77365 + 13.4644i 0.343215 + 0.594466i
\(514\) −2.65040 4.59063i −0.116904 0.202484i
\(515\) 10.6297 0.468399
\(516\) 3.90841 + 6.76956i 0.172058 + 0.298013i
\(517\) −6.81681 + 11.8071i −0.299803 + 0.519274i
\(518\) −2.54336 + 4.40522i −0.111749 + 0.193554i
\(519\) 9.22239 0.404818
\(520\) 0 0
\(521\) 10.0969 0.442352 0.221176 0.975234i \(-0.429010\pi\)
0.221176 + 0.975234i \(0.429010\pi\)
\(522\) −2.15322 + 3.72949i −0.0942440 + 0.163235i
\(523\) −8.07397 + 13.9845i −0.353050 + 0.611501i −0.986782 0.162052i \(-0.948189\pi\)
0.633732 + 0.773553i \(0.281522\pi\)
\(524\) 6.38485 + 11.0589i 0.278923 + 0.483110i
\(525\) −1.14399 −0.0499277
\(526\) −2.33028 4.03617i −0.101605 0.175985i
\(527\) −0.654353 1.13337i −0.0285040 0.0493705i
\(528\) 4.68073 0.203703
\(529\) 8.55239 + 14.8132i 0.371843 + 0.644051i
\(530\) −1.20166 + 2.08134i −0.0521968 + 0.0904075i
\(531\) 1.26640 2.19346i 0.0549569 0.0951881i
\(532\) 27.9216 1.21055
\(533\) 0 0
\(534\) −1.86884 −0.0808726
\(535\) −0.0700168 + 0.121273i −0.00302709 + 0.00524308i
\(536\) 2.29326 3.97204i 0.0990536 0.171566i
\(537\) 0.549569 + 0.951882i 0.0237157 + 0.0410767i
\(538\) −0.654353 −0.0282111
\(539\) 0.367225 + 0.636053i 0.0158175 + 0.0273967i
\(540\) 2.08236 + 3.60675i 0.0896105 + 0.155210i
\(541\) −26.7776 −1.15126 −0.575630 0.817711i \(-0.695243\pi\)
−0.575630 + 0.817711i \(0.695243\pi\)
\(542\) 0.911512 + 1.57879i 0.0391528 + 0.0678146i
\(543\) −2.93837 + 5.08941i −0.126098 + 0.218408i
\(544\) 14.5081 25.1288i 0.622030 1.07739i
\(545\) −9.05767 −0.387988
\(546\) 0 0
\(547\) 12.3865 0.529610 0.264805 0.964302i \(-0.414692\pi\)
0.264805 + 0.964302i \(0.414692\pi\)
\(548\) 2.87053 4.97191i 0.122623 0.212389i
\(549\) −8.19243 + 14.1897i −0.349644 + 0.605602i
\(550\) −1.45882 2.52675i −0.0622043 0.107741i
\(551\) −16.6913 −0.711073
\(552\) −1.09159 1.89070i −0.0464614 0.0804734i
\(553\) 4.85601 + 8.41086i 0.206499 + 0.357666i
\(554\) 4.36186 0.185318
\(555\) −0.712027 1.23327i −0.0302239 0.0523493i
\(556\) −0.788172 + 1.36515i −0.0334260 + 0.0578954i
\(557\) 5.21090 9.02554i 0.220793 0.382424i −0.734256 0.678873i \(-0.762469\pi\)
0.955049 + 0.296448i \(0.0958022\pi\)
\(558\) 0.394448 0.0166983
\(559\) 0 0
\(560\) 5.73050 0.242158
\(561\) −5.83528 + 10.1070i −0.246366 + 0.426718i
\(562\) 5.78817 10.0254i 0.244159 0.422896i
\(563\) 4.89078 + 8.47108i 0.206122 + 0.357013i 0.950490 0.310756i \(-0.100582\pi\)
−0.744368 + 0.667770i \(0.767249\pi\)
\(564\) −1.91369 −0.0805808
\(565\) −6.48963 11.2404i −0.273021 0.472886i
\(566\) −5.69045 9.85615i −0.239187 0.414285i
\(567\) 19.7384 0.828935
\(568\) 6.55965 + 11.3616i 0.275237 + 0.476724i
\(569\) −15.1101 + 26.1714i −0.633447 + 1.09716i 0.353395 + 0.935474i \(0.385027\pi\)
−0.986842 + 0.161688i \(0.948306\pi\)
\(570\) 0.764419 1.32401i 0.0320180 0.0554568i
\(571\) 39.8643 1.66827 0.834135 0.551561i \(-0.185967\pi\)
0.834135 + 0.551561i \(0.185967\pi\)
\(572\) 0 0
\(573\) 4.57595 0.191163
\(574\) −4.96080 + 8.59235i −0.207060 + 0.358638i
\(575\) 1.21400 2.10272i 0.0506274 0.0876893i
\(576\) −1.66641 2.88631i −0.0694338 0.120263i
\(577\) 8.46326 0.352330 0.176165 0.984361i \(-0.443631\pi\)
0.176165 + 0.984361i \(0.443631\pi\)
\(578\) 3.31068 + 5.73427i 0.137706 + 0.238514i
\(579\) 4.12156 + 7.13876i 0.171286 + 0.296677i
\(580\) −4.47116 −0.185655
\(581\) 13.1193 + 22.7233i 0.544280 + 0.942721i
\(582\) −1.38880 + 2.40548i −0.0575678 + 0.0997103i
\(583\) −10.7160 + 18.5606i −0.443811 + 0.768702i
\(584\) −23.0268 −0.952855
\(585\) 0 0
\(586\) −14.8824 −0.614786
\(587\) −4.66359 + 8.07757i −0.192487 + 0.333397i −0.946074 0.323951i \(-0.894989\pi\)
0.753587 + 0.657348i \(0.228322\pi\)
\(588\) −0.0515457 + 0.0892798i −0.00212571 + 0.00368184i
\(589\) 0.764419 + 1.32401i 0.0314973 + 0.0545550i
\(590\) −0.514319 −0.0211742
\(591\) 3.67678 + 6.36836i 0.151242 + 0.261959i
\(592\) 3.56671 + 6.17772i 0.146591 + 0.253903i
\(593\) 8.07841 0.331740 0.165870 0.986148i \(-0.446957\pi\)
0.165870 + 0.986148i \(0.446957\pi\)
\(594\) −3.63193 6.29068i −0.149020 0.258110i
\(595\) −7.14399 + 12.3737i −0.292875 + 0.507274i
\(596\) 9.48963 16.4365i 0.388711 0.673266i
\(597\) −4.94233 −0.202276
\(598\) 0 0
\(599\) 19.1440 0.782202 0.391101 0.920348i \(-0.372094\pi\)
0.391101 + 0.920348i \(0.372094\pi\)
\(600\) 0.449585 0.778704i 0.0183542 0.0317904i
\(601\) 2.14399 3.71349i 0.0874550 0.151477i −0.818980 0.573823i \(-0.805460\pi\)
0.906435 + 0.422346i \(0.138793\pi\)
\(602\) −8.34565 14.4551i −0.340143 0.589145i
\(603\) 6.14963 0.250432
\(604\) −17.5834 30.4554i −0.715459 1.23921i
\(605\) −7.50924 13.0064i −0.305294 0.528784i
\(606\) 2.65774 0.107963
\(607\) −14.6213 25.3248i −0.593459 1.02790i −0.993762 0.111519i \(-0.964428\pi\)
0.400303 0.916383i \(-0.368905\pi\)
\(608\) −16.9485 + 29.3556i −0.687351 + 1.19053i
\(609\) 1.52884 2.64802i 0.0619516 0.107303i
\(610\) 3.32718 0.134713
\(611\) 0 0
\(612\) 25.1888 1.01820
\(613\) 0.712027 1.23327i 0.0287585 0.0498112i −0.851288 0.524699i \(-0.824178\pi\)
0.880046 + 0.474888i \(0.157511\pi\)
\(614\) 0.684320 1.18528i 0.0276169 0.0478339i
\(615\) −1.38880 2.40548i −0.0560020 0.0969982i
\(616\) −28.6419 −1.15402
\(617\) −23.2633 40.2932i −0.936545 1.62214i −0.771856 0.635797i \(-0.780671\pi\)
−0.164689 0.986346i \(-0.552662\pi\)
\(618\) −1.30116 2.25368i −0.0523404 0.0906562i
\(619\) 34.2818 1.37790 0.688950 0.724809i \(-0.258072\pi\)
0.688950 + 0.724809i \(0.258072\pi\)
\(620\) 0.204768 + 0.354668i 0.00822367 + 0.0142438i
\(621\) 3.02242 5.23499i 0.121286 0.210073i
\(622\) −1.01452 + 1.75720i −0.0406785 + 0.0704572i
\(623\) −20.4033 −0.817442
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 1.42405 2.46653i 0.0569166 0.0985825i
\(627\) 6.81681 11.8071i 0.272237 0.471529i
\(628\) −8.22635 14.2484i −0.328267 0.568575i
\(629\) −17.7859 −0.709171
\(630\) −2.15322 3.72949i −0.0857864 0.148586i
\(631\) 1.16161 + 2.01197i 0.0462430 + 0.0800953i 0.888220 0.459417i \(-0.151942\pi\)
−0.841977 + 0.539513i \(0.818608\pi\)
\(632\) −7.63362 −0.303649
\(633\) 5.16246 + 8.94164i 0.205189 + 0.355398i
\(634\) 5.31794 9.21094i 0.211202 0.365813i
\(635\) −6.03081 + 10.4457i −0.239326 + 0.414524i
\(636\) −3.00830 −0.119287
\(637\) 0 0
\(638\) 7.79834 0.308739
\(639\) −8.79523 + 15.2338i −0.347934 + 0.602639i
\(640\) −5.76640 + 9.98769i −0.227937 + 0.394798i
\(641\) 14.0656 + 24.3623i 0.555557 + 0.962253i 0.997860 + 0.0653873i \(0.0208283\pi\)
−0.442303 + 0.896866i \(0.645838\pi\)
\(642\) 0.0342826 0.00135303
\(643\) −7.06691 12.2402i −0.278692 0.482708i 0.692368 0.721544i \(-0.256567\pi\)
−0.971060 + 0.238836i \(0.923234\pi\)
\(644\) −5.42801 9.40158i −0.213893 0.370474i
\(645\) 4.67282 0.183992
\(646\) −9.54731 16.5364i −0.375634 0.650617i
\(647\) 22.9485 39.7479i 0.902197 1.56265i 0.0775604 0.996988i \(-0.475287\pi\)
0.824636 0.565663i \(-0.191380\pi\)
\(648\) −7.75716 + 13.4358i −0.304730 + 0.527808i
\(649\) −4.58651 −0.180036
\(650\) 0 0
\(651\) −0.280067 −0.0109767
\(652\) −10.3588 + 17.9420i −0.405683 + 0.702664i
\(653\) −25.2241 + 43.6894i −0.987095 + 1.70970i −0.354864 + 0.934918i \(0.615473\pi\)
−0.632230 + 0.774780i \(0.717860\pi\)
\(654\) 1.10874 + 1.92039i 0.0433550 + 0.0750931i
\(655\) 7.63362 0.298270
\(656\) 6.95684 + 12.0496i 0.271619 + 0.470458i
\(657\) −15.4372 26.7381i −0.602264 1.04315i
\(658\) 4.08631 0.159301
\(659\) 22.9361 + 39.7265i 0.893464 + 1.54753i 0.835694 + 0.549195i \(0.185066\pi\)
0.0577700 + 0.998330i \(0.481601\pi\)
\(660\) 1.82605 3.16280i 0.0710787 0.123112i
\(661\) −12.9216 + 22.3809i −0.502592 + 0.870514i 0.497404 + 0.867519i \(0.334287\pi\)
−0.999996 + 0.00299527i \(0.999047\pi\)
\(662\) 3.38614 0.131606
\(663\) 0 0
\(664\) −20.6235 −0.800345
\(665\) 8.34565 14.4551i 0.323630 0.560544i
\(666\) 2.68037 4.64253i 0.103862 0.179894i
\(667\) 3.24482 + 5.62019i 0.125640 + 0.217615i
\(668\) −14.2326 −0.550674
\(669\) −1.22635 2.12409i −0.0474133 0.0821222i
\(670\) −0.624385 1.08147i −0.0241221 0.0417807i
\(671\) 29.6706 1.14542
\(672\) −3.10478 5.37764i −0.119770 0.207447i
\(673\) −2.48963 + 4.31217i −0.0959683 + 0.166222i −0.910012 0.414581i \(-0.863928\pi\)
0.814044 + 0.580803i \(0.197261\pi\)
\(674\) −3.98153 + 6.89621i −0.153363 + 0.265632i
\(675\) 2.48963 0.0958261
\(676\) 0 0
\(677\) −35.8353 −1.37726 −0.688631 0.725112i \(-0.741788\pi\)
−0.688631 + 0.725112i \(0.741788\pi\)
\(678\) −1.58877 + 2.75183i −0.0610164 + 0.105684i
\(679\) −15.1625 + 26.2621i −0.581882 + 1.00785i
\(680\) −5.61515 9.72572i −0.215331 0.372964i
\(681\) 1.26386 0.0484311
\(682\) −0.357144 0.618592i −0.0136757 0.0236871i
\(683\) 20.2356 + 35.0491i 0.774293 + 1.34111i 0.935191 + 0.354144i \(0.115228\pi\)
−0.160898 + 0.986971i \(0.551439\pi\)
\(684\) −29.4257 −1.12512
\(685\) −1.71598 2.97216i −0.0655642 0.113561i
\(686\) −5.24086 + 9.07744i −0.200097 + 0.346578i
\(687\) −5.40558 + 9.36274i −0.206236 + 0.357211i
\(688\) −23.4073 −0.892394
\(689\) 0 0
\(690\) −0.594417 −0.0226291
\(691\) 6.12241 10.6043i 0.232907 0.403407i −0.725755 0.687953i \(-0.758509\pi\)
0.958662 + 0.284546i \(0.0918428\pi\)
\(692\) −18.0224 + 31.2158i −0.685110 + 1.18664i
\(693\) −19.2017 33.2583i −0.729411 1.26338i
\(694\) −4.38050 −0.166281
\(695\) 0.471163 + 0.816078i 0.0178722 + 0.0309556i
\(696\) 1.20166 + 2.08134i 0.0455488 + 0.0788929i
\(697\) −34.6913 −1.31403
\(698\) −3.19771 5.53859i −0.121035 0.209639i
\(699\) 4.99605 8.65341i 0.188968 0.327302i
\(700\) 2.23558 3.87214i 0.0844970 0.146353i
\(701\) 11.8353 0.447012 0.223506 0.974703i \(-0.428250\pi\)
0.223506 + 0.974703i \(0.428250\pi\)
\(702\) 0 0
\(703\) 20.7776 0.783642
\(704\) −3.01763 + 5.22668i −0.113731 + 0.196988i
\(705\) −0.571993 + 0.990721i −0.0215425 + 0.0373127i
\(706\) 2.76047 + 4.78127i 0.103891 + 0.179945i
\(707\) 29.0162 1.09127
\(708\) −0.321894 0.557536i −0.0120975 0.0209535i
\(709\) 3.18714 + 5.52029i 0.119696 + 0.207319i 0.919647 0.392746i \(-0.128475\pi\)
−0.799951 + 0.600065i \(0.795141\pi\)
\(710\) 3.57199 0.134055
\(711\) −5.11761 8.86396i −0.191925 0.332424i
\(712\) 8.01847 13.8884i 0.300505 0.520490i
\(713\) 0.297209 0.514780i 0.0111306 0.0192787i
\(714\) 3.49794 0.130907
\(715\) 0 0
\(716\) −4.29588 −0.160545
\(717\) 0.811528 1.40561i 0.0303071 0.0524934i
\(718\) −2.72042 + 4.71190i −0.101525 + 0.175847i
\(719\) 17.4504 + 30.2250i 0.650791 + 1.12720i 0.982931 + 0.183973i \(0.0588960\pi\)
−0.332140 + 0.943230i \(0.607771\pi\)
\(720\) −6.03920 −0.225068
\(721\) −14.2056 24.6048i −0.529045 0.916332i
\(722\) 5.71929 + 9.90609i 0.212850 + 0.368667i
\(723\) −1.46890 −0.0546290
\(724\) −11.4844 19.8915i −0.426813 0.739261i
\(725\) −1.33641 + 2.31473i −0.0496331 + 0.0859670i
\(726\) −1.83839 + 3.18418i −0.0682290 + 0.118176i
\(727\) 19.8106 0.734734 0.367367 0.930076i \(-0.380259\pi\)
0.367367 + 0.930076i \(0.380259\pi\)
\(728\) 0 0
\(729\) −17.6050 −0.652036
\(730\) −3.13475 + 5.42955i −0.116022 + 0.200957i
\(731\) 29.1809 50.5429i 1.07930 1.86939i
\(732\) 2.08236 + 3.60675i 0.0769662 + 0.133309i
\(733\) −12.6050 −0.465576 −0.232788 0.972528i \(-0.574785\pi\)
−0.232788 + 0.972528i \(0.574785\pi\)
\(734\) −4.86307 8.42309i −0.179499 0.310902i
\(735\) 0.0308136 + 0.0533707i 0.00113658 + 0.00196861i
\(736\) 13.1792 0.485793
\(737\) −5.56804 9.64413i −0.205101 0.355246i
\(738\) 5.22804 9.05523i 0.192447 0.333328i
\(739\) −18.5874 + 32.1942i −0.683747 + 1.18428i 0.290082 + 0.957002i \(0.406317\pi\)
−0.973829 + 0.227283i \(0.927016\pi\)
\(740\) 5.56578 0.204602
\(741\) 0 0
\(742\) 6.42366 0.235820
\(743\) −13.9661 + 24.1900i −0.512366 + 0.887444i 0.487531 + 0.873105i \(0.337897\pi\)
−0.999897 + 0.0143381i \(0.995436\pi\)
\(744\) 0.110066 0.190640i 0.00403521 0.00698920i
\(745\) −5.67282 9.82562i −0.207836 0.359983i
\(746\) 1.04977 0.0384348
\(747\) −13.8260 23.9474i −0.505869 0.876190i
\(748\) −22.8066 39.5023i −0.833893 1.44435i
\(749\) 0.374285 0.0136761
\(750\) −0.122408 0.212018i −0.00446973 0.00774179i
\(751\) 6.81286 11.8002i 0.248605 0.430596i −0.714534 0.699600i \(-0.753361\pi\)
0.963139 + 0.269005i \(0.0866947\pi\)
\(752\) 2.86525 4.96276i 0.104485 0.180973i
\(753\) −10.9009 −0.397249
\(754\) 0 0
\(755\) −21.0224 −0.765084
\(756\) 5.56578 9.64021i 0.202425 0.350611i
\(757\) 15.4280 26.7221i 0.560740 0.971231i −0.436692 0.899611i \(-0.643850\pi\)
0.997432 0.0716196i \(-0.0228168\pi\)
\(758\) −9.25716 16.0339i −0.336235 0.582376i
\(759\) −5.30080 −0.192407
\(760\) 6.55965 + 11.3616i 0.237944 + 0.412130i
\(761\) 8.50811 + 14.7365i 0.308419 + 0.534197i 0.978017 0.208527i \(-0.0668669\pi\)
−0.669598 + 0.742724i \(0.733534\pi\)
\(762\) 2.95289 0.106972
\(763\) 12.1048 + 20.9661i 0.438223 + 0.759024i
\(764\) −8.94233 + 15.4886i −0.323522 + 0.560357i
\(765\) 7.52884 13.0403i 0.272206 0.471474i
\(766\) 16.0969 0.581604
\(767\) 0 0
\(768\) 1.81060 0.0653343
\(769\) −14.5081 + 25.1288i −0.523176 + 0.906167i 0.476461 + 0.879196i \(0.341919\pi\)
−0.999636 + 0.0269710i \(0.991414\pi\)
\(770\) −3.89917 + 6.75356i −0.140516 + 0.243381i
\(771\) −1.98322 3.43504i −0.0714240 0.123710i
\(772\) −32.2175 −1.15953
\(773\) −20.2580 35.0879i −0.728630 1.26202i −0.957462 0.288558i \(-0.906824\pi\)
0.228833 0.973466i \(-0.426509\pi\)
\(774\) 8.79523 + 15.2338i 0.316138 + 0.547567i
\(775\) 0.244817 0.00879409
\(776\) −11.9176 20.6420i −0.427818 0.741003i
\(777\) −1.90312 + 3.29630i −0.0682741 + 0.118254i
\(778\) 9.14003 15.8310i 0.327686 0.567569i
\(779\) 40.5266 1.45202
\(780\) 0 0
\(781\) 31.8538 1.13982
\(782\) −3.71203 + 6.42942i −0.132742 + 0.229916i
\(783\) −3.32718 + 5.76284i −0.118904 + 0.205947i
\(784\) −0.154353 0.267347i −0.00551259 0.00954809i
\(785\) −9.83528 −0.351036
\(786\) −0.934420 1.61846i −0.0333297 0.0577287i
\(787\) 17.0132 + 29.4677i 0.606455 + 1.05041i 0.991820 + 0.127646i \(0.0407422\pi\)
−0.385365 + 0.922764i \(0.625924\pi\)
\(788\) −28.7407 −1.02384
\(789\) −1.74369 3.02015i −0.0620769 0.107520i
\(790\) −1.03920 + 1.79995i −0.0369732 + 0.0640394i
\(791\) −17.3456 + 30.0435i −0.616740 + 1.06823i
\(792\) 30.1849 1.07257
\(793\) 0 0
\(794\) 7.26990 0.257999
\(795\) −0.899170 + 1.55741i −0.0318903 + 0.0552355i
\(796\) 9.65831 16.7287i 0.342330 0.592932i
\(797\) 7.38880 + 12.7978i 0.261725 + 0.453321i 0.966700 0.255911i \(-0.0823754\pi\)
−0.704976 + 0.709232i \(0.749042\pi\)
\(798\) −4.08631 −0.144654
\(799\) 7.14399 + 12.3737i 0.252736 + 0.437752i
\(800\) 2.71400 + 4.70079i 0.0959545 + 0.166198i
\(801\) 21.5025 0.759752
\(802\) 0.280067 + 0.485091i 0.00988952 + 0.0171292i
\(803\) −27.9546 + 48.4188i −0.986496 + 1.70866i
\(804\) 0.781560 1.35370i 0.0275635 0.0477414i
\(805\) −6.48963 −0.228730
\(806\) 0 0
\(807\) −0.489634 −0.0172359
\(808\) −11.4033 + 19.7511i −0.401167 + 0.694842i
\(809\) 18.0277 31.2249i 0.633820 1.09781i −0.352943 0.935645i \(-0.614819\pi\)
0.986764 0.162164i \(-0.0518475\pi\)
\(810\) 2.11204 + 3.65816i 0.0742096 + 0.128535i
\(811\) 5.31040 0.186473 0.0932366 0.995644i \(-0.470279\pi\)
0.0932366 + 0.995644i \(0.470279\pi\)
\(812\) 5.97531 + 10.3495i 0.209692 + 0.363198i
\(813\) 0.682059 + 1.18136i 0.0239209 + 0.0414321i
\(814\) −9.70750 −0.340248
\(815\) 6.19243 + 10.7256i 0.216911 + 0.375701i
\(816\) 2.45269 4.24819i 0.0858614 0.148716i
\(817\) −34.0893 + 59.0445i −1.19263 + 2.06570i
\(818\) −4.46060 −0.155961
\(819\) 0 0
\(820\) 10.8560 0.379108
\(821\) −6.81681 + 11.8071i −0.237908 + 0.412069i −0.960114 0.279609i \(-0.909795\pi\)
0.722206 + 0.691678i \(0.243128\pi\)
\(822\) −0.420101 + 0.727636i −0.0146527 + 0.0253792i
\(823\) −19.8229 34.3343i −0.690984 1.19682i −0.971516 0.236975i \(-0.923844\pi\)
0.280532 0.959845i \(-0.409489\pi\)
\(824\) 22.3311 0.777942
\(825\) −1.09159 1.89070i −0.0380045 0.0658256i
\(826\) 0.687342 + 1.19051i 0.0239157 + 0.0414232i
\(827\) 23.8952 0.830918 0.415459 0.909612i \(-0.363621\pi\)
0.415459 + 0.909612i \(0.363621\pi\)
\(828\) 5.72042 + 9.90805i 0.198798 + 0.344329i
\(829\) 13.6781 23.6912i 0.475060 0.822829i −0.524532 0.851391i \(-0.675760\pi\)
0.999592 + 0.0285624i \(0.00909292\pi\)
\(830\) −2.80757 + 4.86286i −0.0974523 + 0.168792i
\(831\) 3.26386 0.113222
\(832\) 0 0
\(833\) 0.769701 0.0266686
\(834\) 0.115349 0.199790i 0.00399420 0.00691815i
\(835\) −4.25405 + 7.36824i −0.147218 + 0.254988i
\(836\) 26.6429 + 46.1468i 0.921462 + 1.59602i
\(837\) 0.609505 0.0210676
\(838\) 2.91764 + 5.05350i 0.100788 + 0.174570i
\(839\) 14.7705 + 25.5833i 0.509936 + 0.883235i 0.999934 + 0.0115113i \(0.00366423\pi\)
−0.489998 + 0.871724i \(0.663002\pi\)
\(840\) −2.40332 −0.0829225
\(841\) 10.9280 + 18.9279i 0.376828 + 0.652685i
\(842\) 8.91990 15.4497i 0.307400 0.532433i
\(843\) 4.33113 7.50174i 0.149172 0.258374i
\(844\) −40.3540 −1.38904
\(845\) 0 0
\(846\) −4.30644 −0.148059
\(847\) −20.0709 + 34.7638i −0.689643 + 1.19450i
\(848\) 4.50415 7.80142i 0.154673 0.267902i
\(849\) −4.25801 7.37508i −0.146134 0.253112i
\(850\) −3.05767 −0.104877
\(851\) −4.03920 6.99611i −0.138462 0.239823i
\(852\) 2.23558 + 3.87214i 0.0765898 + 0.132657i
\(853\) 5.61515 0.192259 0.0961295 0.995369i \(-0.469354\pi\)
0.0961295 + 0.995369i \(0.469354\pi\)
\(854\) −4.44648 7.70153i −0.152155 0.263541i
\(855\) −8.79523 + 15.2338i −0.300791 + 0.520985i
\(856\) −0.147093 + 0.254773i −0.00502755 + 0.00870798i
\(857\) −39.9216 −1.36370 −0.681848 0.731494i \(-0.738823\pi\)
−0.681848 + 0.731494i \(0.738823\pi\)
\(858\) 0 0
\(859\) 28.6498 0.977520 0.488760 0.872418i \(-0.337449\pi\)
0.488760 + 0.872418i \(0.337449\pi\)
\(860\) −9.13164 + 15.8165i −0.311386 + 0.539337i
\(861\) −3.71203 + 6.42942i −0.126506 + 0.219114i
\(862\) 6.55965 + 11.3616i 0.223423 + 0.386979i
\(863\) −38.5530 −1.31236 −0.656179 0.754605i \(-0.727828\pi\)
−0.656179 + 0.754605i \(0.727828\pi\)
\(864\) 6.75687 + 11.7033i 0.229874 + 0.398153i
\(865\) 10.7737 + 18.6605i 0.366315 + 0.634477i
\(866\) −9.31661 −0.316591
\(867\) 2.47729 + 4.29079i 0.0841332 + 0.145723i
\(868\) 0.547308 0.947966i 0.0185769 0.0321761i
\(869\) −9.26724 + 16.0513i −0.314370 + 0.544504i
\(870\) 0.654353 0.0221846
\(871\) 0 0
\(872\) −19.0286 −0.644391
\(873\) 15.9793 27.6769i 0.540816 0.936721i
\(874\) 4.33641 7.51089i 0.146681 0.254059i
\(875\) −1.33641 2.31473i −0.0451790 0.0782523i
\(876\) −7.84771 −0.265150
\(877\) 13.6913 + 23.7140i 0.462322 + 0.800765i 0.999076 0.0429733i \(-0.0136830\pi\)
−0.536754 + 0.843739i \(0.680350\pi\)
\(878\) −6.79439 11.7682i −0.229299 0.397158i
\(879\) −11.1361 −0.375611
\(880\) 5.46806 + 9.47095i 0.184328 + 0.319266i
\(881\) 12.5420 21.7234i 0.422552 0.731881i −0.573637 0.819110i \(-0.694468\pi\)
0.996188 + 0.0872290i \(0.0278012\pi\)
\(882\) −0.115995 + 0.200910i −0.00390576 + 0.00676498i
\(883\) −50.5513 −1.70119 −0.850593 0.525825i \(-0.823757\pi\)
−0.850593 + 0.525825i \(0.823757\pi\)
\(884\) 0 0
\(885\) −0.384851 −0.0129366
\(886\) −0.787326 + 1.36369i −0.0264507 + 0.0458140i
\(887\) 9.82915 17.0246i 0.330031 0.571630i −0.652487 0.757800i \(-0.726274\pi\)
0.982518 + 0.186170i \(0.0596076\pi\)
\(888\) −1.49585 2.59088i −0.0501974 0.0869444i
\(889\) 32.2386 1.08125
\(890\) −2.18319 3.78140i −0.0731807 0.126753i
\(891\) 18.8344 + 32.6222i 0.630977 + 1.09288i
\(892\) 9.58611 0.320967
\(893\) −8.34565 14.4551i −0.279276 0.483721i
\(894\) −1.38880 + 2.40548i −0.0464485 + 0.0804512i
\(895\) −1.28402 + 2.22399i −0.0429201 + 0.0743397i
\(896\) 30.8251 1.02979
\(897\) 0 0
\(898\) −15.5025 −0.517324
\(899\) −0.327176 + 0.566686i −0.0109119 + 0.0189000i
\(900\) −2.35601 + 4.08074i −0.0785338 + 0.136025i
\(901\) 11.2303 + 19.4514i 0.374135 + 0.648022i
\(902\) −18.9344 −0.630447
\(903\) −6.24482 10.8163i −0.207814 0.359945i
\(904\) −13.6336 23.6141i −0.453447 0.785394i
\(905\) −13.7305 −0.456417
\(906\) 2.57332 + 4.45713i 0.0854929 + 0.148078i
\(907\) −11.0269 + 19.0991i −0.366141 + 0.634175i −0.988959 0.148192i \(-0.952655\pi\)
0.622818 + 0.782367i \(0.285988\pi\)
\(908\) −2.46983 + 4.27788i −0.0819643 + 0.141966i
\(909\) −30.5793 −1.01425
\(910\) 0 0
\(911\) −14.0079 −0.464103 −0.232051 0.972704i \(-0.574544\pi\)
−0.232051 + 0.972704i \(0.574544\pi\)
\(912\) −2.86525 + 4.96276i −0.0948779 + 0.164333i
\(913\) −25.0369 + 43.3653i −0.828602 + 1.43518i
\(914\) −11.4834 19.8899i −0.379838 0.657898i
\(915\) 2.48963 0.0823048
\(916\) −21.1272 36.5934i −0.698063 1.20908i
\(917\) −10.2017 17.6698i −0.336889 0.583508i
\(918\) −7.61249 −0.251250
\(919\) −10.9176 18.9099i −0.360140 0.623780i 0.627844 0.778339i \(-0.283938\pi\)
−0.987984 + 0.154559i \(0.950604\pi\)
\(920\) 2.55042 4.41745i 0.0840847 0.145639i
\(921\) 0.512058 0.886910i 0.0168729 0.0292247i
\(922\) 1.14851 0.0378241
\(923\) 0 0
\(924\) −9.76140 −0.321126
\(925\) 1.66359 2.88142i 0.0546984 0.0947405i
\(926\) −0.764419 + 1.32401i −0.0251204 + 0.0435097i
\(927\) 14.9709 + 25.9303i 0.491708 + 0.851664i
\(928\) −14.5081 −0.476252
\(929\) 7.61120 + 13.1830i 0.249715 + 0.432520i 0.963447 0.267900i \(-0.0863296\pi\)
−0.713731 + 0.700419i \(0.752996\pi\)
\(930\) −0.0299677 0.0519055i −0.000982679 0.00170205i
\(931\) −0.899170 −0.0294691
\(932\) 19.5266 + 33.8210i 0.639614 + 1.10784i
\(933\) −0.759136 + 1.31486i −0.0248530 + 0.0430466i
\(934\) −9.12015 + 15.7966i −0.298420 + 0.516879i
\(935\) −27.2672 −0.891734
\(936\) 0 0
\(937\) −25.4610 −0.831774 −0.415887 0.909416i \(-0.636529\pi\)
−0.415887 + 0.909416i \(0.636529\pi\)
\(938\) −1.66887 + 2.89057i −0.0544906 + 0.0943804i
\(939\) 1.06558 1.84564i 0.0347739 0.0602301i
\(940\) −2.23558 3.87214i −0.0729166 0.126295i
\(941\) 24.9299 0.812691 0.406346 0.913719i \(-0.366803\pi\)
0.406346 + 0.913719i \(0.366803\pi\)
\(942\) 1.20392 + 2.08525i 0.0392259 + 0.0679412i
\(943\) −7.87844 13.6459i −0.256557 0.444370i
\(944\) 1.92781 0.0627448
\(945\) −3.32718 5.76284i −0.108233 0.187465i
\(946\) 15.9269 27.5862i 0.517827 0.896903i
\(947\) 8.34036 14.4459i 0.271025 0.469430i −0.698099 0.716001i \(-0.745971\pi\)
0.969125 + 0.246571i \(0.0793039\pi\)
\(948\) −2.60160 −0.0844960
\(949\) 0 0
\(950\) 3.57199 0.115891
\(951\) 3.97927 6.89229i 0.129037 0.223498i
\(952\) −15.0083 + 25.9951i −0.486422 + 0.842508i
\(953\) −13.5865 23.5325i −0.440110 0.762293i 0.557587 0.830119i \(-0.311727\pi\)
−0.997697 + 0.0678252i \(0.978394\pi\)
\(954\) −6.76970 −0.219177
\(955\) 5.34565 + 9.25893i 0.172981 + 0.299612i
\(956\) 3.17178 + 5.49368i 0.102583 + 0.177678i
\(957\) 5.83528 0.188628
\(958\) 1.92603 + 3.33598i 0.0622272 + 0.107781i
\(959\) −4.58651 + 7.94407i −0.148106 + 0.256527i
\(960\) −0.253207 + 0.438567i −0.00817221 + 0.0141547i
\(961\) −30.9401 −0.998067
\(962\) 0 0
\(963\) −0.394448 −0.0127109
\(964\) 2.87053 4.97191i 0.0924536 0.160134i
\(965\) −9.62967 + 16.6791i −0.309990 + 0.536918i
\(966\) 0.794386 + 1.37592i 0.0255590 + 0.0442694i
\(967\) 6.75914 0.217359 0.108680 0.994077i \(-0.465338\pi\)
0.108680 + 0.994077i \(0.465338\pi\)
\(968\) −15.7756 27.3242i −0.507048 0.878233i
\(969\) −7.14399 12.3737i −0.229498 0.397502i
\(970\) −6.48963 −0.208370
\(971\) −23.3210 40.3931i −0.748405 1.29628i −0.948587 0.316517i \(-0.897487\pi\)
0.200181 0.979759i \(-0.435847\pi\)
\(972\) −8.89078 + 15.3993i −0.285172 + 0.493932i
\(973\) 1.25934 2.18123i 0.0403724 0.0699271i
\(974\) 22.6807 0.726737
\(975\) 0 0
\(976\) −12.4712 −0.399192
\(977\) 26.3734 45.6800i 0.843758 1.46143i −0.0429368 0.999078i \(-0.513671\pi\)
0.886695 0.462355i \(-0.152995\pi\)
\(978\) 1.51601 2.62581i 0.0484767 0.0839641i
\(979\) −19.4689 33.7211i −0.622229 1.07773i
\(980\) −0.240864 −0.00769412
\(981\) −12.7569 22.0956i −0.407296 0.705457i
\(982\) −8.89296 15.4031i −0.283786 0.491531i
\(983\) 20.9977 0.669724 0.334862 0.942267i \(-0.391310\pi\)
0.334862 + 0.942267i \(0.391310\pi\)
\(984\) −2.91764 5.05350i −0.0930110 0.161100i
\(985\) −8.59046 + 14.8791i −0.273715 + 0.474088i
\(986\) 4.08631 7.07770i 0.130135 0.225400i
\(987\) 3.05767 0.0973268
\(988\) 0 0
\(989\) 26.5081 0.842909
\(990\) 4.10922 7.11738i 0.130600 0.226205i
\(991\) 16.1585 27.9874i 0.513292 0.889048i −0.486589 0.873631i \(-0.661759\pi\)
0.999881 0.0154167i \(-0.00490748\pi\)
\(992\) 0.664434 + 1.15083i 0.0210958 + 0.0365390i
\(993\) 2.53376 0.0804064
\(994\) −4.77365 8.26821i −0.151411 0.262252i
\(995\) −5.77365 10.0003i −0.183037 0.317030i
\(996\) −7.02864 −0.222711
\(997\) 10.6952 + 18.5247i 0.338722 + 0.586684i 0.984193 0.177102i \(-0.0566721\pi\)
−0.645471 + 0.763785i \(0.723339\pi\)
\(998\) −3.74905 + 6.49355i −0.118674 + 0.205550i
\(999\) 4.14173 7.17368i 0.131038 0.226965i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.e.k.191.2 6
13.2 odd 12 845.2.m.h.361.4 12
13.3 even 3 inner 845.2.e.k.146.2 6
13.4 even 6 845.2.a.k.1.2 3
13.5 odd 4 845.2.m.h.316.3 12
13.6 odd 12 65.2.c.a.51.4 yes 6
13.7 odd 12 65.2.c.a.51.3 6
13.8 odd 4 845.2.m.h.316.4 12
13.9 even 3 845.2.a.i.1.2 3
13.10 even 6 845.2.e.i.146.2 6
13.11 odd 12 845.2.m.h.361.3 12
13.12 even 2 845.2.e.i.191.2 6
39.17 odd 6 7605.2.a.bs.1.2 3
39.20 even 12 585.2.b.g.181.4 6
39.32 even 12 585.2.b.g.181.3 6
39.35 odd 6 7605.2.a.cc.1.2 3
52.7 even 12 1040.2.k.d.961.4 6
52.19 even 12 1040.2.k.d.961.3 6
65.4 even 6 4225.2.a.bc.1.2 3
65.7 even 12 325.2.d.f.324.4 6
65.9 even 6 4225.2.a.be.1.2 3
65.19 odd 12 325.2.c.g.51.3 6
65.32 even 12 325.2.d.e.324.4 6
65.33 even 12 325.2.d.e.324.3 6
65.58 even 12 325.2.d.f.324.3 6
65.59 odd 12 325.2.c.g.51.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.c.a.51.3 6 13.7 odd 12
65.2.c.a.51.4 yes 6 13.6 odd 12
325.2.c.g.51.3 6 65.19 odd 12
325.2.c.g.51.4 6 65.59 odd 12
325.2.d.e.324.3 6 65.33 even 12
325.2.d.e.324.4 6 65.32 even 12
325.2.d.f.324.3 6 65.58 even 12
325.2.d.f.324.4 6 65.7 even 12
585.2.b.g.181.3 6 39.32 even 12
585.2.b.g.181.4 6 39.20 even 12
845.2.a.i.1.2 3 13.9 even 3
845.2.a.k.1.2 3 13.4 even 6
845.2.e.i.146.2 6 13.10 even 6
845.2.e.i.191.2 6 13.12 even 2
845.2.e.k.146.2 6 13.3 even 3 inner
845.2.e.k.191.2 6 1.1 even 1 trivial
845.2.m.h.316.3 12 13.5 odd 4
845.2.m.h.316.4 12 13.8 odd 4
845.2.m.h.361.3 12 13.11 odd 12
845.2.m.h.361.4 12 13.2 odd 12
1040.2.k.d.961.3 6 52.19 even 12
1040.2.k.d.961.4 6 52.7 even 12
4225.2.a.bc.1.2 3 65.4 even 6
4225.2.a.be.1.2 3 65.9 even 6
7605.2.a.bs.1.2 3 39.17 odd 6
7605.2.a.cc.1.2 3 39.35 odd 6